

Benefits, Principles and Procedures

Bill McKay

CHPQA

Talk Coverage

Quick Review

Benefits

Principles

Roles & Responsibilities

Certificates

CHPQA Procedures

Fiscal Measures and GQCHP

- CCL Exemption (on fuel input and electricity output)
- Business Rates Exemption (embedded schemes)
- Hydrocarbon Oil Duty Relief
- CRC no emissions attributed to heat from CHP (Zero Carbon Heat)
- Carbon Allocation for Heat under EU-ETS
- Enhanced Capital Allowance
- 1ROC/MWh of electricity from EfW, 2 ROCs/MWh for dedicated biomass (April 2009)
- CPS exemptions for supplies of fossil fuels to CHP where the fuel is used to generate heat (fuel for heat equivalent)
- CPS exemptions for supplies of fossil fuels to CHP where the fuel is used to generate Good Quality electricity used on site (April 2015)
- RHI Specific tariff for biomass fuelled GQCHP
- CfD will replace the RO for all new projects from 1st April 2017.

Why CHPQA?

- It is a tool for measuring the Quality of CHP Schemes
- A rigorous system is needed to:
 - ensure that incentives are targeted fairly
 - ensure that it only benefits schemes making significant environmental savings
- CHPQA provides the methods and procedures needed to assess and certify the quality of the full range of CHP Schemes

Definition of GQCHP

All laid out in the CHPQA Standard.

For Existing Schemes:

- Quality Index (QI) >100 and
- Power generation efficiency of ≥ 20%

For Upgraded & New Schemes:

- Quality Index (QI) >105 and
- Power generation efficiency of ≥ 20%.

See Issue 5 - Published Nov 2013

See also CHPQA Guidance Note 44 with regard to ROCs and CfD support (Issue 4-ROCs & Issue 5-CfD)

CHPQA QI Formulas

The general definition for QI is:

$$QI = (X \times \eta_{power}) + (Y \times \eta_{heat})$$

Where:

Power Efficiency $(\eta_{power}) = CHP_{TPO}/CHP_{TFI}$

and

Heat Efficiency $(\eta_{heat}) = CHP_{QHO}/CHP_{TFI}$

X and Y are parameters which depend on the type of fuel used and size of scheme (MW_e)

CHPQA Standard (Issue 5) QI Formulae— For Conventional Fuels

Size Of Scheme (CHPTPC)		QI Definition						
CONVENTIONAL FOSSIL FUELS SCHEMES								
Natural gas (inc. Reciprocating I	Engines)							
≤1MW _e	QI	249 x	η _{power}	+	115	X η _{heat}		
>1 to ≤10MW _e	= QI	195 x	η _{power}	+	115	X η _{heat}		
>10 to ≤25MW _e	= QI	191 x	η _{power}	+	115	x η _{heat}		
>25 to ≤50MW _e	= QI	186 x	η _{power}	+	115	X η _{heat}		
>50 to ≤100MW _e	= QI =	179 x	η _{power}	+	115	X η _{heat}		
>100 to ≤200MW _e	QI	176 x	η _{power}	+	115	X η _{heat}		
>200 to ≤500MW _e	= QI -	173 x	η _{power}	+	115	X η _{heat}		
>500MW _e	= QI =	172 x	η _{power}	+	115	X η _{heat}		
Oil								
≤1MWe	QI	249 x	η _{power}	+	115	X η _{heat}		
>1 to ≤25MWe	= QI	191 x	η _{power}	+	115	X η _{heat}		
>25MWe	= QI =	176 x	η _{power}	+	115	X η _{heat}		
Coal								
≤1MWe	QI =	249 x	η _{power}	+	115	X η _{heat}		
>1 to ≤25MWe	_ QI =	191 x	ηpower	+	115	X η heat		
>25MWe	= QI =	176 x	η _{power}	+	115	X η _{heat}		

Issue 5 of the standard formulae will apply from 1st January 2014 and will be used for the 2015 certification of all schemes

CHPQA Standard (Issue 5) QI Formulae— CAP (

Oldno longer used

Size Of Scheme (CHP _{TPC})		QI Definition						
	ALTERNATIVE FUEL SCHEMES ³							
By-Product Gases								
≤1MWe	QI =	294 x	η _{power}	+	120 x η _{he}			
>1 to ≤25MWe	QI =	221 x	η _{power}	+	120 x η _{he}			
>25MWe	QI =	193 x	η_{power}	+	120 x η _{he}			
Biogas								
<=1MWe	QI =	285 x	η _{power}	+	120 x η _{he}			
>1 to ≤25MWe	QI =	251 x	η _{power}	+	120 x η _{he}			
>25MWe	QI =	193 x	η _{power}	+	120 x η _{he}			
Waste Gas or Heat								
≤1MWe	QI =	329 x	η _{power}	+	120 x η _{he}			
>1 to ≤25MWe	QI =	299 x	η _{power}	+	120 x η _{he}			
>25MWe	QI =	193 x	η _{power}	+	120 x η _{he}			
Liquid Biofuels								
≤1MWe	QI =	275 x	η _{power}	+	120 x η _{he}			
>1 to ≤25MWe	QI =	191 x	η _{power}	+	120 x η _{he}			
>25MWe	QI =	176 x	η _{power}	+	120 x η _{he}			
Liquid Waste								
≤1MWe	QI =	275 x	η _{power}	+	120 x η _{he}			
>1 to ≤25MWe	QI =	260 x	η_{power}	+	120 x η _{he}			
>25MWe	QI =	176 x	η _{power}	+	120 x η _{he}			
Biomass or Solid Waste								
≤1MWe	QI =	370 x	η _{power}	+	120 x η _{he}			
>1 to ≤25MWe	QI =	370 x	η _{power}	+	120 x η _{he}			
>25MWe	QI =	220 x	η _{power}	+	120 x η _{he}			
Wood Fuels			In in its					
≤1MWe	QI =	329 x	η _{power}	+	120 x η _{he}			
>1 to ≤25MWe	QI =	279 x	η_{power}	+	120 x η _{he}			
>25MWe	QI =	220 x	ηροινοι	+	120 x η _{he}			

New...applied to all schemes

SPECIAL CASES									
FUEL CELL SCHEMES	QI =	180 x	η _{power}	+	120	X η _{heat}			
ALTERNATIVE FUEL SCHEMES									
Category A (e.g. AD gas, sewage gas, landfill gas)									
≤1MWe	QI =	238 x	η _{power}	+	120	X η _{heat}			
>1 to ≤25MWe	QI =	225 x	ηpower	+	120	X η heat			
>25MWe	QI =	193 x	η _{power}	+	120	X η _{heat}			
Category B (e.g. synthesis gas)									
≤1MWe	QI =	275 x	η _{power}	+	120	X η _{heat}			
>1 to ≤25MWe	QI =	251 x	η _{power}	+	120	X η _{heat}			
>25MWe	QI =	193 x	η _{power}	+	120	X η _{heat}			
Category C e.g. Fatty Acid Methyl Ester, Pyrolysis oil etc.)			(January)			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
<1MWe	QI =	245 x	ηροwer	+	120	X η heat			
>1 to ≤25MWe	QI =	191 x	η _{power}	+	120	x η _{heat}			
>25MWe	QI =	176 x	η _{power}	+	120	X η _{heat}			
Category D (e.g. Tallow, Used Cooking Oil)			(ponor			- 177001			
<=1MWe	QI =	245 x	η _{power}	+	120	X η _{heat}			
>1 to ≤25MWe	QI =	226 x	η _{power}	+	120	X η _{heat}			
>25MWe	QI =	176 x	η _{power}	+	120	x η _{heat}			
Category E (e.g. Municipal waste, sewage sludge, paper sludge			· [powe/			· · · [rioat			
≤1MWe	QI =	370 x	η _{power}	+	120	X η _{heat}			
>1 to ≤10MWe	QI =	370 x	η _{power}	+	120	X η _{heat}			
>10 to ≤25MWe	QI =	370 x	η _{power}	+	120	X η _{heat}			
>25MWe	QI =	220 x	ηροwer	+	120	X ηheat			
Category F (e.g. Logs, Energy crops, Agricultural residues etc.		ZZOX	1 [power	•	120	X I[near			
≤1MWe	QI =	348 x	ηροwer	+	130	X η heat			
>1 to ≤10MWe	QI =	348 x	η _{power}	+	130	X η _{heat}			
>10 to ≤25MWe	QI =	348 x	η _{power}	+	130	X η _{heat}			
>25MWe	QI =	220 x	η _{power}	+	120	X η _{heat}			
Category G (e.g. Contaminated waste wood)	Qi =	ZZOX	Ipower		120	X I[near			
≤1MWe	QI =	352 x	ηροwer	+	120	X η heat			
>1 to <10MWe	QI =	338 x	ηροwer	+	120	X η/neat			
>10 to ≤25MWe	QI =	338 x	η _{power}	+	120	X η _{heat}			
>25MWe	QI =	220 x	η _{power}	+	120	X η _{heat}			
Category H (e.g. Wood pellets, straw, clean waste wood etc.)	Ψ. –	ZZO X	1 [power		120	X I[near			
≤1MWe	QI =	329 x	npower	+	120	X η _{heat}			
>1 to <10MWe	QI =	293 x	η _{power}	+	120	X η _{heat}			
>10 to ≤10MWe	QI =	286 x	ηροwer	+	120	X ηheat			
>25MWe	QI =	220 x		+	120				
Category I (e.g. by-product gases produced in industrial proce		ZZOX	η _{power}	•	120	X η _{heat}			
≤1MWe	QI =	294 x	n	+	120	X η _{heat}			
>1 to <25MWe	QI =	221 x	η _{power}	+	120				
>25MWe	QI =	193 x	η _{power}	+	120	X η _{heat} X η _{heat}			
Category J (e.g. waste gases such as carbon monoxide, or was									
temperature processes, or as a product of exothermic chemical real		uon as the	extiaust ga	10 110	mgn				
≤1MWe	QI =	329 x	ηpower	+	120	X η heat			
>1 to ≤25MWe	QI =	299 x	η _{power}	+	120	X η _{heat}			
>25MWe	QI =	193 x	η _{power}	+	120	x η _{heat}			
Category K (e.g. liquid waste-non renewable)			()						
≤1MWe	QI =	275 x	η _{power}	+	120	x η _{heat}			
>1 to ≤25MWe	QI =	260 x	η _{power}	+	120	X η _{heat}			
>25MWe	QI =	176 x	η _{power}	+	120	X η _{heat}			
			· Ibowei		0	· · · · · · · · · · · · · · · · · · ·			

QI Definitions for Existing and New Schemes

> In summary

- All Schemes wishing to obtain a 'Regular' CHPQA Certificate must use QI formulae in Table 1 of the current CHPQA Standard for 2015 submission.
- Based on 2014 performance data
- See CHPQA Standard Issue 5

Note: For appropriate QI formulae when seeking CHPQA 'GN44' certification for the purposes of ROCs and CfDs, see Guidance Note 44 (Issue 4-ROCs & Issue 5-CfD)

Self Assessment & Certification

Roles and Responsibilities

- CHPQA Administrator/Managed by Ricardo-AEA
- > DECC
- Other Government Departments (HMRC, VOA)
- Ofgem for issuing ROCs, RHI

CHPQA Submission

- A range of forms have been developed :
 - F1 (contact details);
 - F2 (scheme description);
 - F4 (scheme actual performance in previous calendar year) and
 - F3 (scheme predicted performance for new and upgraded schemes).
- Simplified procedure and forms for small single reciprocating engine based schemes (<2MW_e).
 - Only have to provide three figures per year.

CHPQA Forms

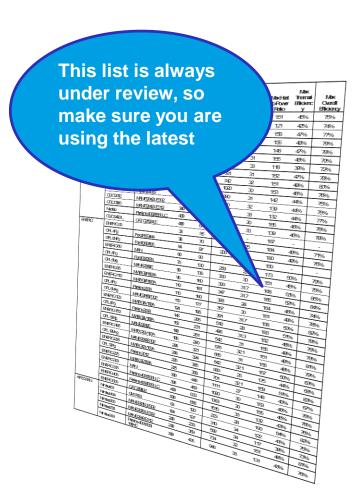
CHPQA Forms to be submitted:

- > F1...only if RP or company name has changed
- F2 and F2(S)..only if Scheme boundaries or monitoring arrangement have changed
- F4 & F4(S) annual submission using actual performance data
- F3 & F3(S) annual submission using design data. If no change Submit the same form... Once in IO then F4 or F4(S)

Short Forms for <2MW_e CHP Schemes

- Schemes eligible to use short forms:
 - Reciprocating Engine Prime Mover
 - Less than 2MW_e Total Power Capacity
 - Only a single conventional fuel
 - Only include a single prime mover,
 - No heat only boilers
- F2(S) > 2 pages
- F3(S) > 4 pages
- F4(S) > 4 pages

Simplified Arrangements for Schemes with TPC<500kW_e


Simple small CHP schemes can use the CHPQA Unit List to determine:

- Gas input (based on power efficiency) and
- Heat output (based on heat-to-power ratio)

Only CHP units meeting the following criteria:

- >CHP Scheme with TPC <500kWe,
- Only include a single prime mover,
- Using Natural Gas fired engines
- No facility to dumping heat,

Make sure that the **engine spec** used from Unit List matches the details on your F2

CHPQA Submission

- Electronic submission is now used for ~97% of all submissions.
- Paper forms are available to download from the website.

Certification Timetable

- CHPQA Certificates cover a calendar year and expire at the end of December
- SoS (CHP Exemption) certificates are open-ended...
- ...provided that a valid CHPQA certificate is obtained no later than end of June every year
- > To obtain an SoS certificate need to make sure you select the correct option

Where do you go from here?

- All CHPQA Certificates issued in 2014 will expire on 31st of December 2014
- New applications should be submitted to the CHPQA Administrator between 1st January and 31st March 2015
- Based on 2014 actual data:
 - Fuel used
 - Electricity generated
 - Heat utilised (actual)
- If all is in order new certificate will be issued no later than middle of June