

Imperial College London

Demonstrating CO₂ capture in the UK cement, chemicals, iron and steel and oil refining sectors by 2025: A Techno-economic Study

> Final Report Appendix for **DECC and BIS**

> > 30th April 2014

Element Energy Ltd Carbon Counts Ltd PSE Ltd Imperial College University of Sheffield

© Element Energy Ltd. www.element-energy.co.uk

elementenergy

Outline

- Overall Project Methodology
- CO₂ capture technologies
- CO₂ sources
- Techno-economic analysis of industrial CO₂ capture
- Process simulation case studies
- CO₂ utilisation review

Overall project approach

Outline

- Overall Project Methodology
- CO₂ capture technologies
- CO₂ sources
- Techno-economic analysis of industrial CO₂ capture
- Process simulation case studies
- CO₂ utilisation review

Extensive literature review used to identify and characterise capture technologies

Process	Кеу								
Identify key data sources	Data search using ScienceDirect, internet, WebofKnowledge, CCS portals, conference proceedings, manufacturer and CCS project websites.								
Screening of data sources	 Screening of abstracts of 2,000+ papers to identify most relevant sources. 								
In-depth literature review	 200+ papers reviewed in detail for information across all known capture technologies 								
Filtering of technologies	 Review of agreed filters following literature review Initial shortlist reviewed by Imperial College and University of Sheffield 								
Populate capture technology database	 Techno-economic model design clarifies technology data collection requirements Focussed literature review to populate database 								
Review with stakeholders	 Technology database circulated with industry experts for review of assumptions 								

The pace of technology development: A recent review using identified *ca*. 1,300 patents on capture technologies.

Resources to track global capture technology progress

Standard research engines (Google, Googlescholar, WebofKnowledge, ScienceDirect) were used to identify public literature for this project.

The most consistently useful and largely up-to-date curated information on pilots, demonstration and commercial scale CCS projects were found at the following portals:

http://www.globalccsinstitute.com/projects/browse

- http://www.sccs.org.uk/news/2014/10Apr-GlobalCCSMap.html
- http://www.cslforum.org/projects/index.html?cid=nav_projects
- http://ieaghg.org/ccs-resources/rd-database
- https://sequestration.mit.edu/tools/projects/index.html
- http://www.zeroemissionsplatform.eu/
- http://bellona.org/ccs/ccs-projects.html

These portals provide links to actual project websites, and facilitate understanding of the relative maturity (TRL) of each capture technology and sector. However some caveats are helpful: Published project factsheets generally provide only very basic data (location, scale, year, fundrs/partners). Conference reports offer latest findings, but rarely details. Peer reviewed academic papers in high quality journals generally describe the most successful results from pilots, but may lag years behind results, and few report pilot/demo costs and practical implementation challenges. As most pilots and demonstrations are co-funded by multiple partners and there are reporting differences in whether capital, total, marginal or average costs are paid for, it is challenging to compare the overall costs of pilots for different technologies, sometimes even to within one order of magnitude.

Objective filtering process to identify most relevant capture technologies for techno-economic study

Filter	Impacts
All technology families	Capture technology long list identified
Exclude TRL ≤4	Exclude technologies that have not been validated at lab bench scale.
Exclude techs requiring base process re-design	 Excludes oxycombustion, pre-combustion and several chemical looping, iron and steel (e.g. TGRBF and HIsarna) CCS project designs.
Tech readiness	 Assume operational plant for 0.05-5 Mt/yr by <i>ca</i>. 2025 requires 1000s of hours of successful operation at 0.01-1 Mt/yr respectively validated ahead of FID in <i>ca</i>. 2020. [FID assumed 2015 for operation in 2020]. Excludes adsorption technologies, membranes, ionic liquids, hybrids.
Insufficient data	Excludes carbonates, sodium hydroxide, and purisol based solvents
Shortlist of 7 capture technologies	 Chemical solvents: 1st gen amine, 2nd gen chemical solvents (e.g. amines, amino acids, and blends, potassium carbonate, ammonia) Physical solvents: rectisol, selexol Chemical looping: calcium looping Cryogenics: liquefaction

An initial "technology long list" comprised all capture technology families identified in the public literature.

A long list of technology families for CO_2 separation was identified from the CCS literature, and comprises:

Liquid absorption technologies:

- Chemical solvents, e.g. amines, ammonia, potassium carbonate solutions, other alkalis
- Physical solvents, e.g. rectisol, selexol, purisol, propylene carbonate, carbonates, ionic liquids

Solid looping cycles: e.g. calcium looping

Adsorption technologies

- Adsorber beds, e.g. alumina, zeolites, activated carbon
- Regenerative methods (temperature, pressure/vacuum, electrical swing adsorption, washing)

Cryogenics (i.e. purification by liquefaction or desublimation of CO₂)

Membranes

- Gas separation or absorption, Ceramics, amine-functionalised membranes

Other e.g. algae, enzymes, oxyfuel, pre-combustion, hybrid approaches

Several capture technologies are likely to be available for retrofit bolt-on to industrial plants by 2025 and so included in the technoeconomic modelling.

CO ₂	Technology	Crite	Include in				
separation technology mechanism		Technology availability (TRL ≥5?)	Feasibility as bolt- on?	Sufficient data available?	techno- economics ?		
Chemical	Amines, first generation (MEA, MDEA, $MDEA$, $MDEA$)	9 (nat gas /high purity)	Bolt on	Yes	Yes		
absorption	KS-1) (with temperature swing)	7-8 (power and industrial)	Daltar		N/s s		
	Amines, second generation	6-7	Bolt on	Yes	Yes		
	Ammonia	6-7	Bolt on	Yes	Yes		
	Potassium carbonate solution (with	(9 Fischer Tropsch)	Bolt on	Yes	Yes		
	pressure swing, amine promoted)	7 Flue gas					
	Alkalis	6	Bolt on	No	No		
Physical	Rectisol (methanol)	9 (nat gas/syngas/high	Bolt on	Yes	Yes		
absorption		purity)					
	Selexol (glycol)	9 (nat gas/syngas/high purity)	Bolt on	Yes	Yes		
	Purisol	9 (nat gas/syngas/high purity)	Bolt on	No	No		
	Propylene carbonate	9 (nat gas/syngas/high purity)	Bolt on	No	No		
	Dimethyl Carbonate + analogues diethyl carbonate etc.	4-5	Bolt on	No	No		
	Ionic liquids (can be chemical abs)	4-5	Bolt on	No	No		
Solid looping cycles	Calcium looping	6-7	Bolt on and redesign options	Yes	Yes		
Cryogenics	Cryogenics (i.e. purification by liquefaction or desublimation of CO_2)	9 (high purity only) 6 (flue gases)	Yes	Yes	Yes		

Some CO_2 capture technology families are not included in the techno-economic modelling as they involve significant plant redesign or insufficient data are available.

CO_2 separation	Technology	(Include				
technology mechanism		Technology availability (TRL ≥5?)	Feasibilit y as bolt- on?	Sufficient data available?	in techno- economi cs?		
Membranes	Gas separation (e.g. polyphenyleneoxide, polydimethylsiloxane) or absorption (polypropylene), Ceramics, amine-functionalised membranes	8-9 (highest for nat. gas, syngas, high purity) 5-6 (low purity flue gas)	Yes	No	No		
Adsorption	Adsorber beds, e.g. alumina, zeolites, activated carbon	5 (flue gas)	Bolt on	No	No		
Adsorption	Regenerative methods (temperature, pressure/vacuum, and electrical swing adsorption).	5 (flue gas)	Bolt on	No	No		
Biological	Algae	4	Yes	No	No		
Biochemical	Enzymatic conversion or enzyme promoted reaction	4	Yes	No	No		
Oxyfuel	Oxyfuel	7-8 (power generation) 6-7 (industrial applications)	Involves significant plant redesign	Some applications	No		
Pre-combustion	Pre-combustion	8-9 (syngas stream in IGCC or SMR) 6-7 (other gasification processes for industrial applications)	Involves significant plant redesign	No	No		
Mixed	Hybrid technologies (e.g. combination of solvents, PSA, TSA, cryogenics, membranes, recirculation, compression)	4-6 (wide range of options)	In some cases	Some applications	No		

CO₂ capture technologies

- Archetype data identified in technology database
- Chemical absorption solvents
 - 1st generation amine
 - 2nd generation amine
 - Potassium carbonate
 - Ammonia
- Physical absorption solvents
 - Rectisol
 - Selexol
- Solid Looping
 - Calcium looping
- Cryogenic capture

The technology database lists key attributes to be used in the techno-economic modelling.

Capture technology database lists:

- 1. Technology name and family
- 2. Current TRL and commercial availability for operation in 2013, 2020 and 2025
- 3. Reference input *and* output conditions for temperature, pressure, and impurity composition
- 4. CO₂ input (size, % mol fraction) reference conditions for capex
- 5. Capex of reference project (and uncertainty).
- 6. Relative cost in 2020 and 2025
- 7. Annual opex as a % of capex (current, 2020, 2025)
- 8. Average GJ thermal energy required/tCO₂ captured (current, 2020, 2025)
- 9. MWh Electrical energy needed/tCO₂ captured
- 10. Space required (low/high)
- 11. Feasibility for retrofit bolt-on (Y/N)
- 12. Cooling water required (low/high)
- 13. Process water required (low/high)
- 14. COMAH status required at site (top/low/none)
- 15. Complex process requiring skilled workers (Y/N)
- 16. Pre-development + construction period (only specified if not default of 3+3 yrs)

Baseline modelling assumptions for capture technology archetypes

Technology Name	Approx TRL	Minimum input overall CO₂ stream pressure (MPa)	Impurity tolerance (ppm)		Output CO ₂ (% volume)	Output CO ₂ stream pressure	Reference capex (£m 2013) ² (+100%- 50%)		Reference CO ₂ (Mt	Reference CO ₂ purity (%	Fixed opex (% of capex in 2013)		rmal tCO ₂ tured	Electrica GJ/tCO ₂ captured		II Relative capex (2013 = 100%)		Relative opex (2013 = 100%)		Capture efficiency (amount captured/ input CO ₂)	
			NOx	SOx		(MPa)	Ce	entral	captured/y)) volume)	Central	2020	2025	2020	2025	2020	2025	2020	2025	2020	2025
1 st gen amine	8	0.1	10	10	99.0%	0.1	£	462	2	11.5%	8%	3.8	3.6	0.2	0.2	100%	90%	80%	60%	85%	90%
Advanced amines or blends	7	0.1	100	100	99.0%	0.1	£	355	2	11.5%	5%		3. 0		0.2	100%	77%	80%	60%	85%	90%
Chilled ammonia	7	0.1	10	10	99.9%	0.1	£	380	2	11.5%	8%		3.0		0.6	100%	100%	80%	60%	85%	90%
Potassium carbonate	9	3.0	200	200	90.5%	0.1	£	399	2	5.0%	7%	5.0	5.0	0.5	0.5	100%	100%	80%	60%	85%	90%
Rectisol	9	3.0	100	100	98.5%	0.1	£	200	2	35.0%	5%	0.4	0.4	0.2	0.2	100%	100%	80%	60%	85%	90%
Selexol	9	3.0	100	100	99.0%	0.1	£	190	2	40.0%	5%	0.2	0.2	0.2	0.2	100%	100%	80%	80%	85%	90%
Calcium looping	6	0.1	100	100	90.0%	0.1	£	142	2	13.0%	19%		1.6		0.54		100%		80%		85%
Cryogenics	7	0.1	10	10	99.0%	Liquid CO2	£	290	2	13.5%	5%	-	-		3.6	100%	100%	80%	80%	85%	90%

• Capture plant output pressures are assumed to be 1 bar, for all technologies.

CO₂ capture technologies

- Archetype data identified in technology database
- Chemical absorption solvents
 - 1st generation amine
 - 2nd generation amine
 - Potassium carbonate
 - Ammonia
- Physical absorption solvents
 - Rectisol
 - Selexol
- Solid Looping
 - Calcium looping
- Cryogenic capture

First generation amine solvent (e.g. monoethanolamine MEA)

- Brief description- MEA selectively absorbs CO₂ from flue gas (temperatures between 40 and 60°C), and is then sent to the striper where CO₂-rich MEA solution is heated (100–140°C at atmospheric pressure) to release almost pure CO₂. The CO₂-lean MEA solution is then recycled to the absorber.
- Technology status- MEA is the most widely used solvent for CO₂ capture. Technology developed over 70 years ago to remove acid gasses from natural gas streams and has been currently being optimised for flue gas CO₂ capture. Commercially available at 0.1MtCO2/yr scale to produce high purity CO₂ for the food industry and acid gas sweetening. R&D is being done to target sector specific flue gases (e.g. cement industry), decrease corrosion and desorption process improvements.
- Technology providers- Fluor (Econamine FG), ABB/Lummus, Mitsubishi (KM-CDR), HTC Purenergy, Aker Clean Carbon, Cansolv (Absorbent DC101)
- Economic and market factors- Works well with low partial pressure and mild temperature flue gas. Well understood technology, already implemented in large scale projects. High recovery rates and purity.
- Key barriers and challenges- High energy requirements due to solvent regeneration, solvent degradation and equipment corrosion, environmental impacts due to solvent emissions and large absorber volume. High capex due to low CO₂ loading resulting in large absorber volume

The main steps in chemical absorption capture are absorption and desorption (stripping).

Cleaned flue gas CO₂ reacts chemically (e.g. acid-base reaction) with aqueous solvent in an absorbing column. Other gases pass through without reaction. The product is then transferred to a stripping or 杂 desorber column. Cooler Soda Impurities Amine Low T Typically this is heated to liberate CO₂ which High T utility reclaimer unit utlility Condenser/separator can be dried and compressed. Make up Recovered CO₂ Lean amine cooler Currently available chemical solvents have low water CO₂ loading capacity (implying tall expensive 焏 Water wash columns) and require significant heat energy, pump Recovered Low T utility water but technology development is improving this. Low T utility Equipment is also included to reduce amine loss to atmosphere. 办 Reflux pump Lean/Rich heat exchanger Reclaimed amine solution Cooled gas feed Slipstream to amine reclaimer Coole Make up amine Rich Lean amine amine Low T utlility Hot flue gas High T utility Reboiler Flue gas transport fan Make up water Cooling water irculation pump Rich solvent Lean solvent DIRECT CONTACT pump pump COOLER (DCC) ABSORBER DESORBER **OR STRIPPER**

•

٠

٠

elementenergy 16

Example reference project costs for a first-of-a-kind 1st generation amine post-combustion capture project: Longannet (1/2)

- After a thorough literature review, the most detailed and up-to-date publicly available cost study of 1st generation amine-based capture at scale in the UK is provided by the published Longannet CCS FEED study, produced by Scottish Power and partners for the first DECC CCS Competition.
- Note this represents a study that was not developed to completion, i.e. the costs are estimated rather than realised. Nevertheless the costs are detailed, adjusted for UK conditions, and represent a "first-of-a-kind" project conditions.
- This project considered retrofit post-combustion capture using Aker Clean Carbon's amine-based solvent at the existing Longannet coal power station.
- Heat and power for the capture plant provided by a new gas boiler.

Example reference project costs for a first-of-a-kind 1st generation amine post-combustion capture project: Longannet (2/2)

- Costs used for this study include SPS (£115m, steam and power supply), CCP (£228m, carbon capture plant) and BoP (£120m, balance of plant), which amount to £462m. An additional £122m (*ca.* 25%) is identified in the Longannet FEED study for risk/contingency, making a total of £584m for a plant of ca. 2MtCO₂/yr, with a flue gas input stream concentration of 11.5%CO₂.
- This cost estimate excludes CO₂ compression.
- As the Longannet scenario includes initial pre-treatment to reduce NO_X and SO_X levels to less than 10 ppm, which is modelled separately in the techno-economic model here, an estimated cost of pre-treatment of £122m was deducted from this total, to give a Total Plant Cost estimate of £462m.
- This figure was used as the "reference" cost for a first-of-a-kind 2MtCO₂/yr amine capture plant, and an uncertainty of +100%/-50% assumed.
- Although this estimate is at the upper range of published costs for 1st generation amine capture, this may be because the majority of published studies reference "nth of a kind" plant, or fail to specify conditions.

Second generation chemical solvents

- Brief description- a large number of amines are being investigated worldwide to identify molecules with higher performance (e.g. faster reaction kinetics, higher CO₂ loading, lower heat requirement, lower environmental impacts through lower volatility/by-products, wider tolerance of conditions *cf.* first generation technologies MEA, MDEA etc.).
- **Technology status** TRL6 the technologies draw on the processes optimised for first generation capture technologies, but will need re-optimising and demonstration under realistic operating conditions.
- Technology providers- tens of different technology developers worldwide (although some are inexperienced), examples include Mitsubishi, Aker, KEPCO Research Institute, Carbon Clean Solutions.
- Economic and market factors- lower energy costs associated with lower solvent thermal regeneration, lower material costs for solvents that are less corrosive than MEA, lower solvent costs for solvents with higher stability and reduced volatility. However, more "bespoke" molecules may be inherently more expensive and suffer from lack of economies of scale.
- Key barriers and challenges- conservative investors will need to see reference projects with thousands of run hours at similar flue gas conditions and scale. Not necessarily straightforward to "swap" amines in existing capture plants. Amine processes are likely to only be validated for a narrow range of pressure, temperature and impurity composition for flue gas (with reaction between amines and SOx and NOx that form salts). Some techs developed by academics or spin-outs without manufacturing capacity or clear route to market. Standard risks for immature techs.

Wide range of 2nd generation chemical solvents are being developed, although it is not yet clear which will have the optimal properties.

As well as first generation solvents such as MEA and MDEA, second generation solvents under investigation are:

- Aminoethylethanolamine (AEEA)
- Piperazine (PZ) (used on own, or more commonly as a promoter)
- Tetraethylenepentamine (TEPA)
- Diethanolamine (DEA)
- Triethanolamine (TEA)
- 2-amino-2-methyl-1,3,propanediol (AMPD)
- Diisopropanolamine (DIPA)
- Polyethyleneimine (PEI)
- 3-aminopropyltriethoxysilane (APTES)
- Diethyltriamine (DETA)
- Diglycolamine (DGA)
- 2-amino-2-methylpropanol (AMP)
- Different concentrations of above

- Amino acids
- Mixtures "blends" of amines under intense investigation
- Amine/carbonate mixtures
- Wide range of temperature/pressure and process integration conditions under investigation
- Amine-functionalised adsorbent surfaces
 (zeolites, membranes)
- Proprietary solvents

Assumptions for 2nd generation chemical solvent capture technologies

- Following literature review and discussions with technology developers, the assumed properties of a 2nd generation chemical solvent are developed by reference to 1st generation capture technologies as follows:
 - Capex 77% of 1st generation amine capture capex, based on reduced equipment sizes and less expensive alloys.
 - Fixed opex 5% of capex (cf. 8% for 1st generation amine), driven by lower solvent, water, environmental and waste disposal costs
 - Heat requirement 3 GJ/tCO₂ captured (cf. 3.6 GJ/tCO₂ captured for 1st generation amine).
 - No change in power demand (assume output of 1 bar CO₂)
 - Tolerance to 100 ppm NOx and 100 ppm SOx (compared to 10 ppm assumed for 1st generation amines).
 - Note these properties are based on extrapolation from lab-scale results; there is no guarantee that these will be fully realised for initial large-scale projects.

Values calculated assume the reductions identified by the DECC TCE CCSA Industry Cost Reduction Task Force Final report (page 27) on post-combustion capture (10%+13%=23%) can be achieved in time for a project operational by 2025. DoE NETL technology paper, conversations with tech developers at CCS conferences, and focussed interview with CCS Solutions advised of multiple opportunities for cost reduction, to reduce column sizes, substitute less expensive alloys, reduce redundancy, reduce clean up equipment, and reduced boiler costs as lower heat demand. Realistically not all of these can be delivered for a project operational by 2025. Choice of Longannet reference point likely to include appropriate risk premium for first of a kind technology implementation. Assumptions reviewed by Imperial College London, and CCS Solutions.

Potassium Carbonate

- Brief description- Hot potassium carbonate absorbs CO₂ from flue gas in an absorber (potassium carbonate in the absorber is at c.a. 100°C and 10 bar). The CO2 rich solvent is then sent to a regenerator where the process is reversed by pressure reduction and heating. The CO₂-lean hot potassium carbonate solution is then recycled to the absorber. Activators and inhibitors are usually added to improve CO₂ absorption and to inhibit corrosion, and novel blends provide opportunities for future cost reduction or performance improvement.
- Technology status- Technology has been used to remove acid gases in a range of industrial processes, primarily synthetic gas, since it was first developed in the 1950s by Benson and Field. Benfields is the most common process, followed by CANTABARB.
- Technology providers- UOP (Benfields Process), Eickmeyer & Associates (CATABARB Process), Exxon (Flexsorb HP process)
- Economic and market factors- Works well with high partial pressure and mild temperature gases. Well understood technology, already implemented in large scale projects. High recovery rates and purity.
- Key barriers and challenges- High energy requirements due to solvent regeneration and high pressure required to operate. Equipment corrosion and environmental impacts can be a problem due to solvent emissions.
- Capital cost estimates: Because of different assumptions of majority of carbonate papers and amine papers, use a relative cost, and then estimate cost relative to 1st generation chemical amine solvent reference (e.g. Longannet). Rochelle, A.G.T. et al., 2007. CO₂ Capture by Absorption with Potassium Carbonate. Similar cost ratio MEA/Potassium carbonate obtained (288.3/352) from Oexmann, J., Hensel, C. & Kather, A., 2008. Post-combustion CO2-capture from coal-fired power plants: Preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate. International Journal of Greenhouse Gas Control, 2(4), pp.539–552.

Potassium carbonate (Benfield) process flow diagram

Ammonia-based capture

- Brief description- temperature of the flue gas is reduced to 0-10°C to achieve maximum condensation and gas cleaning effect (removes practically all SO₂, SO₃, NO₂ and ash from the flue gas. Flue gas containing CO₂ is contacted with ammonium carbonate solution in water in an Absorber. The CO₂ in the flue gas reacts with the ammonia to form ammonium bicarbonate. The CO₂ rich solution is then pumped to a Desorber (or regenerator) where heat is applied for regeneration of the solution and release of CO₂. The ammonia solution is then returned to the absorber for reuse.
- **Technology status** Piloting has been successful, and the technology has been proposed for pre-commercial projects, which are being planned.
- Technology providers- Alstom is marketing "chilled ammonia" (demonstrated at a power plant for 112,500 tCO₂/yr); NETL-Powerspan are marketing "aqueous ammonia".
- Economic and market factors- Feasibility of multi-pollutants capture. High pressure regeneration reduces capital cost and energy consumption of the CO₂ capture plant relative to MEA. CO₂ uptake per kg of ammonia is estimated to be 3 times that per kg of MEA. High pressure CO₂ output could facilitate future CO₂ transport, although as there is limited public detailed data on energy/mass, cost, performance and pressure scenarios, assume 1 bar output for the techno-economic modelling.
- Key barriers and challenges- Ammonia is a volatile toxic gas, and storage and use of significant levels of ammonia may need a high COMAH status. The risk of accidental release of ammonia (slip) in the flue gas could be a significant concern. The main opportunities for cost reduction are through increased process integration.

Chilled ammonia process flow diagram

Assumptions for chilled ammonia capture

- In chilled ammonia capture processes, CO₂ can be stripped off at pressures up to 30 bar, potentially reducing the need for post-capture compression relative to MEA-based capture for which CO₂ is often modelled at *ca.* 1 bar prior to compression.
- However, for the high level techno-economic modelling we have assumed an output pressure as constant 1 bar for all the technologies.
- This is a conservative simplifying assumption, which has been made as details of mass and energy balances and costs including breakdown of compression requirements have not been well described for ammonia capture with industrial sources.
- Whilst most papers agree on the likely heat requirements for capture are likely to be less than that of 1st generation amine-based capture (a value of 3 GJ/tCO₂ captured for a coal reference source is assumed) papers disagree over relative capital and costs.
- The most recent, transparent and detailed reference public cost estimate for chilled ammonia capture has been prepared by Versteeg and Rubin (2011) who estimate a minimum cost of US\$424m in \$(2007), which when corrected for engineering cost inflation (IHS CERA US PCCI index excluding nuclear), UK location (factor 1.2) and then converted to GBP (\$1.64/£1) gives £380m £(2013).

References - Chemical Absorption (1/2)

- Abu-Zahra, M. R. M., Niederer, J. P. M., Feron, P. H. M., & Versteeg, G. F. (2007). CO2 capture from power plants. International Journal of Greenhouse Gas Control, 1(2), 135–142. doi:10.1016/S1750-5836(07)00032-1
- Adeosun, A., Abbas, Z., & Abu-Zahra, M. R. M. (2013). Screening and Characterization of Advanced Amine Based Solvent Systems for CO2 Post-Combustion Capture. *Energy Procedia*, 37, 300–305. doi:10.1016/j.egypro.2013.05.115
- Adeosun, A., & Abu-Zahra, M. R. M. (2013). Evaluation of amine-blend solvent systems for CO2 post-combustion capture applications. *Energy Procedia*, 37, 211–218. doi:10.1016/j.egypro.2013.05.104
- Ajjam, S. K. A. (1983). CO 2 Capture by Absorption with Potassium Carbonate, 220–228.
- Darde, V. *et al.*, (2010). Chilled ammonia process for CO₂ capture. *International Journal of Greenhouse Gas Control*, 4(2), pp.131–136.
 Dubois, L., & Thomas, D. (2013). Study of the Postcombustion CO2 Capture by Absorption into Amine(s) Based Solvents: Application to Cement Flue Gases. *Energy Procedia*, 37, 1639–1647. doi:10.1016/j.egypro.2013.06.039
- Electrical Power Research Institute, (2006). Chilled-Ammonia Post Combustion CO 2 Capture System Laboratory and Economic Evaluation Results.
- Gal, E., (2008). Ultra Cleaning of Combustion Gas Including the Removal of CO₂. Pat. US20080072762 A1
- Global CCS Institute, (2012). *THE GLOBAL STATUS OF CCS 2012*. Retrieved from: http://www.globalccsinstitute.com/publications/global-status-ccs-2012
- Husebye, J., Brunsvold, A. L., Roussanaly, S., & Zhang, X. (2012). Techno Economic Evaluation of Amine based CO2 Capture: Impact of CO2 Concentration and Steam Supply. *Energy Procedia*, 23(1876), 381–390. doi:10.1016/j.egypro.2012.06.053
- IEA. (2013). Technology Roadmap. Carbon capture and storage.
- IEAGHG. (2008). CO 2 CAPTURE IN THE CEMENT INDUSTRY. Retrieved from http://cdn.globalccsinstitute.com/sites/default/files/publications/95751/co2-capture-cement-industrypdf.pdf
- Johansson, D., Franck, P.-Å., & Berntsson, T. (2013). CO2 capture in oil refineries: Assessment of the capture avoidance costs associated with different heat supply options in a future energy market. *Energy Conversion and Management*, 66, 127–142. doi:10.1016/j.enconman.2012.09.026
- Kenarsari, S.D. *et al.*, (2013). Review of recent advances in carbon dioxide separation and capture. *RSC Advances*, 3(45), p.22739.
- Lucquiaud, M., & Gibbins, J. (2011). On the integration of CO2 capture with coal-fired power plants: A methodology to assess and optimise solvent-based post-combustion capture systems. *Chemical Engineering Research and Design*, *89*(9), 1553–1571. doi:10.1016/j.cherd.2011.03.003
- Nuchitprasittichai, A., & Cremaschi, S. (2013). Sensitivity of amine-based CO2 capture cost: The influences of CO2 concentration in flue gas and utility cost fluctuations. *International Journal of Greenhouse Gas Control*, *13*, 34–43. doi:10.1016/j.ijggc.2012.12.012

References - Chemical Absorption (2/2)

- Oexmann, J., Hensel, C., & Kather, A. (2008). Post-combustion CO2-capture from coal-fired power plants: Preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate. *International Journal of Greenhouse Gas Control*, 2(4), 539–552. doi:10.1016/j.ijggc.2008.04.002
- Simmonds, M., Hurst, P., Wilkinson, M. B., Watt, C., & Roberts, C. A. (2002). A STUDY OF VERY LARGE SCALE POST COMBUSTION CO2 CAPTURE AT A REFINING & PETROCHEMICAL COMPLEX. Presented at GHGT-6, Kyoto, 2002; Paper B4-1.
- Vatopoulos, K., & Tzimas, E. (2012). Assessment of CO2 capture technologies in cement manufacturing process. Journal of Cleaner Production, 32, 251–261. doi:10.1016/j.jclepro.2012.03.013
- Wang, M., Lawal, a., Stephenson, P., Sidders, J., & Ramshaw, C. (2011). Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. *Chemical Engineering Research and Design*, *89*(9), 1609–1624. doi:10.1016/j.cherd.2010.11.005
- <u>https://sequestration.mit.edu/tools/projects/boundary_dam.html</u>
- http://www.shell.co.uk/gbr/environment-society/environment-tpkg/peterhead-ccs-project.html

CO₂ capture technologies

- Archetype data identified in technology database
- Chemical absorption solvents
 - 1st generation amine
 - 2nd generation amine
 - Potassium carbonate
 - Ammonia
- Physical absorption solvents
 - Rectisol
 - Selexol
- Solid Looping
 - Calcium looping
- Cryogenic capture

Physical solvents can be applied at high partial pressures of CO₂ and with limited heat requirement.

- Gaseous component dissolves into a liquid solvent (without reacting) forming a solution.
- Gases have different solubilities, so the solvent can be used selectively to separate the different gas components.
- Since CO₂ interacts weakly with physical solvents, these typically have low thermal regeneration energy demands. However CO₂ pressure is usually lost on release.
- The cost and performance (including selectivity) is dependent on scale, temperature, pressure and feedgas stream composition. FOAK premia for industrial CCS are not well understood.
- It is common to use these at low temperature, high CO₂ partial pressure, and with natural gas or syngas feedgas (rather than combustion flue gases).
- Output CO₂ pressure is variable but assumed 1 bar for the techno-economic modelling.

Rectisol

- Brief description- H₂S free flue gas is cooled to -20°C and fed to the absorber where the CO₂ dissolves in the cold methanol (kept at around -30°C). The CO₂ rich methanol is then fed to a flash drum where the CO₂ is separated. The methanol is then cooled and returned to the absorber for reuse.
- Technology status- Rectisol wash was developed in the 1950s, and is mainly used for sour gas purification. Commercial scale Rectisol units are operated world-wide for various processes (purification of hydrogen, production of ammonia, production of syngas for methanol synthesis, production of pure carbon monoxide and oxogases)
- Technology providers- Linde AG, Lurgi AG
- Economic and market factors- preferred for high pressure flue gas. Uses a cheap, low toxicity, low corrosion and easily available, non-proprietary solvent. It is flexible in process configuration. It can remove greater percentages of acid gas components providing a higher purity gas than other solvents. High CO₂-loading capacity allows for lower solvent flow rates compared to other physical solvent processes such as Selexol.
- Key barriers and challenges- Significant capital and operational costs are required. High energy usage for refrigeration and high vapour pressure of methanol causes solvent losses. Most cost effective with high pressure feed gasses since high pressure is required for flash drum operation which may increase operational cost with low-pressure feed gasses.
- **Capital cost estimate –** Based on 2012 cost estimates supplied by developer (confidential) and adjusted to 2013 to give a reference project capex of £200m.

Rectisol Process flow diagram (combined H₂S and CO₂ separation)

Selexol

- Brief description- Flue gas (temperature around 35°C) is fed to the absorber where the CO₂ dissolves in the glycol. The CO₂ rich glycol is then fed to a series of flash drums where the CO₂ is separated. The glycol is then returned to the absorber for reuse.
- Technology status- Selexol is a licenced process that has been used commercially for 30 years and has over 60 units in commercial service, particularly for gas sweetening in the oil and gas industry. Specific to carbon capture, several commercial–scale carbon capture projects are under construction- mostly pre-combustion (Nuon Willem Alexander IGCC, Kemper County project, Green Gen).
- Technology providers- Dow, UOP (using Dow solvent), Clariant, Uhde GmbH
- Economic and market factors- particularly effective with high-pressure, lowtemperature, flue gases. It has low toxicity and is a less corrosive solvent. Compared to amines, it has a higher capacity to absorb CO₂ at high pressure, requires less heat for solvent regeneration and CO₂ is delivered at higher pressures, meaning less compression is necessary for utilisation/transport or storage. It can operate selectively to capture different gases (e.g. hydrogen sulfide, carbon dioxide)
- Key barriers and challenges- Most cost effective with high pressure feed gasses since high pressure is required for flash drum operation which may increase operational cost with low-pressure feed gasses. Missing large-scale post combustion trials.
- Cost estimates Costs derived from published IGCC-CCS scenarios in the NETL cost and performance baseline studies (e.g. \$213m), and adjusted for UK location (factor 1.2), inflation and GBP (\$1.64/£1), to give a reference project capex of £190m.

Selexol process flow diagram

References - Physical Absorption

- Berstad, D., Anantharaman, R., & Nekså, P. (2013). Low-temperature CCS from an IGCC Power Plant and Comparison with Physical Solvents. *Energy Procedia*, *37*(1876), 2204–2211. doi:10.1016/j.egypro.2013.06.100
- Berstad, D., Anantharaman, R., & Neksa, P. (2013). Low-temperature CO2 capture technologies Applications and potential. *International Journal of Refrigeration, 36*, 1403–1416.
- Chen, C. (2005). A technical and economic assessment of CO2 capture technology for IGCC power plants. Carnegie Mellon University.
- CONCAWE. (2011). The potential for application of CO 2 capture and storage in EU oil refineries. Retrieved from http://bellona.org/ccs/uploads/media/Report_11-7-2011_CCS_in_EU_refineries.pdf
- Dow. (2004). Selexol solvent for gas treating, 6, 2–4. Retrieved from http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0043/0901b803800430d0.pdf?filepath=gastreating/pdfs/noreg/170-01432.pdf&fromPage=GetDoc
- GCCSI. (2012). THE GLOBAL STATUS OF CCS 2012. Retrieved from http://www.globalccsinstitute.com/publications/global-status-ccs2012
- GCCSI. (2013). THE GLOBAL STATUS OF CCS 2013, Retrieved from
 http://cdn.globalccsinstitute.com/sites/default/files/publications/116211/global-status-ccs-2013.pdf.
- Kenarsari, S. D., Yang, D., Jiang, G., Zhang, S., Wang, J., Russell, A. G., ... Fan, M. (2013). Review of recent advances in carbon dioxide separation and capture. *RSC Advances*, *3*(45), 22739. doi:10.1039/c3ra43965h
- Kuramochi, T., Ramírez, A., Turkenburg, W., & Faaij, A. (2012). Comparative assessment of CO2 capture technologies for carbonintensive industrial processes. *Progress in Energy and Combustion Science*, 38(1), 87–112. doi:10.1016/j.pecs.2011.05.001
- Lurgi. (2010). The Rectisol ® Process. Retrieved from http://uicgroupecho.wikispaces.com/file/view/B_0308e_Rectisol.pdf
- Mondal, M. K., Balsora, H. K., & Varshney, P. (2012). Progress and trends in CO2 capture/separation technologies: A review. *Energy*, 46(1), 431–441. doi:10.1016/j.energy.2012.08.006
- Rezvani, S., Huang, Y., McIlveen-Wright, D., Hewitt, N., & Mondol, J. D. (2009). Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping. *Fuel*, *88*(12), 2463–2472. doi:10.1016/j.fuel.2009.04.021
- Strait, R., & Nagvekar, M. (2010). Carbon dioxide capture and storage in the nitrogen and syngas industries. *Carbon Capture*, (February), 3–5.
- Sun, L., & Smith, R. (2013). Rectisol wash process simulation and analysis. *Journal of Cleaner Production*, *39*, 321–328. doi:10.1016/j.jclepro.2012.05.049
- UOP. (2009). UOP Selexol Technology for Acid Gas Removal (Product presentation). Retrieved from <u>http://www.uop.com/?document=uop-selexol-technology-for-acid-gas-removal&download=1</u>
- http://www.linde-engineering.com [Accessed: December 16, 2013]
CO₂ capture technologies

- Archetype data identified in technology database
- Chemical absorption solvents
 - 1st generation amine
 - 2nd generation amine
 - Potassium carbonate
 - Ammonia
- Physical absorption solvents
 - Rectisol
 - Selexol
- Solid Looping
 - Calcium looping
- Cryogenic capture

Calcium looping

- Brief description- flue gas is fed into a carbonator reactor operating at 600-700°C and atmospheric pressure, where CO₂ reacts with CaO to be converted into CaCO₃. Solids from carbonator are sent to a second reactor (calciner operating at 900°C) where CaCO₃ is again decomposed into CaO and CO₂. CO₂ is then captured and the CaO is recirculated to the carbonator reactor. Assume for techno-economic modelling CO₂ output pressure of *ca*. 1 bar.
- Technology status- Technology has been piloted. Proposed in 1999 as a carbon capture specific process; optimisation and pilot-scale tests are currently underway. Significant research into developing calcium looping as a fundamental processs within cement manufacture.
- Technology providers- Alstom, CANMET Energy Technology Centre, CEMEX
- Economic and market factors- System is expected to be significantly cheaper than current methods. Cheap and abundant sorbent (limestone), harmless exhaust gas Low energy penalty and operational costs- considering it can generate steam from heat released in the carbonation reaction. FOAK premia for calcium looping applied to industrial CCS are not well understood.
- Key barriers and challenges- High decay in sorbent's capture capacity. Scale up of the technology needs to be addressed. High operating temperature and effective heat exchange designs.
- Cost estimation MacKenzie *et al.* (2007). Economics of CO₂ capture using the calcium cycle with a pressurized fluidized bed combustor. Energy & Fuels 21 920–926, updated to account for inflation (HIS CERA PCCI ex. Nuclear), UK location (factor 1.2) and \$1.6/£1 elementenergy

Calcium looping flow diagram

D. Berstad et al. / International Journal of Greenhouse Gas Control 11 (2012) 25–33

Calcium looping

- Arias, B., Diego, M. E. E. De, Abanades, J. C. C., Lorenzo, M., Diaz, L., Martínez, D., Sánchez-Biezma, A. (2013). Demonstration of steady state CO₂ capture in a 1.7MWth calcium looping pilot. *International Journal of Greenhouse Gas Control*, 18, 237–245. doi:10.1016/j.ijggc.2013.07.014
- Arias, B., Grasa, G. S., Alonso, M., & Abanades, J. C. (2012). Post-combustion calcium looping process with a high stable sorbent activity by recarbonation. Retrieved from http://digital.csic.es/bitstream/10261/49219/1/Post-combustion calcium looping process with a high stable sorbent activity by recarbonation.pdf
- Authier, O., & Le Moullec, Y. (2013). Coal Chemical-Looping Combustion for Electricity Generation: Investigation for a 250 MWe Power Plant. *Energy Procedia*, *37*, 588–597. doi:10.1016/j.egypro.2013.05.146
- Bidwe, A. R., Hawthorne, C., Dieter, H., Dominguez, M. a. M., Zieba, M., & Scheffknecht, G. (2014). Cold model hydrodynamic studies of a 200kWth dual fluidized bed pilot plant of calcium looping process for CO₂ Capture. *Powder Technology*, 253, 116–128. doi:10.1016/j.powtec.2013.10.043
- Blamey, J., Anthony, E. J., Wang, J., & Fennell, P. S. (2010). The calcium looping cycle for large-scale CO₂ capture. *Progress in Energy and Combustion Science*, *36*(2), 260–279. doi:10.1016/j.pecs.2009.10.001
- Charitos, V. von A., & Athen, G. (2013). *Experimental Characterization of the Calcium Looping Process for CO2 Capture*. Universität Stuttgart. Retrieved from http://elib.uni-stuttgart.de/opus/volltexte/2013/8769/pdf/Diss_Charitos.pdf
- Connell, D. P., Lewandowski, D. a., Ramkumar, S., Phalak, N., Statnick, R. M., & Fan, L.-S. (2013). Process simulation and economic analysis of the Calcium Looping Process (CLP) for hydrogen and electricity production from coal and natural gas. *Fuel*, *105*, 383–396. doi:10.1016/j.fuel.2012.07.006
- Dean, C. C., Blamey, J., Florin, N. H., Al-Jeboori, M. J., & Fennell, P. S. (2011). The calcium looping cycle for CO₂ capture from power generation, cement manufacture and hydrogen production. *Chemical Engineering Research and Design*, *89*(6), 836–855. doi:10.1016/j.cherd.2010.10.013
- Kenarsari, S. D., Yang, D., Jiang, G., Zhang, S., Wang, J., Russell, A. G., ... Fan, M. (2013). Review of recent advances in carbon dioxide separation and capture. *RSC Advances*, *3*(45), 22739. doi:10.1039/c3ra43965h

Calcium looping

- Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., & Tejima, K. (1999). A TWIN FLUID-BED REACTOR FOR REMOVAL OF CO 2. *IChem*, 77(January), 62–68. Retrieved from http://ac.elscdn.com/S026387629971751X/1-s2.0-S026387629971751X-main.pdf?_tid=975090d6-7a56-11e3-814a-00000aab0f26&acdnat=1389399987_35ab2b8ed9621a7f42ba6717d504cc8b
- Martínez, A., Lara, Y., Lisbona, P., & Romeo, L. M. (2012). Energy penalty reduction in the calcium looping cycle. International Journal of Greenhouse Gas Control, 7, 74–81. doi:10.1016/j.ijggc.2011.12.005
- Romano, M., Martínez, I., Murillo, R., & Arstad, B. (2012). *Guidelines for modeling and simulation of Ca-looping processes. Prepared for the European Energy Research Alliance. sintef.no.* Retrieved from http://www.sintef.no/project/EERA-CCS/EERA Ca-looping simulation guidelines.pdf
- University of Stuttgart: Institute of Process Engineering and Power Plant Technology. (2009). Publishable final activity report for project: Calcium cycle for efficient and low cost CO2 capture in fluidized bed systems. Retrieved from <u>http://cordis.europa.eu/documents/documentlibrary/121790211EN6.pdf</u>

CO₂ capture technologies

- Archetype data identified in technology database
- Chemical absorption solvents
 - 1st generation amine
 - 2nd generation amine
 - Potassium carbonate
 - Ammonia
- Physical absorption solvents
 - Rectisol
 - Selexol
- Solid Looping
 - Calcium looping
- Cryogenic capture

Cryogenics

- Brief description- utilizes the principle of separation based on cooling and condensation with gases that have different boiling temperatures. For CO₂ separation, the feed gas is cooled to a temperature below the sublimation temperature of CO₂ (c.a. -78°C) to desublimate CO₂ from the gas phase by forming solid CO₂ (dry ice).
- **Technology status** used commercially for streams that already have high CO₂ concentrations (e.g. >90%), for instance in gas separation.
- Technology providers- Sustainable Energy Solutions; General cryogenic gas separation companies: Air products, Linde-BOC, Air Liquide, Cryogenmash, Cryotec Anlagenbau GmbH, Chart Inc, Costain
- Economic and market factors- produces a high gas purity output stream. Economically feasible for high concentration, high pressure gas streams. Only carbon capture method that does not require any CO₂ carrier material. It requires minimal changes to the existing plant, and offers the added value of removing NOx, SO₂, HCI, and Hg during the same process. Cost estimate based on Tuinier et al (2011), adjusted for inflation, UK conditions, and \$1.64/£1 conversion. FOAK premia for cryogenic separation applied to industrial CCS are not well understood.
- Key barriers and challenges- very few studies cryogenic separation for dilute flue gas streams e.g. from post-combustion CO₂ capture. Substantial energy requirement makes it less desirable for applications with low partial pressure CO₂. Pre-filtering is required to avoid blockage when frozen (e.g. water). High operational cost and significant energy penalty.

Conventional Cryogenic capture flow diagram for liquid CO₂

Cryogenic capture diagram for solid or gaseous CO₂

Fig. 1. Schematic of the developed anti-sublimation capture process.

References - Cryogenic capture

- Berstad, D., Anantharaman, R. & Neksa, P., (2013). Low-temperature CO₂ capture technologies Applications and potential. *International Journal of Refrigeration*, 36, pp.1403–1416.
- Costain Next Generation Capture Technology (NGCT) <u>http://www.carbon-capture-and-storage.com/progress-update.htm</u>
- Kenarsari, S.D. *et al.*, (2013). Review of recent advances in carbon dioxide separation and capture. *RSC Advances*, 3(45), p.22739.
- Scholes, C. a., Ho, M. T., Wiley, D. E., Stevens, G. W., & Kentish, S. E. (2013). Cost competitive membrane cryogenic post-combustion carbon capture. *International Journal of Greenhouse Gas Control*, *17*, 341–348. doi:10.1016/j.ijggc.2013.05.017
- Song, C. F., Kitamura, Y., & Li, S. H. (2012). Evaluation of Stirling cooler system for cryogenic CO₂ capture. *Applied Energy*, *98*, 491–501. doi:10.1016/j.apenergy.2012.04.013
- Song, C., Kitamura, Y., & Li, S. (2013). Energy analysis of the cryogenic CO₂ capture process based on Stirling coolers. *Energy*. doi:10.1016/j.energy.2013.10.087
- Song, C.-F., Kitamura, Y., Li, S.-H., & Ogasawara, K. (2012). Design of a cryogenic CO₂ capture system based on Stirling coolers. *International Journal of Greenhouse Gas Control*, *7*, 107–114. doi:10.1016/j.ijggc.2012.01.004
- Surovtseva, D., Amin, R., & Barifcani, A. (2011). Design and operation of pilot plant for CO₂ capture from IGCC flue gases by combined cryogenic and hydrate method. *Chemical Engineering Research and Design*, 89(9), 1752–1757. doi:10.1016/j.cherd.2010.08.016
- Tuinier, M.J., van Sint Annaland, M. & Kuipers, J. a. M., (2011). A novel process for cryogenic CO₂ capture using dynamically operated packed beds—An experimental and numerical study. *International Journal of Greenhouse Gas Control*, 5(4), pp.694–701.
- Tuinier, M. J., Hamers, H. P., & van Sint Annaland, M. (2011). Techno-economic evaluation of cryogenic CO₂ capture—A comparison with absorption and membrane technology. *International Journal of Greenhouse Gas Control*, 5(6), 1559–1565. doi:10.1016/j.ijggc.2011.08.013
- Xu, G., Li, L., Yang, Y., Tian, L., Liu, T., & Zhang, K. (2012). A novel CO₂ cryogenic liquefaction and separation system. *Energy*, *42*(1), 522–529. doi:10.1016/j.energy.2012.02.048

Outline

- Overall Project Methodology
- CO₂ capture technologies
- CO₂ sources
- Techno-economic analysis of industrial CO₂ capture
- Process simulation case studies
- CO₂ utilisation review

CO₂ source databases are prepared from public and grey literature, and further refined with stakeholders and through process simulations

Process	Кеу
Collate data sources	 Latest CO₂ data sources are collected (EU ETS, Environment Agency, SEPA, Element Energy in-house datasets, HSE, NI dataset, others)
Source long list	Manual Quality Control through cross-referencing
Filtering of sources	 Identify most relevant sources in four sectors based on largest emissions (coverage of 80% of UK sectoral CO₂ emissions)
Source archetypes	 Techno-economic model design clarifies source data collection requirements Literature review to identify relevant source archetype properties
Populate sources database	 Focussed literature review to populate database
Review with stakeholders	Source database circulated with industry experts for review of assumptions
Review with process simulations	 Source database and analysis results are reviewed against bespoke process simulations of capture processes in the different industries

52 industrial CO₂ sources used in sources database.

Most relevant sources identified in four sectors based on largest emissions (coverage of 80% of UK sectoral CO_2 emissions).

52 large industrial sites were included in the techno-economic modelling.

Source properties identified in the sources database

- 1. Name
- 2. Location (lat/long)
- 3. Annual CO₂ emissions
- 4. Sector
- 5. Relative CO₂ emissions forecast for 2020 and 2025 (default is 100%)
- 6. Vent complexity (ideally number of vents)
- 7. Archetype properties for
 - I. %CO₂
 - II. Temperature
 - III. Pressure
 - IV. Indicative levels of key impurities currently vented (NO_{χ}, SO_{χ}, N₂, O₂, CH₄, CO, H₂S, H₂O, Particulate Matter (PM), other)
- 8. Site cooling water availability (low/high)
- 9. Site process water availability (low/high)
- 10. Site space available for capture plant (low/high)
- 11. Sub-sector cost complexity factor (multiplies capex and opex)
- 12. Traded or not-traded CO₂
- 13. Amount of waste heat available on site (Central/High)
- 14. Cost of heat available on site (Low/Central)
- 15. Familiarity with managing complex processes (Y/N)
- 16. Hidden cost e.g. downtime

Source archetype properties

Source Vent		CO_2 stream	Input CO ₂ (% volume)		Relative emissions in 2020 (2013 = 100%)		Relative emissions in 2025 (2013 = 100%)		Impurity level (ppm)		%of			
archetype	complexity	(MPa)	Low	Central	High	Low	Central	High	Low	Central	High	NOx	SOx	available
Steel	Many	0.11	16%	30%	44%	80%	100%	125%	80%	100%	125%	100	100	60%
Cement	Single	0.11	14%	24%	33%	80%	100%	125%	80%	100%	125%	100	100	99%
Other Refinery	Many	0.11	8%	10%	12%	80%	100%	125%	80%	100%	125%	600	1200	90%
Coal power plant	Single	0.11	8%	11%	15%	80%	100%	125%	80%	100%	125%	100	100	99%
Gas power plant	Single	0.11	2%	3%	6%	80%	100%	125%	80%	100%	125%	10	10	99%
Hydrogen	Single	0.11	20%	95%	99%	80%	100%	125%	80%	100%	125%	10	10	99%
Gas boiler	Single	0.11	5%	7%	10%	80%	100%	125%	80%	100%	125%	10	10	99%
Industrial Coal CHP	Single	0.11	8%	12%	15%	80%	100%	125%	80%	100%	125%	100	100	99%
Industrial Gas CHP	Single	0.11	2%	3%	6%	80%	100%	125%	80%	100%	125%	10	10	99%
Ammonia - pure CO2 stream	Single	5.1	90%	95%	100%	80%	100%	125%	80%	100%	125%	100	100	99%
Crackers	Many	0.11	8%	10%	12%	80%	100%	125%	80%	100%	125%	100	100	99%
Other chemicals	Many	0.11	2%	11%	40%	80%	100%	125%	80%	100%	125%	100	100	99%

Indicative impurity inventory for CO₂ streams

CC	0 ₂ source	Impurity assumptions
1.	For oil/coal using sites and majority of chemicals sites	 Up to maximum of 80% N₂, 20%O₂, 1% Ar, 20% water vapour. Depending on emissions control in place, up to low 10s to low 100s of ppm levels of NOx, SOx, CH₄, CO, PM, H₂S, VOC, and ppb levels of heavy metals.
2.	For gas combustion sources	 Up to maximum of 80% N₂, 20%O₂, 1% Ar, 20% water vapour. Up to 10s of ppm levels of NOx, SOx, CH₄, CO, PM, H₂S, VOC, CO, depending on emissions control in place. Variable water vapour. Ppb of heavy metals
3.	For CO ₂ from steam methane reforming (hydrogen plants)	 Up to 10s of ppm levels of N₂, O₂, NOx, SOx, CH₄, CO, PM, H₂S, VOC, CO, H₂. Variable water vapour. Ppb of heavy metals
4.	For CO ₂ from ammonia production	 Up to 100s of ppm levels of N₂, O₂, NOx, SOx. Up to 10s of ppm of CH₄, CO, PM, H₂S, VOC, CO, NH₃, depending on emissions control in place. Variable water vapour. Ppb of heavy metals

Cross-sectoral barriers to carbon capture technology adoption (1/3)

Issue	Barriers
High cost	Carbon capture facilities require very high investment costs of hundreds of millions of pounds for the largest industrial sites, above typical site budgets. These costs are incurred in an environment of currently low and uncertain future revenues and investor risk aversion for non-core investments. First movers may be locked into high cost configurations.
High cost uncertainty	The uncertainties on the total costs for developing carbon capture plants in industry are very high. This results from the limited number of realised (industrial) carbon capture plants, the small scale of demonstrations compared to target commercial scale, as well as the early development stage of some of the technology components and site to site differences.
Funding for scale up	Limited to no funding is currently available for next phases of capture plant scale up (demos) in industrial sectors.
Application not proven at scale	Carbon capture is currently not proven at full scale for any industrial site. Further scale up can reveal additional project risks and complications. The main risks being additional project costs and operational impacts.
Technologies not developed to commercial ready level	Most of the capture technologies considered in this study are not yet developed to a commercially ready level (TRL9). The working of all of these technologies is proven beyond bench scale though, and across industry stakeholders few reservations were made inherently about the technologies themselves.
Plant integration risks	The process design in energy intensive industries is usually more complex than that of power plants, posing additional challenges in integrating capture plants with process facilities. The main plant integration challenges are;
	Downtime (hidden costs). The integration of a capture plant in an existing process may require additional downtime of the facility, beyond regular overhaul periods. This can lead to additional costs, for instance due to missed revenues, additional maintenance facilities or the need to make other arrangements to ensure supply. The latter is especially relevant in the refining sector where a refinery sometimes supplies a specific area and alternative supply chains are not readily available.
	For large continuously operated facilities the periods between major overhauls can be very long (around five years for fluid catalytic crackers in refineries and up to ten years for blast furnaces in the iron and steel sector). When a capture plant can only be reasonably brought online in a major overhaul this can represent limited windows of opportunity for the development of capture plants.

Cross-sectoral barriers to carbon capture technology adoption (2/3)

Issue	Barriers
Production/unavail ability risks	Extending an industrial process with a capture plant increases the complexity and operational dependencies of the overall facility. Across the different industries this increase in operational complexity is seen as a significant risk, especially for availability. Specific aspects include process transients, compatibility of different streams and erosion and corrosion issues.
Impact on product quality	A capture plant can have an adverse impact on product quality. Especially when it impacts the process conditions and operation of the main plant.
Unfamiliarity with CCS technologies	The main barriers to the deployment of carbon capture technologies within industrial sectors are the high costs and the limited commercial need to develop these applications. As a result of this the energy intensive industry has little experience and limited familiarity with carbon capture technologies, especially compared to the power sector. Different sectors have different levels of familiarity and experience with specific types of processes (gas separation, solids handling) employed in CCS technologies. This can potentially reduce or increase this barrier for specific technology-sector combinations, which are addressed in the sector specific barriers.
Data sharing / knowledge gaps	As few carbon capture plants have been developed in industry to date, there is a lack of company and site expertise which is exacerbated by issues around data sharing between companies.
Large differences between sites limit replicability of solutions	Especially for the chemicals, oil refining and iron and steel sectors the actual layout and process design of different facilities within one (sub) sector can vary strongly, limiting knowledge transfer and replicability of solutions across sites.
Limited sector specific process understanding	There are only limited detailed process simulations for application in specific processes, as well as limited trials in specific processes.
Effects of impurities	Similar to the above barrier on specific process understanding, the effects of different impurity conditions across different plant types is not yet fully understood and investigated. The main impurities of concern are SO2 (amines for instance react with acidic compounds and form amine salts that don't dissociate in the stripper), NOx (solvent degradation) and particulates (affects for instance an amine CO2 absorber).

Cross-sectoral barriers to carbon capture technology adoption (3/3)

Issue	Barriers
Uncertainty on long term availability of facility increases risk of capture investment	Many industrial facilities have already operational for several decades and there is an inherent uncertainty of the remaining lifetime of any one site. Especially for facilities which provide little margin or run at a loss, this is a key uncertainty, and under current conditions including a post-combustion carbon capture facility may reduce margins even further. Examples of this have been Longannet coal power plant in the UK and the Florange steel plant in France (ULCOS). At both these sites, capture plants were being developed for sites with challenging fundamental economics. This uncertainty is even stronger in the energy intensive industries, which supply into global competitive markets. There is always uncertainty whether an industry and specific facilities will still be profitable and operational in the current locations in the future. This uncertainty is less present in the power sector, as electricity production is required more locally.

Source sectors

- Cement
- Chemicals
- Iron and Steel
- Oil Refining
- Other sectors of potential relevance

Sector context

The UK cement sector consists of 6 companies with a total of 13 sites. Of these, 11 cement plants are producing clinker as of 2012. Typical UK cement production is 10 million tpa.

Description of main processes

Cement production can be divided in two basic steps. (1) Clinker is made in a rotary kiln at temperatures of 1450°C, after which (2) Clinker is ground with other minerals to produce the powder we know as cement. Raw materials are limestone (for lime), clay, marl or shale (for silica, alumina, and ferric oxide) and other supplementary materials such as sand, pulverised fuel ash (PFA), or ironstone (to achieve the desired bulk composition). More and more low and zero carbon waste fuels are being used. Most of the plants in the UK are of the dry process type (grinding mineral components without addition of water).

UK sites

The UK had 11 cement plants producing clinker in 2012 with emissions ranging from 0.2 to 1.1 MtCO2/yr.

CO₂ sources and emissions

Cement production has two major CO_2 emission points: fuel combustion to provide process heat (30%) and process related emissions (60%; due to the decomposition of the $CaCO_3$).

Since 1990, an absolute reduction of 54% in emissions has been achieved, based on efficiency, fuel switching and changes in output.

CO2 emission point	Description	% of total emissions	% concentration of CO2 stream	Notes
Limestone calcination	Process used to convert limestone to lime, one of the key components of cement.	60%	24%	Calciner flue gas at ~850°C
Heat/power	Heat is required for calcination and to run the cement kiln.	30%	2% - 15%	% of CO ₂ concentration depends on fuel

Cement – illustrative rotary kiln-based cement manufacture

Case study of a CCS initiative in the Cement Sector

- The IEA CCS Cement Sector CCS Roadmap (2009) identifies that multiple CCS demonstration projects are required worldwide by the early 2020s to build capacity and allow the sector to achieve deep cuts in emissions by 2050.
- The European Cement Research Academy (ECRA) is supporting a five phase approach to CCS development. Reports from the first two phases identify post-combustion, oxyfuel, membranes and calcium carbonate looping as technologies of interest for cement CCS.
- The ECRA Phase II report describes cost estimates, infrastructure requirements, and technology challenges for post-combustion capture (e.g. using MEA) and oxyfuel capture based on high level engineering studies, and compared with work by MottMacDonald for the IEA Greenhouse Gas R&D Programme (2008).
- Results from the third phase (lab/small-scale research activities) are expected to be published later this year. The next phase involves pilot scale research activities (ca. £10m), including post-combustion and oxyfuel for around two years at the Norcem Brevik site in Norway. Precise details of the scale and configurations involved are not yet in the public domain. The piloting activity is expected to be followed by demonstration plant scale projects are expected towards the end of the 2010s.

Cement - technology barriers for deploying a capture project in the period 2020 to 2025

Technology	Barriers
General	 Very few worldwide piloting or demonstration projects underway or planned. Some sites are in locations where new industrial development, access to CO₂ transport networks, or cooling water availability is highly restricted. Risk of technology and process lock-in to a high cost solution. Fuel switching and volatile output quantities depending on economic cycle make capacity management difficult.
1 st generation amine solvents	 Few studies of compatibility of flue gas with capture stream and the least cost pretreatment solutions required. High capex and opex (incl. heat demand) in excess of typical site expenditures. Logistics and HSE challenges associated with amine storage and manipulation, likely to elevate COMAH status. Limited cooling water availability could restrict potential at some sites. Logistics and HSE challenges associated with amine storage and manipulation, likely to elevate COMAH status. Limited cooling water availability could restrict potential at some sites.
2 nd generation chemical solvents (e.g. advanced amines, amino acids and blends)	 Focus of capture technology development is for power sector – not clear to what extent solvent development is targeted at improving compatibility with cement production. Similar to first gen amine solvent technologies, though expect costs, footprint, water, heat, and HSE impacts expected to be less severe. Multiple chemicals are under development at TRL6, so concepts need to be proven through pilots and demos and there is a risk of cost and performance issues arising.
Chilled ammonia	Usually no ammonia on site, would introduce new risks
Chemical looping (e.g. calcium looping)	 TRL6 technology requiring significant piloting and demonstration before it can be applied at scale of 100,000t/yr or higher. Few suppliers. Available performance models need refining. Extent of calcium looping integration with core process is unclear – ideally would source hot CO₂ rich flue gas at high temperature directly from kiln rather than at the end of the process, but this would involve overhaul of site. Not clear if by-product salts can be sold.
Oxyfuel capture	 Good long-term cost reduction potential but need for baseline process redesign, with multiple site impacts including potentially kiln management, flow management, change of fuel supply, core product specification. Sealing methods not well demonstrated. Extensive system and component piloting required to manage project-on-project risks. However, there are expectations that these barriers can eventually be solved, although not necessarily in time for operation in 2025. The higher flame temperature with oxyfuel combustion may lead to reduced overall system costs.

Cement Sector CO₂ Source Database Assumptions

Sector	Owner name as listed in the ETS	Source name	Source archetype	Latitude	Longitude	CO ₂ emissions (tCO ₂ /yr)	СОМАН
Cement	Cemex UK Cement Limited	Rugby Works	Cement	52.38	- 1.29	1,065,000	None
Cement	Hope Cement Ltd	Hope Cement Works	Cement	53.34	- 1.75	922,000	None
Cement	Lafarge Tarmac Trading Limited	Lafarge Tarmac Tunstead Cement	Cement	53.28	- 1.86	578,000	None
Cement	Castle Cement Ltd (Hanson)	Ketton Works	Cement	52.64	- 0.55	698,000	None
Cement	Lafarge Tarmac Cement and Lime Ltd	Lafarge Tarmac Cauldon	Cement	53.04	- 1.87	597,000	None
Cement	Lafarge Tarmac Cement and Lime Ltd	Lafarge Tarmac Dunbar	Cement	55.98	- 2.47	491,000	None
Cement	Castle Cement Ltd (Hanson)	Padeswood Works	Cement	53.16	- 3.06	310,000	None
Cement	Castle Cement Ltd (Hanson)	Ribblesdale Works	Cement	53.89	- 2.39	441,000	None
Cement	Cemex UK Cement Limited	South Ferriby Works	Cement	53.68	- 0.53	334,000	None
Cement	Lafarge Tarmac Cement and Lime Ltd	Lafarge Tarmac Aberthaw	Cement	51.39	- 3.39	286,000	None
Cement	Lafarge Tarmac Cement and Lime Ltd	Lafarge Tarmac Cookstown	Cement	54.63	- 6.73	231,000	None

References – Cement

- Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. *Journal of Cleaner Production*, *51*, 142–161. doi:10.1016/j.jclepro.2012.10.049
- Cement Sustainability Initiative, & ECRA. (2009). Development of State of the Art-Techniques in Cement Manufacturing : Trying to Look Ahead.
- Dubois, L., & Thomas, D. (2013). Study of the Postcombustion CO2 Capture by Absorption into Amine(s) Based Solvents: Application to Cement Flue Gases. *Energy Procedia*, 37, 1639–1647. doi:10.1016/j.egypro.2013.06.039
- ECRA. (2007). Carbon Capture Technology Options and Potentials for the Cement Industry. Retrieved from
 http://stuff.mit.edu/afs/athena/dept/cron/project/concrete-sustainability-hub/Literature Review/Building Energy/Concerte Industry
 Reports/PCA CD Cement Research Library 2008/reports/SN3022.pdf
- ECRA. (2009). ECRA CCS Project Report about Phase II. Retrieved from http://www.ecraonline.org/fileadmin/redaktion/files/pdf/ECRA__Technical_Report_CCS_Phase_II.pdf
- ECRA. (2012). Energy and Resources Efficiency in the Cement Industry Industrial. In Industrial Technologies. Aarhus, Denmark.
- Hassan, S. M. N. (2005). Techno-Economic Study of CO 2 Capture Process for Cement Plants. University of Waterloo.
- IEA. (2009). Cement Technology Roadmap 2009: Carbon emissions reductions up to 2050.
- IEA, & UNIDO. (2011). *Technology Roadmap. Carbon Capture and Storage in Industrial Applications*. Retrieved from http://www.iea.org/publications/freepublications/publication/ccs_industry.pdf
- IEAGHG. (2008). CO 2 CAPTURE IN THE CEMENT INDUSTRY. Retrieved from http://cdn.globalccsinstitute.com/sites/default/files/publications/95751/co2-capture-cement-industrypdf.pdf
- IEAGHG. (2012). CO2 Capture Technologies for Industry Iron & Steel, Oil Refinery & Cement. In CO2 Capture and Storage Regional Awareness-Raising Workshop. 13-14 June. Anakra, Turkey. Retrieved from http://www.cgseurope.net/UserFiles/file/Ankara workshop_june 2012/presentations/P_ Singh CO2 Capture Technologies Industry.pdf
- Liang, X., & Li, J. (2012). Assessing the value of retrofitting cement plants for carbon capture: A case study of a cement plant in Guangdong, China. *Energy Conversion and Management*, 64, 454–465. doi:10.1016/j.enconman.2012.04.012
- Mott MacDonald. (2010). Global Technology Roadmap for CCS in Industry. Sectoral Assessment: Cement.
- MPA. (2013). MPA Cement, 2050 Strategy (leaflet). MPA Essential Materials Sustainable Solutions.
- Rodriguez, N., Alonso, M., Abanades, J. C., Grasa, G., & Murillo, R. (2009). Analysis of a process to capture the CO2 resulting from the pre-calcination of the limestone feed to a cement plant. *Energy Procedia*, 1(1), 141–148. doi:10.1016/j.egypro.2009.01.021
- Vatopoulos, K., & Tzimas, E. (2012). Assessment of CO2 capture technologies in cement manufacturing process. *Journal of Cleaner Production*, *3*2, 251–261. doi:10.1016/j.jclepro.2012.03.013

Source sectors

- Cement
- Chemicals
- Iron and Steel
- Oil Refining
- Other sectors of potential relevance

Sector context

The chemicals industry comprises many different products, ranging from (in)organic bulk chemicals to small volume special products. A number of processes in industry result in a high purity and high concentration CO_2 exhaust gas, which can be readily captured. These processes include hydrogen production and some organic chemical production processes (e.g. ethylene oxide production). Hydrogen production processes are also used in ammonia (and ammonia based fertiliser) production, and methanol. On a global scale, the CO_2 emissions from these activities are relatively low compared to emissions from other industrial activities, but these CO_2 streams offer an early-adoption opportunity for CCS demonstration projects.

Description of main processes

Due to the wide ranges of different chemicals produced, various combinations of processes take place in the chemical sector. The description below focuses on high concentration CO2 sources.

Globally, around 45 - 50 million tonnes (Mt) of hydrogen are produced each year, the majority of which is produced from fossil fuels. Around half is used to produce ammonia and around a quarter is used for hydrocracking in petroleum refining.

Ammonia is typically produced using the Haber Bosch process, which starts with hydrogen production. The hydrogen is then reacted with nitrogen from air to form ammonia, producing a near-pure stream of CO2. (Around 80% of all ammonia manufactured worldwide is used to produce inorganic nitrogen based fertilisers.)

UK sites

Over 30 chemical sites in the UK with varied flue gas mixtures.

High purity CO2 sources:

- 3 ammonia sites
- 1 hydrogen site

CO₂ sources and emissions

High purity sources (hydrogen and ammonia)

CO2 emission point	Description	% concentration of CO ₂ stream	Notes
Hydrogen	Hydrogen can be produced via gasification, partial oxidation or steam reforming.	20-99%	
Ammonia	Hydrogen production is the first step in manufacturing ammonia	90-100%	High pressure CO2
Crackers		8-12%	
Other chemicals		8%-40%	

Ammonia production flow diagram

Chemicals - technology barriers for deploying a capture project in the period 2020 to 2025

Technology	Barriers	
1 st generation amine solvents	 Diverse industrial CO₂ streams, with each product exposed to different market forces. Some sites will have many furnaces which may be difficult to collect from. Gas powered furnaces have dilute streams. Baseline of fuel efficiency, fuel switching and process redesign to minimise CO₂ production complicate planning for CCS. Very few studies of compatibility of flue gas with capture streams from chemical industry with amine capture and implications for the least cost pretreatment solutions required. High capex and opex (incl. heat demand) in excess of typical site expenditures. Limited cooling water restricts potential at some sites. 	 Logistics and HSE challenges associated with amine storage and manipulation, likely to elevate COMAH status for some sites. Some sites are in locations where new industrial development, access to CO₂ transport networks, or cooling water availability is highly restricted. Very little worldwide piloting or demonstration scale activity underway or planned. Risk of technology and process lock-in to a high system cost solution, compared to alternative process Contaminants in flue gas results in degradation (NOx) and salt formation (SOx), resulting in a high amine requirement.
2 nd generation chemical solvents (e.g. advanced amines, amino acids and blends)	 Focus of technology development is for power sector – not clear to what extent solvent development is targeted at improving compatibility with chemical production. Similar barriers to first gen amine solvent technologies, though expect costs, footprint, water, heat, and HSE impacts expected to be less severe. 	 Multiple chemicals are under development at TRL6, so concepts need to be proven through pilots and demos and there is a risk of cost and performance issues arising.
Chemical looping (e.g. calcium looping) Cryogenics	 TRL6 technology requiring significant piloting and demonstration before it can be applied at scale of 100,000t/yr or higher. Appears to be no industrial or academic interest in integrating with chemical furnace sites. Typically sites won't have much experience with calcium looping technologies. Few suppliers. Requires a source of cooling to be competitive 	 Available performance models need refining. Extent of calcium looping integration with core process is unclear – ideally would source hot CO2 rich flue gas at high temperature directly from furnace rather than after cooling. Not clear if by-product salts can be sold. Less experience with handling solids, compared to fluid and gases
Oxyfuel capture	 Need for baseline process redesign, with multiple site impacts including potentially furnace management, flow management, change of fuel supply, core product specification. Sealing methods not well demonstrated. Creates project-on-project risk. 	 However, there are expectations that these barriers can eventually be solved, although not necessarily in time for operation in 2025. The higher flame temperature with oxyfuel combustion may lead to reduced overall system costs.

Chemicals - sector specific barriers

Issue	Barriers
High purity streams (hydrogen and ammonia production)	 Multiple streams with high and low different purities. (Low purity streams are gas combustion) Key challenge is transport to store and ensuring compatibility with transport specification.
Multiple source exhaust	 Many distributed emission points across a site. Either large duct network at significant investment and blower operational cost as well as integration challenges or high investment in multiple capture plants. Units like crackers are not single sources, many vents; need to be brought together
Lack of data	 Very little public domain data on CO2 emissions at individual vents Lack of shared understanding of how CCS compares with alternative options for sites and the sector as a whole.

Chemicals Sector CO₂ Source Database Assumptions (1/3)

Sector	Owner name as listed in the ETS	Source name	Source archetype	Latitude	Longitude	CO ₂ emissions (tCO ₂ /yr)	СОМАН
		Sabic UK Petrochemicals					
Chemicals	Wilton Olefins 6 (Cracker)	Limited - 1	Cracker	54.58	-1.1	1,030,000	Тор
	SembCorp Utlilities Teesside	SembCorp Utilities Teesside	Industrial				
Chemicals	Power Station	Power Station	Gas CHP	54.59	-1.12	873,000	Тор
	Winnington CHP (Brunner	Winnington CHP (Brunner	Industrial				
Chemicals	Mond)	Mond)	Gas CHP	53.27	-2.53	719,000	None
Chemicals	Fife Ethylene Plant	ExxonMobil Chemical Limited	Cracker	56.1	-3.3	645,000	Тор
			Industrial				
Chemicals	Fawley cogen	Fawley cogen	Gas CHP	50.83	-1.35	627,396	None
			Ammonia -				
			pure CO2				
Chemicals	Billingham, GroHow Ltd	Billingham, GroHow Ltd - 1	stream	54.58	-1.27	455,000	None
			Ammonia -				
			pure CO2				
Chemicals	Kemira GrowHow UK Ltd.	Ince - 1	stream	53.28	-2.8	411,000	Тор
			Ammonia -				
	Yara fertiliser plant operated		pure CO2				
Chemicals	by BP	Made at BP Saltend, Hull	stream	53.74	-0.24	320,000	Тор
	Lucite International	Lucite International Specialty	Other				_
Chemicals	Billingham	Polymers & Resins Ltd	chemicals	54.59	-1.28	228,050	Тор
			Industrial				
Chemicals	Billingham, GroHow Ltd	Billingham, GroHow Ltd - 2	Gas CHP	54.58	-1.27	228,000	Тор
			Hydrogen				
Chemicals	North Tees, BOC Group Plc	North Tees, BOC Group Plc	via SMR	54.6	-1.19	223,000	None
			Industrial				
Chemicals	Kemira GrowHow UK Ltd.	Ince - 2	Gas CHP	53.28	-2.8	206,000	Тор
	Runcorn Halochemicals		Other				
Chemicals	Manufacturing	INEOS ChlorVinyls Limited	chemicals	53.35	-2.68	194,000	Тор
	NPOWER COGEN (HYTHE)	NPOWER COGEN (HYTHE)	Industrial				
Chemicals	LIMITED1	LIMITED	Gas CHP	50.83	-1.34	170,000	Тор
Chemicals Sector CO₂ Source Database Assumptions (2/3)

Sector	Owner name as listed in the ETS	Source name	Source archetype	Latitude	Longitude	CO ₂ emissions (tCO ₂ /yr)	СОМАН
			Other				
Chemicals	DSM Dalry1	DSM Dalry	chemicals	55.72	-4.71	163,000	Lower
Chemicals	Dow Corning Cogen Plant	Npower Cogen Limited - 1	Industrial Gas CHP	51.41	- 3.24	158,000	Lower
Chemicals	INEOS CHP PLANT	Npower Cogen Limited - 2	Industrial Gas CHP	54.58	- 1.25	157,000	Lower
Chemicals	Shell UK Ltd Fife NGL Plant1	Shell UK Ltd Fife NGL Plant	Other chemicals	56.09	- 3.31	151,000	None
Chemicals	Lotte Chemicals UK	Lotte Chemicals UK	Other chemicals	54.58	- 1.10	143,915	None
Chemicals	BASF, Seal Sands	Ineos Nitriles (U.K) Ltd	Other chemicals	54.61	- 1.18	121,000	Тор
Chemicals	BP Chemicals Ltd, Hull	BP Chemicals Ltd	Other chemicals	53.74	- 0.24	121,000	None
Chemicals	Invista UK Power Facility	Invista Textiles (UK) Ltd	Industrial Gas CHP	55.03	- 7.24	106,000	Тор
Chemicals	Millennium Inorganic Chemicals Ltd	Cristal Pigmanet Ltd	Other chemicals	53.61	- 0.16	100,000	Тор
Chemicals	North tees Aromatics	Sabic UK Petrochemicals Limited - 2	Other chemicals	54.58	- 1.10	96,000	Тор
Chemicals	BASF Performance Products Plc - Bradford	BASF Performance Products plc	Other chemicals	53.75	- 1.76	79,000	Тор
Chemicals	Macclesfield	AstraZeneca UK Limited	Other chemicals	53.28	- 2.23	71,000	Тор
Chemicals	Kemira GrowHow UK Ltd.	GrowHow UK Limited, Ince Gas combustion	Gas boiler condensing	53.28	- 2.79	65,000	Тор
Chemicals	Wigton Boiler Plant	Innovia Films Ltd	Gas boiler condensing	54.83	- 3.16	65,000	Тор
Chemicals	Rockwool Bridgend	Rockwool Limited	Other chemicals	51.55	- 3.50	62,000	Тор

Chemicals Sector CO₂ Source Database Assumptions (3/3)

Sector	Owner name as listed in the ETS	Source name	Source archetype	Latitude	Longitude	CO ₂ emissions (tCO ₂ /yr)	СОМАН
Chemicals	British Salt Ltd. Middlewich Site	British Salt Limited	Other chemicals	53.18	- 2.43	61,000	Тор
Chemicals	Hydro Polymers Ltd	Ineos Newton Ayecliffe LTD	Other chemicals	54.61	- 1.59	59,000	Тор
Chemicals	D200 Energy Centre	Alliance Boots Holdings Limited	Industrial Gas CHP	52.92	- 1.19	59,000	Тор
Chemicals	Tioxide Europe Limited	Tioxide Europe Limited	Other chemicals	54.63	- 1.20	59,000	Тор
Chemicals	Polimeri Europa UK Ltd	Polimeri Europa UK Ltd	Other chemicals	56.00	- 3.68	50,000	Тор

Transport and storage opportunities most likely to be available in 2025 for chemical sector sources in Scotland, Teesside, Yorkshire and NW England.

References – Chemicals

- BP Chemicals. (2010). Environmental Statement BP Chemicals Ltd , Saltend , Hull Site , UK. Retrieved from http://www.bp.com/content/dam/bp/pdf/sustainability/country-reports/Hull_2010.pdf
- Collodi, G., & Wheeler, F. (2008). Hydrogen Production via Steam Reforming with CO 2 Capture.
- European Commission. (2007a). *Comparative analysis of the first series of chemical BREFs*. Retrieved from http://eippcb.jrc.ec.europa.eu/reference/BREF/comparative_analysis_dec07.pdf
- European Commission. (2007b). Integrated Pollution Prevention and Control. Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers (Vol. I). Retrieved from http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf
- IEA, & UNIDO. (2011). *Technology Roadmap. Carbon Capture and Storage in Industrial Applications*. Retrieved from http://www.iea.org/publications/freepublications/publication/ccs_industry.pdf
- Market Publishers. (2012). Ammonia Industry Outlook in the UK to 2016 Market Size, Company Share, Price Trends, Capacity Forecasts of All Active and Planned Plants. US: Market Publishers: Report Database.
- Sherif, A. (2010). Integration of a Carbon Capture process in a chemical industry. Case study of a steam cracking plant. Chalmers University of Technology. Retrieved from http://publications.lib.chalmers.se/records/fulltext/131163.pdf
- Strait, R., & Nagvekar, M. (2010). Carbon dioxide capture and storage in the nitrogen and syngas industries. *Carbon Capture*, (February), 3–5.
- Underwood, J., Dawson, G., & Barney, C. (1997). *Design of a CO 2 Absorption System in an Ammonia Plant*.
- Zakkour, P., & Cook, G. (2010). CCS Roadmap for Industry : High-purity CO 2 sources. Retrieved from http://www.unido.org/fileadmin/user_media/Services/Energy_and_Climate_Change/Energy_Efficiency/C CS/High Purity_FINAL DRAFT.pdf

Source sectors

- Cement
- Chemicals
- Iron and Steel
- Oil Refining
- Other sectors of potential relevance

Sector context

The UK iron and steel sector can be subdivided into Integrated sites (only 3 sites – Teesside Scunthorpe and Port Talbot), and others (Electric Arc Furnace-only sites, mini-mills and several small re-rollers and annealers). In terms of carbon capture significance, focus is on Integrated Steelworks. In 2012, about 7.5 million tonnes of crude steel was produced in Integrated Steelworks. 2012 was atypical as Tata was rebuilding the blast furnace at Port Talbot and SSI were ramping up production in Teesside.

Description of main processes

There are two process routes for making steel in the UK today: through an Electric Arc Furnace (EAF) and through the Basic Oxygen Steelmaking (BOS) process.

The key component in the BOS is the Basic Oxygen Converter, however before this process can begin a blast furnace is required to create a charge of molten iron. The raw materials for producing molten iron are iron ore, coking coal and fluxes (materials that help the chemical process) - mainly limestone. Blended coal is first heated in coke ovens to produce coke (carbonisation), after which it is allowed to cool. Iron ore lumps and pellets, coke, sinter and possibly extra flux are carried to the top into the blast furnace. Hot air (900°C) is blasted into the bottom of the furnace, from which oxygen combusts with the coke forming CO, which flows up through the blast furnace, removing oxygen from the iron ores on their way down, thereby leaving iron. The heat in the furnace melts the iron, and the resulting liquid iron flows out at the bottom of the furnace, towards the BOS vessel in which scrap steel has been charged first. Then very pure oxygen is blown at high pressure, which combines with the carbon, separating them from the metal, leaving steel.

Unlike BOS, the EAF is charged with "cold" material (recycled steel goods at end-of-life, or direct reduced iron (DRI) and iron carbide, as well as pig iron). The cold material is fed into the furnace, after which electrodes are lowered into it. An electric current is passed through the electrodes to form an arc. The heat generated by this arc melts the scrap. As with the basic oxygen process, oxygen is blown in to the furnace to purify the steel.

The UK's three integrated blast furnace sites have multiple sources of CO₂ emissions

Sites are also heterogeneous: For example, the Teesside site has one large blast furnace, whereas the Scunthorpe site has four smaller blast furnaces (of which two are currently in operation). This has implications for scale and technology that require site process modelling.

Iron and Steel in the UK– CO₂ sources, sites and barriers

UK sites

Site CO₂ emissions between 2008 and 2012 for the three integrated steelworks was between 6.2 to 7.3 MtCO₂/yr per site, making these sites the largest single industrial CO₂ emitters.

CO₂ sources and emissions

Main sources of CO₂ emissions in steel production are the blast furnace, iron ore reduction and sintering plant, and coke production.

CO2 emission point	Description	% of total emissions	% concentration of CO ₂ stream	Notes
Blast Furnace (BF)	Primary process to produce iron by heating coke, pulverised coal, sinter and bulk ore to ~1,500°C	~69%	16% - 26% [Remus, R., & Roudier, S. (2010).]	Flue gas from BF used for power generation
Sinter	For iron production	16%	5-10%	
Coke plant	For iron production	16%	25%	

Iron and steel - technology barriers for deploying a capture project in the period 2020 to 2025

Technology	Barriers	
General	 Total site emissions of iron and steel plants, 4-8 Mt/yr, are very large compared to the other sectors. Capture of 100% of site Co emissions not realistic for projects taking FID in 2020 for operation in 2025, but there are multiple options for partial capture. 	 Multiple processes and vents in an integrated site – challenge to identify "optimal" CCS solutions. Need to synchronise integration with a major overhaul, which have intervals longer than 7 years, so few and limited windows of opportunity, without incurring significant additional downtime costs.
1 st generation chemical solvents (MEA/MDEA)	 Risk of lock-in to a technology option with high system cost. Little work on direct application to BFG, therefore compatibility unclear, (although should be easier to apply to the CHP system Need for steam to drive capture plant. Limited familiarity of UK sites with amine-based capture, except in NOx and SOx control 	 Contaminants in flue gas results in degradation (NOx) and salt formation (SOx), resulting in a high amine requirement.).
Physical solvents	 Assuming configuration involves application of physical solvent immediately after Blast Furnace, there is a lack of experience in compressing and cooling Blast Furnace Gas (which is hot and is a mixture of several reactive chemicals), for use with a physical solvent. CO passes through, implying upper limit to the fraction CO₂ that can be captured. 	 Will be a need to reconfigure optimal site energy and flow balances to account for difference in product stream pressure, temperature and composition reaching the CHP system. Risk of "all-or-nothing" process for each Blast Furnace, with lock-in of BFG composition and hence BF process.
2 nd generation chemical solvents (e.g. advanced amines, amino acids and blends)	 Limited effort targeted at developing solvents which are compatible and efficient with CO₂ streams from iron and steel sites. 	 Unfamiliarity with using ammonia poses an operational/safety barrier to implementing an ammonia option. Similar challenges as for first generation amines, although expected to be less challenging.
Solid looping e.g. Calcium looping	 TRL6 technology requiring significant piloting and demonstratio before it can be applied at scale of 1 Mt/yr or higher that is relevant for steel plants. Not clear if by-product salts can be sold. 	 Available performance models need refining. Extent of calcium looping integration with core process is unclear – ideally would use CO₂ rich flue gas at high temperature directly rather than cooled streams.
Top gas recycling	 Fundamental analysis and redesign of Blast Furnace required to cope with changes in mass and energy flows associated with TGR-BF. Would need to time with major overhaul. 	 Risk of project-on-project risk. Current investigation still mainly focused on carbon separation, not yet at end to end projects.
Oxyfuel technologies	 Potential for application to stoves but this represents less than a quarter of site emissions so there is a limited maximum capture potential per site. 	 Standard oxyfuel challenges associated with compatibility of existing materials and heat flow patterns with flame temperatures from oxyfuel.
		elementenergy 80

If CO₂ transport networks are developed in Teesside and Yorkshire, these could serve SSI and Tata Scunthorpe sites respectively.

Iron and Steel CO₂ Source Database Assumptions

Sector	Owner name as listed in the ETS	Source name	Source archetype	Latitude	Longitude	CO ₂ emissions (tCO ₂ /yr)	СОМАН
Iron and Steel	Tata Steel UK Limited	Scunthorpe Integrated Iron & Steel Works	Steel	53.57	- 0.61	7,305,903	Тор
Iron and Steel	Tata Steel UK Limited	Port Talbot Steelworks	Steel	51.56	- 3.77	6,880,337	Тор
Iron and Steel	SSI	Teesside Integrated Iron & Steel Works	Steel	54.61	- 1.11	6,222,710	Тор

References – Iron and Steel

- Birat, J. (2009). Steel and CO 2 the ULCOS Program , CCS and Mineral Carbonation using Steelmaking Slag.
- Carpenter, A. (2012b). CO2 abatement in the iron and steel industry. IEA Clean Coal Centre. Retrieved from www.ketep.re.kr/home/include/download.jsp?fileSID=6566
- European Commission. (2009). European Industrial Initiative on carbon capture and storage. Strategic Energy Technologies Information Systems. Retrieved January 20, 2014, from http://setis.ec.europa.eu/implementation/technology-roadmap/european-industrial-initiative-on-carboncapture-and-storage
- Hasanbeigi, A., Price, L., & Arens, M. (2013). Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry. Retrieved from http://china.lbl.gov/sites/all/files/6106e-steel-tech.pdf
- Ho, M. T., Bustamante, A., & Wiley, D. E. (2013). Comparison of CO2 capture economics for iron and steel mills. *International Journal of Greenhouse Gas Control*, *19*, 145–159. doi:10.1016/j.ijggc.2013.08.003
- IEA, & UNIDO. (2011). *Technology Roadmap. Carbon Capture and Storage in Industrial Applications*. Retrieved from http://www.iea.org/publications/freepublications/publication/ccs_industry.pdf
- IEAGHG. (2011). Challenges and opportunities of CO2 capture and storage for the iron and steel industry. Retrieved from http://cdn.globalccsinstitute.com/sites/default/files/publications/101921/challenges-opportunities-co2capture-storage-iron-steel-industry.pdf
- IEAGHG. (2012). CO2 Capture Technologies for Industry Iron & Steel, Oil Refinery & Cement. In CO2 Capture and Storage Regional Awareness-Raising Workshop. 13-14 June. Anakra, Turkey. Retrieved from http://www.cgseurope.net/UserFiles/file/Ankara workshop_june 2012/presentations/P_ Singh CO2 Capture Technologies Industry.pdf

References – Iron and Steel

- IEAGHG. (2013a). Iron and Steel CCS Study (Techno-economics integrated steel mill).
- IEAGHG. (2013b). OVERVIEW OF THE CURRENT STATE AND DEVELOPMENT OF CO2 CAPTURE TECHNOLOGIES IN THE IRONMAKING PROCESS.
- Joint Research Centre of the European Commission. (2010). Reference Report: Best Available Techniques (BAT) Reference Document for Iron and Steel Production. doi:10.2791/97469
- Kaplucha, J. M., & Ladega, T. T. (2013). *Modelling and Analysis of Iron Manufacturing. Investigating the Calcium Looping Process for Carbon Capture and the Potential for Hydrogen Production*. Imperial College, London.
- Kuramochi, T., Ramírez, A., Turkenburg, W., & Faaij, A. (2011). Techno-economic assessment and comparison of CO2 capture technologies for industrial processes: Preliminary results for the iron and steel sector. *Energy Procedia*, *4*, 1981–1988. doi:10.1016/j.egypro.2011.02.079
- Van Puyvelde, D. (2013). CCS for iron and steel production. *Global CCS Institute*. Retrieved December 20, 2013, from http://www.globalccsinstitute.com/insights/authors/dennisvanpuyvelde/2013/08/23/ccs-iron-and-steel-production
- Wiley, D. E., Ho, M. T., & Bustamante, A. (2011). Assessment of opportunities for CO2 capture at iron and steel mills: An Australian perspective. *Energy Procedia*, *4*, 2654–2661. doi:10.1016/j.egypro.2011.02.165

Source sectors

- Cement
- Chemicals
- Iron and Steel
- Oil Refining
- Other sectors of potential relevance

Sector context

The members of UKPIA (UK Petroleum Industry Association) run the seven major operating refineries in the UK, which are responsible for more than 90% of the CO_2 emissions from the sector. Since the refinery closures in 1997, 1999, 2009, and most recently 2012, UK refining throughput has fallen from its late 90s' peak of 97 million tonnes of crude oil to around 69 million tonnes in 2012 – an 8% drop compared to 2011. Over 80% of product output is petrol, diesel, jet fuel, gas oil and fuel oils.

Description of main processes

Refinery operations can be broken down into five main processes: (1) distillation (separates crude oil into different refinery streams) – (2+3) conversion and reforming (quality improvement and yield adjustments to meet market demand) – (4) desulphurisation (reduces sulphur in the streams) – (5) blending of the refinery streams (to produce final products).

The starting point for all refinery operations is the crude distillation unit (CDU). Crude oil is boiled in a fractioning column, which breaks the crude down into more useful components. The crude oil enters the column near the bottom and is heated to around 380°C. The lighter fractions are vaporised and rise up the column. As they rise, they are cooled by a downward flow of liquid and condense at different points. This enables fractions with different boiling points to be drawn off at different levels in the column.

High purity CO₂ is co-produced as a by-product of hydrogen production at the Lindsay oil refinery.

Refineries in the UK– CO₂ sources, sites and barriers

CO₂ sources and emissions

Refineries emit around 30% of the UK's industrial CO_2 emissions and are included in the EU ETS. The total emissions for the last 20 years account to $15 - 20 \text{ MtCO}_2\text{e/y}$. There are four major CO_2 emission sources in a refinery: furnaces and boilers, utilities, fluid catalytic cracker (FCC) and hydrogen production.

CO ₂ emission	Description	% of total emission	refinery s	% concentration
point		UKPIA	OECD, et all (2011).	of CO2 stream [OECD, IEA, & UNIDO, 2011]
FCC (post clean up)	Process used to convert crude oil to more valuable products.	13-32%	20-50%	10-20%
Utilities	CO_2 from production of electricity and steam on site	12-27%	20-50%	3-6%
Furnaces	Heat is required for reactions in the refining process such as cracking, reforming and steam generation.	12-27%	30-60%	8-10%
Hydrogen	Refineries require hydrogen for numerous processes. Not all refineries produce hydrogen on-site.	11%	5-20%	20-99%

Refineries

Image kindly provided by Ineos showing the very large number of potential vents at the Grangemouth refinery-chemical-CHP complex.

Refining - carbon capture technology barriers prioritised in stakeholder interviews.

Technology	Barriers
1 st generation chemical solvents	 Contaminants in flue gas results in degradation (NOx) and salt formation (SOx), resulting in a high amine requirement
Chilled ammonia	 Usually no ammonia on site, would introduce new risks

• This list of barriers is not comprehensive, but reflects barriers prioritised during stakeholder interviews.

Refining - sector specific barriers

Issue	Barriers
Major overhaul turn around time	 Turn around time between major overhauls is five years, this can limit speed of development
Furnace shut down operation issues	 Operating issues when shutting down a furnace in a CO₂ multi unit carbon capture facility. Significant downtime costs, potential impacts of £M/day
Multiple source exhaust	 Many distributed emission points across a site. Either large duct network at significant investment and blower operational cost as well as integration challenges or high investment in multiple capture plants.
Cost uncertainty	 Experience suggests cost uncertainties of at least +200%/-33% are common in this sector

Transport and storage opportunities most likely for refineries in Scotland, NW England and Yorkshire

Refining Sector CO₂ Source Database Assumptions (1/2)

Sector	Owner name as listed in the ETS	Source name	Source archetype	Latitude	Longitude	CO ₂ emissions (tCO ₂ /yr)	СОМАН
Refining	Esso Petroleum Company Limited	Fawley refinery, Southampton1	Refinery	50.83	- 1.35	1,297,000	Тор
Refining	Esso Petroleum Company Limited	Fawley refinery, Southampton2	Petrochemical cracker (olefins)	50.83	- 1.35	800,000	Тор
Refining	Esso Petroleum Company Limited	Fawley refinery, Southampton3	Industrial Gas CHP	50.83	- 1.35	520,000	Тор
Refining	Ineos Manufacturing Scotland Ltd	Grangemouth Refinery cracker	Petrochemical cracker (olefins)	56.01	- 3.70	350,000	Тор
Refining	Ineos Manufacturing Scotland Ltd	Grangemouth CHP	Industrial Gas CHP	56.01	- 3.70	723,000	Тор
Refining	Ineos Manufacturing Scotland Ltd	Grangemouth Refinery excl. cracker and CHP	Refinery	56.01	- 3.70	1,622,000	Тор
Refining	Essar Oil UK Ltd	Stanlow Refinery FCC	Petrochemical cracker (olefins)	53.27	- 2.84	600,000	Тор
Refining	Essar Oil UK Ltd	Stanlow Refinery Power generation	Refinery	53.27	- 2.84	450,000	Тор
Refining	Essar Oil UK Ltd	Stanlow Refinery excl FCC and power plant	Refinery	53.27	- 2.84	1,630,000	Тор
Refining	Phillips 66 (formerly Conoco Phillips) Limited	Humber Refinery FCC regenerator stack1	Petrochemical cracker (olefins)	53.63	- 0.25	450,000	Тор
Refining	Phillips 66 (formerly Conoco Phillips) Limited	Humber Refinery FCC regenerator stack2	Refinery	53.63	- 0.25	1,499,000	Тор

Refining Sector CO₂ Source Database Assumptions (2/2)

Sector	Owner name as listed in the ETS	Source name	Source archetype	Latitude	Longitude	CO ₂ emissions (tCO ₂ /yr)	СОМАН
Refining	Valero Energy Ltd	Pembroke Refinery FCC regenerator stack	Petrochemical cracker (olefins)	51.69	- 5.03	800,000	Тор
Refining	Valero Energy Ltd	Pembroke Refinery excl. FCC	Refinery	51.69	- 5.03	1,475,000	Тор
Refining	Murco Petroleum Limited	Murco Petroleum Milford Haven Refinery1	Refinery	51.74	- 5.06	780,000	Тор
Refining	Murco Petroleum Limited	Murco Petroleum Milford Haven Refinery2	Petrochemical cracker (olefins)	51.74	- 5.06	300,000	Тор
Refining	Murco Petroleum Limited	Murco Petroleum Milford Haven Refinery3	Industrial Gas CHP	51.74	- 5.06	300,000	Тор
Refining	Lindsey Oil Refinery	Total Lindsey Oil Refinery Hydrogen plant	Hydrogen via SMR	53.64	- 0.25	200,000	Тор
Refining	Lindsey Oil Refinery	Total Lindsey Oil Refinery CHP Plant	Industrial Gas CHP	53.64	- 0.25	300,000	Тор
Refining	Total UK Limited	Total Lindsey Oil Refinery FCC regenerator stack	Refinery	53.64	- 0.25	450,000	Тор
Refining	Total UK Limited	Total Lindsey Oil Refinery Other	Refinery	53.64	- 0.25	669,000	Тор

References – Oil Refining

- CONCAWE. (2008). Impact of product quality and demand evolution on EU refineries at the 2020 horizon. CO2 emissions trend and mitigation options. Retrieved from https://www.concawe.eu/DocShareNoFrame/docs/5/NHODCKEAIAKILFBLJFNGJDPHVEVCBW9W9YBD73BDE1W3/CEnet/docs/DLS/R pt_08-8-2009-00651-01-E.pdf
- CONCAWE. (2011). The potential for application of CO 2 capture and storage in EU oil refineries. Retrieved from http://bellona.org/ccs/uploads/media/Report_11-7-2011_CCS_in_EU_refineries.pdf
- CONCAWE. (2012). EU refinery energy systems and efficiency. Retrieved from https://www.concawe.eu/DocShareNoFrame/docs/4/NHODCKEAIAKILFBLJFNGJDPHVEVCWY9DA3PDWY9DW1PD/CEnet/docs/DLS/ Rpt_12-03-2012-01520-01-E.pdf
- CONCAWE. (2013). Oil refining in the EU in 2020, with perspectives to 2030 (p. 123). Retrieved from http://www.europeandredging.eu/pdf/CONCAWE_Report_on_Oil_refining_perspectives_in_EU_2030.pdf
- Cuthbert, N., Leavens, J., Kennaby, D., & Birch, C. (2011). Developments in the international downstream oil markets and their drivers: implications for the UK refining sector. Prepared for: Department of Energy and Climate Change. Retrieved from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/48142/2259-int-downstream-oil-mkts-drivers.pdf
- ECJRC. (2013). Best Available Techniques (BAT) Reference Document for the Refining of Mineral Oil and Gas. (Final Draft). Retrieved from http://eippcb.jrc.ec.europa.eu/reference/BREF/FD_REF_July_2013online.pdf
- IEA, & UNIDO. (2011). *Technology Roadmap. Carbon Capture and Storage in Industrial Applications*. Retrieved from http://www.iea.org/publications/freepublications/publication/ccs_industry.pdf
- IEAGHG. (2012). CO2 Capture Technologies for Industry Iron & Steel, Oil Refinery & Cement. In CO2 Capture and Storage Regional Awareness-Raising Workshop. 13-14 June. Anakra, Turkey. Retrieved from http://www.cgseurope.net/UserFiles/file/Ankara workshop_june 2012/presentations/P_ Singh CO2 Capture Technologies Industry.pdf
- IPPC, & European Commission. (2003). *Reference Document on Best Available Techniques for Mineral Oil and Gas Refineries*. Retrieved from http://eippcb.jrc.ec.europa.eu/reference/BREF/ref_bref_0203.pdf
- Simmonds, M., Hurst, P., Wilkinson, M. B., Watt, C., & Roberts, C. A. (2002). A STUDY OF VERY LARGE SCALE POST COMBUSTION CO2 CAPTURE AT A REFINING & PETROCHEMICAL COMPLEX. Presented at GHGT-6, Kyoto, 2002; Paper B4-1.
- UKPIA. (2012). The Refining Industry in the UK. Retrieved from www.ukpia.com
- Van Straelen, J., Geuzebroek, F., Goodchild, N., Protopapas, G., & Mahony, L. (2010). CO2 capture for refineries, a practical approach. International Journal of Greenhouse Gas Control, 4(2), 316–320. doi:10.1016/j.ijggc.2009.09.022

Source sectors

- Cement
- Chemicals
- Iron and Steel
- Oil Refining
- Other sectors of potential relevance

Other sources of CO₂ of potential relevance to industrial CCS

Although the scope of this study is limited to existing large UK cement, chemicals, iron and steel and oil refining sites, policymakers should be aware that other sources of CO_2 that may be relevant as part of wider industrial CCS or CCU development over the long-term include:

- Many industrial sites have one or more existing boilers, furnaces and/or CHP units, which may use one or more of coal, gas, oil, biomass, or waste fuel.
- New build industrial sites, especially if built "capture ready".
- Other heat-intensive industrial sectors, such as glass, ceramics, pulp and paper, food and drink.
- Hydrocarbon processing (e.g. CO₂ is coproduced with oil or gas and separated at offshore installations and at St. Fergus gas terminal), often generating CO₂ rich vents. (It is not clear if there will be CO₂ co-produced with any potential future UK shale gas production.)
- Biofuel production, for example bio-ethanol production through fermentation.
- Power stations fitted with pre-combustion capture could supply "low carbon" hydrogen to industrial sources.

Source	Vent complexity	CO2 stream pressure	Input CO2 (% volume)			Impurity level (ppm)		%CO2 site
archetype			Low	Central	High	NOx	SOx	capturable
Steel	Many	0.11	16%	30%	44%	100	100	60%
Cement	Single	0.11	14%	24%	33%	100	100	99%
Other Refinery	Many	0.11	8%	10%	12%	600	1200	90%
Hydrogen	Single	0.11	20%	95%	99%	10	10	99%
Gas boiler	Single	0.11	5%	7%	10%	10	10	99%
Industrial Coal CHP	Single	0.11	8%	12%	15%	100	100	99%
Industrial Gas CHP	Single	0.11	2%	3%	6%	10	10	99%
Ammonia	Single	0.1-5.1	90%	95%	100 %	100	100	99%
Crackers	Many	0.11	8%	10%	12%	100	100	99%
Other chemicals	Many	0.11	2%	11%	40%	100	100	99%

Outline

- Overall Project Methodology
- CO₂ capture technologies
- CO₂ sources
- Techno-economic analysis of industrial CO₂ capture
- Process simulation case studies
- CO₂ utilisation review

Techno-economic analysis of industrial CO₂ capture

- Model Architecture
- Key assumptions
- Pragmatic scenario
- Sensitivity analysis

Techno-economic modelling is used to screen the potential of CO₂ capture technologies for each industrial sector.

- The model "CINDY V1.0" (short for Capture in INDustrY) was developed by Element Energy to facilitate rapid Excel-based screening of source-technology combinations across a range of user-defined scenarios.
- Key technology selection and performance indicators are availability, costs and overall CO₂ saving potential. The range of costs (in £/tCO₂ captured or abated) can be estimated for each capture technology from capex, opex, heat and power consumption.
- The published literature is heterogeneous in the level of detail and consistency of input, output and process assumptions. There are many drivers of costs however; therefore it is a major challenge to compare the published costs for industrial CO₂ capture.
- The model allows a more systematic comparison of sectors and technologies, although significant uncertainties and assumptions are still required.

Architecture for techno-economic model

elementenergy 101

Summary description of the Excel-based techno-economic model

- Filtered source database, scaling sub-sector archetype properties with actual source CO₂ emissions and local cost of heat.
- Costs and energy requirements disaggregated using initial pre-treatment, capture technology, and post-treatment.
- Initial pre-treatment and post-treatment steps reflect high level models, whereas the capture technology "archetype" combines reference data on suitability (with a given CO₂ stream), cost and performance with correlation functions to allow costs and performance to be adjusted based on key drivers (tCO₂/yr, input purity, and %CO₂ captured).
- Once input conditions are selected, the model cycles through calculations of capture costs and CO₂ savings for all relevant source-technology combinations (initially for 2020 and subsequently for 2025). From these initial outputs, the technology-source combinations can then be ranked, based on annual CO₂ captured or abated, annualised £/tCO₂ captured or abated.
- An overall technology assessment matrix can then be determined identifying for each of the four sectors, sub-total CO₂ captured or abated, average £/tCO₂ captured or abated.
- Users can carry out sensitivity analysis to discount rate, energy price, technology and source assumptions.

Capital costs = Pre-treatment cost + Capture cost Compression, transport, storage are excluded from baseline analysis.

 \pounds/tCO_2 abated costs will be presented as levelised costs, i.e. using a discounted cashflow approach:

Levelised cost of capture $\left(\frac{\pounds}{tCO_2}\right) = \frac{PV(capex) + PV(fixed opex) + PV(heat) + PV(elec)}{PV(lifetime abated tCO_2)}$

To obtain the present values (PV), the capex, opex and abated tCO_2 will be discounted at the user-defined discount rate recognising construction period (default equally spread over 3 yrs) and user-defined project operational lifetime (default is 15 yrs).

 CO_2 and £/t CO_2 will be provided as both captured and abated. Within the discounted cashflow costs and CO_2 are discounted to the first year of operation (e.g. 2025).

Techno-economic analysis

- Model Architecture
- Key assumptions
- Pragmatic scenario
- Sensitivity analysis

Key baseline assumptions

- Baseline conditions were agreed with the project steering board at an interim meeting as follows:
 - Real discount rate 10% (costs discounted to date that project begins operation e.g. 2025)
 - A discount rate of 10% is used across the CCS literature, and is used to facilitate comparison. It is likely that any industry investors would demand higher hurdle rates. Real discount rate implies no additional adjustments required for inflation.
 - Project lifetime 15 yrs
 - DECC Central Prices for electricity, gas, carbon
 - Construction period 3 yrs
 - Costs standardised to £(2013) where possible.
 - Source "central" %CO₂ concentration
 - Source "central" MtCO₂/yr emissions
 - No waste heat recovery and re-use assumed for initial projects (projects assumed to include cost of a boiler where significant heat demand is required).
 - No consideration of tax
 - Costs exclude post-capture compression, transport or storage
 - Assume for techno-economic modelling only one capture technology, i.e. combinations of capture techs are excluded.
 - General principles on the design of capture using multiple technologies are not well described in the industrial CCS literature.
 - For examples of approaches combining solvent absorption, pressure swing adsorption and/or cryogenic CO₂ capture in the iron and steel sector see IEA GHG (2013) Iron and Steel CCS Study (Techno-economics integrated steel mill) Report 2013/04.

DECC Energy and Carbon Price Assumptions Used

	Elect	tricity p/	kWh	G	as p/kW	h	Traded CO ₂ £/t		Non traded CC		$O_2 $ £/t	
	Low	Central	High	Low	Central	High	Low	Central	High	Low	Central	High
2020	10.23	12.02	13.77	1.91	3.13	4.26	-	4.87	25.98	32.85	65.71	98.56
2021	10.68	12.34	13.96	1.92	3.13	4.35	3.81	12.01	34.82	33.4	66.8	100.2
2022	11.06	12.77	14.75	1.92	3.14	4.36	7.62	19.14	43.65	33.95	67.9	101.84
2023	11.38	13.02	14.52	1.93	3.15	4.37	11.43	26.28	52.49	34.5	68.99	103.49
2024	12.16	13.56	15.24	1.94	3.16	4.38	15.25	33.41	61.33	35.04	70.09	105.13
2025	12.14	13.63	15.03	1.95	3.17	4.39	19.06	40.55	70.16	35.59	71.18	106.77
2026	12.69	13.79	15.19	1.96	3.18	4.39	22.87	47.69	79	36.14	72.28	108.41
2027	12.40	13.72	15.06	1.96	3.18	4.4	26.68	54.82	87.84	36.69	73.37	110.06
2028	12.34	13.6	15.37	1.97	3.19	4.41	30.49	61.96	96.67	37.23	74.47	111.7
2029	12.27	13.52	14.77	1.98	3.2	4.42	34.3	69.1	105.51	37.78	75.56	113.34
2030	12.36	13.47	15.11	1.99	3.21	4.43	38.12	76.23	114.35	38.12	76.23	114.35
2031	12.36	13.47	15.11	1.99	3.21	4.43	41.89	83.77	125.66	41.89	83.77	125.66
2032	12.36	13.47	15.11	1.99	3.21	4.43	45.45	90.89	136.34	45.45	90.89	136.34
2033	12.36	13.47	15.11	1.99	3.21	4.43	49.01	98.01	147.02	49.01	98.01	147.02
2034	12.36	13.47	15.11	1.99	3.21	4.43	52.56	105.13	157.69	52.56	105.13	157.69
2035	12.36	13.47	15.11	1.99	3.21	4.43	56.12	112.25	168.37	56.12	112.25	168.37
2036	12.36	13.47	15.11	1.99	3.21	4.43	59.68	119.36	179.05	59.68	119.36	179.05
2037	12.36	13.47	15.11	1.99	3.21	4.43	63.24	126.48	189.72	63.24	126.48	189.72
2038	12.36	13.47	15.11	1.99	3.21	4.43	66.8	133.6	200.4	66.8	133.6	200.4
2039	12.36	13.47	15.11	1.99	3.21	4.43	70.36	140.72	211.08	70.36	140.72	211.08
2040	12.36	13.47	15.11	1.99	3.21	4.43	73.92	147.84	221.75	73.92	147.84	221.75
2041	12.36	13.47	15.11	1.99	3.21	4.43	77.48	154.95	232.43	77.48	154.95	232.43
2042	12.36	13.47	15.11	1.99	3.21	4.43	81.04	162.07	243.11	81.04	162.07	243.11
2043	12.36	13.47	15.11	1.99	3.21	4.43	84.6	169.19	253.79	84.6	169.19	253.79
2044	12.36	13.47	15.11	1.99	3.21	4.43	88.15	176.31	264.46	88.15	176.31	264.46
2045	12.36	13.47	15.11	1.99	3.21	4.43	91.71	183.43	275.14	91.71	183.43	275.14
2046	12.36	13.47	15.11	1.99	3.21	4.43	95.27	190.54	285.82	95.27	190.54	285.82
2047	12.36	13.47	15.11	1.99	3.21	4.43	98.83	197.66	296.49	98.83	197.66	296.49
2048	12.36	13.47	15.11	1.99	3.21	4.43	102.39	204.78	307.17	102.39	204.78	307.17
2049	12.36	13.47	15.11	1.99	3.21	4.43	105.95	211.9	317.85	105.95	211.9	317.85
2050	12.36	13.47	15.11	1.99	3.21	4.43	109.51	219.02	328.53	109.51	219.02	328.53

Table shows undiscounted costs.

Pre-treatment assumptions (1): Pipeline gathering network

- A simple model for pipeline gathering was assumed.
- Assumes streams are compatible. (Streams not being comparible might result in the need for multiple independent capture trains, or more likely, less CO₂ captured).
- Capital cost =f(throughput, no. of vents),
- Throughput and no. of vents are estimated relative to a reference project, assuming
- The number of vents is "single (1)", "few (2-4)" or "many (>5)" vents),
- The reference project is the Simmonds *et al.* (2003) study of Grangemouth oil refinery.
- Costs have been updated to £2013 to account for inflation.

Vent collection

Туре	Capex (£m)	Reference CO ₂ (Mt captured/y)	Reference CO ₂ purity (% volume)
Single	£-	2	10.0%
Few	£ 15	2	10.0%
Many	£ 60	2	10.0%
Pre-treatment costs (2): Impurity removal

- Some capture technologies are vulnerable to impurities in the flue gas stream.
- For these scenarios, a simple cost model is assumed to reduce the levels of NO_x and SO_x based on conventional technologies used in the power and industrial sectors (e.g. Selective Catalytic Removal, Flue Gas Desulfurisation).
- No assumption is made on the ability to sell the products of NO_X/SO_X removal.
- Some capture technologies (e.g. physical solvents) are only relevant when the input CO₂ is at high partial pressure. Given the higher cost of electricity than heat, it is unusual to increase the pressure of the flue gas and then use one of these technologies, however it is feasible.
- Therefore the pre-treatment for the combination of low pressure gases with capture technologies requiring high pressure CO₂ may therefore include the costs of compression. This would be based on the sizing and costs of conventional compressors.

Pre-treatment assumptions

Four high level and simplified "pre-treatment" techno-economic models are included, depending on source-technology compatibility requirements.

- SO_x removal (costs in line with FGD)
- NO_X removal (costs in line with SCR)
- Costs are scaled in line with flue gas throughput relative to a reference value.
- Scaling algorithm is based on standard engineering rule of thumb (based on surface area: volume relationship)

 $cost_A/cost_B = (scale_A/scale_B)^{2/3}$

Flue impurity processing							
				Impurity tolera ind	ance rer ex	noval	
Technology	Name	Reference capex (£m 2013)	Reference flue (m3/y)	50%	95%	99%	Fixed opex (% of capex in 2013)
FGD	Flue gas desulphurisation	£ 99	20,000,000,000	50%	100%	200%	5%
SCR	Selective catalytic reduction	£ 99	20,000,000,000	50%	100%	200%	5%

References for flue gas clean-up

- DTI (2000) Flue Gas Desulphurisation (FGD) Technologies DTI Cleaner Coal Programme Technology Status Report 012
- Markusson, N. (2012) Scaling up and deployment of FGD in the US (1960s to 2009) UKERC /RS/CCS/2012/006 (Final case study report as part of Work Package 2 of the UKERC project: CCS – Releasing the Potential?)
- Cichanowicz, J.E. (2010) Current capital cost and cost-effectiveness of power plant emissions control technologies, prepared for the Utility Air Regulatory Group
- Environment Agency TWG12 (2011) Best Available Technology for SO2 for existing baseload UK Coal Units > 300 MW downloaded from <u>http://www.environment-</u> <u>agency.gov.uk/static/documents/Business/UKTWG12_Final_SO2_baseload_coal.pdf</u>
- Environment Agency TWG12 (2011) Best Available Technology for NOx for existing baseload UK Coal Units > 300 MW downloaded from <u>http://www.environment-</u> <u>agency.gov.uk/static/documents/Business/UKTWG13_Final_NOx_baseload_coal.pdf</u>
- US Environmental Protection Agency Air Pollution Control Technology Factsheet EPA-452/F-03-034

Pre-treatment (3): Flue gas compression

- Gas compression is a mature technology which is not the focus of the present study, therefore a simplified high level model is used for compression.
- Assume NOx and SOx removal (which results in gas with a starting pressure of 1 bar) and pipeline gathering occurs prior to flue gas compression.
- Assume flue gas compression from 1 bar to the minimum required for capture technology.
- Assume that flue gas is predominantly N₂ and CO₂, and can be compressed adiabatically.

 $[(P_{out}/P_{in})^{\gamma}-1]/\gamma = 5.15 \text{ for } CO_2$ $[(P_{out}/P_{in})^{\gamma}-1]/\gamma = 5.79 \text{ for } N_2$

- Assume an efficiency of 75%
- Assume compressor capital cost of ca. £1.64m/MW
 - Updated from estimate of £1,238/kW in 2005
 - Assume fixed annual operating costs of 5% of capex.
 - Electricity cost at relevant industrial electricity price.

Basis of plant cost

- As this project has a focus on technology and site comparison, this project compares technologies at the level of Total Plant Cost (see below).
- Costs for techno-economic model were developed from the literature review (updated where necessary following discussions with experts or for the purposes of standardising conditions).
- Given the paucity of realised industrial CCS projects, and the diversity of transparency, scope, date, and assumptions in the literature (previously described in Element Energy *et al.* 2013 for BIS), standardisation of costs is very challenging.
- The model does allow contingencies, owner's costs, and financing to be analysed through sensitivity analysis. Note that contingencies and financing costs for first-of-akind project may be significant, although further work would be required to estimate how these may vary between technologies or sites.
- An independent approach is used for the process simulation work described later in this appendix.

Element Energy (2013) CCS in UK industry in 2030 - A High level cost review, for BIS NETL 2010 Costs and Performance of Fossil Fuel Power Plants; Kuramochi et al. Techno-economics of industrial CCS

Capital cost adjustment from a reference data source

- Cost reduction due to economies of scale assumed to follow an empirical "2:3 power law" (resulting conceptually from the ratio of changing surface areas, which drive cost, and volume, which drives capacity).
- The cost adjustment factor for scale is given by cost_B=cost_{ref}*(Scale_B/Scale_{ref})^{0.66}
- Analysis by Husebye *et al.* (2012) also identifies the potential for significant reduction in capital (below left) and operating (below right) costs for MEA capture as a function of flue gas CO₂ concentration.

- Much of the capex reduction on increasing CO₂ concentration can be attributed to reduced diameters (at constant flue gas throughput). We assume that the cost dependency identified for MEA holds for other 1st generation amines and all other capture technologies identified, as it relates to fundamental equilibrium processes, although this would ideally be validated through demonstration projects.
- Capital costs were adjusted for CO₂ concentration through
 - Capital cost(scale, [%CO₂]) = reference cost x cost adjustment factor (scale) x cost adjustment factor for [%CO₂], where the cost adjustment factor for [%CO₂] is given by 312.5*(2.5/[%CO₂])^{0.53}

Assumptions on adjustment of energy demand for capture as a function of CO₂ concentration

There are only a handful of data points in the literature for cost and performance for capture as a function of different CO2 concentrations. Energy requirements for physical and chemical solvents and solid looping are modelled as depending on CO_2 concentration as a function:

Power required $(GJ_{elec}/tCO_2 \text{ captured}) =$ Reference value x adjustment factor, Where adjustment factor = $11.22*[%CO_2]^{-0.99}$

Steam required $(GJ_{heat}/tCO_2 \text{ captured}) =$ Reference value x adjustment factor, Where adjustment factor = $1.42*[\%CO_2]^{-0.142}$

These coefficients were derived from a curve-fit to data on MEA from Husebye *et al.* (2012, Upper left panel).

Given some fundamental similarities in the thermodynamic basis for the reactions, we assume this relationship holds broadly for 2nd generation chemical solvents, physical solvents and calcium looping, although no public reports are available, so this could benefit from experimental testing.

For cryogenics, power demand is modelled as depending on CO₂ concentration as follows:

Power required (GJ/tCO₂ captured) = 5.809*[%CO₂]^{-0.657}

This results from a curve-fit to Tunier et al (2011, bottom left panel).

Husebye, J. *et al.* (2012) Techno-economic evaluation of amine-based CO2 capture: impact of CO2 concentration and steam supply *Energy Procedia* **23** 381-390; Tuinier *et al.* (2011)

elementenergy 114

Techno-economic analysis

- Model Architecture
- Key assumptions
- Pragmatic scenario
- Sensitivity analysis

The primary output from the techno-economic modelling is a highlevel assessment of costs for different technologies.

Input Parameter	Value
Source ID	#6 (Dunbar Cement)
Source size	0.5 Mt/yr
Source purity	24% CO ₂ with 100 ppm NOx and 100 ppm SOx Flue gas stream at 1 bar.
Energy and carbon prices	DECC Central
Real discount rate	10%
Lifetime	15 yrs
Technology development scenario	Pragmatic
Site constraints	None
Timing	Construction 2022-2024 Yr of first operation 2025

- CO2 costs associated with boiler CO2
- Compression discounted electricity
- Compression discounted opex
- Compression discounted capex
- Capture discounted power
- Capture discounted heat
- Capture discounted opex
- Capture discounted capex
- Pretreatment discounted electricity
- Pretreatment discounted opex
- Pretreatment discounted capex

Example illustrative industrial source for a range of capture technologies likely to be available in 2025. Data shown is from a 1 bar, $0.5MtCO_2/yr$ source with $24\%CO_2$, 0.44 Mt/yr captured, *ca*. 0.32-0.43 MtCO₂/yr abated).

elementenergy 116

Example model calculations – site CO₂ balance

Name	Captured CO ₂ emissions (tCO2/yr)	CO ₂ from gas boiler (t/yr)	CO ₂ associated with electricity (t/yr)	Abated CO ₂ emissions (tCO2/yr)	Vented CO ₂ emissions (tCO2/yr)
1 st gen amine	437,481	80,747	2,081	354,654	134,266
Advanced amines or blends	437,481	67,289	2,081	368,112	120,808
Chilled ammonia	437,481	67,289	6,242	363,951	120,808
Potassium carbonate	437,481	112,148	5,201	320,132	165,667
Rectisol	437,481	8,972	2,081	426,429	62,491
Selexol	437,481	4,486	2,081	430,915	58,005
Calcium looping	413,177	33,894	5,305	373,978	111,717
Cryogenics	437,481	-	55,868	381,613	53,519

N.B. Vented emissions = initial source $CO_2 - CO_2$ captured + CO_2 from gas boiler (assumed not captured)

Technology	Cape	k (£m)	Fixed op	ex (£m)	Heating (MWh)	Electricity (MWh)
1 st gen amine	£	29	£	1	-	-
Advanced amines or blends	£	-	£	-	-	-
Chilled ammonia	£	29	£	1	-	-
Potassium carbonate	£	35	£	2	-	251,475
Rectisol	£	35	£	2	-	251,475
Selexol	£	35	£	2	-	251,475
Calcium looping	£	-	£	-	-	-
Cryogenics	£	29	£	1	-	-

Name	Саре	x (£m)	Fixed opex (£m/yr)	GJ heat/ tCO ₂ captured	GJ electricity/ tCO ₂ captured	Heating fuel (MWh gas/yr)	Electricity (MWh/yr)
1 st gen amine	£	102	£5	3.3	0.1	486,090	24,305
Advanced amines or blends	£	67	£2	2.7	0.1	405,075	24,305
Chilled ammonia	£	93	£4	2.7	0.3	405,075	72,914
Potassium carbonate	£	63	£3	4.5	0.2	675,125	60,761
Rectisol	£	89	£3	0.36	0.1	54,010	24,305
Selexol	£	90	£4	0.18	0.1	27,005	24,305
Calcium looping	£	36	£5	1.5	0.3	204,038	61,976
Cryogenics	£	78	£3	0	2.6	-	437,481

Example model outputs – overall capture performance

Name	Discounted lifetime cost (£m)	Levelised cost of capture (£/tCO ₂ captured)	Levelised cost of abatement (£/t CO ₂ abated)
First generation amine	£ 410	£ 112	£ 138
Advanced amines or blends	£ 265	£ 72	£ 86
Chilled ammonia	£ 392	£ 107	£ 129
Potassium carbonate	£ 729	£ 199	£ 272
Rectisol	£ 506	£ 138	£ 142
Selexol	£ 505	£ 138	£ 140
Calcium looping	£ 200	£ 58	£ 64
Cryogenics	£ 526	£ 144	£ 165

N.B. Costs exclude compression, transport and storage

The model shows the that technology relevance is linked to CO₂ concentration and pressure (1/2) Low pressure

The model shows the that technology relevance is linked to CO₂ concentration and pressure (2/2) High pressure

elementenergy 122

Pragmatic scenario – Comparison of MACCs for different technologies

Cumulative savings in 2025 (kt CO2/yr)

elementenergy | 123

Assessment of technology-sector combinations

- Whilst the techno-economic model supports screening of capture technologies and sites, the differences between the outputs in terms of capture technologies or sectors are small relative to the model resolution.
- Matrices has been prepared that identifies attributes for each technology –source archetype contribution for a given scenario.
- High CO₂ purity hydrogen and ammonia sources have been excluded from this analysis as no capture technology is required.
- Attributes identified are
 - for projects: capex, fixed opex, gas requirement, electricity requirement, abatement cost, abatement potential, for chosen scenario
 - N.B. These are the individual median values of all relevant sector-technology combinations, i.e. median capex of all capexes, median opex of all opexes.
 - For sectors: max and min abatement cost, overall sector abatement potential in 2025 for chosen scenario
- These have been colour coded through a traffic light system as follows (green = favourable, red = unfavourable, yellow = intermediate).
- The following slides show results in the Pragmatic scenario.
- Given the uncertainties, readers should focus on trends rather than absolute numbers.

Median capex, opex, gas and electricity requirements in the Pragmatic Scenario

Median capture capex/£m	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Petrochemical cracker (olefins)	Other chemicals
1st gen amine solvent	£378	£102	£292	£51	£203	£190	£53
2nd gen chemical solvent	£97	£67	£173	£34	£134	£125	£35
Chilled ammonia	£134	£93	£240	£47	£186	£174	£48
Potassium carbonate	£233	£63	£180	£31	£125	£117	£33
Rectisol	£328	£89	£253	£44	£176	£165	£46
Selexol	£334	£90	£258	£45	£180	£168	£47
Calcium looping	£32	£36	£58	£18	£71	£58	£19
Cryogenics	£112	£78	£200	£39	£154	£145	£40
Median capture fixed opex/£m/yr	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
1st gen amine solvent	£ 18	£ 5	£ 14	£ 2	£ 10	£ 9	£ 3
2nd gen chemical solvent	£ 3	£ 2	£ 5	£ 1	£ 4	£ 4	£ 1
Chilled ammonia	£ 6	£ 4	£ 12	£ 2	£ 9	£ 8	£ 2
Potassium carbonate	£ 10	£ 3	£ 8	£ 1	£ 5	£ 5	£ 1
Rectisol	£ 10	£ 3	£ 8	£ 1	£ 5	£ 5	£ 1
Selexol	£ 13	£ 4	£ 10	£ 2	£ 7	£ 7	£ 2
Calcium looping	£ 5	£ 5	£ 9	£ 3	£ 11	£ 9	£ 3
Cryogenics	£ 4	£ 3	£ 8	£ 2	£ 6	£ 6	£ 2
Median gas requirement/TWh gas/yr	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
1st gen amine solvent	3.62	0.44	1.20	0.07	0.32	0.63	0.10
2nd gen chemical solvent	0.73	0.37	0.85	0.06	0.26	0.53	0.08
Chilled ammonia	0.73	0.37	0.85	0.06	0.26	0.53	0.08
Potassium carbonate	5.02	0.61	1.66	0.10	0.44	0.88	0.14
Rectisol	0.40	0.05	0.13	0.01	0.04	0.07	0.01
Selexol	0.20	0.02	0.07	0.00	0.02	0.04	0.01
Calcium looping	0.18	0.18	0.21	0.03	0.13	0.21	0.04
Cryogenics	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			5.0	Gas boiler	Industrial Gas		Other
Median power requirement/TWhelec/yr	Steel	Cement	Refinery	condensing	CHP	Crackers	chemicals
1st gen amine solvent	0.21	0.02	0.06	0.00	0.01	0.03	0.00
2nd gen chemical solvent	0.05	0.02	0.05	0.00	0.01	0.03	0.00
Chilled ammonia	0.15	0.07	0.15	0.01	0.04	0.09	0.01
Potassium carbonate	0.52	0.06	0.15	0.01	0.03	0.08	0.01
	0.01						
Rectisol	0.21	0.02	0.06	0.00	0.01	0.03	0.00
Selexol	0.21	0.02	0.06	0.00	0.01	0.03	0.00
Rectisol Selexol Calcium looping	0.21 0.21 0.06	0.02 0.02 0.06	0.06 0.06 0.06	0.00 0.00 0.01	0.01 0.01 0.03	0.03 0.03 0.06	0.00 0.00 0.01

Median abatement costs and potential in the Pragmatic Scenario

	Pragmatic scenario									
Median project abatement cost (£/tCO2	Stool		Comont		Pofinon/	Gas boile	r	Industrial Gas	Crackers	Other
abated)	Sleer		Cement		Relifiery	condensir	g	CHP	Clackers	chemicals
1st gen amine solvent	£ 9	3	£ 136	£	202	£ 3	14	£ 365	£ 203	£ 292
2nd gen chemical solvent	£ 7	2	£ 84	£	131	£ 2	02	£ 242	£ 115	£ 150
Chilled ammonia	£ 10	2	£ 127	£	202	£ 3	13	£ 430	£ 194	£ 267
Potassium carbonate	£ 20	7	£ 269	£	536	£ 8	44	£ 1,747	£ 531	£ 571
Rectisol	£ 9	6	£ 142	£	303	£ 5	13	£ 950	£ 302	£ 345
Selexol	£ 9	4	£ 140	£	300	£ 5	14	£ 943	£ 299	£ 346
Calcium looping	£ 5	6	£ 63	£	129	£ 1	82	£ 256	£ 101	£ 127
Cryogenics	£ 13	1	£ 165	£	326	£ 4	81	£ 1,011	£ 315	£ 363
Median individual project abatement potential	Stool		Comont		Pofinony	Gas boile	r	Industrial Gas	Crackors	Other
(MtCO2/yr in 2025)	Sleer	Steel Cernent Reinlery condensing CHP		Clackers	chemicals					
1st gen amine solvent	3.0		0.4		0.8	0.04		0.2	0.4	0.1
2nd gen chemical solvent	0.8		0.4		0.7	0.05		0.2	0.5	0.1
Chilled ammonia	0.8		0.4		0.7	0.04		0.2	0.4	0.1
Potassium carbonate	2.8		0.3		0.7	0.04		0.1	0.4	0.1
Rectisol	3.6		0.4		1.0	0.06		0.2	0.5	0.1
Selexol	3.7		0.4		1.0	0.06		0.2	0.5	0.1
Calcium looping	0.4		0.4		0.4	0.05		0.2	0.4	0.1
Cryogenics	0.8		0.4		0.7	0.04		0.1	0.4	0.1
Median 2025 project discounted lifetime cost	Steel		Cement		Refinery	Gas boile	r	Industrial Gas	Crackers	Other
(£m, 10%, 15 yrs)	01001		Comon		rtennery	condensir	g	CHP	Chaolitere	chemicals
1st gen amine solvent	£2,352		£404		£1,383	£116		£512	£736	£167
2nd gen chemical solvent	£458		£259		£802	£78		£358	£436	£90
Chilled ammonia	£644		£386		£1,206	£116		£575	£714	£156
Potassium carbonate	£4,783		£720		£3,209	£268		£1,931	£1,678	£287
Rectisol	£2,913		£505		£2,574	£239		£1,746	£1,351	£244
Selexol	£2,870		£505		£2,576	£242		£1,759	£1,356	£247
Calcium looping	£183		£197		£402	£71		£374	£314	£77
Cryogenics	£875		£526		£1,895	£166		£992	£1,130	£209

Overall sectoral attributes in the Pragmatic Scenario

Combined abatement potential (Mt/yr)	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
1st gen amine solvent	9.0	4.3	6.2	0.1	3.3	3.5	1.2
2nd gen chemical solvent	2.3	4.4	5.2	0.1	3.5	3.6	1.3
Chilled ammonia	2.3	4.4	5.1	0.1	3.1	3.5	1.2
Potassium carbonate	8.2	3.9	5.4	0.1	2.6	3.0	1.1
Rectisol	10.8	5.2	7.7	0.1	4.3	4.3	1.5
Selexol	10.9	5.2	7.8	0.1	4.4	4.3	1.5
Calcium looping	1.2	3.5	3.2	0.1	2.8	2.7	1.3
Cryogenics	2.4	4.6	4.9	0.1	2.3	3.4	1.2
	Steel	Cement	Refinerv	Gas boiler	Industrial Gas	Crackers	Other
Range of pragmatic scenario abatement costs	0.00.			condensing	CHP		chemicals
1st gen amine solvent	92 - 94	120 - 157	192 - 254	314 - 314	288 - 516	184 - 237	240 - 346
2nd gen chemical solvent	72 - 72	77 - 93	131 - 153	202 - 202	198 - 327	108 - 129	129 - 171
Chilled ammonia	102 - 102	113 - 146	202 - 242	313 - 313	355 - 574	179 - 223	223 - 313
Potassium carbonate	207 - 208	256 - 284	527 - 583	844 - 844	1644 - 1940	515 - 559	528 - 615
Rectisol	95 - 97	130 - 156	297 - 340	513 - 513	877 - 1088	288 - 325	309 - 382
Selexol	93 - 95	128 - 155	293 - 338	514 - 514	868 - 1086	285 - 323	308 - 384
Calcium looping	56 - 56	63 - 71	129 - 134	182 - 182	232 - 333	101 - 110	109 - 146
Cryogenics	131 - 131	153 - 180	326 - 361	481 - 481	930 - 1168	302 - 340	325 - 402
	Stool	Comont	Pofinon	Gas boiler	Industrial Gas	Crackors	Other
Number of projects	Oleei	Cement	Rennery	condensing	CHP	Clackers	chemicals
1st gen amine solvent	3	11	9	2	14	8	16
2nd gen chemical solvent	3	11	9	2	14	8	16
Chilled ammonia	3	11	9	2	14	8	16
Potassium carbonate	3	11	9	2	14	8	16
Rectisol	3	11	9	2	14	8	16
Selexol	3	11	9	2	14	8	16
Calcium looping	3	11	9	2	14	8	16
Cryogenics	3	11	9	2	14	8	16

Comparison of the least cost (£/tCO₂ abated) technologies and sectors in the pragmatic scenario

Heat and power consumption energy imply significant differences between CO₂ captured and CO₂ abated.

Cumulative savings in 2025 (kt CO2/yr)

- Model Architecture
- Key assumptions
- Pragmatic scenario
- Sensitivity analysis

The techno-economic model facilitates high level sensitivity analysis for a source-technology combination, allowing uncertainties to be prioritised.

Impact on £/tCO2 abated for Dunbar cement MEA configuration relative to Pragmatic Scenario

Illustrative technology readiness level milestones for industrial CO₂ capture at sources of 0.1M-1M tCO2/yr

Sensitivity of Technology MACCs to Technology Deployment Rate Scenario

Sensitivity of sector marginal abatement costs and potentials to technology deployment rate scenario.

Other conditions as per Pragmatic Scenario. Costs exclude compression, transport and storage.

elementenergy 134

Median project capex, opex, gas and electricity requirements for BAU scenario

Median capture capex/£m	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
1st gen amine solvent	£271	£102	£292	£51	£203	£190	£53
2nd gen chemical solvent	£61	£67	£109	£34	£134	£109	£35
Chilled ammonia	£85	£93	£151	£47	£186	£151	£48
Potassium carbonate	£167	£63	£180	£31	£125	£117	£33
Rectisol	£202	£89	£253	£44	£176	£165	£46
Selexol	£206	£90	£258	£45	£180	£168	£47
Calcium looping	£11	£12	£20	£18	£38	£20	£19
Cryogenics	£38	£43	£68	£39	£129	£68	£40
Median capture fixed opex/£m/yr	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
1st gen amine solvent	£ 13	£ 5	£ 14	£ 2	£ 10	£ 9	£ 3
2nd gen chemical solvent	£ 2	£ 2	£ 3	£ 1	£ 4	£ 3	£ 1
Chilled ammonia	£ 4	£ 4	£ 7	£ 2	£ 9	£ 7	£ 2
Potassium carbonate	£ 7	£ 3	£ 8	£ 1	£ 5	£ 5	£ 1
Rectisol	£ 6	£ 3	£ 8	£ 1	£ 5	£ 5	£ 1
Selexol	£ 8	£ 4	£ 10	£ 2	£ 7	£ 7	£ 2
Calcium looping	£ 2	£ 2	£ 3	£ 3	£ 6	£ 3	£ 3
Cryogenics	£ 2	£ 2	£ 3	£ 2	£ 5	£ 3	£ 2
Median gas requirement/TWh gas/yr	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
Median gas requirement/TWh gas/yr 1st gen amine solvent	Steel	Cement	Refinery 1.20	Gas boiler condensing 0.07	Industrial Gas CHP 0.32	Crackers 0.63	Other chemicals 0.10
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent	Steel 2.19 0.37	Cement 0.44 0.37	Refinery 1.20 0.43	Gas boiler condensing 0.07 0.06	Industrial Gas CHP 0.32 0.26	Crackers 0.63 0.43	Other chemicals 0.10 0.08
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia	Steel 2.19 0.37 0.37	Cement 0.44 0.37 0.37	Refinery 1.20 0.43 0.43	Gas boiler condensing 0.07 0.06 0.06	Industrial Gas CHP 0.32 0.26 0.26	Crackers 0.63 0.43 0.43	Other chemicals 0.10 0.08 0.08
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate	Steel 2.19 0.37 0.37 3.04	Cement 0.44 0.37 0.37 0.61	Refinery 1.20 0.43 0.43 1.66	Gas boiler condensing 0.07 0.06 0.06 0.10	Industrial Gas CHP 0.32 0.26 0.26 0.44	Crackers 0.63 0.43 0.43 0.88	Other chemicals 0.10 0.08 0.08 0.14
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol	Steel 2.19 0.37 0.37 3.04 0.19	Cement 0.44 0.37 0.37 0.61 0.05	Refinery 1.20 0.43 0.43 1.66 0.13	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04	Crackers 0.63 0.43 0.43 0.43 0.88 0.07	Other chemicals 0.10 0.08 0.08 0.14 0.01
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol	Steel 2.19 0.37 0.37 3.04 0.19 0.10	Cement 0.44 0.37 0.37 0.61 0.05 0.02	Refinery 1.20 0.43 0.43 1.66 0.13 0.07	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.01	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02	Crackers 0.63 0.43 0.43 0.88 0.07 0.04	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping	Steel 2.19 0.37 3.04 0.19 0.10 0.04	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.04	Refinery 1.20 0.43 0.43 1.66 0.13 0.07 0.04	Gas boiler condensing 0.07 0.06 0.06 0.10 0.10 0.01 0.00 0.03	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.04 0.02 0.05	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.01 0.04
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics	Steel 2.19 0.37 3.04 0.19 0.10 0.04	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.04 0.00	Refinery 1.20 0.43 0.43 1.66 0.13 0.07 0.04 0.00	Gas boiler condensing 0.07 0.06 0.06 0.10 0.10 0.01 0.00 0.03 0.03	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.05 0.05 0.00	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.04 0.00	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.01 0.04 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics	Steel 2.19 0.37 0.37 0.10 0.04 0.00	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.04 0.00	Refinery 1.20 0.43 0.43 1.66 0.13 0.07 0.04 0.00	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.01 0.00 0.03 0.03	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.04 0.02 0.05 0.05	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.04 0.00	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.01 0.04 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr	Steel 2.19 0.37 3.04 0.19 0.10 0.04 0.00	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.04 0.00 Cement	Refinery 1.20 0.43 0.43 1.66 0.13 0.07 0.04 0.00 Refinery	Gas boiler condensing 0.07 0.06 0.06 0.01 0.01 0.01 0.00 0.03 0.00 Gas boiler condensing	Industrial Gas CHP 0.32 0.26 0.26 0.26 0.44 0.04 0.02 0.05 0.00 Industrial Gas CHP	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.04 0.00 Crackers	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent	Steel 2.19 0.37 0.37 3.04 0.19 0.10 0.04 0.00 Steel 0.13	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.04 0.00 Cement 0.02	Refinery	Gas boiler condensing 0.07 0.06 0.06 0.01 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.05 0.00 Industrial Gas CHP 0.01	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.00 Crackers 0.03	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics	Steel 2.19 0.37 0.37 3.04 0.19 0.10 0.04 0.00 Steel 0.13 0.03	Cement 0.44 0.37 0.61 0.05 0.02 0.04 0.00 Cement 0.02 0.02	Refinery	Gas boiler condensing 0.07 0.06 0.06 0.01 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.05 0.00 Industrial Gas CHP 0.01 0.01	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.00 Crackers 0.03 0.03	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia	Steel 2.19 0.37 0.37 3.04 0.19 0.10 0.04 0.00 Steel 0.13 0.03 0.08	Cement 0.44 0.37 0.61 0.05 0.02 0.04 0.00 Cement 0.02 0.02 0.02 0.02 0.02	Refinery	Gas boiler condensing 0.07 0.06 0.06 0.01 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.05 0.00 Industrial Gas CHP 0.01 0.01 0.01	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.04 0.00 Crackers 0.03 0.03 0.03 0.08	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate	Steel 2.19 0.37 0.37 3.04 0.19 0.10 0.04 0.00 Steel 0.13 0.03 0.08 0.31	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.04 0.00 Cement 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Refinery 1.20 0.43 0.43 1.66 0.13 0.07 0.04 0.00 Refinery 0.06 0.03 0.08 0.15	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.01 0.01	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.05 0.00 Industrial Gas CHP 0.01 0.01 0.01 0.04 0.03	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.04 0.00 Crackers 0.03 0.03 0.08 0.08	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00 0.01 0.01
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol	Steel 2.19 0.37 0.37 3.04 0.19 0.10 0.04 0.00 Steel 0.13 0.03 0.08 0.31 0.10	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.04 0.00 Cement 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Refinery	Gas boiler condensing 0.07 0.06 0.06 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.00 0.01 0.01	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.05 0.00 Industrial Gas CHP 0.01 0.01 0.01 0.04 0.03 0.01	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.04 0.04 0.00 Crackers 0.03 0.03 0.08 0.03	Other chemicals 0.10 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00 0.00 0.01 0.01 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol	Steel 2.19 0.37 0.37 3.04 0.19 0.10 0.04 0.00 Steel 0.13 0.03 0.03 0.08 0.31 0.10 0.10 0.10	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.04 0.00 Cement 0.02 0.02 0.07 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Refinery	Gas boiler condensing 0.07 0.06 0.06 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.00 0.01 0.01 0.01 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.05 0.00 Industrial Gas CHP 0.01 0.01 0.01 0.03 0.01 0.01	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.04 0.00 Crackers 0.03 0.03 0.08 0.08 0.03 0.03 0.03	Other chemicals 0.10 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping	Steel 2.19 0.37 0.37 3.04 0.19 0.10 0.04 0.00 Steel 0.13 0.03 0.03 0.31 0.10 0.10 0.01	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.04 0.00 Cement 0.02 0.02 0.02 0.07 0.06 0.02 0.02 0.07 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Refinery	Gas boiler condensing 0.07 0.06 0.06 0.01 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.0	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.05 0.00 Industrial Gas CHP 0.01 0.01 0.04 0.03 0.03 0.01 0.01	Crackers 0.63 0.43 0.43 0.88 0.07 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.01	Other chemicals 0.10 0.08 0.14 0.01 0.01 0.04 0.00 0.00 0.00 0.00

Median Project Abatement Costs and Potential in the BAU Scenario

	Business As Usual												
Median project abatement cost (£/tCO2	Stool		Comont		Pofinon	Gas bo	iler	Industria	al Gas	Crack	ore	Ot	her
abated)	Sieei		Cement		Relinery	condens	sing	CH	Р	Clack	015	chen	nicals
1st gen amine solvent	£ 98	£	136	£	199	£	314	£	365	£	202	£	292
2nd gen chemical solvent	£ 78	£	84	£	147	£	202	£	242	£	119	£	150
Chilled ammonia	£ 113	£	127	£	231	£	313	£	430	£	202	£	267
Potassium carbonate	£ 212	£	269	£	533	£	844	£	1,747	£	529	£	571
Rectisol	£ 102	£	142	£	301	£	513	£	950	£	301	£	345
Selexol	£ 100	£	140	£	297	£	514	£	943	£	298	£	346
Calcium looping	£ 74	£	83	£	182	£	182	£	301	£	134	£	127
Cryogenics	£ 156	£	183	£	397	£	481	£	1,033	£	356	£	363
Median individual project abatement potential	Stool		Comont		Refinery	Gas bo	iler	Industria	al Gas	Crackers		Other	
(MtCO2/yr in 2025)	Sleel		Cement		Relinery	condens	densing CHP Crackers		015	chemicals			
1st gen amine solvent	1.8		0.4		0.8	0.04		0.2	2	0.4	1	0	.1
2nd gen chemical solvent	0.4		0.4		0.4	0.05		0.2	2	0.4	1	0.1	
Chilled ammonia	0.4		0.4		0.4	0.04		0.2	2	0.4	1	0	.1
Potassium carbonate	1.7		0.3		0.7	0.04		0.1	1	0.4	ļ į	0	.1
Rectisol	1.8		0.4		1.0	0.06		0.2	2	0.5	5	0	.1
Selexol	1.8		0.4		1.0	0.06		0.2	2	0.5	5	0	.1
Calcium looping	0.1		0.1		0.1	0.05		0.1	1	0.1		0	.1
Cryogenics	0.2		0.2		0.1	0.04		0.1	1	0.1		0	.1
Median 2025 project discounted lifetime cost	Stool		Cement		Refinery	Gas bo	iler	Industria	al Gas	Crack	ore	Ot	her
(£m, 10%, 15 yrs)	Oleci		Ochichi		rtennery	condens	sing	CH	Р	Oraci	013	chen	nicals
1st gen amine solvent	£1,511		£404		£1,366	£116	6	£51	2	£73	1	£1	67
2nd gen chemical solvent	£247		£259		£452	£78		£35	58	£36	4	£	90
Chilled ammonia	£359		£386		£690	£116	6	£57	' 5	£60	2	£1	56
Potassium carbonate	£2,958		£720		£3,192	£268	3	£1,9	31	£1,6	74	£2	287
Rectisol	£1,497		£505		£2,552	£239)	£1,7	46	£1,3	47	£2	244
Selexol	£1,481		£505		£2,554	£242	2	£1,7	59	£1,3	52	£2	247
Calcium looping	£48		£53		£113	£71		£16	69	£83	3	£	77
Cryogenics	£209		£240		£462	£166	5	£77	7	£41	5	£2	209

Overall sectoral attributes in the BAU Scenario

Combined abatement potential (Mt/yr)	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
1st gen amine solvent	5.5	4.3	6.2	0.1	3.3	3.5	1.2
2nd gen chemical solvent	1.1	3.5	3.2	0.1	2.8	2.6	1.3
Chilled ammonia	1.1	3.4	3.1	0.1	2.6	2.6	1.2
Potassium carbonate	5.0	3.9	5.4	0.1	2.6	3.0	1.1
Rectisol	5.3	5.2	7.7	0.1	4.3	4.3	1.5
Selexol	5.3	5.2	7.8	0.1	4.4	4.3	1.5
Calcium looping	0.2	0.8	0.7	0.1	0.9	0.6	1.0
Cryogenics	0.5	1.7	1.3	0.1	1.1	1.1	1.2
	Stool	Comont	Pofinon	Gas boiler	Industrial Gas	Crackors	Other
Range of pragmatic scenario abatement costs	Sleel	Cement	Relifiery	condensing	CHP	CIACKEIS	chemicals
1st gen amine solvent	98 - 98	120 - 157	190 - 254	314 - 314	288 - 516	182 - 237	240 - 346
2nd gen chemical solvent	78 - 78	84 - 93	147 - 153	202 - 202	215 - 327	119 - 129	129 - 171
Chilled ammonia	113 - 113	126 - 146	231 - 242	313 - 313	385 - 574	202 - 223	223 - 313
Potassium carbonate	212 - 212	256 - 284	524 - 583	844 - 844	1644 - 1940	511 - 559	528 - 615
Rectisol	102 - 102	130 - 156	294 - 340	513 - 513	877 - 1088	286 - 325	309 - 382
Selexol	100 - 100	128 - 155	290 - 338	514 - 514	868 - 1086	283 - 323	308 - 384
Calcium looping	74 - 74	83 - 83	182 - 182	182 - 182	301 - 333	134 - 134	126 - 146
Cryogenics	156 - 156	183 - 183	397 - 397	481 - 481	1033 - 1168	356 - 356	330 - 402
	Stool	Comont	Definent	Gas boiler	Industrial Gas	Crookoro	Other
Number of projects	Sleer	Cement	Relinery	condensing	CHP	Clackers	chemicals
1st gen amine solvent	3	11	9	2	14	8	16
2nd gen chemical solvent	3	11	9	2	14	8	16
Chilled ammonia	3	11	9	2	14	8	16
Potassium carbonate	3	11	9	2	14	8	16
Rectisol	3	11	9	2	14	8	16
Selexol	3	11	9	2	14	8	16
Calcium looping	3	11	9	2	14	8	16
Cryogenics	3	11	9	2	14	8	16

Median project capex, opex, gas and electricity requirements in the Push Scenario

Median capture capex/£m	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
1st gen amine solvent	£378	£102	£292	£51	£203	£190	£53
2nd gen chemical solvent	£249	£67	£192	£34	£134	£125	£35
Chilled ammonia	£345	£93	£266	£47	£186	£174	£48
Potassium carbonate	£233	£63	£180	£31	£125	£117	£33
Rectisol	£328	£89	£253	£44	£176	£165	£46
Selexol	£334	£90	£258	£45	£180	£168	£47
Calcium looping	£52	£36	£92	£18	£71	£67	£19
Cryogenics	£287	£78	£221	£39	£154	£145	£40
Median capture fixed opex/£m/yr	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
1st gen amine solvent	£ 18	£ 5	£ 14	£ 2	£ 10	£ 9	£ 3
2nd gen chemical solvent	£ 7	£ 2	£ 6	£ 1	£ 4	£ 4	£ 1
Chilled ammonia	£ 17	£ 4	£ 13	£ 2	£ 9	£ 8	£ 2
Potassium carbonate	£ 10	£ 3	£ 8	£ 1	£ 5	£ 5	£ 1
Rectisol	£ 10	£ 3	£ 8	£ 1	£ 5	£ 5	£ 1
Selexol	£ 13	£ 4	£ 10	£ 2	£ 7	£ 7	£ 2
Calcium looping	£ 8	£ 5	£ 14	£ 3	£ 11	£ 10	£ 3
Cryogenics	£ 11	£ 3	£ 9	£ 2	£ 6	£ 6	£ 2
Median gas requirement/TWh gas/yr	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
Median gas requirement/TWh gas/yr 1st gen amine solvent	Steel 3.62	Cement	Refinery	Gas boiler condensing 0.07	Industrial Gas CHP 0.32	Crackers 0.63	Other chemicals 0.10
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent	Steel 3.62 3.01	Cement 0.44 0.37	Refinery 1.20 1.00	Gas boiler condensing 0.07 0.06	Industrial Gas CHP 0.32 0.26	Crackers 0.63 0.53	Other chemicals 0.10 0.08
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia	Steel 3.62 3.01 3.01	Cement 0.44 0.37 0.37	Refinery 1.20 1.00 1.00	Gas boiler condensing 0.07 0.06 0.06	Industrial Gas CHP 0.32 0.26 0.26	Crackers 0.63 0.53 0.53	Other chemicals 0.10 0.08 0.08
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate	Steel 3.62 3.01 3.01 5.02	Cement 0.44 0.37 0.37 0.61	Refinery 1.20 1.00 1.00 1.66	Gas boiler condensing 0.07 0.06 0.06 0.10	Industrial Gas CHP 0.32 0.26 0.26 0.44	Crackers 0.63 0.53 0.53 0.88	Other chemicals 0.10 0.08 0.08 0.08 0.14
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol	Steel 3.62 3.01 3.01 5.02 0.40	Cement 0.44 0.37 0.37 0.61 0.05	Refinery 1.20 1.00 1.00 1.66 0.13	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04	Crackers 0.63 0.53 0.53 0.88 0.07	Other chemicals 0.10 0.08 0.08 0.14 0.01
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol	Steel 3.62 3.01 3.01 5.02 0.40 0.20	Cement 0.44 0.37 0.37 0.61 0.05 0.02	Refinery 1.20 1.00 1.00 1.66 0.13 0.07	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.01	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.04	Crackers 0.63 0.53 0.53 0.88 0.07 0.04	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.01 0.00 0.03	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.04 0.02 0.13	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26	Other chemicals 0.10 0.08 0.14 0.01 0.01 0.01 0.04
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43 0.00	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.01 0.00 0.03 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.13 0.00	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00	Other chemicals 0.10 0.08 0.14 0.01 0.01 0.01 0.04 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43 0.00	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.01 0.00 0.03 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.04 0.02 0.13 0.00	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.01 0.04 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00 Steel	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00 Cement	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43 0.00 Refinery	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.00 0.03 0.00 Gas boiler condensing	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.13 0.00 Industrial Gas CHP	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00 Crackers	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00 Steel 0.21	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00 Cement 0.02	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43 0.00 Refinery 0.06	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.13 0.00 Industrial Gas CHP 0.01	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00 Crackers 0.03	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00 Steel 0.21 0.21	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00 Cement 0.02 0.02	Refinery	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.13 0.00 Industrial Gas CHP 0.01	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00 Crackers 0.03 0.03	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00 Steel 0.21 0.21 0.62	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00 Cement 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43 0.00 Refinery 0.06 0.18	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.13 0.00 Industrial Gas CHP 0.01 0.01 0.04	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00 Crackers 0.03 0.03 0.09	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00 Steel 0.21 0.21 0.62 0.52	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00 Cement 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43 0.00 Refinery 0.06 0.06 0.18 0.15	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.13 0.00 Industrial Gas CHP 0.01 0.01 0.01 0.04 0.03	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00 Crackers 0.03 0.03 0.09 0.08	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00 Steel 0.21 0.21 0.62 0.52 0.21	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00 Cement 0.02 0.02 0.02 0.07 0.06 0.02	Refinery 1.20 1.00 1.00 1.00 1.66 0.13 0.07 0.43 0.00 Refinery 0.06 0.18 0.15 0.06	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.00 0.01 0.01	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.13 0.00 Industrial Gas CHP 0.01 0.01 0.01 0.04 0.03 0.01	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00 Crackers 0.03 0.03 0.09 0.08 0.03	Other chemicals 0.10 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00 0.00 0.01 0.01
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00 Steel 0.21 0.21 0.62 0.52 0.21 0.21 0.21	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00 Cement 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43 0.00 Refinery 0.06 0.06 0.18 0.15 0.06	Gas boiler condensing 0.07 0.06 0.06 0.10 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.01 0.01 0.01	Industrial Gas CHP 0.32 0.26 0.44 0.04 0.02 0.13 0.00 Industrial Gas CHP 0.01 0.01 0.01 0.04 0.03 0.03 0.01	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00 Crackers 0.03 0.03 0.09 0.08 0.03 0.03 0.03 0.03	Other chemicals 0.10 0.08 0.14 0.01 0.01 0.04 0.00 Other chemicals 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00 Steel 0.21 0.62 0.52 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.13	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00 Cement 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43 0.00 Refinery 0.06 0.06 0.18 0.15 0.06 0.06 0.13	Gas boiler condensing 0.07 0.06 0.06 0.01 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.01 0.01 0.00 0.00 0.00	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.13 0.00 Industrial Gas CHP 0.01 0.01 0.01 0.03 0.01 0.03	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00 Crackers 0.03 0.03 0.09 0.08 0.03	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 0.00 0.00 0.00
Median gas requirement/TWh gas/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics Median power requirement/TWhelec/yr 1st gen amine solvent 2nd gen chemical solvent Chilled ammonia Potassium carbonate Rectisol Selexol Calcium looping Cryogenics	Steel 3.62 3.01 3.01 5.02 0.40 0.20 0.37 0.00 Steel 0.21 0.21 0.21 0.62 0.52 0.21 0.21 0.21 0.13 3.72	Cement 0.44 0.37 0.37 0.61 0.05 0.02 0.18 0.00 Cement 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Refinery 1.20 1.00 1.00 1.66 0.13 0.07 0.43 0.00 Refinery 0.06 0.18 0.15 0.06 0.13 1.05	Gas boiler condensing 0.07 0.06 0.06 0.01 0.01 0.00 0.03 0.00 Gas boiler condensing 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.0	Industrial Gas CHP 0.32 0.26 0.26 0.44 0.04 0.02 0.13 0.00 Industrial Gas CHP 0.01 0.01 0.01 0.04 0.03 0.01 0.01 0.01 0.01 0.03 0.02	Crackers 0.63 0.53 0.53 0.88 0.07 0.04 0.26 0.00 Crackers 0.03 0.03 0.03 0.09 0.08 0.03 0.05 0.07 0.04 0.06 0.00 0.05 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.05	Other chemicals 0.10 0.08 0.08 0.14 0.01 0.01 0.04 0.00 0.00 0.00 0.00

Median project abatement costs and potential in the Push scenario

	Push scenario						
Median project abatement cost (£/tCO2	Stool	Cement	Refinery	Gas boiler	Industrial Gas	Crackers	Other
abated)	Oleei			condensing	CHP		chemicals
1st gen amine solvent	£ 93	£ 136	£ 203	£ 314	£ 365	£ 203	£ 292
2nd gen chemical solvent	£ 63	£ 84	£ 127	£ 202	£ 242	£ 115	£ 150
Chilled ammonia	£ 85	£ 127	£ 197	£ 313	£ 430	£ 194	£ 267
Potassium carbonate	£ 208	£ 269	£ 537	£ 844	£ 1,747	£ 531	£ 571
Rectisol	£ 97	£ 142	£ 303	£ 513	£ 950	£ 302	£ 345
Selexol	£ 94	£ 140	£ 300	£ 514	£ 943	£ 299	£ 346
Calcium looping	£ 51	£ 63	£ 114	£ 182	£ 256	£ 98	£ 127
Cryogenics	£ 117	£ 165	£ 320	£ 481	£ 1,011	£ 315	£ 363
Median individual project abatement potential	Stool	Cement	Refinen	Gas boiler	Industrial Gas	Crackers	Other
(MtCO2/yr in 2025)	Sleel	Cement	Reinlery	condensing	CHP	Clackers	chemicals
1st gen amine solvent	3.0	0.4	0.8	0.04	0.2	0.4	0.1
2nd gen chemical solvent	3.1	0.4	0.9	0.05	0.2	0.5	0.1
Chilled ammonia	3.1	0.4	0.8	0.04	0.2	0.4	0.1
Potassium carbonate	2.8	0.3	0.7	0.04	0.1	0.4	0.1
Rectisol	3.6	0.4	1.0	0.06	0.2	0.5	0.1
Selexol	3.7	0.4	1.0	0.06	0.2	0.5	0.1
Calcium looping	0.8	0.4	0.7	0.05	0.2	0.5	0.1
Cryogenics	3.3	0.4	0.8	0.04	0.1	0.4	0.1
Median 2025 project discounted lifetime cost	Steel	Cement	Refinery	Gas boiler	Industrial Gas	Crackers	Other
(£m, 10%, 15 yrs)	Oleci	Content	rtennery	condensing	CHP	Oracitorio	chemicals
1st gen amine solvent	£2,365	£404	£1,388	£116	£512	£736	£167
2nd gen chemical solvent	£1,669	£259	£913	£78	£358	£436	£90
Chilled ammonia	£2,216	£386	£1,369	£116	£575	£714	£156
Potassium carbonate	£4,795	£720	£3,214	£268	£1,931	£1,678	£287
Rectisol	£2,934	£505	£2,574	£239	£1,746	£1,351	£244
Selexol	£2,890	£505	£2,576	£242	£1,759	£1,356	£247
Calcium looping	£332	£197	£708	£71	£374	£375	£77
Cryogenics	£3,239	£526	£2,177	£166	£992	£1,130	£209

Overall sectoral attributes for the Push Scenario

Combined abatement potential (Mt/yr)	Steel	Cement	Refinery	Gas boiler condensing	Industrial Gas CHP	Crackers	Other chemicals
1st gen amine solvent	9.0	4.3	6.2	0.1	3.3	3.5	1.2
2nd gen chemical solvent	9.3	4.5	6.5	0.1	3.5	3.6	1.3
Chilled ammonia	9.3	4.4	6.3	0.1	3.1	3.5	1.2
Potassium carbonate	8.2	3.9	5.4	0.1	2.6	3.0	1.1
Rectisol	10.8	5.2	7.7	0.1	4.3	4.3	1.5
Selexol	10.9	5.2	7.8	0.1	4.4	4.3	1.5
Calcium looping	2.3	4.5	5.3	0.1	3.4	3.7	1.3
Cryogenics	9.8	4.6	6.2	0.1	2.3	3.4	1.2
	Stool	Coment	Refinery	Gas boiler	Industrial Gas	Crackers	Other
Range of pragmatic scenario abatement costs	Sleel	Cement	Itelinery	condensing	CHP	Clackers	chemicals
1st gen amine solvent	92 - 94	120 - 157	194 - 254	314 - 314	288 - 516	185 - 237	240 - 346
2nd gen chemical solvent	63 - 64	77 - 93	123 - 153	202 - 202	198 - 327	108 - 129	129 - 171
Chilled ammonia	84 - 86	112 - 146	189 - 242	313 - 313	355 - 574	178 - 223	223 - 313
Potassium carbonate	207 - 209	256 - 284	528 - 583	844 - 844	1644 - 1940	515 - 559	528 - 615
Rectisol	96 - 98	130 - 156	297 - 340	513 - 513	877 - 1088	288 - 325	309 - 382
Selexol	94 - 95	128 - 155	293 - 338	514 - 514	868 - 1086	285 - 323	308 - 384
Calcium looping	51 - 51	57 - 71	114 - 134	182 - 182	215 - 333	91 - 110	109 - 146
Cryogenics	117 - 118	153 - 180	313 - 361	481 - 481	930 - 1168	301 - 340	325 - 402
	Stool	Comont	Pofinon	Gas boiler	Industrial Gas	Crackors	Other
Number of projects	Oleei	Cement	Itennery	condensing	CHP	Clackers	chemicals
1st gen amine solvent	3	11	9	2	14	8	16
2nd gen chemical solvent	3	11	9	2	14	8	16
Chilled ammonia	3	11	9	2	14	8	16
Potassium carbonate	3	11	9	2	14	8	16
Rectisol	3	11	9	2	14	8	16
Selexol	3	11	9	2	14	8	16
Calcium looping	3	11	9	2	14	8	16
Cryogenics	3	11	9	2	14	8	16

Least cost technologies (in £/t abated) in BAU and Push scenarios

Impact of choosing projects with maximum CO₂ abatement potential

Other conditions as per Pragmatic Scenario, where projects are chosen on the basis of minimal £/tCO₂ abated

elementenergy 142

The model shows sensitivity of technology choice and total CO₂ abated to assumptions on investor priorities.

Investor priority	Favoured technology
Minimise project discounted lifetime cost (in £)	Calcium looping projects dominate 2025 MACC
Maximise tCO ₂ /yr captured OR choose highest technologies with highest TRL	1 st generation amines (e.g. MEA) projects dominate 2025 MACC
Minimise £/tCO ₂ abated for each project	Calcium looping and 2 nd generation amines dominate 2025 MACC
Maximise CO ₂ abatement potential	Physical solvents (e.g. selexol) dominate MACC

Other conditions as per Pragmatic scenario

MtCO₂/yr abated

elementenergy 143
Sensitivity comparison of 2025 abatement potential for different assumptions on technology availability

- Compared to high TRL technologies (e.g. MEA), the currently lower TRL technologies can be deployed at lower levelised costs, but the potential scale of individual projects is smaller
- Excluding these technologies as an option for 2025 increases individual project costs, but high TRL technologies have the potential to be deployed at larges scales.

*Pragmatic scenario (e.g. technology selection ased on lowest project levelised costs)

Capture capex sensitivity – technology MACC comparison

Capture fixed opex sensitivity – technology MACC comparison

Combined impact of capture capex and opex uncertainty – technology MACC comparison

Impact of energy and carbon prices – overall MACC based on projects with lowest £/tCO₂ abated

The techno-economic model purely shows costs. Note that no assumption made on avoided ETS or carbon price *revenues* within the abatement cost calculation Here high carbon price implies high costs associated with CO₂ payments for an on-site boiler to supply steam for capture plant.

Other conditions as per pragmatic scenario. Costs exclude post-capture CO₂ compression, transport or storage.

elementenergy | 148

Impact of energy and carbon prices – technology comparison

Low prices scenario

Impact of discount rate – technology comparison

Impact of discount rate – impact of technology deployment rate

Impact of source CO₂ purity

Source CO₂ purity most strongly impacts the cost effectiveness of cryogenics, physical solvents and potassium carbonate

Sensitivity of pragmatic scenario to pre-treatment capital and operating cost assumptions

Low pre-treatment cost Capital and operating costs of pre-treatment are half of those in the Pragmatic Scenario

High pre-treatment <u>cost</u> Capital and operating costs of pre-treatment are 2x those in the Pragmatic Scenario

Moderate restrictions based on site current COMAH status should have limited impact.

Impact of limiting CO₂ capture to sites with Top Tier COMAH Status only already could significantly restrict cement CCS in 2025.

The cost effectiveness of potassium carbonate and physical solvent based capture is highly sensitive to initial flue gas pressure.

Exploring the uncertainty in cost and capacity for technologies: Example from Grangemouth refinery

Source Parameter	Source#18 "Grangemouth Cracker"	Source#20 "Grangemouth refinery excl. cracker or CHP"
Input stream	0.35 MtCO ₂ /yr	1.6 MtCO ₂ /yr
Source archetype	Cracker	Refinery
Input CO ₂ concentration	10%	10%
Flue gas pressure	1 bar	1 bar
Vent complexity	Many vents	Many vents
NOx	100 ppm	600 ppm
SOx	100 ppm	1200 ppm
Technical capacity	High	High
Water availability	High	High
COMAH status	Тор	Тор
Waste heat available	No	No

The model allows the cost and capacity uncertainties for all technologies to be compared systematically for different sources.

- Of technologies available, 1st generation amine solvents (e.g. MEA) should have low £/tCO₂ abated costs and high abatement potential.
- If developed at scale, either calcium looping or 2nd generation amines should have lowest £/tCO₂ abated costs, however, the capacity (i.e. Mt/yr) that these can be implemented in the period 2020 to 2025 is uncertain and will likely be significantly smaller than for 1st generation amines.
- Conventional potassium carbonate, physical solvents or cryogenic technologies require significant electricity consumption and are predicted to be more expensive to implement, unless as part of novel configurations.

The importance of installing capture equipment around the time of major site refurbishment

- Example Grangemouth refinery source #20 with 1st gen amine capture technology.
- Base case in pragmatic scenario has £192/tCO₂ abated, excluding downtime costs.
- What if each day additional downtime results in an effective loss of £1million*?
- Impact of additional downtime is to increase the effective cost of capture as shown below (modelled as an effective increase in capex of £7m/week).

Impact of downtime

Outline

- Overall Project Methodology
- CO₂ capture technologies
- CO₂ sources
- Techno-economic analysis of industrial CO₂ capture
- Process simulation case studies
- CO₂ utilisation review

Process simulation complements the techno-economic modelling

- Whereas techno-economic model provides a "top down" perspective on overall project costs and benefits, to help identify the most relevant capture technologies, the process simulation provides a "bottom up" perspective on how capture might be implemented at actual UK industrial plants in the period to 2025.
- The literature supporting techno-economic studies is frequently opaque and it is difficult for stakeholders to have a clear understanding of cost boundaries. In contrast process simulation provides a transparent and detailed description of the key capture infrastructure (including sizing of key components) and accompanying mass and energy flows.
- Process simulation helps understand the breakdown and sensitivities of capital and operating costs, and thereby understand priorities for technology development, and management of costs and risks.
- The underlying cost databases for process simulation tools generally require numerous assumptions to convert "equipment costs" into total installed costs.
- Process simulation models are very resource intensive to develop and analyse, therefore very few scenarios can be examined.
- The choices of source and technology to model were based on a combination of results from the techno-economic modelling (i.e. projects with low cost or high abatement potential in 2025), consideration of sites with plausible opportunities for accessing CO₂ transport and storage infrastructure in 2025, and discussions with sector trade associations and individual companies.

Energy price assumptions in process simulation

 The energy cost assumptions for the process simulation were prepared using effective annual prices for gas and electricity as follows, assuming a discount rate of 10%.

Effective fuel price		
(p/kWh assuming	Pilot	
discount rate of 10% and	(assumed	Demo
lifetime of 15 yrs)	2020)	scale 2025
Electricity	7.32	7.57
Gas	1.77	1.78

Four case studies on process simulation

- 1. Grangemouth oil refinery with MEA capture
- 2. Lafarge Tarmac Dunbar cement works with MEA capture
- 3. Tata Scunthorpe iron and steel plant with MEA capture at CHP unit
- 4. GrowHow ammonia production site with CO₂ compression

Scope of study

- i only process emissions (excluding power and heat production emissions)
 - in case multiple stack emissions are combined, piping etc to bring together is included
- ii including integration cost in case of process heat recovery
 - assume natural gas boiler if no process heat is available (default assumption)

Further Notes

- Compression plant not simulated
- Pre-treatment processes simulated but not costed

Detailed assumptions

- Challenges in conveying and blending streams from various flue sources are not considered within the process simulation, which assumes that the flue gases can be combined to give a gas with weighted average CO₂ concentration. The costs of initial flue gas collection pipelines are not modelled in the process simulations.
- A basic MEA CO₂ capture plant configuration is selected for the study (complex configurations such as split-flow considerations are ignored)
- An optimal lean loading¹ of 0.28 mol CO₂/mol MEA was assumed for the scenarios. This may
 introduce some inefficiencies in the performance. A full optimization for each scenario would
 require substantial development work.
- A rich loading of about 0.473 was assumed to be representative of the physical constraint on the capacity of the MEA solvent in chemical absorption processes.
- The column models were rate-based, distributed models. A trade-off between simulation
 performance (times) and accuracy was made reducing the number of discretization
 elements. This resulted in slight mass imbalances for certain components of up to about 1%.
- O₂/N₂ lumped as inert material
- SO_X and NO_X compositions are not considered at capture plant boundary
- Solvent degradation effects ignored
- As degradation rates are not estimated, no reclaimer is modelled or costed in this unit.

¹ Lean Amine Loading (LAL) is determined by measuring the amount of acid gas contained in the amine stream exiting the Amine Regenerator, expressed as a mol ratio of CO_2 and amine; (mol of CO_2 + mol H2S)/mol amine.

Detailed assumptions

- For some sensitivity cases (those that use the simplified capture plant), certain process/design variables were assumed to be the same as the baseline scenario. Only the following were updated by the simplified capture model:
 - Absorber column diameter (height is assumed to be same as the baseline)
 - Stripper column diameter
 - Steam flowrate to the reboiler
 - Reboiler heat duty
- Fuel and electricity costs are based on DECC's 2025 costs for demos.
- All other costs are based on Q3 2013. These could be translated to the same basis by assuming an appropriate discount rate.
- Where more than one train of capture plant is required, all costs provided are overall costs except those provided in the equipment list.

Detailed assumptions

The estimate of total fixed capital costs is based on the hand factor methodology.

- This is an established cost estimate methodology in the process industry. The methodology provides factors to estimate the total capital costs based on the equipment purchase costs.
- The total capital cost consists of four main components;
 - supply of equipment
 - supply of materials
 - transport and installation
 - indirect costs.

Each of these is again broken down in subcomponents.

- The hand factors depend on the type of equipment. For this analysis an overall hand factor of 3.88 is used (eg total capital cost is 3.88 times the equipment purchase cost), based on those for columns, as these make up the bulk of the equipment costs.
- Engineering and design costs of 30% are included, and a further typical contingency is included of 30%.

Inputs

- 30 wt% MEA solvent
- 90% capture target
- >95% purity CO₂ by volume
- Absorber operating at atmospheric pressure
- Mellapak 250Y structured packing used in Absorber and stripper columns
- Stripper feed temperature ~ 102°C
- Stripper operating pressure ~ 1.67bara
- Steam pressure 3.5bara
- Cooling water temperature is assumed to be 10°C
- 8400 hours of continuous operation assumed in a year

Key elements of process design (1/2)

- 1. All emissions from relevant sections are blended and treated in a common pretreatment area. The pretreatment area consists of a number of unit operations.
- 2. A Selective Catalytic Reduction unit is used to capture 90% of NOx emissions.
- 3. An Electrostatic precipitator is used to reduce virtually all the particulate emissions.
- 4. A blower raises the pressure of the gas stream to overcome the pressure drops of the downstream systems (FGD, DCC and absorber)
- 5. A Flue gas desulphurisation (FGD) unit is required to reduce SOx emissions to acceptable levels. Some carbon dioxide is generated in the process and affects the mass balance. This is seen in the difference in the mass flows of CO₂ in Streams 1 and 2.

Key elements of process design (2/2)

- 7. The flue gas is cooled in a direct contact cooler (DCC) to about 40°C. The gas is saturated with water vapour at those conditions.
- 8. The gas flows into the absorber where it is counter currently contacted with MEA solvent. MEA chemically absorbs CO_2 and the resultant (rich) solvent is pumped from the absorber sumps through a lean/rich heat exchanger to the stripper column for regeneration. The duty required in the reboiler of the column for solvent regeneration is supplied by low-pressure steam (about 3.5bara). In the partial condenser of the stripper column, CO_2 is separated from water vapour before it is compressed in the downstream compressor units.
- 9. The hot regenerated (lean) solvent heats up the cooler rich solvent in the lean/rich heat exchanger and is further cooled in a lean amine cooler before it flows to the absorber, completing the cycle.
- 10. A buffer tank is used in the process where make-up solvent and/or water could be added to the process. The tank also provides additional flexibility to the process based on its capacity.
- 11. Gas from the top of the absorber is cooled and vapourised amine solvent is captured in the absorber wash water section.

Scenarios for process simulation for the refinery sector

- The literature review, stakeholder interviews and high level techno-economic modelling highlight that, of technologies available for retrofit to refinery emissions today, implementation of 1st generation amine chemical solvent technologies could be attractive.
- A key uncertainty prioritised for examination, in agreement with stakeholders, through the process simulation is how the amount of CO₂ captured influences capture plant design.
- Therefore four sensitivities are considered involving different CO₂ streams and low and high load factors (described in the next slide).
- Source CO₂ stream data were kindly supplied by Ineos reflecting typical values at Grangemouth site.
- The four scenarios are named "part-load refinery (Baseline)", "part-load refinery including CHP", "pilot/demo" and "baseload refinery".

Source input assumptions (based on Ineos data)

	Baseline Scenario #1 "Part-load refinery"	Sensitivity "Including CHP" (Scenario #2)	Sensitivity "Pilot/Demo" (Scenario #3)	Sensitivity "Baseload refinery" (Scenario #4)
Source CO ₂	0.9 Mt/yr	1.55 Mt/yr	0.63Mt/yr	1.55 Mt/yr
Cracker	Part Load	Part Load	Excluded	Full load
Other Refinery	Part Load	Part Load	Part Load	Full load
СНР	Excluded	Part Load	Excluded	Excluded
Average %CO ₂ purity	11.7	11.1	12.8	12.8

Baseline Process Simulation High Level Process/Energy flows

* Blower is assumed to provide 0.05bar pressure difference

Baseline Process Simulation

- **SCR Selective Catalytic Reduction**
- **ESP Electrostatic Precipitator**
- FGD Flue Gas Desulphurization
- **DCC Direct Contact Cooler**

			PRETREATMENT	LEAN SOLVENT		
From:		CO2 SOURCE	PLANT	COOLER	ABSORBER	ABSORBER SUMP
		PRETREATMENT				LEAN/RICH HEAT
То:		PLANT	ABSORBER	ABSORBER	STACK	EXCHANGER
Service:		FLUE GAS	FLUE GAS	LEAN AMINE	OUTLET GAS	RICH AMINE
Phase:		VAPOUR	VAPOUR	LIQUID	VAPOUR	LIQUID
Stream Number:		1	2	3	4	5
Mass Flow	kg/hr					
H₂O		0	32,566	1,498,370	28,408	1,430,067
MĒA		0	0.0	702894.7	0.0	702480.6
CO₂		107,229	109,765	141,718	10,877	239,642
N ₂		478,334	540,983	0	501,742	49
0 ₂		33,441	0	0	38,904	0
SO ₂		3,977	0	0	41	0
SO3		0	0	0	0	0
NO₂		0	0	0	0	0
со		27	0	0	27	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	kg/hr	624,420	683,314	2,342,982	580,217	2,372,239
Temperature	°C	266.8	41.0	40.8	40.0	51.0
Pressure	bar(a)	1.01	1.01	0.98	0.98	1.01

			STRIPPER	COOLING WATER	COOLING WATER	COOLING WATER
From:		STEAM SUPPLY	CONDENSER	SUPPLY	SUPPLY	SUPPLY
				LEAN AMINE	STRIPPER	ABSORBER WASH
То:		REBOILER	COMPRESSION	COOLER	CONDENSER	SECTION COOLER
Service:		STEAM	CO2 PRODUCT	COOLING WATER	COOLING WATER	COOLING WATER
Phase:		VAPOUR	VAPOUR	LIQUID	LIQUID	LIQUID
Stream Number:		6	7	8	9	10
Mass Flow	kg/hr					
H₂O		179,926	1,849	1,915,154	3,111,272	8,392,110
MEA		0.0	0.9	0.0	0.0	0.0
CO₂		0	97,911	0	0	0
N ₂		0	50	0	0	0
0 ₂		0	0	0	0	0
SO₂		0	0	0	0	0
SO3		0	0	0	0	0
NO₂		0	0	0	0	0
со		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	kg/hr	179,926	99,811	1,915,154	3,111,272	8,392,110
Temperature	°C	127.5	39.8	9.9	9.9	9.9
Pressure	bar(a)	3.1	1.5	1.0	2.0	1.0

Simulation Results Baseline scenario - Process Conditions

Description	Value
Number of trains of capture plant	1
Source % CO ₂	11.7
Site total CO_2 capturable (tonnes/yr)*	1,550,000
% site CO_2 capturable	58
Reboiler Heat duty (MWth)	108
Total electrical power requirement of capture plant pumps (MWe)	1.24
Electrical power requirement of blower† (MWe)	1.61
Cooling water required (tonnes/hr)	13413
Capture plant site area required (m ²)	14000
Output CO ₂ stream conditions (vol%)	$CO_2 - 95.5$ $H_2O - 4.4$ $N_2 - 0.07$
Non-CO ₂ emissions to atmosphere	_
Before (ppm)	NOx – 2300 SOx – 3000
After (ppm)	NOx – 50 SOx – 6

* Based on Stream information provided by Ineos (for the refinery section alone)

† Blower is assumed to raise the pressure of flue gas by 0.05bar

Summary		Ec	uipment Sizing outp	uts			£	%
Absorber	Diameter (m)	12.8	Packing Height (m)	18.4	T/T Height (m)	48.4	15,947,657	60.8
Stripper	Diameter (m)	7.9	Packing Height (m)	10.0	T/T Height (m)	40	3,868,691	14.8
Reboiler	Heat Duty (MWth)	107.8	Steam flowrate (t/h)	13.9			1,468,171	5.6
Condenser	Cooling Duty (MWth)	36.2	Cooling water flowrate (t/h)	240.1			505,037	1.9
Lean/Rich Heat Exchanger	Heat Duty (MWth)	130.9	Heat transfer area per heat exchanger (m2)	436.9	Number of heat exchangers	25	1,448,633	5.5
Lean amine tank	Volume of tank (m3)	785.4					435,924	1.7
Lean amine cooler	Cooling Duty (MWth)	44.5	Heat transfer area per heat exchanger (m2)	665.0	Number of heat exchangers	4	667,908	2.5
Rich solvent pump	Total power requirement (kW)	648.5	Number of pumps required	666.5			187,312	0.7
Lean solvent pump	Total power requirement (kW)	244.6	Number of pumps required	658.3			92,956	0.4
Cooling water pumps	Total power requirement (kW)	354.8	Number of pumps required	1395.6			385,311	1.5
Steam boiler	Capacity (t/h steam)	179.9					1,218,264	4.6
Total equipment purchase cost (PCE)							26,225,864	
Description	£	% of PCE						
-------------------------------------	------------	----------						
Equipment purchase cost breakdown								
Absorber	15,947,657	60.8						
Stripper	3,868,691	14.8						
Reboiler	1,468,171	5.6						
Condenser	505,037	1.9						
Lean/Rich Heat Exchanger	1,448,633	5.5						
Lean amine tank	435,924	1.7						
Lean amine cooler	667,908	2.5						
Rich solvent pump	187,312	0.7						
Lean solvent pump	92,956	0.4						
Cooling water pumps	385,311	1.5						
Steam boiler	1,218,264	4.6						
Total equipment purchase cost (PCE)	26,225,864							

Simulation Results Baseline scenario - Capital Expenditure is 1/6th of the total fixed capital cost.

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		26,225,864
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		83,922,766
Contingency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		166,418,845

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	8,320,942
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	832,094
Solvent make-up cost		4,150,461
Pumps power cost		793,570
Utilities - Steam costs		21,494,013
Utilities - Cooling water costs		633,059
Total Variable costs		27,903,198
OPEX		36,224,140

Scenario 2 Process Simulation High Level Process/Energy flows (including power plant)

* Blower is assumed to provide 0.05bar pressure difference

Scenario 2 Process Simulation All CO2 emissions (including power plant)

Simulation Results Scenario 2 - Process Conditions

Description	Value
Number of trains of capture plant	1
Source vol % CO2	11.1
Site total CO2 captureable* (tonnes/year)	1550000
% site CO2 captureable	87
Total reboiler heat duty (MWth)	160
Reboiler Specific duty (GJ/t CO2)	3.96
Total electrical power requirement of capture	
plant pumps (MWe)	1.85
Electrical power requirement of blower†	
(MWe)	2.38
Total Cooling water required (tonnes/hr)	20332
Total Capture plant site area required (m2)	21000
Output CO_2 stream conditions (vol%)	CO ₂ – 95.5
	$H_2O - 4.4$
	N ₂ – 0.08
Non-CO ₂ emissions to atmosphere	
Before (ppm)	NOx – 2300
	SOx – 2300
After (ppm)	NOx – 50
	SOx – 6

* Based on Stream information provided by Ineos (for the refinery section alone)

† Blower is assumed to raise the pressure of flue gas by 0.05bar

Summary			Equipment Sizing ou	tputs			£	%
Absorber	Diameter (m)	15.7	Packing Height (m)	18.2	T/T Height (m)	48.2	23,060,176	59
Stripper	Diameter (m)	9.6	Packing Height (m)	10.0	T/T Height (m)	40	6,290,073	16
Reboiler	Heat Duty (MWth)	160.5	Steam flowrate (t/h)	20.7			2,260,065	6
Condenser	Cooling Duty (MWth)	53.9	Cooling water flowrate (t/h)	358.3			1,194,010	3
Lean/Rich Heat Exchanger	Heat Duty (MWth)	197.0	Heat transfer area per heat exchanger (m2)	653.7	Number of heat	25	2.076.362	5
Lean amine tank	Volume of tank (m3)	785.4					542,357	1
Lean amine cooler	Cooling Duty (MWth)	64.3	Heat transfer area per heat exchanger (m2)	986.7	Number of heat exchangers	4	1,008,586	3
Rich solvent pump	Total power requirement (kW)	964.8	Number of pumps required	16.0			267,311	1
Lean solvent pump	Total power requirement (kW)	364.1	Number of pumps required	8.0			132,695	0
Cooling water pumps	Total power requirement (kW)	524.0	Number of pumps required	34.0			559,560	1
Steam boiler	Capacity (t/h steam)	267.7					1,774,210	5
Total equipment purchase cost (PCE)							39,165,405	

Description	£	% of PCE
Equipment purchase cost breakdown		
Absorber	23,060,176	58.9
Stripper	6,290,073	16.1
Reboiler	2,260,065	5.8
Condenser	1,194,010	3.0
Lean/Rich Heat Exchanger	2,076,362	5.3
Lean amine tank	542,357	1.4
Lean amine cooler	1,008,586	2.6
Rich solvent pump	267,311	0.7
Lean solvent pump	132,695	0.3
Cooling water pumps	559,560	1.4
Steam boiler	1,774,210	4.5
Total equipment purchase cost (PCE)	39,165,405	

Simulation Results Scenario 2 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		39,165,405
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		125,329,297
Contigency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		248,527,996

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	12,426,400
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	1,242,640
Solvent make-up cost		6,168,646
Pumps power cost		1,178,253
Utilities - Steam costs		31,978,574
Utilities - Cooling water costs		933,458
Total Variable costs		41,501,571
OPEX		53,927,971

Scenario 3 Process Simulation Refinery Areas 1 and 2

- Scenario carried out using the simplified capture plant.
- Assumed values highlighted in red (assumed equal to Baseline scenario)

Simulation Results Scenario 3 - Process Conditions

Description	Value
Number of trains of capture plant	1
Source % CO ₂	12.8
Site total CO ₂ capturable (tonnes/year)*	1550000
% site CO_2 capturable	40.5
Reboiler Heat duty (MWth)	75.9
Total electrical power requirement of capture plant pumps (MWe)	3.96
Electrical power requirement of blower† (MWe)	1.24
Cooling water required (tonnes/hr)	1.07
Capture plant site area required (m ²)	13413
Output CO_2 stream conditions (vol%)	CO ₂ – 95.5
	$H_2 O - 4.4$
	N ₂ – 0.07
Non-CO ₂ emissions to atmosphere	
Before (ppm)	NOx – 2300
	SOx – 3500
After (ppm)	NOx – 50
	SOx – 6

* Based on Stream information provided by Ineos (for the refinery section alone)

† Blower is assumed to raise the pressure of flue gas by 0.05bar

Summary	nmary Equipment Sizing outputs						£	%
Absorber	Diameter (m)	10.5	Packing Height (m)	18.4	T/T Height (m)	48.4	11,158,190	57
Stripper	Diameter (m)	6.7	Packing Height (m)	10.0	T/T Height (m)	40	2,900,399	15
Reboiler	Heat Duty (MWth)	107.8	Steam flowrate (t/h)	13.9			1,004,933	5
Condenser	Cooling Duty (MWth)	36.2	Cooling water flowrate (t/h)	239.9			555,636	3
Lean/Rich Heat Exchanger	Heat Duty (MWth)	130.7	Heat transfer area per heat exchanger (m2)	436.6	Number of heat exchangers	25	1,447,526	7
Lean amine tank	Volume of tank (m3)	785.4					360,059	2
Lean amine cooler	Cooling Duty (MWth)	44.5	Heat transfer area per heat exchanger (m2)	663.5	Number of heat exchangers	4	737,068	4
Rich solvent pump	Total power requirement (kW)	648.1	Number of pumps required	12.0			187,238	1
Lean solvent pump	Total power requirement (kW)	244.5	Number of pumps required	4.0			64,045	0
Cooling water pumps	Total power requirement (kW)	354.1	Number of pumps required	24.0			385,265	2
Steam boiler	Capacity (t/h steam)	124.7					868,411	4
Total equipment purchase cost (PCE)							19,668,771	

Description	£	% of PCE
Equipment purchase cost breakdown		
Absorber	11,158,190	56.7
Stripper	2,900,399	14.7
Reboiler	1,004,933	5.1
Condenser	555,636	2.8
Lean/Rich Heat Exchanger	1,447,526	7.4
Lean amine tank	360,059	1.8
Lean amine cooler	737,068	3.7
Rich solvent pump	187,238	1.0
Lean solvent pump	64,045	0.3
Cooling water pumps	385,265	2.0
Steam boiler	868,411	4.4
Total equipment purchase cost (PCE)	19,668,771	

Simulation Results Scenario 3 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		19,668,771
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		62,940,067
Contigency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		124,810,153

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	6,240,508
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	624,051
Solvent make-up cost		4,148,325
Pumps power cost		766,584
Utilities - Steam costs		14,812,356
Utilities - Cooling water costs		632,937
Total Variable costs		20,984,253
OPEX		27,224,761

Scenario 4 Process Simulation High Level Process/Energy flows (Refinery Areas 1, 2 and 3 full flow)

† Pump power assumed to be same as baseline

Scenario 4 Process Simulation Refinery Areas 1, 2 and 3 full flow

- Scenario carried out using the simplified capture plant. All flows are scaled up to match emission levels (1.55Mt CO₂/year)
- Assumed values highlighted in red (assumed equal to Baseline scenario)

Simulation Results Scenario 4 - Process Conditions

Description	Value
Number of trains of capture plant	2
Source % CO ₂	12.8
Site total CO ₂ captureable (tonnes/year)	1550000
% site CO ₂ captureable	100
Total Reboiler Heat duty (MWth)	185
Reboiler Specific duty (GJ/t CO2)	3.97
Total electrical power requirement of capture	
plant pumps (MWe)	1.85
Electrical power requirement of blower†	
(MWe)	2.73
Capture plant site area required (m ²)	9500
Output CO_2 stream conditions (vol%)	CO ₂ – 95.5
_	$H_2 O - 4.4$
	$\bar{N_{2}} - 0.07$
Non-CO ₂ emissions to atmosphere	_
Before (ppm)	NOx – 2300
	SOx – 3500
After (ppm)	NOx – 50
	SOx – 6

* Based on Stream information provided by Ineos (for the refinery section alone)

† Blower is assumed to raise the pressure of flue gas by 0.05bar

Summary			Equipment Sizing οι	Itputs			£	%
Absorber	Diameter (m)	11.8	Packing Height (m)	18.4	T/T Height (m)	48.4	13,505,813	58.7
Stripper	Diameter (m)	7.4	Packing Height (m)	10.0	T/T Height (m)	40	3,501,938	15.2
Reboiler	Heat Duty (MWth)	107.8	Steam flowrate (t/h)	13.9			1,266,927	5.5
Condenser	Cooling Duty (MWth)	36.2	Cooling water flowrate (t/h)	239.9			504,691	2.2
Lean/Rich Heat Exchanger	Heat Duty (MWth)	130.7	Heat transfer area per heat exchanger (m2)	436.6	Number of heat exchangers	25	1,425,459	6.2
Lean amine tank	Volume of tank (m3)	785.4					404,739	1.8
Lean amine cooler	Cooling Duty (MWth)	44.5	Heat transfer area per heat exchanger (m2)	663.5	Number of heat exchangers	4	666,454	2.9
Rich solvent pump	Total power requirement (kW)	648.1	Number of pumps required	354035. 3			187,238	0.8
Lean solvent pump	Total power requirement (kW)	244.5	Number of pumps required	87845.5			92,917	0.4
Cooling water pumps	Total power requirement (kW)	354.1	Number of pumps required	728470. 5			385,265	1.7
Steam boiler	Capacity (t/h steam)	154.7					1,058,265	4.6
Total equipment purchase cost (PCE)							22,999,707	

Description	£	% of PCE
Equipment purchase cost breakdown		
Absorber	27,011,626	58.7
Stripper	7,003,877	15.2
Reboiler	2,533,853	5.5
Condenser	1,009,382	2.2
Lean/Rich Heat Exchanger	2,850,918	6.2
Lean amine tank	809,478	1.8
Lean amine cooler	1,332,909	2.9
Rich solvent pump	374,477	0.8
Lean solvent pump	185,835	0.4
Cooling water pumps	770,531	1.7
Steam boiler	2,116,529	4.6
Total equipment purchase cost (PCE)	45,999,413	

Simulation Results Scenario 4 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		45,999,413
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		147,198,122
Contigency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		291,893,876

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	14,594,694
Variable Costs		
	Based on the amount	
Solvent make-up costs	of CO_2 captured	8,296,651
	10% of maintenance	
Miscellaneous materials cost	costs	1,459,469
Pumps power cost		1,585,531
Utilities - Steam costs		36,953,196
Utilities - Cooling water costs		1,265,874
Total Variable costs		49,560,721
OPEX		64,155,415

Comparison of costs between scenarios

	Baseline Scenario #1 "Part-load refinery"	Sensitivity "Including CHP" (Scenario #2)	Sensitivity "Pilot/Demo" (Scenario #3)	Sensitivity "Baseload refinery" (Scenario #4)
Source CO ₂	0.90 Mt/yr	1.35 Mt/yr	0.63Mt/yr	1.55 Mt/yr
Equipment cost	£26m	£39m	£20m	£46m
Total fixed cost	£140m	£209m	£105m	£246m
Annual opex (incl. energy)	£36m/yr	£54m/yr	£27m/yr	£64m/yr
Reboiler Heat Duty MW _{th}	108	160	76	185
Power /MW _e	2.85	4.23	2.31	4.58

Insights from process simulation

- Capture with a 1st generation amine solvent at a UK refinery is feasible, but there are many potential configurations that should be considered, primarily which source streams should be captured, and how much of these.
- The overal capital cost is more than five times the cost of the main pieces of equipment.
- The largest of the equipment cost items modelled is the absorber.
- The largest operating cost modelled is for steam.
- Therefore capture technology development should focus on reducing the costs of absorber, and/or the amount of steam required, and simplifying retrofit installation.
- The feasibility, design and costing of pre-treatment including scrubbing equipment and a network for gathering and managing CO₂ flows together from diverse sources on a refinery will require significant site specific analysis (not possible in this study).
- For reasons of operability, reliability, flexibility, as well as commercial availability of equipment, installations capturing above *ca*. 1-1.4 MtCO₂/yr may adopt configurations involving two absorber trains rather than one.
- Water requirements are feasible but will require relevant permits from the Environment Agency.

The outputs from the process simulation can be inform future techno-economic studies.

Parameter	Techno-economics "Baseline"	Process simulation "Baseline"
Input flue gas MtCO ₂ /yr	1.6 Mt/yr	0.9 Mt/yr
Abated MtCO ₂ /yr	0.7 MtCO ₂ /yr	Not calculated directly
Capex	Capture only: £281m (£489m incl. pre- treatment)	Capture only: £166m
Non-energy opex	£18m/yr	£14m/yr
Heat	109 MW	108 MW
Power	6.5 MW	2.9 MW

Issues emerging from process simulation of MEA-refinery configurations

- It is not surprising that opposite approaches to estimating costs of capture do not agree completely. Cost similarities for techno-economics and process simulation are being examined, although analysis may be limited by poor description in published reports and limited realised UK experience of constructing similar plants.
- If a policy objective is to implement close to full scale capture (i.e. 1-3 Mt/yr) at a UK refinery in the 2020s, then the key barrier to overcome is experience of capture of refinery gases at an appropriate scale.
- A plausible development strategy to overcome this barrier could be to begin with a pilot/demo project capturing ca. 0.6 MtCO₂/yr by 2020 using a single train 1st generation amine system. This pilot/demo would be similar to the Source #20 in the techno-economic model or Scenario #3 in the process simulation.
- An initial project would likely draw on a single vent type (for simplicity) and single train amine plant.
- Following successful experience with this, it should be possible to either ramp up capture capacity by 2025 to capture 1.5-2.5 Mt/yr (by bringing together multiple streams with multiple trains) or reduce unit costs by employing second generation amines or blends, likely using a separate amine train.
- Engineering studies are time consuming so need to begin early, and will be required for each site to understand the optimum infrastructure to bring together multiple, diverse CO₂ streams.

Comparison of levelised costs between scenarios

- The primary aim for the process simulation is to understand design requirements and order of magnitude cost drivers (rather than absolute costs).
- To facilitate cost comparison between scenarios, overall levelised costs have been calculated by including the data on capacity, capex, fixed opex, heat and power requirements emerging from the process simulation in the techno-economic model. The pre-treatment, energy/carbon prices and structure of the discounted cashflow is otherwise identical to that used in the Pragmatic scenario.
- Note that the process designs are illustrative and not "optimised" (optimisation of process simulations is highly resource intensive and out of the scope of the present study). Therefore small differences in sizes, energy requirements and costs between scenarios should not be over-interpreted.

Similar levelised costs for the different process simulations

elementenergy | 209

Abatement cost breakdown for medium size refinery project

elementenergy 210

Abatement cost breakdown for a "cracker only" project

Four case studies on process simulation

- 1. Grangemouth oil refinery with MEA capture
- 2. Lafarge Tarmac Dunbar cement works with MEA capture
- 3. Tata Scunthorpe iron and steel plant with MEA capture at CHP unit
- 4. GrowHow ammonia production site with CO₂ compression

Process Simulation

- The literature review, stakeholder interviews, and techno-economic modelling confirmed that 1st generation amine technologies could be attractive capture technologies for any UK industrial retrofit in the period 2020 to 2025 (among other technologies).
- Key uncertainties prioritised from process simulation are the impacts of CO₂ concentration and project scale these are reflected in the choice of three scenarios for process simulation (named "1-Baseline", "2-Pilot" and "3-High CO₂ Concentration").
- The Lafarge Tarmac Dunbar and the Heidelberg Ribblesdale cement works kindly provided typical CO₂ stream conditions used as inputs for the process simulation.

Scope of study

- i only process emissions (excluding power and heat production emissions)
 - in case multiple stack emissions are combined, piping etc to bring together is included
- ii including integration cost in case of process heat recovery
 - assume natural gas boiler if no process heat is available (default assumption)

Further Notes

- Compression plant not simulated
- Pre-treatment processes simulated but not costed

Inputs

- 30 wt% MEA solvent
- 90% capture target
- >95% purity CO_2 by volume
- Absorber operating at atmospheric pressure
- Mellapak 250Y structured packing used in Absorber and stripper columns
- Heat exchanger overall heat transfer coefficient 6000W/m²K
- Stripper feed temperature 102°C
- Maximum flow in heat exchanger 2500m³/hr
- Stripper operating pressure ~ 1.67bara
- Steam pressure 3.5bara
- Cooling water temperature is assumed to be 10°C
- 8400 hours of continuous operation assumed in a year
Detailed assumptions

- Requirements to convey flue sources to capture plant are ignored
- A basic MEA CO₂ capture plant configuration is selected for the study (complex configurations such as split-flow considerations are ignored)
- An optimal lean loading of 0.28 mol CO₂/mol MEA was assumed for the scenarios. This may introduce some inefficiencies in the performance. A full optimization for each scenario would require substantial development work.
- The absorber packing height was sized to achieve a rich loading of 0.473 mol CO₂/mol MEA. The rich loading value used was assumed to be representative of the physical constraint on the capacity of the MEA solvent in chemical absorption processes.
- The column models were rate-based, distributed models. A trade-off between simulation performance (times) and accuracy was made reducing the number of discretization elements. This resulted in slight mass imbalances for certain components of up to about 1%.
- O₂/N₂ composition in flue gas streams are lumped as inert material
- SO_X and NO_X compositions are not considered at capture plant boundary
- Solvent degradation effects ignored
- As degradation rates are not estimated, no reclaimer is modelled or costed in this unit.

Detailed assumptions (continued)

- The site area required for the capture plant is based on published work¹ and scaled as linearly dependent on the absorber diameter. This was done based on the fact that the absorber typically presents the largest footprint on the plant.
- In the pre-treatment area, the blower was assumed to provide a pressure increase of 0.05bar to overcome pressure drops in the downstream units.
- CO₂ emissions from the standalone steam boiler are not considered in this study.
- Cooling water requirements for the absorber wash water section are rough estimates. A trade-off is required between how much (and under what conditions) wash water is supplied to the wash section and the required cooling water flowrate. The optimisation of this scheme was outside the scope of this study and as a result was not carried out. A fixed flowrate of wash water was assumed and the cooling water flowrate to cool that stream is estimated.
- It should be noted that the same "hand factors" were used to estimate the total fixed capital costs from the total equipment purchase cost for all scales of the capture plants modelled. It may be more appropriate to employ different factors for different scales of plants.
- Fuel and electricity prices used are based on DECC's 2025 costs for all the demo scenarios and 2020 cost for the pilot plant scenario.
- All other costs are based on Q3 2013. These could be translated to the same basis by assuming an appropriate discount rate.

Narrative

- Flue gas after the scrubber at Dunbar undergoes further pre-treatment. The pre-treatment area consists of a number of unit operations.
- A Selective Catalytic Reduction unit is used to capture 90% of NOx emissions.
- An Electrostatic precipitator is used to reduce virtually all the particulate emissions.
- A blower raises the pressure of the gas stream to overcome the pressure drops of the downstream systems (FGD, DCC and absorber)
- A Flue gas desulphurisation (FGD) unit is required to reduce SOx emissions to acceptable levels. Some carbon dioxide is generated in the process and affects the mass balance.

Narrative (continued)

- The flue gas is cooled in a direct contact cooler (DCC) to about 40°C. The gas is saturated with water vapour at those conditions. Some CO₂ is also dissolved in the quench water in the DCC. The overall balance results in the difference in the mass flows of CO₂ in Streams 1 and 2.
- The gas flows into the absorber where it is countercurrently contacted with MEA solvent. MEA chemically absorbs CO₂ and the resultant (rich) solvent is pumped from the absorber sumps through a lean/rich heat exchanger to the stripper column for regeneration. The duty required in the reboiler of the column for solvent regeneration is supplied by low-pressure steam (about 3.5bara). In the partial condenser of the stripper column, CO₂ is separated from water vapour before it is compressed in the downstream compressor units.
- The hot regenerated (lean) solvent heats up the cooler rich solvent in the lean/rich heat exchanger and is further cooled in a lean amine cooler before it flows to the absorber, completing the cycle.
- A buffer tank is used in the process where make-up solvent and/or water could be added to the process. The tank also provides additional flexibility to the process based on its capacity.
- Gas from the top of the absorber is cooled and vapourised amine solvent is captured in the absorber wash water section.

Baseline Process Simulation of cement-MEA configuration

- **SCR Selective Catalytic Reduction**
- **ESP Electrostatic Precipitator**
- FGD Flue Gas Desulphurization
- **DCC Direct Contact Cooler**

* Blower is assumed to provide 0.05bar pressure difference

			PRETREATMENT	LEAN SOLVENT		
From:		CO2 SOURCE	PLANT	COOLER	ABSORBER	ABSORBER SUMP
		PRETREATMENT				LEAN/RICH HEAT
То:		PLANT	ABSORBER	ABSORBER	STACK	EXCHANGER
Service:		FLUE GAS	FLUE GAS	LEAN AMINE	OUTLET GAS	RICH AMINE
Phase:		VAPOUR	VAPOUR	LIQUID	VAPOUR	LIQUID
Stream Number:		1	2	3	4	5
Mass Flow	kg/hr					
H₂O		19,398	9,633	732,204	7,120	711,569
MĒA		0	0.0	343487.0	0.0	343342.7
CO₂		54,020	54,003	69,266	5,359	117,163
N ₂		113,949	146,347	0	114,923	23
0 ₂		30,810	0	0	31,061	0
SO ₂		85	0	0	3	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
СО		328	0	0	328	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	ka/hr	218 664	209 984	1 144 957	158 802	1 172 098
Temperature	°C	55.5	40.9	40.8	40.0	59.3
Pressure	bar(a)	1.05	1.10	1.06	1.06	1.10

			STRIPPER	COOLING WATER	COOLING WATER	COOLING WATER
From:		STEAM SUPPLY	CONDENSER	SUPPLY	SUPPLY	SUPPLY
				LEAN AMINE	STRIPPER	ABSORBER WASH
То:		REBOILER	COMPRESSION	COOLER	CONDENSER	SECTION COOLER
Service:		STEAM	CO2 PRODUCT	COOLING WATER	COOLING WATER	COOLING WATER
Phase:		VAPOUR	VAPOUR	LIQUID	LIQUID	LIQUID
Stream Number:		6	7	8	9	10
Mass Flow	kg/hr					
H₂O		91,796	904	1,517,996	1,262,929	2,601,569
MĒA		0.0	0.4	0.0	0.0	0.0
CO₂		0	47,884	0	0	0
N ₂		0	23	0	0	0
0 ₂		0	0	0	0	0
SO₂		0	0	0	0	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
со		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	kg/hr	91,796	48,812	1,517,996	1,262,929	2,601,569
Temperature	°C	127.5	39.8	9.9	25.0	9.9
Pressure	bar(a)	3.1	1.5	1.0	2.0	1.0

Simulation Results Baseline scenario - Process Conditions

Description	Value
Number of trains of capture plant	1
Source vol % CO ₂	16.7
Site total CO ₂ captureable (tonnes/year)	491,000
% site CO ₂ captureable	92.4
Total reboiler heat duty (MWth)	55.0
Specific reboiler duty (GJ/ tCO ₂)	4.13
Total electrical power requirement of capture plant pumps (MWe)	0.58
Electrical power requirement of blower* (MWe)	0.33
Total Cooling water required (tonnes/hr)	5,382
Total Capture plant site area required (m ²)	7,850
Output CO ₂ stream conditions (vol%)	$CO_2 - 95.5$ $H_2O - 4.4$ $N_2 - 0.07$
Non-CO ₂ emissions to atmosphere	_
Before (ppm)	NOx – 307 SOx – 181
After (ppm)	NOx – 40 SOx – 7

* Blower is assumed to raise the pressure of flue gas by 0.05bar

Summary			Equipment Sizing out	puts			£	%
Absorber	Diameter (m)	7.2	Packing Height (m)	21.2	T/T Height (m)	51.2	5,617,091	52
Stripper	Diameter (m)	5.6	Packing Height (m)	10.0	T/T Height (m)	40	2,155,438	20
Reboiler	Heat Duty (MWth)	55.0	Steam flowrate (t/h)	7.1			709,180	7
Condenser	Cooling Duty (MWth)	14.7	Cooling water flowrate (t/h)	97.4			317,889	3
Lean/Rich Heat Exchanger	Heat Duty (MWth)	49.9	Heat transfer area per heat exchanger (m2)	665.7	Number of heat exchangers	1	84,485	1
Lean amine tank	Volume of tank (m3)	5.0					295,803	3
Lean amine cooler	Cooling Duty (MWth)	35.3	Heat transfer area per heat exchanger (m2)	434.4	Number of heat exchangers	4	442,872	4
Rich solvent pump	Total power requirement (kW)	320.9	Number of pumps required	6			92,975	1
Lean solvent pump	Total power requirement (kW)	120.9	Number of pumps required	3			45,835	0
Cooling water pumps	Total power requirement (kW)	141.6	Number of pumps required	24			402,173	4
Steam boiler	Capacity (t/h steam)	91.8					659,950	6
Total equipment purchase cost (PCE)							10,823,690	

Description	£	% of PCE
Equipment purchase cost breakdown		
Absorber	5,617,091	51.9
Stripper	2,155,438	19.9
Reboiler	709,180	6.6
Condenser	317,889	2.9
Lean/Rich Heat Exchanger	84,485	0.8
Lean amine tank	295,803	2.7
Lean amine cooler	442,872	4.1
Rich solvent pump	92,975	0.9
Lean solvent pump	45,835	0.4
Cooling water pumps	402,173	3.7
Steam boiler	659,950	6.1
Total equipment purchase cost (PCE)	10,823,690	

Simulation Results Baseline scenario - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		10,823,690
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		34,635,808
Contingency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		68,682,808

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	3,434,140
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	343,414
Solvent make-up cost		2,029,691
Pumps power cost		370,992
Utilities - Steam costs		10,964,802
Utilities - Cooling water costs		678,194
Total Variable costs		14,387,093
OPEX		17,821,233

Scenario 2 Process Simulation High Level Process/Energy flows (Pilot plant scale)

* Blower is assumed to provide 0.05bar pressure difference

Scenario 2 Process Simulation Pilot plant scale

- SCR Selective Catalytic Reduction
- **ESP Electrostatic Precipitator**
- FGD Flue Gas Desulphurization
- **DCC Direct Contact Cooler**

			PRETREATMENT	LEAN SOLVENT		
From:		CO2 SOURCE	PLANT	COOLER	ABSORBER	ABSORBER SUMP
		PRETREATMENT				LEAN/RICH HEAT
То:		PLANT	ABSORBER	ABSORBER	STACK	EXCHANGER
Service:		FLUE GAS	FLUE GAS	LEAN AMINE	OUTLET GAS	RICH AMINE
Phase:		VAPOUR	VAPOUR	LIQUID	VAPOUR	LIQUID
Stream Number:		1	2	3	4	5
Mass Flow	kg/hr					
H₂O		4,275	2,123	161,905	1,568	157,402
MĒA		0	0.0	75951.8	0.0	75920.3
CO ₂		11,905	11,901	15,316	1,181	25,873
N ₂		25,112	32,251	0	25,326	5
0 ₂		6,790	0	0	6,845	0
SO₂		19	0	0	1	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
СО		72	0	0	72	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	ka/hr	48.188	46.275	253.173	34.995	259.201
Temperature	°Č	55.5	41.0	40.8	40.0	59.4
Pressure	bar(a)	1.05	1.10	1.07	1.07	1.10

From:		STEAM SLIPPLV				
			CONDENSER			ABSORBER WASH
То:		REBOILER	COMPRESSION	COOLER	CONDENSER	SECTION COOLER
Service:		STEAM	CO2 PRODUCT	COOLING WATER	COOLING WATER	COOLING WATER
Phase:		VAPOUR	VAPOUR	LIQUID	LIQUID	LIQUID
Stream Number:		6	7	8	9	10
Mass Flow	kg/hr					
H₂O		20,269	199	336,367	279,261	568,555
MÉA		0.0	0.1	0.0	0.0	0.0
CO₂		0	10,554	0	0	0
N ₂		0	5	0	0	0
0 ₂		0	0	0	0	0
SO ₂		0	0	0	0	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
co		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	kg/hr	20,269	10,759	336,367	279,261	568,555
Temperature	°C	127.5	39.8	9.9	25.0	9.9
Pressure	bar(a)	3.1	1.5	1.0	2.0	1.0

Simulation Results Scenario 2 - Process Conditions

Description	Value
Number of trains of capture plant	1
Source vol % CO ₂	16.7
Site total CO ₂ captureable (tonnes/year)	491,000
% site CO_2 captureable	20.4
Total reboiler heat duty (MWth)	12.1
Specific reboiler duty (GJ/ tCO ₂)	4.13
Total electrical power requirement of capture plant pumps (MWe)	0.13
Electrical power requirement of blower*	0.07
	0.07
Total Cooling water required (tonnes/hr)	1,184
Total Capture plant site area required (m ²)	3,683
Output CO ₂ stream conditions (vol%)	$CO_2 - 95.5$ $H_2O - 4.4$ $N_2 - 0.07$
Non-CO ₂ emissions to atmosphere	-
Before (ppm)	NOx – 307
	SOx – 181
After (ppm)	NOx – 40 SOx – 7

* Blower is assumed to raise the pressure of flue gas by 0.05bar

Summary			Equipment Sizing outp	outs			£	%
Absorber	Diameter (m)	3.4	Packing Height (m)	20.6	T/T Height (m)	50.6	1,474,564	48
Stripper	Diameter (m)	2.6	Packing Height (m)	10.0	T/T Height (m)	40	652,098	21
Reboiler	Heat Duty (MWth)	12.1	Steam flowrate (t/h)	1.6			154,903	5
Condenser	Cooling Duty (MWth)	3.2	Cooling water flowrate (t/h)	21.5			115,569	4
Lean/Rich Heat Exchanger	Heat Duty (MWth)	11.0	Heat transfer area per heat exchanger (m2)	146.8	Number of heat exchangers	1	21,101	1
Lean amine tank	Volume of tank (m3)	785.4					134,924	4
Lean amine cooler	Cooling Duty (MWth)	7.8	Heat transfer area per heat exchanger (m2)	96.2	Number of heat exchangers	4	160,671	5
Rich solvent pump	Total power requirement (kW)	71.0	Number of pumps required	2			24,551	1
Lean solvent pump	Total power requirement (kW)	26.7	Number of pumps required	1			12,125	0
Cooling water pumps	Total power requirement (kW)	31.1	Number of pumps required	6			92,922	3
Steam boiler	Capacity (t/h steam)	20.3					206,920	7
l otal equipment purchase cost (PCE)							3,050,347	

Description	£	% of PCE
Equipment purchase cost breakdown		
Absorber	1,474,564	48
Stripper	652,098	21
Reboiler	154,903	5
Condenser	115,569	4
Lean/Rich Heat Exchanger	21,101	1
Lean amine tank	134,924	4
Lean amine cooler	160,671	5
Rich solvent pump	24,551	1
Lean solvent pump	12,125	0
Cooling water pumps	92,922	3
Steam boiler	206,920	7
Total equipment purchase cost (PCE)	3,050,347	

Simulation Results Scenario 2 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		3,050,347
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		9,761,112
Contingency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management, permitting,		
taxes)	33.3	
Total fixed capital cost		19,356,285

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	967,814
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	96,781
Solvent make-up cost		447,369
Pumps power cost		79,214
Utilities - Steam costs		2,407,513
Utilities - Cooling water costs		149,207
Total Variable costs		3,180,083
OPEX		4,147,898

Scenario 3 Process Simulation High Level Process/Energy flows (33% CO2)

* Blower is assumed to provide 0.05bar pressure difference

Scenario 3 Process Simulation 33% CO2 in Flue gas stream

- **SCR Selective Catalytic Reduction**
- **ESP Electrostatic Precipitator**
- FGD Flue Gas Desulphurization
- **DCC Direct Contact Cooler**

			PRETREATMENT	LEAN SOLVENT		
From:		CO2 SOURCE	PLANT	COOLER	ABSORBER	ABSORBER SUMP
		PRETREATMENT				LEAN/RICH HEAT
То:		PLANT	ABSORBER	ABSORBER	STACK	EXCHANGER
Service:		FLUE GAS	FLUE GAS	LEAN AMINE	OUTLET GAS	RICH AMINE
Phase:		VAPOUR	VAPOUR	LIQUID	VAPOUR	LIQUID
Stream Number:		1	2	3	4	5
Mass Flow	kg/hr					
H₂O		14,262	8,557	1,319,154	5,394	1,308,981
MĒA		0	0.0	618848.3	0.0	618749.0
CO ₂		97,589	97,539	124,826	9,720	210,866
N ₂		83,776	107,824	0	84,660	30
0 ₂		22,652	0	0	22,882	0
SO₂		78	0	0	2	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
СО		241	0	0	241	0
Particulates		0	0	0	0	0
	ka/br	210 664	212.010	2,062,929	100.000	2 122 626
Tomme return	kg/III	210,004	213,919	2,002,020	122,900	2,130,020
remperature		55.5	40.0	40.8	40.0	68.6
Pressure	bar(a)	1.05	1.10	1.07	1.07	1.10

			STRIPPER	COOLING WATER	COOLING WATER	
From:		STEAM SUPPLY	CONDENSER	SUPPLY	SUPPLY	SUPPLY
				LEAN AMINE	STRIPPER	ABSORBER WASH
То:		REBOILER	COMPRESSION	COOLER	CONDENSER	SECTION COOLER
Service:		STEAM	CO2 PRODUCT	COOLING WATER	COOLING WATER	COOLING WATER
Phase:		VAPOUR	VAPOUR	LIQUID	LIQUID	LIQUID
Stream Number:		6	7	8	9	10
Mass Flow	kg/hr					
H₂O		165,806	1,624	3,428,791	2,291,706	1,451,653
MĒA		0.0	0.8	0.0	0.0	0.0
CO₂		0	86,017	0	0	0
N ₂		0	30	0	0	0
0 ₂		0	0	0	0	0
SO₂		0	0	0	0	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
СО		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	kg/hr	165,806	87,671	3,428,791	2,291,706	1,451,653
Temperature	°C	127.5	39.8	9.9	25.0	9.9
Pressure	bar(a)	3.1	1.5	1.0	2.0	1.0

Simulation Results Scenario 3 - Process Conditions

Description	Value
Number of trains of capture plant	1
Source vol % CO ₂	33
Site total CO ₂ captureable (tonnes/year)	491,000
% site CO_2 captureable	167
Total reboiler heat duty (MWth)	99.4
Specific reboiler duty (GJ/ tCO2)	4.16
Total electrical power requirement of capture plant pumps (MWe)	0.98
Electrical power requirement of blower* (MWe)	0.30
Total Cooling water required (tonnes/hr)	7,172
Total Capture plant site area required (m ²)	8,490
Output CO ₂ stream conditions (vol%)	$CO_2 - 95.5$ $H_2O - 4.4$ $N_2 - 0.07$
Non-CO ₂ emissions to atmosphere	_
Before (ppm)	NOx – 307 SOx – 181
After (ppm)	NOx – 48 SOx – 8

Summary			Equipment Sizing outp	outs			£	%
Absorber	Diameter (m)	7.8	Packing Height (m)	16.9	T/T Height (m)	46.9	5,439,513	35
Stripper	Diameter (m)	7.6	Packing Height (m)	10.0	T/T Height (m)	40	3,594,429	23
Reboiler	Heat Duty (MWth)	99.4	Steam flowrate (t/h)	12.8			1,327,256	9
Condenser	Cooling Duty (MWth)	26.6	Cooling water flowrate (t/h)	176.8			570,122	4
Lean/Rich Heat Exchanger	Heat Duty (MWth)	72.0	Heat transfer area per heat exchanger (m2)	987.0	Number of heat exchangers	10	1,222,172	8
Lean amine tank	Volume of tank (m3)	180.3					406,640	3
Lean amine cooler	Cooling Duty (MWth)	79.7	Heat transfer area per heat exchanger (m2)	907.6	Number of heat exchangers	4	922,461	6
Rich solvent pump	Total power requirement (kW)	590.3	Number of pumps required	10			163,812	1
Lean solvent pump	Total power requirement (kW)	220.8	Number of pumps required	5			80,098	1
Cooling water pumps	Total power requirement (kW)	170.0	Number of pumps required	32			536,020	3
Steam boiler	Capacity (t/h steam)	165.8					1,128,714	7
cost (PCE)							15,391,239	

Description	£	% of PCE
Equipment purchase cost breakdown		
Absorber	5,439,513	35.3
Stripper	3,594,429	23.4
Reboiler	1,327,256	8.6
Condenser	570,122	3.7
Lean/Rich Heat Exchanger	1,222,172	7.9
Lean amine tank	406,640	2.6
Lean amine cooler	922,461	6.0
Rich solvent pump	163,812	1.1
Lean solvent pump	80,098	0.5
Cooling water pumps	536,020	3.5
Steam boiler	1,128,714	7.3
Total equipment purchase cost (PCE)	15,391,239	

Simulation Results Scenario 3 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		15,391,239
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		49,251,963
Contingency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		97,666,643

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	4,883,332
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	488,333
Solvent make-up cost		3,645,530
Pumps power cost		623,859
Utilities - Steam costs		19,805,202
Utilities - Cooling water costs		903,691
Total Variable costs		25,466,615
OPEX		30,349,947

Comparison of costs between scenarios

	Baseline Scenario #1	Sensitivity "Pilot/Demo" (Scenario #2)	Sensitivity "High CO2 concentration" (Scenario #3)
Source CO ₂	0.45 Mt/yr	0.10 Mt/yr	0.82Mt/yr
Equipment cost	£11m	£3m	£15m
Total fixed cost	£58m	£16m	£82m
Annual opex (incl. energy)	£18m/yr	£4m/yr	£30m/yr
Reboiler Heat Duty MW _{th}	55.0	12.1	99.4
Power /MW _e	0.91	.020	1.28

Insights from process simulation

- Capture with a 1st generation amine solvent at a UK cement plant is feasible.
- The overall capital cost is *ca*. 6 times the cost of the main pieces of equipment.
- The largest of the equipment cost items modelled is the absorber.
- The largest operating cost modelled is for steam.
- Therefore capture technology development should focus on reducing the costs of absorber, and/or the amount of steam required, and simplifying retrofit installation.
- Water availability should be discussed with stakeholders.

Summary outputs from process simulations and techno-economic modelling can be compared and used to prioritise model refinements.

Parameter	Techno-economics "Baseline"	Process simulation "Baseline"
Input flue gas MtCO ₂ /yr	0.49 Mt/yr	0.45 Mt/yr
Abated MtCO ₂ /yr	0.33 Mt/yr	Not calculated directly
Capex	Capture only: £109m (£138m incl. pre- treatment)	Capture only: £69m
Non-energy opex	£7m/yr	£6m/yr
Heat	47 MW	55 MW
Power	1.32 MW	0.91 MW

Issues emerging

- It is not surprising that opposite approaches to estimating costs of capture do not agree completely.
- If a policy objective is to implement close to full scale capture (i.e. 0.5 Mt/yr) at a UK cement works by 2025, then the key barrier to overcome is experience of capture of cement CO₂ streams at an appropriate scale.
- A plausible development strategy to overcome this barrier could be to begin with a pilot project capturing ca. 0.1 MtCO₂/yr by 2020 using a single train 1st generation amine system, although other technologies are feasible.
- Following successful experience with this, it should be possible to build additional capture capacity by 2025 to capture 0.5 MtCO₂/yr or reduce unit costs by employing second generation chemical solvents or solid looping.

Comparison of abatement costs for cement-MEA process simulation scenarios.

Comparison of cost breakdown for cement 2025 demonstration from process simulation and techno-economic modelling

Four case studies on process simulation

- 1. Grangemouth oil refinery with MEA capture
- 2. Lafarge Tarmac Dunbar cement works with MEA capture
- 3. Tata Scunthorpe iron and steel plant with MEA capture at CHP unit
- 4. GrowHow ammonia production site with CO₂ compression

Scenarios for Iron and Steel MEA configuration

- Several technology options were considered for the process simulation based on literature review, techno-economic modelling and discussions with stakeholders.
- Based on data availability within the constraints of the study, stakeholders agreed to the process simulation should focus on retrofitting MEA-based post-combustion capture to a CHP plant burning (primarily) Blast Furnace Gas, corresponding to the output of one of the four Blast Furnaces at the Tata Scunthorpe site.
- It was assumed that this site would meet emissions controls on SOx and NOx.
- Priorities for uncertainty analysis included the impact of scale and concentration of CO₂ in the flue gas on capture design. Therefore three scenarios were developed for process simulation. These correspond to baseline, low, and high CO₂ concentrations, assuming constant overall flue gas input to the capture facility.
- Flue gas assumptions were reviewed with Tata Steel.

Scenario	CO ₂ concentration	Mt/yr
1- Baseline	20%	2.53
2- Low	15%	1.95
3- High	25%	3.07

Scope of study

- i only process emissions (excluding power and heat production emissions)
 - in case multiple stack emissions are combined, piping etc to bring together is included
- ii including integration cost in case of process heat recovery
 - assume natural gas boiler if no process heat is available (default assumption)

Further Notes

- Compression plant not simulated
- Pre-treatment processes simulated but not costed

Detailed assumptions

- Requirements to convey flue sources to capture plant are ignored
- A basic MEA CO₂ capture plant configuration is selected for the study (complex configurations such as split-flow considerations are ignored)
- An optimal lean loading was estimated to take into account differences in inlet CO₂ concentration. This was based on a 1500m² lean/rich amine heat exchanger area and overall heat transfer coefficient of 6000W/m²K
- The absorber packing height was sized to achieve a rich loading of 0.488 mol CO₂/mol MEA. The rich loading value used was assumed to be representative of the physical constraint on the capacity of the MEA solvent in chemical absorption processes.
- The column models were rate-based, distributed models. A trade-off between simulation performance (times) and accuracy was made reducing the number of discretization elements. This resulted in slight mass imbalances for certain components of up to about 1%.
- O₂/N₂ composition in flue gas streams are lumped as inert material
- SO_X and NO_X compositions are not considered at capture plant boundary
- Solvent degradation effects ignored
- As degradation rates are not estimated, no reclaimer is modelled or costed in this unit.
- All costs provided are overall costs except those provided in the equipment list (costs per train).

Detailed assumptions (continued)

- The site area required for the capture plant is based on published work¹ and scaled as linearly dependent on the absorber diameter. This was done based on the fact that the absorber typically presents the largest footprint on the plant.
- In the pre-treatment area, the blower was assumed to provide a pressure increase of 0.05bar to overcome pressure drops in the downstream units.
- CO₂ emissions from the standalone steam boiler are not considered in this study.
- Cooling water requirements for the absorber wash water section are rough estimates. A trade-off is required between how much (and under what conditions) wash water is supplied to the wash section and the required cooling water flowrate. The optimisation of this scheme was outside the scope of this study and as a result was not carried out. A fixed flowrate of wash water was assumed and the cooling water flowrate to cool that stream is estimated.
- It should be noted that the same "hand factors" were used to estimate the total fixed capital costs from the total equipment purchase cost for all scales of the capture plants modelled. It may be more appropriate to employ different factors for different scales of plants.
- DECC's 2025 fuel and electricity prices used for all the demo scenarios
- All other costs are based on Q3 2013. These could be translated to the same basis by assuming an appropriate discount rate.

¹IEAGHG (2012). CO₂ capture at gas-fired power plants, Report No: 2012/8.

Narrative

- Flue gas from combusted blast furnace gas first undergoes pre-treatment. The pretreatment area consists of a number of unit operations.
- A Selective Catalytic Reduction unit is used to capture 90% of NOx emissions.
- An Electrostatic precipitator is used to reduce virtually all the particulate emissions.
- A blower raises the pressure of the gas stream to overcome the pressure drops of the downstream systems (FGD, DCC and absorber)
- A Flue gas desulphurisation (FGD) unit is required to reduce SOx emissions to acceptable levels. Some carbon dioxide is generated in the process and affects the mass balance. This is seen in the difference in the mass flows of CO₂ in Streams 1 and 2.

Narrative (continued)

- The flue gas is cooled in a direct contact cooler (DCC) to about 40°C. The gas is saturated with water vapour at those conditions. Some CO₂ is also dissolved in the quench water in the DCC. The overall balance results in the difference in the mass flows of CO₂ in Streams 1 and 2.
- The gas flows into the absorber where it is countercurrently contacted with MEA solvent. MEA chemically absorbs CO₂ and the resultant (rich) solvent is pumped from the absorber sumps through a lean/rich heat exchanger to the stripper column for regeneration. The duty required in the reboiler of the column for solvent regeneration is supplied by low-pressure steam (about 3.5bara). In the partial condenser of the stripper column, CO₂ is separated from water vapour before it is compressed in the downstream compressor units.
- The hot regenerated (lean) solvent heats up the cooler rich solvent in the lean/rich heat exchanger and is further cooled in a lean amine cooler before it flows to the absorber, completing the cycle.
- A buffer tank is used in the process where make-up solvent and/or water could be added to the process. The tank also provides additional flexibility to the process based on its capacity.
- Gas from the top of the absorber is cooled and vapourised amine solvent and other solvent derivatives are captured in the absorber wash water section.

Baseline Process Simulation High Level Process/Energy flows

Baseline Process Simulation

- **SCR Selective Catalytic Reduction**
- **ESP Electrostatic Precipitator**
- FGD Flue Gas Desulphurization
- **DCC Direct Contact Cooler**

- Two CO₂ capture trains
- 30 wt% MEA solvent
- 90% capture target
- >95% purity CO₂ by volume
- Absorber operating at atmospheric pressure
- Mellapak 250Y structured packing used in Absorber and stripper columns
- Heat exchanger overall heat transfer coefficient 6000W/m²K
- Heat exchanger area 1500m²
- Maximum flow in heat exchanger 2500m³/hr
- Lean loading specification 0.233 mol CO₂/mol MEA
- Stripper operating pressure ~ 1.67bara
- Steam pressure 3.5bara
- Cooling water temperature is assumed to be 10°C
- 8400 hours of continuous operation assumed in a year

			PRETREATMENT	LEAN SOLVENT		
From:		CO2 SOURCE	PLANT	COOLER	ABSORBER	ABSORBER SUMP
		PRETREATMENT				LEAN/RICH HEAT
То:		PLANT	ABSORBER	ABSORBER	STACK	EXCHANGER
Service:		FLUE GAS	FLUE GAS*	LEAN AMINE*	OUTLET GAS	RICH AMINE*
Phase:		VAPOUR	VAPOUR	LIQUID	VAPOUR	LIQUID
Stream Number:		1	2	3	4	5
Mass Flow	kg/hr					
H₂O		52,590	23,479	1,569,113	54,047	1,483,211
MĒA		0	0.0	724679.2	0.0	724054.5
CO₂		300,763	150,419	121,805	30,418	254,639
N ₂		660,244	344,617	0	675,478	49
0 ₂		26,882	0	0	13,639	0
SO ₂		288	0	0	4	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
со		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	ka/br	1 040 904	518 515	2 415 597	773 600	2 461 953
Temperature	°C	60.0	41.0	40.8	48.4	56.4
Pressure	bar(a)	1.01	1.10	1.07	1.07	1.10

* This value corresponds to a single train

			STRIPPER	COOLING WATER	COOLING WATER	COOLING WATER
From:		STEAM SUPPLY	CONDENSER	SUPPLY	SUPPLY	SUPPLY
				LEAN AMINE	STRIPPER	ABSORBER WASH
То:		REBOILER	COMPRESSION	COOLER	CONDENSER	SECTION COOLER
Service:		STEAM	CO2 PRODUCT	COOLING WATER	COOLING WATER	COOLING WATER
Phase:		VAPOUR	VAPOUR	LIQUID	LIQUID	LIQUID
Stream Number:		6	7	8	9	10
Mass Flow	kg/hr					
H₂O		498,087	5,015	6,292,753	6,747,539	18,113,245
MĒA		0.0	2.5	0.0	0.0	0.0
CO₂		0	265,607	0	0	0
N ₂		0	98	0	0	0
0 ₂		0	0	0	0	0
SO ₂		0	0	0	0	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
СО		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MAGO FLOW	L. e. /le. e	400.007	070 700	0.000.750	0 747 500	40.440.045
TOTAL WASS FLOW	kg/nf	498,087	270,722	0,292,753	0,747,539	18,113,245
Temperature	۳ C	127.5	39.8	9.9	25.0	9.9
Pressure	bar(a)	3.1	1.5	1.0	2.0	1.0

Simulation Results Baseline scenario - Process Conditions

Description	Value
Number of trains of capture plant	2
Source vol % CO ₂	20
Site total CO ₂ captureable (tonnes/year)	7,305,903
% site CO ₂ captureable	34.6
Total reboiler heat duty (MWth)	298.5
Reboiler Specific duty (GJ/t CO ₂)	4.05
Lean loading (mol CO ₂ /mol MEA)	0.233
Total electrical power requirement of capture	
plant pumps (MWe)	2.68
Electrical power requirement of blower* (MWe)	1.53
Total Cooling water required (tonnes/hr)	62,307
Total Capture plant site area required (m ²)	24,500
Output CO_2 stream conditions (vol%)	CO ₂ – 95.5
. 2	$H_2 O - 4.4$
	$\bar{N_2} - 0.07$
Non-CO ₂ emissions to atmosphere	
Before (ppm)	NOx – 100
	SOx – 131
After (ppm)	NOx – 6
	SOx – 6

* Blower is assumed to raise the pressure of flue gas by 0.05bar

Summary			Equipment Sizing o	utputs			£	%
Absorber	Diameter (m)	11.2	Packing Height (m)	21.9	T/T Height (m)	51.9	14,239,396	52
Stripper	Diameter (m)	9.4	Packing Height (m)	10.0	T/T Height (m)	40	6,047,594	22
Reboiler	Heat Duty (MWth)	149.3	Steam flowrate (t/h)	19.2			2,366,638	9
Condenser	Cooling Duty (MWth)	39.2	Cooling water flowrate (t/h)	260.3			866,727	3
Lean/Rich Heat Exchanger	Heat Duty (MWth)	112.8	Heat transfer area per heat exchanger (m2)	1500.0	Number of heat exchangers	1	181,250	1
Lean amine tank	Volume of tank (m3)	405.8					443,206	2
Lean amine cooler	Cooling Duty (MWth)	73.1	Heat transfer area per heat exchanger (m2)	901.1	Number of heat exchangers	4	915,408	3
Rich solvent pump	Total power requirement (kW)	671.9	Number of pumps required	12			191,594	1
Lean solvent pump	Total power requirement (kW)	251.2	Number of pumps required	6			94,688	0
Cooling water pumps	Total power requirement (kW)	418.6	Number of pumps required	30			492,945	2
Steam boiler	Capacity (t/h steam)	249.0					1,655,921	6
Total equipment purchase cost (PCE)							27,495,368	

¹T/T height – tan to tan height representing the height from the top to the bottom of the column vessel.

Description	£	% of PCE
Equipment purchase cost breakdown		
Absorber	28,478,793	51.8
Stripper	12,095,188	22.0
Reboiler	4,733,277	8.6
Condenser	1,733,454	3.2
Lean/Rich Heat Exchanger	362,501	0.7
Lean amine tank	886,413	1.6
Lean amine cooler	1,830,815	3.3
Rich solvent pump	383,187	0.7
Lean solvent pump	189,375	0.3
Cooling water pumps	985,890	1.8
Steam boiler	3,311,843	6.0
Total equipment purchase cost (PCE)	54,990,735	

Simulation Results Baseline scenario - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		54,990,735
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		175,970,353
Contingency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		348,949,210

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	17,447,460
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	1,744,746
Solvent make-up cost		11,257,106
Pumps power cost		1,706,298
Utilities - Steam costs		59,495,549
Utilities - Cooling water costs		3,925,346
Total Variable costs		78,129,044
OPEX		95,576,505

Scenario 2 Process Simulation High Level Process/Energy flows (15% CO₂)

Scenario 2 Process Simulation 15% CO₂ in combusted Blast Furnace gas stream

- **SCR Selective Catalytic Reduction**
- **ESP Electrostatic Precipitator**
- FGD Flue Gas Desulphurization
- **DCC Direct Contact Cooler**

Inputs – Scenario 2

- Two CO₂ capture trains
- 30 wt% MEA solvent
- 90% capture target
- >95% purity CO₂ by volume
- Absorber operating at atmospheric pressure
- Mellapak 250Y structured packing used in Absorber and stripper columns
- Heat exchanger overall heat transfer coefficient 6000W/m²K
- Heat exchanger area 1500m²
- Maximum flow in heat exchanger 2500m³/hr
- Lean loading specification 0.239 mol CO₂/mol MEA
- Stripper operating pressure ~ 1.67bara
- Steam pressure 3.5bara
- Cooling water temperature is assumed to be 10°C
- 8400 hours of continuous operation assumed in a year

	PRETREAT		PRETREATMENT	LEAN SOLVENT		
From:		CO ₂ SOURCE	PLANT	COOLER	ABSORBER	ABSORBER SUMP
		PRETREATMENT				LEAN/RICH HEAT
То:		PLANT	ABSORBER	ABSORBER	STACK	EXCHANGER
Service:		FLUE GAS	FLUE GAS*	LEAN AMINE*	OUTLET GAS	RICH AMINE*
Phase:		VAPOUR	VAPOUR	LIQUID	VAPOUR	LIQUID
Stream Number:		1	2	3	4	5
Mass Flow	kg/hr					
H₂O		57,474	24,010	1,250,203	49,492	1,177,230
MĒA		0	0.0	578454.2	0.0	577950.5
CO₂		232,022	116,061	99,523	23,310	202,180
N ₂		721,573	376,571	0	738,144	42
0 ₂		29,380	0	0	14,894	0
SO ₂		315	0	0	5	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
СО		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	ka/hr	1 040 904	516 642	1 928 181	825 858	1 957 403
Temperature	чс РС	60.0	40.9	40.8	45.5	53.2
Pressure	bar(a)	1.01	1.10	1.07	1.07	1.10

From:	STEAM SUPPL		STRIPPER CONDENSER	COOLING WATER	COOLING WATER	COOLING WATER
			CONDENCER		STRIPPER	ABSORBER WASH
То:		REBOILER	COMPRESSION	COOLER	CONDENSER	SECTION COOLER
Service:		STEAM	CO2 PRODUCT	COOLING WATER	COOLING WATER	COOLING WATER
Phase:		VAPOUR	VAPOUR	LIQUID	LIQUID	LIQUID
Stream Number:		6	7	8	9	10
Mass Flow	kg/hr					
H₂O		381,343	3,871	4,248,205	5,540,060	16,093,935
MÉA		0.0	1.9	0.0	0.0	0.0
CO₂		0	205,275	0	0	0
N ₂		0	85	0	0	0
0 ₂		0	0	0	0	0
SO ₂		0	0	0	0	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
co		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	kg/hr	381,343	209,233	4,248,205	5,540,060	16,093,935
Temperature	°C	127.5	39.8	9.9	25.0	9.9
Pressure	bar(a)	3.1	1.5	1.0	2.0	1.0

Simulation Results Scenario 2 - Process Conditions

Description	Value
Number of trains of capture plant	2
Source vol % CO ₂	15
Site total CO ₂ captureable (tonnes/year)	7,305,903
% site CO ₂ captureable	26
Total reboiler Heat duty (MWth)	228.6
Reboiler Specific duty (GJ/t CO2)	4.01
Lean loading (mol CO2/mol MEA)	0.239
Total electrical power requirement of capture plant pumps (MWe)	2.16
(MWe)	1.57
Cooling water required (tonnes/hr)	25,882
Capture plant site area required (m ²)	24,460
Output CO ₂ stream conditions (vol%)	$CO_2 - 95.5$ $H_2O - 4.4$ $N_2 - 0.08$
Non-CO ₂ emissions to atmosphere	
Before (ppm)	NOx – 100 SOx – 123
After (ppm)	NOx – 6 SOx – 2

* Blower is assumed to raise the pressure of flue gas by 0.05bar

Simulation Results Scenario 2 – Equipment list

Summary			Equipment Sizing o	utputs			£	%
Absorber	Diameter (m)	11.2	Packing Height (m)	20.2	T/T Height (m)	50.2	13,367,503	54
Stripper	Diameter (m)	9.4	Packing Height (m)	10.0	T/T Height (m)	40	6,047,594	24
Reboiler	Heat Duty (MWth)	114.3	Steam flowrate (t/h)	14.7			1,751,281	7
Condenser	Cooling Duty (MWth)	32.2	Cooling water flowrate (t/h)	213.7			693,094	3
Lean/Rich Heat Exchanger	Heat Duty (MWth)	98.7	Heat transfer area per heat exchanger (m2)	1500.0	Number of heat exchangers	1	181,250	1
Lean amine tank	Volume of tank (m3)	785.4					391,977	2
Lean amine cooler	Cooling Duty (MWth)	49.4	Heat transfer area per heat exchanger (m2)	643.4	Number of heat exchangers	4	646,069	3
Rich solvent pump	Total power requirement (kW)	532.8	Number of pumps required	10			155,146	1
Lean solvent pump	Total power requirement (kW)	199.9	Number of pumps required	5			76,870	0
Cooling water pumps	Total power requirement (kW)	348.8	Number of pumps required	22			366,790	1
Steam boiler	Capacity (t/h steam)	190.7					1,286,205	5
Total equipment purchase cost (PCE)							24,963,780	

¹T/T height – tan to tan height representing the height from the top to the bottom of the column vessel.

Description	£	% of PCE
Equipment purchase cost breakdown		
Absorber	26,735,006	54
Stripper	12,095,188	24
Reboiler	3,502,562	7
Condenser	1,386,188	3
Lean/Rich Heat Exchanger	362,501	1
Lean amine tank	783,953	2
Lean amine cooler	1,292,139	3
Rich solvent pump	310,291	1
Lean solvent pump	153,741	0
Cooling water pumps	733,580	1
Steam boiler	2,572,411	5
Total equipment purchase cost (PCE)	49,927,561	

Simulation Results Scenario 2 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		49,927,561
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		159,768,195
Contingency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		316,820,331

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	15,841,017
Variable Costs		
	10% of maintenance	
Solvent make-up costs	costs	1,584,102
Miscellaneous materials cost		8,700,300
Pumps power cost		1,375,417
Utilities - Steam costs		45,550,643
Utilities - Cooling water costs		3,261,157
Total Variable costs		60,471,619
OPEX		76,312,635

Scenario 3 Process Simulation High Level Process/Energy flows (25% CO₂)

elementenergy 280

Scenario 3 Process Simulation 25% CO₂ in combusted Blast Furnace gas stream

- **SCR Selective Catalytic Reduction**
- **ESP Electrostatic Precipitator**
- FGD Flue Gas Desulphurization
- **DCC Direct Contact Cooler**

Inputs – Scenario 3

- Two CO₂ capture trains
- 30 wt% MEA solvent
- 90% capture target
- >95% purity CO₂ by volume
- Absorber operating at atmospheric pressure
- Mellapak 250Y structured packing used in Absorber and stripper columns
- Heat exchanger overall heat transfer coefficient 6000W/m²K
- Heat exchanger area 1500m²
- Maximum flow in heat exchanger 2500m³/hr
- Lean loading specification 0.225 mol CO₂/mol MEA
- Stripper operating pressure ~ 1.67bara
- Steam pressure 3.5bara
- Cooling water temperature is assumed to be 10°C
- 8400 hours of continuous operation assumed in a year

			PRETREATMENT	LEAN SOLVENT		
From:		CO2 SOURCE	PLANT	COOLER	ABSORBER	ABSORBER SUMP
		PRETREATMENT				LEAN/RICH HEAT
То:		PLANT	ABSORBER	ABSORBER	STACK	EXCHANGER
Service:		FLUE GAS	FLUE GAS*	LEAN AMINE*	OUTLET GAS	RICH AMINE*
Phase:		VAPOUR	VAPOUR	LIQUID	VAPOUR	LIQUID
Stream Number:		1	2	3	4	5
Mass Flow	kg/hr					
H₂O		47,969	22,965	1,843,732	30,937	1,746,725
MEA		0	0.0	849159.4	0.0	848415.4
CO₂		365,787	182,924	137,640	36,634	299,184
N ₂		602,234	314,393	0	616,211	53
0 ₂		24,520	0	0	12,452	0
SO ₂		262	0	0	4	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
СО		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	kg/hr	1,040,904	520,282	2,830,531	696,248	2,894,377
Temperature	°C	60.0	40.9	40.8	40.0	59.0
Pressure	bar(a)	1.01	1.10	1.07	1.07	1.10

			STDIDDED			
From		STEAM SUPPLY	CONDENSER	SUPPLY SUPPLY		SUPPLY
			OONDENOEN		STRIPPER	ABSORBER WASH
То:		REBOILER	COMPRESSION	COOLER	CONDENSER	SECTION COOLER
Service:		STEAM	CO2 PRODUCT	COOLING WATER	COOLING WATER	COOLING WATER
Phase:		VAPOUR	VAPOUR	LIQUID	LIQUID	LIQUID
Stream Number:		6	7	8	9	10
Mass Flow	kg/hr					
H₂O		612,173	6,099	8,282,783	7,989,153	23,441,026
MĒA		0.0	3.0	0.0	0.0	0.0
CO ₂		0	323,006	0	0	0
N_2		0	105	0	0	0
0,		0	0	0	0	0
SO ₂		0	0	0	0	0
SO3		0	0	0	0	0
NO ₂		0	0	0	0	0
co		0	0	0	0	0
Particulates		0	0	0	0	0
TOTAL MASS FLOW	kg/hr	612,173	329,213	8,282,783	7,989,153	23,441,026
Temperature	°C	127.5	39.8	9.9	25.0	9.9
Pressure	bar(a)	3.1	1.5	1.0	2.0	1.0

Simulation Results Scenario 3 - Process Conditions

Description	Value
Number of trains of capture plant	2
Source % CO ₂	25
Site total CO ₂ captureable (tonnes/year)	7,305,903
% site CO ₂ captureable	43
Total Reboiler Heat duty (MWth)	366.9
Reboiler Specific duty (GJ/t CO ₂)	4.09
Lean loading (mol CO ₂ /mol MEA)	0.225
Total electrical power requirement of capture	
plant pumps (MWe)	3.11
Electrical power requirement of blower*	4 40
	1.49
Cooling water required (tonnes/hr)	35,158
Capture plant site area required (m ²)	25,156
Output CO ₂ stream conditions (vol%)	CO ₂ – 95.5
	$H_2 O - 4.4$
	N ₂ – 0.08
Non-CO ₂ emissions to atmosphere	
Before (ppm)	NOx – 100
	SOx – 123
After (ppm)	NOx – 6
	SOx – 2

* Blower is assumed to raise the pressure of flue gas by 0.05bar

Summary	Equipment Sizing outputs						£	%
Absorber	Diameter (m)	11.5	Packing Height (m)	21.3	T/T Height (m)	51.3	14,662,105	48
Stripper	Diameter (m)	10.3	Packing Height (m)	10.0	T/T Height (m)	40	7,150,601	23
Reboiler	Heat Duty (MWth)	183.4	Steam flowrate (t/h)	23.6			3,013,777	10
Condenser	Cooling Duty (MWth)	46.4	Cooling water flowrate (t/h)	308.2			1,050,394	3
Lean/Rich Heat Exchanger	Heat Duty (MWth)	122.3	Heat transfer area per heat exchanger (m2)	750.0	Number of heat exchangers	2	377,826	1
Lean amine tank	Volume of tank (m3)	785.4					483,367	2
Lean amine cooler	Cooling Duty (MWth)	96.3	Heat transfer area per heat exchanger (m2)	759.2	Number of heat exchangers	6	1,147,221	4
Rich solvent pump	Total power requirement (kW)	791.7	Number of pumps required	14			224,582	1
Lean solvent pump	Total power requirement (kW)	294.8	Number of pumps required	7			110,764	0
Cooling water pumps	Total power requirement (kW)	466.6	Number of pumps required	36			606,178	2
Steam boiler	Capacity (t/h steam)	306.1					2,017,216	7
Total equipment purchase cost (PCE)							30,844,032	

Description	£	% of PCE
Equipment purchase cost breakdown		
Absorber	29,324,210	47.5
Stripper	14,301,202	23.2
Reboiler	6,027,554	9.8
Condenser	2,100,789	3.4
Lean/Rich Heat Exchanger	755,653	1.2
Lean amine tank	966,733	1.6
Lean amine cooler	2,294,443	3.7
Rich solvent pump	449,164	0.7
Lean solvent pump	221,528	0.4
Cooling water pumps	1,212,356	2.0
Steam boiler	4,034,431	6.5
Total equipment purchase cost (PCE)	61,688,063	
Simulation Results Scenario 3 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		61,688,063
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		197,401,803
Contingency	30	
Design and engineering	30	
Solvent initial Charge	5	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		391,447,775

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and		
Overheads	5% of Fixed Capital	19,572,389
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	1,957,239
Solvent make-up cost		13,689,255
Pumps power cost		1,975,296
Utilities - Steam costs		73,122,804
Utilities - Cooling water costs		4,429,848
Total Variable costs		95,174,442
OPEX		114,746,831

	Baseline Scenario #1	Sensitivity "15% CO2 from Blast Furnace" (Scenario #2)	Sensitivity "25% CO2 from Blast Furnace" (Scenario #3)
Source CO ₂	2.53 Mt/yr	1.95 Mt/yr	3.07Mt/yr
Equipment cost	£55m	£50m	£62m
Total fixed cost	£294m	£267m	£330m
Annual opex (incl. energy)	£96m/yr	£76m/yr	£115m/yr
Reboiler Heat Duty MW _{th}	299	229	367
Power /MW _e	4.21	3.73	4.75

Insights from process simulation

- Capture with a 1st generation amine solvent at an iron and steel site is feasible, but there are many potential alternative configurations that should be considered.
- The overall capital cost is *ca*. 6 times the cost of the main pieces of equipment.
- The largest of the equipment cost items modelled is the absorber.
- The largest operating cost modelled is for steam.
- Therefore capture technology development should focus on reducing the costs of absorber, and/or the amount of steam required, and simplifying retrofit installation.
- Given a scale of project will adopt configurations involving two absorber trains rather than one.
- Stakeholders should review water requirements with appropriate stakeholders.

The outputs from the process simulation and techno-economic model can be compared to prioritise future model refinements

Parameter	Techno-economics "Baseline"	Process simulation "Baseline"
Input flue gas MtCO ₂ /yr	3.9 Mt/yr captured out of total site 7.3 Mt/yr	2.5 Mt/yr
Abated MtCO ₂ /yr	3.2 MtCO ₂ /yr	Not calculated directly
Capex	Capture only: £157m (£216m incl. pre- treatment)	Capture only: £349m
Non-energy opex	£10m/yr	£32m/yr
Heat	94 MW	299 MW
Power	2.2 MW	4.2 MW

Comparison of the abatement cost breakdown for three process simulations

Comparison of baseline abatement cost breakdown for the process simulation and techno-economic modelling for Iron and Steel sector

Four case studies on process simulation

- 1. Grangemouth oil refinery with MEA capture
- 2. Lafarge Tarmac Dunbar cement works with MEA capture
- 3. Tata Scunthorpe iron and steel plant with MEA capture at CHP unit
- 4. GrowHow ammonia production site with CO₂ compression

Scope of study

- The GrowHow Teesside kindly offered to provide data on CO₂ streams for process simulation, as an example of a chemical sector site with realistic capture potential in the period to 2025 (or earlier).
- The CO₂ stream is high purity (>99%), and therefore the primary requirement is likely to be for compression (and dehydration), and it is assumed that no CO₂ capture is required.
- Key uncertainties identified and prioritised for process simulation of compression (not just at GrowHow) include capacity (Mt/yr), output CO₂ pressure (i.e. gas phase or dense phase), and requirements for dehydration for wet CO₂.
- Therefore six scenarios were developed to examine these issues.

Scenario	Scale (Mt/yr)	Output pressure
1	0.5	40 bar
2	0.1	40 bar
3	2	40 bar
4	0.5	110 bar
5	2	110 bar
6 (95% pure CO ₂)	0.5	110 bar

Detailed assumptions

- Dehydrator capital expenditure includes cost of fired heater for bed regeneration
- Electric driver costs were extrapolated beyond the stated range of the available cost function
- Footprint of compression train was estimated based on published work¹ and scaled based on the number of compressor sections required.
- Knock-out drums were sized based on settling velocities²
- Corrosion margin in knock-out drums assumed to be 2mm
- Distance of cooling water supply was not taken into account
- Cooling water temperature is available at 25°C. Cooling water return temperature is 35°C
- Number of compressor sections is selected to avoid compressor discharge temperatures of more than 150°C. In between compressor sections, the CO2 can be cooled in coolers (heat exchangers).

Detailed assumptions

- A constant compressor shaft speed of 80Hz was assumed
- 8400 hours of continuous operation assumed in a year
- Stainless steel used is 304L
- No limitations to cooling water or electricity supply were considered
- Number of compressor trains were sized based on technical feasibility (based on maximum impeller diameters)
- Each compressor frame could have one or two frames. Two frames are selected if compression is required after the dehydrator
- Double pipe heat exchangers are used where heat transfer areas required are small (<80m²)
- Electricity costs are based on DECC's 2025 prices for the demo scale scenarios and 2020 prices for the pilot plant scenario.
- All other costs are based on Q3 2013. These could be translated to the same basis by assuming an appropriate discount rate.

Carbon dioxide produced in the ammonia plant at high purity levels and at about 1 bar(g) pressure. This fluid is compressed through a series of compressor sections with cooling in between sections. A dehydration unit reduces moisture content to 50ppmv.

Baseline Process Simulation High Level Process/Energy flows

Baseline Process Simulation

Inputs - Baseline

- One CO₂ compressor train
- 0.5MT CO₂/year
- 99.5 vol% CO_2 at inlet
- 1bar(g) inlet pressure
- 40bar(a) discharge pressure
- 30°C inlet temperature
- Interstage cooling target 40°C
- 80Hz compressor frame speed
- Dehydrator moisture specification 50ppm
- Cooling water temperature is assumed to be 25°C

Stream Tables Baseline scenario

			FIRST	SECOND	THIRD	RECYCLE	FOURTH	RECYCLE	
From:		CO2 SOURCE	COMPRESSOR	COMPRESSOR	COMPRESSOR	COOLERKODRUM	COMPRESSOR	COOLERKODRUM	DEHYDRATOR
-		FIRST	FIRST	SECOND	RECYCLE		FOURTH		
10:		COMPRESSOR	COOLERKODRUM	COOLERKODRUM	MIXER	RECYCLE MIXER	COOLERKODRUM	WASTE WATER	OUTLET CO2
Service:		CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	BOTTOMS	CO2 FLUID
Phase:		VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR	LIQUID	VAPOUR
Stream									
Number:		1	2	3	4	5	6	7	8
Mass Flow	kg/hr								
CO_2		59,757	59,757	59,757	59,757	2,232	61,989	0	59,757
CH ₄		1	1	1	1	0	1	0	1
CO		2	2	2	2	0	2	0	2
H₂O		25	25	25	25	3.5	28.1	23.4	1
H ₂ S		0	0	0	0	0	0	0	0
NŌ		0	0	0	0	0	0	0	0
0 ₂		0	0	0	0	0	0	0	0
N_2		52	52	52	52	2	54	0	52
H_2^-		8	8	8	8	0	8	0	8
CH ₃ OH		1	1	1	1	0	1	0	1
SO_2		0	0	0	0	0	0	0	0
Particulates		0	0	0	0	0	0	0	0
τοται									
MASS FLOW	kg/hr	59,846	59,846	59,846	59,846	2,237	62,083	23	59,822
Temperature	٥Č	30.0	119.6	116.4	100.8	40.0	93.3	40.0	40.4
	Bar								
Pressure	(a)	2.01	5.61	12.51	23.68	23.68	41.2	23.7	40.0

Simulation Results Baseline scenario - Process Conditions

Description	Value
Number of trains of compression	1
Number of compressor frames	1
Number of compressor sections	4
Source vol % CO ₂	99.5
CO_2 for transportation (tonnes/year)	501,961
Total compressor electrical power requirement (MWe)	4.04
Total electrical power requirement of compression cooling water pumps (kWe)	17
Total Cooling water required (tonnes/hr)	501.1
Total Capture plant site area required (m ²)	2600
	CO ₂ – 99.6
Output COs stream conditions (vol9()	H ₂ O – 0.005
Output CO2 stream conditions (V01%)	$N_2 - 0.14$
	H ₂ – 0.29

Summary			Equipment Sizing outputs	S			£	%
Compressor frame	Electrical Duty (MWe)	4.0					2,180,860	74.2
	Range of heat		Number of shell and tube		Operating			
	exchanger heat transfer		exchangers/double pipe		pressure ranges			
Heat exchanger	area (m ²)	93-107	exchangers	4/1	bar(a)	5-41	130,612	4.4
			Range of mass of steel					
	Number of knockout		required for construction					
Knockout drums	drums	5	(kg)	120-1418			146,991	5.0
Electric Drives	Electrical Duty (MWe)	4.0					106,046	3.6
	Water capacity (kg/hr							
Dehydrator	water adsorbed)	26.90					332,442	11.3
Pumps	Electrical Duty (kWe)	16.9					40,378	1.4
Total equipment purchase cost								
(PCE)							2,937,327	

Description	£	% of PCE
Equipment purchase cost breakdown		
Compressor frame	2,180,860	74.2
Heat exchanger	130,612	4.4
Knockout drums	146,991	5.0
Electric Drives	106,046	3.6
Dehydrator	332,442	11.3
Pumps	40,378	1.4
Total equipment purchase cost (PCE)	2,937,327	

Simulation Results Baseline scenario - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		2,937,327
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		9,399,448
Contingency	30	
Design and engineering	30	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		18,169,132

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and Overheads	5% of Fixed Capital	908,457
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	90,846
Compressor electrical power cost		3,790,398
Cooling water pumps power cost		10,368
Dehydrator heating costs		31,919
Utilities - Cooling water costs		96,365
Total Variable costs		4,019,895
OPEX		4,928,351

Scenario 2 Process Simulation Gas phase, pilot (0.1Mt CO₂/year)

Scenario 2 Process Simulation

Inputs – Scenario 2

- One CO₂ compressor train
- 0.1MT CO₂/year
- 99.5 vol% CO_2 at inlet
- 1bar(g) inlet pressure
- 40bar(a) discharge pressure
- 30°C inlet temperature
- Interstage cooling target 40°C
- 80Hz compressor frame speed
- Dehydrator moisture specification 50ppm
- Cooling water temperature is assumed to be 25°C

Stream Tables Scenario 2

			FIRST	SECOND	THIRD	RECYCLE	FOURTH	RECYCLE	
From:		CO2 SOURCE	COMPRESSOR	COMPRESSOR	COMPRESSOR	COOLERKODRUM	COMPRESSOR	COOLERKODRUM	DEHYDRATOR
L_		FIRST	FIRST	SECOND	RECYCLE		FOURTH		
To:		COMPRESSOR	COOLERKODRUM	COOLERKODRUM	MIXER	RECYCLE MIXER	COOLERKODRUM	WASTE WATER	OUTLET CO2
Service:		CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	BOTTOMS	CO2 FLUID
Phase:		VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR	LIQUID	VAPOUR
Stream									
Number:		1	2	3	4	5	6	7	8
Mass Flow	kg/hr								
CO ₂		11,952	11,952	11,952	11,952	446	12,398	0	11,952
CH_4		0	0	0	0	0	0	0	0
co		0	0	0	0	0	0	0	0
H₂O		5	5	5	5	0.7	5.6	4.3	1
H₂S		0	0	0	0	0	0	0	0
NŌ		0	0	0	0	0	0	0	0
0 ₂		0	0	0	0	0	0	0	0
N_2		10	10	10	10	0	11	0	10
H_2^-		2	2	2	2	0	2	0	2
CH ₃ OH		0	0	0	0	0	0	0	0
SO ₂		0	0	0	0	0	0	0	0
Particulates		0	0	0	0	0	0	0	0
IOTAL	. ,	44.000	44.000	44.000	44.000		40.447		44.005
MASS FLOW	kg/hr	11,969	11,969	11,969	11,969	448	12,417	4	11,965
Temperature	°C	30.0	123.7	119.4	103.6	40.0	97.0	40.0	40.3
	Bar								
Pressure	(a)	2.01	5.61	12.51	23.68	23.68	41.2	23.7	40.0

Description	Value
Number of trains of compression	1
Number of compressor frames	1
Number of compressor sections	4
Source vol % CO ₂	99.5
CO ₂ for transportation (tonnes/year)	100,393
Total compressor electrical power requirement (MWe)	0.85
Total electrical power requirement of compression cooling water pumps (kWe)	4
Total Cooling water required (tonnes/hr)	105.4
Total Capture plant site area required (m ²)	2600
	CO ₂ – 99.6
$O_{\rm rel}$	H ₂ O – 0.005
Output CO2 stream conditions (VOI%)	N ₂ – 0.14
	$H_2 - 0.29$

Simulation Results Scenario 2 – Equipment list

Summary		Equipment Sizing outputs			£	%
Compressor frame	Electrical Duty (MWe)	0.9			1,081,618	72.7
	Range of heat	Number of shell and tube	Operating			
	exchanger heat	exchangers/double pipe	pressure ranges			
Heat exchanger	transfer area (m ²)	0.6-11 exchangers	0/5 bar(a)	5-41	84,251	5.7
	Number of knockout	Range of mass of steel				
Knockout drums	drums	5 required for construction (kg)	120-218		74,091	5.0
Electric Drives	Electrical Duty (MWe)	0.9			66,991	4.5
	Water capacity (kg/hr					
Dehydrator	water adsorbed)	5.03			151,864	10.2
Pumps	Electrical Duty (kWe)	3.5			29,030	2.0
Total equipment purchase cost						
(PCE)					1,487,844	

Description	£	% of PCE
Equipment purchase cost breakdown		
Compressor frame	1,081,618	72.7
Heat exchanger	84,251	5.7
Knockout drums	74,091	5.0
Electric Drives	66,991	4.5
Dehydrator	151,864	10.2
Pumps	29,030	2.0
Total equipment purchase cost (PCE)	1,487,844	

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		1,487,844
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		4,761,099
Contingency	30	
Design and engineering	30	
Indirect cost (project management, permitting,		
taxes)	33.3	
lotal fixed capital cost		9,203,205

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and Overheads	5% of Fixed Capital	460,160
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	46,016
Compressor electrical power cost		525,565
Cooling water pumps power cost		2,180
Dehydrator heating costs		6,387
Utilities - Cooling water costs		20,263
Total Variable costs		600,411
OPEX		1,060,571

Scenario 3 Process Simulation Gas phase, large (2MT CO2/year)

Scenario 3 Process Simulation

Inputs – Scenario 3

- One CO₂ compressor train
- 2MT CO₂/year
- 99.5 vol% CO_2 at inlet
- 1bar(g) inlet pressure
- 40bar(a) discharge pressure
- 30°C inlet temperature
- Interstage cooling target 40°C
- 80Hz compressor frame speed
- Dehydrator moisture specification 50ppm
- Cooling water temperature is assumed to be 25°C

Stream Tables Scenario 3

			FIRST	SECOND	THIRD	RECYCLE	FOURTH	RECYCLE	
From:		CO2 SOURCE	COMPRESSOR	COMPRESSOR	COMPRESSOR	COOLERKODRUM	COMPRESSOR	COOLERKODRUM	DEHYDRATOR
							FOURTH		
T		FIRST		SECOND	RECYCLE		COOLERKODR		
10:		COMPRESSOR	COOLERKODRUM	COOLERKODRUM	MIXER	RECYCLE MIXER	UM	WASTEWATER	OUTLET CO2
Service:		CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	BOTTOMS	CO2 FLUID
Phase:		VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR	LIQUID	VAPOUR
Stream									
Number:		1	2	3	4	5	6	7	8
Mass Flow	kg/hr								
CO_2		239,029	239,029	239,029	239,029	8,926	247,955	0	239,029
CH₄		4	4	4	4	0	5	0	4
CO		8	8	8	8	0	8	0	8
H₂O		98	98	98	98	14.1	112.5	86.4	12
$H_2^{-}S$		0	0	0	0	0	0	0	0
NO		0	0	0	0	0	0	0	0
0 ₂		0	0	0	0	0	0	0	0
N_2		206	206	206	206	8	214	0	206
H_2		32	32	32	32	1	33	0	32
CH₃OH		4	4	4	4	0	4	0	4
SO ₂		0	0	0	0	0	0	0	0
Particulates		0	0	0	0	0	0	0	0
TOTAL									
MASS									
FLOW	kg/hr	239,382	239,382	239,382	239,382	8,950	248,332	87	239,296
Temperature	°Č	30.0	117.2	113.7	98.9	40.0	92.0	40.0	40.3
Pressure	bar(a)	2.01	5.61	12.51	23.68	23.68	41.2	23.7	40.0

Description	Value
Number of trains of compression	1
Number of compressor frames	1
Number of compressor sections	4
Source vol % CO ₂	99.5
CO ₂ for transportation (tonnes/year)	2,007,840
Total compressor electrical power requirement (MWe)	15.59
Total electrical power requirement of compression cooling water pumps (kWe)	66
Total Cooling water required (tonnes/hr)	1949.3
Total Capture plant site area required (m ²)	2600
	CO ₂ – 99.6
	H ₂ O – 0.005
Output CO2 stream conditions (Vol%)	$N_2 - 0.14$
	$H_2 - 0.29$

Simulation Results Scenario 3 – Equipment list

Summary		Equipment Sizing outputs			£	%
Compressor frame	Electrical Duty (MWe)	15.6			4,445,626	72.2
	Range of heat	Number of shell and tube exchangers/double pipe	Operating			
Heat exchanger	transfer area (m ²)	12-210 exchangers	4/1 bar(a)	5-41	200,405	3.3
	Number of knockout	Range of mass of steel				
Knockout drums	drums	5 required for construction (kg)	138-8048		489,561	8.0
Electric Drives	Electrical Duty (MWe)	15.6			230,068	3.7
	Water capacity (kg/hr					
Dehydrator	water adsorbed)	100.52			688,841	11.2
Pumps	Electrical Duty (kWe)	65.6			98,871	1.6
Total equipment purchase cost (PCE)					6,153,372	
Description	£	% of PCE				
-------------------------------------	-----------	----------				
Equipment purchase cost breakdown						
Compressor frame	4,445,626	72.2				
Heat exchanger	200,405	3.3				
Knockout drums	489,561	8.0				
Electric Drives	230,068	3.7				
Dehydrator	688,841	11.2				
Pumps	98,871	1.6				
Total equipment purchase cost (PCE)	6,153,372					

Simulation Results Scenario 3 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		6,153,372
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		19,690,792
Contingency	30	
Design and engineering	30	
Indirect cost (project management, permitting	,	
taxes)	33.3	
Total fixed capital cost		38,062,300

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and Overheads	5% of Fixed Capital	1,903,115
Variable Costs		
Miscellaneous materials cost	10% of maintenance costs	190,311
Compressor electrical power cost		9,913,884
Cooling water pumps power cost		41,707
Dehydrator heating costs		128,454
Utilities - Cooling water costs		408,846
Total Variable costs		10,683,203
OPEX		12,586,318

Scenario 4 Process Simulation Dense phase, baseline (0.5MT CO2/year)

Scenario 4 Process Simulation

Inputs – Scenario 4

- One CO₂ compressor train
- 0.5MT CO₂/year
- 99.5 vol% CO_2 at inlet
- 1bar(g) inlet pressure
- 110bar(a) discharge pressure
- 30°C inlet temperature
- Interstage cooling target 40°C
- 80Hz compressor frame speed
- Dehydrator moisture specification 50ppm
- Cooling water temperature is assumed to be 25°C

Stream Tables Scenario 4

			FIRST	SECOND	THIRD	RECYCLE	FOURTH
From:		CO2 SOURCE	COMPRESSOR	COMPRESSOR	COMPRESSOR	COOLERKODRUM	COMPRESSOR
		FIRST	FIRST	SECOND	RECYCLE		FOURTH
То:		COMPRESSOR	COOLERKODRUM	COOLERKODRUM	MIXER	RECYCLE MIXER	COOLERKODRUM
Service:		CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID
Phase:		VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR
Stream							
Number:		1	2	3	4	5	6
Mass Flow	kg/hr						
CO_2		59,757	59,757	59,757	59,757	2,232	61,989
CH ₄		1	1	1	1	0	1
CO		2	2	2	2	0	2
H₂O		25	25	25	25	3.5	28.1
H₂S		0	0	0	0	0	0
NŌ		0	0	0	0	0	0
0 ₂		0	0	0	0	0	0
N_2		52	52	52	52	2	54
H_2		8	8	8	8	0	8
CH ₃ OH		1	1	1	1	0	1
SO ₂		0	0	0	0	0	0
Particulates		0	0	0	0	0	0
TOTAL							
MASS							
FLOW	kg/hr	59,846	59,846	59,846	59,846	2,237	62,083
Temperature	°C	30.0	119.6	116.4	100.8	40.0	93.3
Pressure	bar(a)	2.01	5.61	12.51	23.68	23.68	41.2

Stream Tables Scenario 4

		RECYCLE		FIFTH	SIXTH	SEVENTH	SEVENTH
From:		COOLERKODRUM	DEHYDRATOR	COMPRESSOR	COMPRESSOR	COMPRESSOR	COOLER
			FIFTH	FIFTH	SIXTH	SEVENTH	
To:		WASTE WATER	COMPRESSOR	COOLERKODRUM	COOLERKODRUM	COOLERKODRUM	OUTLET CO2
Service:		BOTTOMS	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID
Phase:		LIQUID	VAPOUR	VAPOUR	DENSE PHASE	DENSE PHASE	DENSE PHASE
Stream							
Number:		7	8	9	10	11	12
Mass Flow	kg/hr						
CO_2		0	59,757	59,757	59,757	59,757	59,757
CH ₄		0	1	1	1	1	1
СО		0	2	2	2	2	2
H₂O		21.6	3	3	3	3	3
H₂S		0	0	0	0	0	0
NŌ		0	0	0	0	0	0
0 ₂		0	0	0	0	0	0
N_2		0	52	52	52	52	52
H_2^-		0	8	8	8	8	8
CH ₃ OH		0	1	1	1	1	1
SO ₂		0	0	0	0	0	0
Particulates		0	0	0	0	0	0
TOTAL							
MASS							
FLOW	kg/hr	22	59,824	59,824	59,824	59,824	59,824
Temperature	°C	40.0	40.3	96.6	67.6	44.3	40.0
Pressure	bar(a)	23.7	40.0	71.5	98.1	110.2	110.0

Description	Value
Number of trains of compression	1
Number of compressor frames	2
Number of compressor sections	7
Source vol % CO ₂	99.5
CO ₂ for transportation (tonnes/year)	501,961
Total compressor electrical power requirement (MWe)	5.03
Total electrical power requirement of compression cooling water pumps (kWe)	38
Total Cooling water required (tonnes/hr)	1138.5
Total Capture plant site area required (m ²)	4550
	CO ₂ – 99.6
$O_{\rm rel}$	H ₂ O – 0.005
Output CO2 Stream conditions (V01%)	N ₂ – 0.14
	$H_2 - 0.29$

Simulation Results

Scenario 4 – Equipment list

Summary			Equipment Sizing outputs				£	%
Compressor frame	Electrical Duty (MWe)	5.0					3,329,105	50.5
Heat exchanger	Range of heat exchanger heat transfer area (m ²)	3-116	Number of shell and tube exchangers/double pipe exchangers	7/1	Operating pressure ranges bar(a)	5-110	267,173	26.6
Knockout drums	Number of knockout drums	5	Range of mass of steel required for construction (kg)	120-1418	5		146,991	6.2
Electric Drives	Electrical Duty (MWe)	5.0					177,518	3.4
Dehydrator	Water capacity (kg/hr water adsorbed)	25.13	8				322,006	2.5
Pumps	Electrical Duty (kWe)	38.3					73,272	1.7
Total equipment purchase cost (PCE)							4,316,066	

Description	£	% of PCE
Equipment purchase cost breakdown		
Compressor frame	3,329,105	50.5
Heat exchanger	267,173	26.6
Knockout drums	146,991	6.2
Electric Drives	177,518	3.4
Dehydrator	322,006	2.5
Pumps	73,272	1.7
Total equipment purchase cost (PCE)	4,316,066	

Simulation Results Scenario 4 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		4,316,066
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		13,811,410
Contingency	30	
Design and engineering	30	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		26,697,455

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and Overheads	5% of Fixed Capital	1,334,873
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	133,487
Compressor electrical power cost		3,093,281
Cooling water pumps power cost		23,554
Dehydrator heating costs		31,933
Utilities - Cooling water costs		218,931
Total Variable costs		3,501,187
OPEX		4,836,060

Scenario 5 Process Simulation Dense phase, large (2Mt CO₂/year)

Scenario 5 Process Simulation

Inputs – Scenario 5

- One CO₂ compressor train
- 2MT CO₂/year
- 99.5 vol% CO_2 at inlet
- 1bar(g) inlet pressure
- 110bar(a) discharge pressure
- 30°C inlet temperature
- Interstage cooling target 40°C
- 80Hz compressor frame speed
- Dehydrator moisture specification 50ppm
- Cooling water temperature is assumed to be 25°C

Stream Tables Scenario 5

			FIRST	SECOND	THIRD	RECYCLE	FOURTH
From:		CO2 SOURCE	COMPRESSOR	COMPRESSOR	COMPRESSOR	COOLERKODRUM	COMPRESSOR
		FIRST	FIRST	SECOND			FOURTH
To:		COMPRESSOR	COOLERKODRUM	COOLERKODRUM	RECYCLE MIXER	RECYCLE MIXER	COOLERKODRUM
Service:		CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID
Phase:		VAPOUR	VAPOUR	LIQUID	VAPOUR	VAPOUR	VAPOUR
Stream							
Number:		1	2	3	4	5	6
Mass Flow	kg/hr						
CO ₂		239,029	239,029	239,029	239,029	8,926	247,955
CH ₄		4	4	4	4	0	5
CO		8	8	8	8	0	8
H₂O		98	98	98	98	14.1	112.5
H ₂ S		0	0	0	0	0	0
NÖ		0	0	0	0	0	0
0 ₂		0	0	0	0	0	0
N_2		206	206	206	206	8	214
H_2		32	32	32	32	1	33
		4	4	4	4	0	4
SO ₂		0	0	0	0	0	0
Particulates		0	0	0	0	0	0
TOTAL MASS							
FLOW	kg/hr	239,382	239,382	239,382	239,382	8,950	248,332
Temperature	°Č	30.0	117.2	113.7	98.9	40.0	92.0
Pressure	bar(a)	2.01	5.61	12.51	23.68	23.68	41.2

		RECYCLE		FIFTH	SIXTH	SEVENTH	
From:	_	COOLERKODRUM	DEHYDRATOR	COMPRESSOR	COMPRESSOR	COMPRESSOR	SEVENTH COOLER
			FIFTH	FIFTH	SIXTH	SEVENTH	
То:		WASTE WATER	COMPRESSOR	COOLERKODRUM	COOLERKODRUM	COOLERKODRUM	OUTLET CO2
Service:		BOTTOMS	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID
Phase:		LIQUID	VAPOUR	VAPOUR	DENSE PHASE	DENSE PHASE	DENSE PHASE
Stream Number:		7	8	9	10	11	12
Mass Flow	kg/hr						
CO ₂		0	239,029	239,029	239,029	239,029	239,029
CH₄		0	4	4	4	4	4
СО		0	8	8	8	8	8
H₂O		86.4	12	12	12	12	12
H₂S		0	0	0	0	0	0
NO		0	0	0	0	0	0
0 ₂		0	0	0	0	0	0
N ₂		0	206	206	206	206	206
H ₂		0	32	32	32	32	32
CH ₃ OH		0	4	4	4	4	4
SO ₂		0	0	0	0	0	0
Particulates		0	0	0	0	0	0
TOTAL MASS							
FLOW	kg/hr	87	239,296	239,296	239,296	239,296	239,296
Temperature	°C	40.0	40.3	95.5	67.0	44.3	40.0
Pressure	bar(a)	23.7	40.0	71.5	98.1	110.2	110.0

Description	Value
Number of trains of compression	1
Number of compressor frames	2
Number of compressor sections	7
Source vol % CO ₂	99.5
CO_2 for transportation (tonnes/year)	2,007,840
Total compressor electrical power requirement (MWe)	19.35
Total electrical power requirement of compression cooling water pumps (kWe)	150
Total Cooling water required (tonnes/hr)	4464.0
Total Capture plant site area required (m ²)	4550
	CO ₂ – 99.6
	H ₂ O – 0.005
Output CO2 stream conditions (V01%)	N ₂ – 0.14
	$H_2 - 0.29$

Simulation Results Scenario 5 – Equipment list

Summary			Equipment Sizing outputs				£	%
Compressor frame	Electrical Duty (MWe)	19.4					6,551,213	49.5
Heat exchanger	Range of heat exchanger heat transfer area (m ²)	12-467	Number of shell and tube exchangers/double pipe exchangers	7/1	Operating pressure ranges bar(a)	5-110	619,785	23.4
Knockout drums	Number of knockout drums	5	Range of mass of steel required for construction (kg)	138-8048			489,561	6.9
Electric Drives	Electrical Duty (MWe)	19.4					334,844	5.4
Dehydrator	Water capacity (kg/hr water adsorbed)	100.52					688,841	2.6
Pumps	Electrical Duty (kWe)	150.2					302,883	1.2
Total equipment purchase cost (PCE)							8,987,128	

Description	£	% of PCE
Equipment purchase cost breakdown		
Compressor frame	6,551,213	49.5
Heat exchanger	619,785	23.4
Knockout drums	489,561	6.9
Electric Drives	334,844	5.4
Dehydrator	688,841	2.6
Pumps	302,883	1.2
Total equipment purchase cost (PCE)	8,987,128	

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		8,987,128
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		28,758,809
Contingency	30	
Design and engineering	30	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		55,590,777

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and Overheads	5% of Fixed Capital	2,779,539
Variable Costs		
	10% of maintenance	
Miscellaneous materials cost	costs	277,954
Compressor electrical power cost		12,306,994
Cooling water pumps power cost		95,513
Dehydrator heating costs		128,454
Utilities - Cooling water costs		858,448
Total Variable costs		13,667,362
OPEX		16,446,901

Scenario 6 Process Simulation Dense phase, low purity CO₂ (0.5Mt CO₂/year)

Scenario 6 Process Simulation

Inputs – Scenario 6

- One CO₂ compressor train
- 0.5MT CO₂/year
- 95 vol% CO₂ at inlet
- 1bar(g) inlet pressure
- 110bar(a) discharge pressure
- 30°C inlet temperature
- Interstage cooling target 40°C
- 80Hz compressor frame speed
- Dehydrator moisture specification 50ppm
- Cooling water temperature is assumed to be 25°C

_			FIRST	SECOND	THIRD	RECYCLE	FOURTH
From:		CO2 SOURCE	COMPRESSOR	COMPRESSOR	COMPRESSOR	COOLERKODRUM	COMPRESSOR
_		FIRST	FIRST	SECOND			FOURTH
To:		COMPRESSOR	COOLERKODRUM	COOLERKODRUM	RECYCLE MIXER	RECYCLE MIXER	COOLERKODRUM
Service:		CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID
Phase:		VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR	VAPOUR
Stream							
Number:		1	2	3	4	5	6
Mass Flow	kg/hr						
		61,192	61,192	61,192	61,192	2,285	63,477
CH_4		0	0	0	0	0	0
CO		0	0	0	0	0	0
H₂O		1,055	1,055	363	169	66.9	101.8
H₂S		0	0	0	0	0	0
NO		0	0	0	0	0	0
0 ₂		0	0	0	0	0	0
N ₂		410	410	410	410	15	425
H ₂		0	0	0	0	0	0
CH₃OH		0	0	0	0	0	0
SO ₂		0	0	0	0	0	0
Particulates		0	0	0	0	0	0
TOTAL MASS	 						
FLOW	kg/hr	62,657	62,657	61,965	61,770	2,367	64,004
Temperature	°C	30.0	90.2	116.5	100.9	200.8	93.4
Pressure	bar(a)	2.01	5.61	12.51	23.68	23.68	41.2

		FOURTH		FIFTH	SIXTH	SEVENTH	
From:		COOLERKODRUM	DEHYDRATOR	COMPRESSOR	COMPRESSOR	COMPRESSOR	SEVENTH COOLER
_			FIFTH				
10:		DEHYDRATOR	COMPRESSOR	FIFTH COOLER	SIXTH COOLER	SEVENTH COOLER	OUTLET CO2
Service:		CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID	CO2 FLUID
Phase:		VAPOUR	VAPOUR	VAPOUR	DENSE PHASE	DENSE PHASE	DENSE PHASE
Stream Number:		7	8	9	10	11	12
Mass Flow	kg/hr						
CO ₂		63,477	61,192	61,192	61,192	61,192	61,192
CH₄		0	0	0	0	0	0
СО		0	0	0	0	0	0
H₂O		70.0	3	3	3	3	3
H₂S		0	0	0	0	0	0
NŌ		0	0	0	0	0	0
0 ₂		0	0	0	0	0	0
N ₂		425	410	410	410	410	410
H_2^-		0	0	0	0	0	0
		0	0	0	0	0	0
SO ₂		0	0	0	0	0	0
Particulates		0	0	0	0	0	0
TOTAL MASS							
FLOW	ka/hr	63.972	61.605	61.605	61.605	61.605	61.605
Temperature	°Č	40.0	42.5	99.1	67.7	44.6	40.0
Pressure	bar(a)	41.0	40.0	71.5	98.1	110.2	110.0

Description	Value
Number of trains of compression	1
Number of compressor frames	2
Number of compressor sections	7
Source vol % CO ₂	95.0
CO ₂ for transportation (tonnes/year)	514,012
Total compressor electrical power requirement (MWe)	4.76
Total electrical power requirement of compression cooling water pumps (kWe)	40
Total Cooling water required (tonnes/hr)	1177.2
Total Capture plant site area required (m ²)	4550
	CO ₂ – 99.0
Output CO_{2} atraces conditions (val())	H ₂ O – 0.005
Output CO2 stream conditions (vol%)	N ₂ – 1.0
	$H_2 - 0.0$

Simulation Results Scenario 6 – Equipment list

Summary			Equipment Sizing outputs				£	%
Compressor frame	Electrical Duty (MWe)	4.8					3,263,257	47.5
Heat exchanger	Range of heat exchanger heat transfer area (m ²)	36-114	Number of shell and tube exchangers/double pipe exchangers	7/0	Operating pressure ranges bar(a)	5-110	238,583	26.5
Knockout drums	Number of knockout drums	4	Range of mass of steel required for construction (kg)	1322-1447			136,376	5.4
Electric Drives	Electrical Duty (MWe)	4.8					177,326	3.1
Dehydrator	Water capacity (kg/hr water adsorbed)	66.95					523,295	2.4
Pumps	Electrical Duty (kWe)	39.6					69,024	1.7
Total equipment purchase cost (PCE)							4,407,861	

Description	£	% of PCE
Equipment purchase cost breakdown		
Compressor frame	3,263,257	47.5
Heat exchanger	238,583	26.5
Knockout drums	136,376	5.4
Electric Drives	177,326	3.1
Dehydrator	523,295	2.4
Pumps	69,024	1.7
Total equipment purchase cost (PCE)	4,407,861	

Simulation Results Scenario 6 - Capital Expenditure

Description	Factor (%)	Cost (£) (Q3 2013)
Total purchase cost (PCE)		4,407,861
Supply of materials		
Foundations and paving	10	
Platforms and supporting	15	
Buildings		
Piping	60	
Insulation and fireproofing	25	
Electrical	5	
Painting cleaning		
Testing and miscellaneous	3	
Transport and installation		
Transport and installation of equipment	10	
Installation of materials	72	
US prices to European	20	
Total Plant installed capital cost		14,105,156
Contingency	30	
Design and engineering	30	
Indirect cost (project management,		
permitting, taxes)	33.3	
Total fixed capital cost		27,265,267

Description		£/year
Fixed Costs		
Maintenance, Staff, Insurance and Overheads	5% of Fixed Capital	1,363,263
Variable Costs		
Miscellaneous materials cost	10% of maintenance costs	136,326
Compressor electrical power cost		2,926,391
Cooling water pumps power cost		24,356
Dehydrator heating costs		32,542
Utilities - Cooling water costs		226,384
Total Variable costs		3,345,999
OPEX		4,709,263

Comparison of costs between scenarios

	Baseline Scenario #1	Sensitivity "Gas phase, Pilot" (Scenario #2)	Sensitivity "Gas phase, Large scale" (Scenario #3)	Sensitivity "Dense phase, Baseline" (Scenario #4)	Sensitivity "Dense phase, large scale" (Scenario #5)	Sensitivity "Dense phase, low purity CO ₂ " (Scenario #6)
Source CO ₂	0.5 Mt/yr	0.1 Mt/yr	2 Mt/yr	0.5 Mt/yr	2 Mt/yr	0.5 Mt/yr
Equipment cost	£3m	£1.5m	£6m	£4m	£9m	£4m
Total fixed cost	£15m	£8m	£32m	£22m	£47m	£23m
Annual opex (incl. energy)	£5m/yr	£1m/yr	£13m/yr	£5m/yr	£16m/yr	£5m/yr
Power /MW _e	4.2	0.89	16.4	9.6	37.5	9.9

Outline

- Overall Project Methodology
- CO₂ capture technologies
- CO₂ sources
- Techno-economic analysis of industrial CO₂ capture
- Process simulation case studies
- CO₂ utilisation review

Approach to the CO₂ utilisation work-stream

WP2 technology review based on latest information on CCU technology:

- Recent global studies on CCU (e.g. Carbon Sequestration Leadership Forum (CSLF), 2011. Phase I Final Report by the CSLF Task Force on CO₂ Utilization; CSLF, 2013 Phase II Final Report; and Global Carbon Capture and Storage Institute (GCCSI), 2011. Accelerating the uptake of CCS: Industrial use of captured CO₂)
- Academic literature (extensive body; largely based around early R&D activities)
- Company information (e.g. project and process info from start-ups and multinationals)
- Press and trade assoc. (project info within trade and specialised press, and various trade groups)
- CCU technology networks and activities (e.g. CO2chem; International Conference on Carbon Dioxide Utilization (ICCDU); Foreseeing a future using CO₂ (4CU); Supercritical CO₂ Power Cycle Symposium (SCO2PCS))

Data limitations and challenges:

- Majority of CCU technologies are at early R&D stages (TRL 1-3); much technical information but limited to small-scale lab tests with little or no economic data
- For more mature uses of CO₂ (other than EOR), almost all cost data is confidential
- Performance and (limited) cost data published by companies typically not supported by key assumptions, boundary systems etc; optimistic claims also need to be viewed with some caution and objectivity!
- Recently started projects should improve the dataset (for some CCU technologies) but have yet to report (e.g. EC-JRC study, Smart CO₂ transformation (SCOT)
- Stakeholder consultation aims to uncover any further sources of relevant data

Context: What is CCU?

Project considers both CO_2 utilisation (involving conversion) and CO_2 uses (excl. EOR)

Drivers for considering CCU in the UK:

- Support UK industrial innovation and competitiveness
 - Action #2 of the Government's approach to Industrial Strategy¹ is to support emerging technologies
 - Report on UK competitiveness report 'No Stone Unturned' support for new tech.
 - CCU identified as one of the Top 10 emerging technology trends by the WEF²
- Emergence of new techniques to convert CO₂ to high value products (i.e. use of waste material for commercial production)
- Ability to enhance energy security and support renewable energy (including energy storage/link to UK offshore wind strategy etc)
- Concerns over CCS value-chain costs/lack of progress (CCU as a support to CCS)

Challenges and barriers:

- Low activation state, therefore need for energy + catalysts = costs, additional energy and emissions; various other barriers depending upon product/sector/market
- Focus of R&D across most pre-commercial CCU applications is therefore around increasing process efficiency and energy optimisation; also need for scale-up to demonstration technology improve economics

1. 'Using Industrial Strategy to help the UK economy and business compete and grow' (BIS, Sept 2012)

2. Global Agenda Council on Emerging Technologies 2012-2014, World Economic Forum

Who is involved in CCU development?

• Geographical factors play an important role in determining interest/potential for many CCU technologies (e.g. climate, material/energy availability etc.)

What is the current status of CCU technology?

CCU category	CCU technology	Research	Demon- stration	Economically feasible under certain conditions	Mature market	
	Hydrogen (renewable methanol)					
	Hydrogen (formic acid)					
CO ₂ to fuels	Algae (to biofuels)					
	Photocatalytic processes					Urea and
	Nanomaterial catalysts					, EOR
Enhanced	Power cycles (using scCO ₂)					accounts
production	Enhanced production (urea; methanol)				for almost	
Enhanced	Miscible/immiscible floods (CO ₂ -EOR)					t_0 date
hydrocarbon	Miscible/immiscible floods (CO ₂ -EGR)					
recovery	Sorption-based displacement (ECBM)					giobally
	Carbonate mineralisation	ite mineralisation			1	
CO ₂ mineralisation	CO ₂ concrete curing					1
	Bauxite residue carbonation					1
Chemicals production	Sodium carbonate					
	Polymers					1
	Other chemicals (e.g. acetic acid)					
	Algae (for chemicals)]

Main activities Some activities

Source: Ecofys/Carbon Counts

CCU and climate policy: various routes to GHG reduction

- Wide range of potential CO₂ abatement effects across options + project settings
- GHG LCA impacts dependent upon range of factors e.g. energy source; products etc
- MRGs no longer allow transfers to be deducted from inventory; however, scope exists to include *"...future innovations"* to allow new pathways for CCU to be opted-in to EU ETS

Economic factors affecting CCU

Which CCU options could be of greatest applicability to the UK through 2025?

Traffic-light assessment of 'long-list' based on 3 key areas:

- A. Technology development and performance
 - Technology readiness level (TRL)
 - Energy performance (including energy storage potential)
 - Abatement potential (e.g. permanent vs. temp. storage; fossil fuel substitution)
 - Environmental, heath and safety factors/concerns (non-GHG)
- B. Economic and commercial potential
 - Uptake potential (size of potential market)
 - Economic potential (various cost factors and market competition)
 - Commercial barriers

C. Applicability to the UK

- Markets and sectors
- Geography, raw materials and other physical factors
- Alignment with UK suppliers and R&D efforts/programmes

Results of assessment

			CRITERIA			
CCU category	Technology/application	A. Technology development and performance	B. Economic and commercial potential	C. Applicability to the UK	Selection?	
	Renewable methanol and methane production	TRL 4-8			YES	
	Formic acid production	TRL 5			NO	
	Algae cultivation	TRL 3-5			NO	
	Helioculture	TRL 3			NO	
CO ₂ to fuels	Counter Rotating Ring Receiver Reactor Recuperator	TRL 3			NO	
	Photocatalytic reduction of CO ₂ (metallic)	TRL 3			NO	
	Photocatalytic reduction of CO ₂ (non- metallic)	TRL 3			NO	
	Nanomaterial catalysts	TRL 2-3			NO	
	Enhanced Geothermal System with CO ₂	TRL 4			NO	
Enhanced commodity production	Supercritical CO ₂ power cycles	TRL 3			NO	
	Urea yield boosting	TRL 9			NO	
	Methanol yield boosting (conventional)	TRL 9			NO	
	Mineral carbonation	TRL 3-7			YES	
CO minoralisation	Sodium bicarbonate	TRL 6			NO	
	CO ₂ concrete curing	TRL 5			NO	
	Bauxite residue carbonation	TRL 8			NO	
CO as chomicals foodstock	Polymer processing (polycarbonates)	TRL 3-5			YES	
	Polymer processing (polyurethanes)	TRL 3-5			YES	
	Food and beverage applications	TRL 9			YES	
Other existing commercial applications	Horticulture	TRL 9			YES	
	Other Industrial and technical uses	TRL 9			YES	

Renewable methanol 🗸

- Brief description: Electrolysis of water to produce hydrogen, which is then combined with CO₂, compressed and reacted over a catalyst to produce methanol and water. Methanol can be blended with gasoline into various grades of transport fuel. Energy provided by renewable energy source offers potential for low-carbon fossil fuel substitution combined with renewable energy storage. Various process routes and hydrocarbon products via syngas can be achieved e.g. MBE.
- Technology status: Currently operating on commercial scale in Iceland, albeit under specific circumstances (surplus renewable energy + high fuel import prices).
- Technology providers/R&D efforts: Carbon Recycling International (Iceland); Haldor Topsoe (Denmark); various R&D programmes worldwide/UK into use of catalysts
- Economic and market factors: Economics are highly dependent upon relative costs of renewable energy source and (conventional) fossil-based transport fuel. Support for and regulation of alternative transport fuels (EU & UK level) is a key market factor
- Key barriers and challenges: Developing markets for methanol; ongoing reduction of capital costs through scale-up and increasing process efficiency
- UK perspective: Likely to be of most potential applicability to UK, in view of e.g. very large challenges to hydrogen energy (e.g. via CO₂ to formic acid) and algae (limited role in UK). Potential link to UK offshore wind strategy etc.

Mineral carbonation 🖌

- Brief description: CO₂ is reacted with minerals mostly calcium or magnesium silicates to form (Ca or Mg) carbonates (e.g. limestone) for use in building materials with storage of industrial CO₂. Unlike with other uses of CO₂, the process can work directly from flue gas (i.e. no capture step required).
- Technology status: Various process routes, all currently at pre-commercial stage
- Technology providers/R&D efforts: Calera (USA), Skyonic Corporation (USA), Bechtel (USA), Capitol Aggegrates Ltd (USA), Polarcus (Global), Novacem (now aquired by Calix) (UK) Cambridge Carbon Capture (UK), University of Sheffield (UK), Åbo Akademi University (Finland); Innovation concepts BV (Netherlands); Carbon-8 (UK);
- Economic and market factors: Existing market demand for low-carbon building products, subject to meeting regulatory/standard product requirements
- Key barriers and challenges: Achieving acceptable carbonation reaction rates remains key challenge to commercial scale-up
- UK perspective: Significant UK activity and industry collaboration; ETI study indicates UK has significant mineral deposits for commercial scale productions; use of industrial waste in manufacture has been demonstrated in UK e.g. Carbon-8

Polymer processing ✓

- Brief description: Use of captured CO₂ in combination with traditional feedstocks to synthesise polymers such as polypropylene carbonate (PPC) and polyethylene carbonate (PEC) for use in various products and applications.CO₂ can also be used as a feedstock in the polymerisation of urethanes to produce polyurethanes.
- Technology status: Remains at pre-commercial stage with only small-scale demonstration to date (using a batch reactor). Significant industry involvement with first commercial applications expected within the next five years.
- Technology providers/R&D efforts: Industry: Bayer DREAM project (Germany), BASF (Germany), RWE (Germany); R&D efforts incl: Coates Group, part of Cornell University (USA), Novomer Ltd (USA), Kodak Speciality Chemicals (USA), Praxair (USA), Albermarle Corporation (USA) and Eastman Kodak (USA)
- Economic and market factors: Costs remain prohibitive compared to conventional polymers; significant market size globally with strong growth outlook
- Key barriers and challenges: Costs and existing polymer products on market
- UK perspective: Major funding is currently in Germany and the US; however, various ongoing R&D activities exist within UK, UK has large chemicals knowledge capacity, and existing efforts (e.g. DREAM) look to expand to other regions/sites

Existing commercial uses of CO_2 \checkmark

- Brief description: in addition to EOR and urea manufacture, CO₂ is currently used across a wide range of smaller-scale sectors and applications including food and beverages, horticulture, pharmaceuticals, pulp and paper processing, water treatment, steel manufacture, electronics, pneumatics and welding. CO₂ is also used as a refrigerant gas and for fire suppression.
- Technology status: Established commercial usage across a range of sectors, either to industrial grade (>99% conc.) or food grade (>99.9% conc.).
- Technology providers/R&D efforts: Product CO₂ provided by large range of companies including e.g. Linde/BOC, Air Liquide, Air Products, Praxair, Messer.
- Economic and market factors: Costs of production highly dependent upon process/source, production volumes and purity requirements. Established market limited in size, and with existing market suppliers.
- Key barriers and challenges: Costs of capture and delivery; existing market players.
- UK perspective: There is demand for CO₂ across various sectors and sites, albeit with limited overall volumes. Some latent demand for close-proximity CO₂ supply may exist in some local industrial settings.

Stakeholder consultation on CCU aspects of study:

• Views, information and feedback sought through (b) interim results workshop/meeting; (b) CCU questionnaire; and (c) follow-up communications

Questionnaire sent to around 20 stakeholders (CCU tech providers, industry, academia)

- Feedback sought on the CCU technology 'long list' and assessment criteria
- Views on the potential for CCU in the UK; what are the drivers? which sectors? etc
- What are the key challenges and opportunities for CCU deployment?

Results of consultation

- Broad support for the technology 'long list', the assessment approach criteria, and the resulting 'short list'; renewable methane production added, following feedback from 2 stakeholders
- General view that CCU had some market potential within the next decade, with greatest potential over the longer term
- The role of renewable energy, and its potential alignment with some CCU technologies, was highlighted in several responses

CCU Stakeholder consultation

Stakeholders asked to rank obstacles to CCU deployment in UK (3 = critical; 1 = weak):

Obstacle	Response A	Response B	Response C	Response D	GROUP AV.
Cost factors	3	3	2	3	2.75
Insufficient support/incentives	3	2	3	2	2.5
Regulatory uncertainty	1	2	1	3	1.75
Low understanding of CO ₂ utilisation technology	1	1	2	2	1.5
Unproven technology	2	3	1	2	2
Inability to demonstrate GHG benefits	1	3	1	1	1.5
Insufficient technical skills and know-how	2	2	2	2	2
Low suitability to UK industry/sectors	2	2	1	1	1.5
Undeveloped markets for CO ₂ -using products	3	2	1	3	2.25
High energy (or input) requirements	2	3	2	2	2.25
Integration within existing industrial processes	3	2	1	3	2.25

- Broad consensus that cost factors and lack of incentives were key obstacles
- In general, UK applicability and understanding of technology not seen as obstacles
- Less consensus around market and regulatory factors; mixed views

CCU Deployment scenarios

- Illustrative scenarios of CCU deployment in the UK developed for the selected applications/technologies (the short list)
- Objective: to describe, at a high level, a viable range of CCU deployment in 2025 in terms of industrial CO₂ utilised (million tonnes CO₂ per year) and potential revenues from CCU products (million £ per year)
- CCU technology modelled against the data for UK industrial CO₂ sources; illustrative CCU products chosen (a wider range of competing processes and products in reality)
- Three scenarios (*see next slide*) then present three progressively ambitious outlooks, or pathways, for UK uptake of CCU technology through 2025...
- Very high scenario can be considered at the very upper end of what would be feasible by 2025, given the current low-zero level of deployment within the UK (other than small-scale R&D lab and pilot efforts)
- Even the **moderate** scenario would entail significant technology progress, policy support and/or favourable market development for CCU products over the next decade; should therefore not to be interpreted as a 'business as usual' type scenario
- **High scenario** is considered to be illustrative of what could be achievable given significant support environment for CCU, both in terms of *market push factors* (e.g. regulatory and financial support) and *market pull factors* (e.g. demand for CCU products, product price increases, carbon pricing incentives)
- Note that the low scenario, corresponding to negligible CCU, is not shown.

CCU Deployment scenarios

CCU uptake in 2025	CCU application						
	Renewable methanol	Renewable methane	Mineral carbonation	Polycarbonates	Industrial product CO ₂		
Very high	10% penetration of the UK road transport petroleum market in 2025. Equivalent to around 2.75 million tonnes annual methanol production (roughly one third of current methanol fuel blending globally, and around 4-7 commercial scale plants) using around 3.75 million tCO ₂ p.a.	5% penetration of the UK natural gas power generation market (on an energy basis). Equivalent to around 11 TWh (approx. 1 billion m ³) annual methane production and around 1.8 million tCO ₂ utilisation.	Up to 50% of the UK's cement sector emissions used for mineral carbonation products. 10% of magnesite production ⁽³⁾ is used in early-stage high value industrial applications; 90% is used in lower value bulk markets such as lime, filler etc. Up to 10% of bi-product APS production potential realised. ⁽⁴⁾	1-2 commercial-scale plants by 2025 with capacity of approx. 300,000 tonnes p.a. PEC or PPT, utilising industrial CO ₂ of approx. 150,000 tCO ₂ p.a. Represents just 4% of the current PE market in Europe - although considerable obstacles face development of PEC production, and investor confidence, within the UK.	Assumes 20% market growth through 2015-2025, based on estimated current demand of 200,000- $300,000 \text{ tCO}_2 \text{ p.a.}$ (i.e. additional demand of $50,000 \text{ tCO}_2 \text{ p.a.}$ across a range of sectors and applications e.g. beverages, horticulture, electronics, waste water, speciality chemicals.		
High	5% penetration of the UK road transport petroleum market. Equivalent to around 1.37 million tonnes annual methanol production and around 1.9 million tCO ₂ utilisation p.a. (2-4 commercial scale plants).	1 commercial-scale plant operational by 2025 with production capacity of approx. 15 million m ³ utilising industrial CO_2 from on-site or other nearby CO_2 sources of approx. 30,000 tCO2 p.a.	Up to 25% of the UK's cement sector emissions utilised. 5% of magnesite production is used in early-stage high value industrial applications and only 5% of APS production potential is able to find a market (60-70,000 t).	1 commercial-scale plant by 2025 with production capacity of approx. 100,000 tonnes p.a. PEC or PPT, utilising industrial CO_2 of approx. 50,000 tCO ₂ p.a. Represents less than 2% of the current European PE market.	10% market growth through 2015-2025 i.e. additional demand of 25,000 tCO ₂ p.a. across a range of sectors and applications.		
Moderate	1 commercial-scale plant operational in the UK by 2025 with capacity of approx. 50 million litres utilising industrial CO_2 from on-site or other nearby CO_2 sources of approx. 55,000 t CO_2 p.a. ⁽¹⁾	Pilot scale pre-commercial production only (100,000 m ³ methane p.a., equal to the world's current largest pilot project in Germany) supplied by c.200 tCO ₂ p.a. (2)	Up to 10% of the UK's cement sector emissions utilised - equivalent to one typically sized cement plant of 0.6 MtCO ₂ per year. All magnesite production is used in bulk applications and APS production is unable to find a market outlet.	Pilot scale pre-commercial production only (e.g. 10,000 tonne product p.a.) supplied by 5,000 tCO ₂ p.a. Could operate as an R&D supported slip-stream CO ₂ source within a larger CCS project including geological storage.	5% market growth through 2015-2025 i.e. additional demand of 10-15,000 tCO_2 p.a. across a range of sectors and applications.		

Low scenario not shown – would involve negligible CCU. Note there is no assumed correlation with the CO_2 capture technology development scenarios in the period to 2025.

Scenario modelling assumptions: Renewable methanol

- Process description: Electrolysis of water to produce H₂, with subsequent catalytic conversion (~5MPa, ~225°C) of H₂ and CO₂ to methanol (CH₃OH) and water. For low-carbon fuel production (note that CO₂ is released upon fuel use), the process energy source would need to be from a renewable source.
- Product markets: Methanol blended with petrol for use as transport fuel. Current global production of methanol is around 40Mtpa (IMPCA, 2013); significant growth forecast with potential for M15 blends using as per China. However, methanol blending currently limited to 3% in EU: higher rates only allowed for bio-methanol under the RE Directive
- Product price range: European Methanol prices (FOB Rotterdam) were EUR 390/tonne in Q2 and Q3 2013, having varied from around EUR 150-500/tonne over the past 5 years (INEOS, 2014). Prices are forecasts to grow through 2014 with strong demand globally, particularly in Asia (ICIS, 2014). Range of <u>EUR 300-500/tonne</u> chosen.
- CO₂ utilisation rate: Methanol synthesis from CO₂ and H₂ (from electrolysis of water) converts 1 tCO₂ captured into (32.04g/mol)(44.01g/mol) t of methanol (CH₃OH) i.e. <u>0.728 t methanol/tCO₂</u>. Or, 1 tonne methanol requires 1.374 tCO₂ input.

Scenario modelling assumptions: Renewable methane

- Process description: The Sabatier reaction exothermically combines hydrogen and carbon dioxide to produce methane and water [CO₂ + 4H₂ = CH₄ + 2H₂O]. The reaction is usually carried out in the presence of a nickel catalyst. For low-carbon fuel production (note that CO₂ is released upon fuel use), the process energy source would need to be renewable.
- Product markets: Methane used in energy supply e.g. power generation, domestic and industrial applications. Strong demand for gaseous fuels forecast within UK, the EU and globally.
- Product price range: UK wholesale natural gas prices between 2007-2013 have trended between around 40 and 80 pence/therm. Future pricing will be determined by a range of unknown factors impacting regional and UK wholesale gas markets. DECC forecast UK gas prices in 2025 to be between 42.2 (low) and 105.4 (high) p/therm, with a central estimate of 73.8 p/therm (DECC, 2013). This range therefore chosen.
- CO₂ utilisation rate: Methane synthesis from CO₂ and H₂ (from electrolysis of water) converts 1 tCO₂ captured into (16.04 g/mol)(44.01g/mol) t of methane i.e. <u>0.364 t</u> <u>methane/tCO₂</u>

Scenario modelling assumptions: Mineral carbonation

- Process description: Conversion of magnesium silicate (olivine & serpentine) into brucite (Mg(OH)₂) and amorphous precipitated silica (APS). The brucite can then be used as an agent to store flue gas CO₂ in the form of solid magnesite (MgCO₃).⁽¹⁾
- Product markets: (1) Magnesite: has industrial uses in dry powder form e.g. as anticaking agent and fire retardant. Market for these high value applications is growing but limited to a few million tonnes p.a. globally. Larger bulk markets are as lime and as construction aggregates/fillers (competing here with limestone and dolomite, but with a market volume of several billion tonnes p.a. globally). (2) APS: High value product used as a rubber filler for tyres. Market size approx. 2 million tonnes p.a.
- Product price range: Value for high grade synthetic magnesite USD 500-1000; Lower value larger market applications in the range USD 10-300 e.g. cementitious material to blend with Portland cement, or for use as a custom binder material, or as aggregate, or a soil amendment (CSLF, 2012); APS sells at USD 500-1000 per tonne
- CO₂ utilisation rate: Based on serpentine, 1tCO₂ sequestered produces 1.916 t magnesite (based on 1.4 t magnesite per tonne brucite) and 0.91 APS; Based on olivine, 1tCO₂ sequestered produces 1.916 t magnesite (based on 1.4 t magnesite per tonne brucite) and 0.81 APS.

(1) data and assumptions based on process and market information provided by Cambridge Capture Company

Scenario modelling assumptions: Polycarbonates

- Process description: CO₂ used as feedstock for production of polycarbonates such as polypropylene carbonate and polyethylene carbonate (PEC), using a zinc-based catalyst in a reaction with epoxide molecules e.g. Novomer, US. (N.b. a variety of other process routes and end products have been proposed; Bayer has piloted production of polyether polycarbonate-polyols (PPP) used in production of high-grade plastic polyurethane).
- Product markets: Polymer coatings, plastic bags, laminates / coatings, surfactants for EOR, automotive and medical components. PEC market size in the U.S. 5 million tonnes/year (CSLF, 2012). The PEC market is of a similar size in the EU (PE = 17% of 47 Mt in 2012 according to PlasticEurope, 2012). PE production is forecast to rise to 125 Mt globally in 2025 (ICIS, 2013).
- Product price range: PEC price is around USD 1,000/tonne (CSLF, 2012); PE prices have since risen to as high as EUR 1,500/t in Europe (ICIS, 2014).
- CO₂ utilisation rate: 1 tCO₂ produces 2.32 t polypropylene carbonate based on Novomer polymers case study in GCCSI (2011).

Scenario modelling assumptions: Industrial product CO₂

- Process description: CO₂ sourced from various natural and industrial processes (e.g. ammonia plants, refineries, breweries, natural wells, and combustion sources) and subject to clean up to industrial grade (>99% CO₂ by volume or food grade (>99.9% CO₂ by volume).
- Product markets: Wide range of existing commercial applications across many industrial sectors including: food and beverages, horticulture, pharmaceuticals, pulp and paper, water treatment, electronics, fire suppression etc. Product CO₂ sold in various quantities and forms from small bottles/canisters on the retail market to larger bulk supply through bi-lateral contracts; provided by large range of companies including e.g. Linde, Air Liquide, Praxair, Messer, Yara. The market is limited and saturated by existing providers. Over 1MtCO₂ is theoretically available in the UK from high purity sources, but market understood to be mature with little/no latent demand.
- Product price range: Typical market price of treated CO₂ can range from EUR 60-300/tonne according to region, application, volume sold etc (Find, 2013).
- CO₂ utilisation rate: N/A

Annual UK industrial CO₂ supply and utilisation potential in 2025

- Very high scenario: 8-9 million tCO₂ utilised per year =15-20% of UK industrial emissions (or all chem. Industry CO₂)
- **High** scenario: falls to 3-4 million tCO₂ (approx. 7% of total emissions)
- **Moderate** scenario: around 0.5-0.7 million tCO₂ (approx. 1% of total emissions)
- **Low** scenario: *ca*. 0 MtCO₂/yr (not shown)

Annual UK industrial CO₂ supply and utilisation potential 2025

MtCO,	Total emissions	Available for CCU	
Cement	6.0	5.7	
I&S	20.4	13.3	
Refining	13.7	6.9	
Chemicals (pure CO2)	1.4	1.3	
Chemicals (CHP)	4.0	3.8	
Chemicals (other)	4.4	3.3	
TOTAL	49.9	34.3	

MtCO ₂	Very high uptake	High uptake	Moderate uptake	
Liquid fuels	3.8	1.9	0.0	
Gaseous fuels	1.8	0.0	0.0	
Mineral (bulk)	2.7	1.4	0.6	
Mineral (high value)	0.6	0.1	0.0	
Polycarbonates	0.2	0.1	0.0	
Product CO2	0.0	0.0	0.0	
TOTAL	9.0	3.5	0.6	

Annual revenue potential (market size) 2025 - low and high ranges

- Very high scenario: £1.3-3.4 billion
- High scenario: £0.5-1.3 billion
- Moderate scenario: £25-250 million
- Low scenario: £0 million (not shown)

- Under high scenario, assumes 10% market penetration by 2025 of current UK demand for motor spirit on energy basis (i.e. 10% * 13.23 million tonnes motor spirit in 2012 according to *Digest of UK Energy Statistics 2013*) * (32.4 MJ/litre motor spirit / 15.6 MJ/litre methanol)
- Product potential in 2025 therefore = <u>2.75 million tonnes methanol</u>
- Product price assumed = <u>300-500 EUR/tonne</u> (see earlier slides)
- Exchange rate (GBP:EUR) = <u>1.233</u> (DECC September 2013 version of the appraisal guidance)
- Therefore, potential revenue range estimated = (2.75*300/1.233)-(2.75*500/1.233)= <u>£669-1,114 million per year</u>
- In a low CCU scenario, there would be no revenues from CO₂ utilisation.

Annual revenue potential (market size) 2025 - low and high ranges

	Very hig	h uptake	High uptake		Moderate uptake	
£ million	low	high	low	high	low	high
Liquid fuels	668.6	1114.3	334.3	557.2	9.7	16.2
Gaseous fuels	153.7	384.0	2.3	5.8	0.0	0.0
Mineral (bulk)	33.1	992.5	17.5	523.8	7.4	220.6
Mineral (high value)	269.1	538.3	67.3	134.6	0.0	0.0
Polycarbonates	189.0	365.0	63.0	121.7	6.3	12.2
Product CO2	2.4	12.2	1.2	6.1	0.6	3.0
TOTAL	1316.0	3406.3	485.6	1349.1	24.0	252.0

- Potential revenues/value from CO₂ avoidance not included in analysis
- Net GHG benefits have not been assessed: further LCA-type assessment is needed based upon specific technologies/applications with e.g. defined scope and boundaries
- Costs have not been assessed: robust analysis would similarly require technology and setting-specific assessment
- Low scenario not shown, but would involve no additional uptake of CO₂ utilisation.

Renewable methanol

- Methanol Institute (2012); see <u>www.methanol.org</u>
- GCCSI (2011) Accelerating the uptake of CCS: Industrial use of captured CO2
- Carbon Recycling International, CRI (accessed 9 December 2013); see <u>www.carbonrecycling.is</u>
- John Hansen (2013). Production of transportation fuels via SOEC (presentation accessed 20 December 2013); see <u>http://www.co2-</u> <u>electrofuels.org/Links/~/media/CO2_electrofuels/pdf/10_key_technologies_fuel_synth</u> <u>esis.ashx</u>
- The Reykjavik Grapevine (28 February, 2012); see
 <u>http://grapevine.is/News/ReadArticle/Carbon-Recycling-In-Effect-Near-Blue-Lagoon</u>
- CSLF (2011). Phase I Final Report by the CSLF Task Force on CO2 Utilization
 Options
- International Methanol Producers and Consumers Association, IMPCA (accessed 9 December 2013); see <u>http://www.impca.be/en/about_methanol</u>
- DG Environment; see http://ec.europa.eu/environment/air/transport/fuel.htm

Formic acid

- GCCSI (2011) Accelerating the uptake of CCS: Industrial use of captured CO2
- Styring et al (2011) Carbon Capture and Utilisation in the green economy
- Kemira Oyj website (accessed 9 December 2013); see <u>http://www.kemira.com/en/Pages/default.aspx</u>
- Mantra Energy (accessed 7 December 2013); see <u>http://www.mantraenergy.com/Portals/MantraEnergy/pdf/articles/formic%20acid%20o</u> <u>pportunities.pdf; http://mantraenergy.com/mantra-energy/technology/erc-pilot-plant/</u>
- DNV (2011); see <u>http://www.dnv.com/binaries/dnv-position_paper_co2_utilization_tcm4-445820.pdf</u>
- Liquid Light (accessed 7 December 2013); see <u>http://llchemical.com/technology</u>
- Steel Times International March 2010, "An alternative to carbon sequestration: Electroreduction of CO2":<u>http://mantraenergy.com/pdf/Steel_times_international.pdf</u>
- Market Wired (accessed 9 December, 2013), see http://www.marketwired.com/press-release/-1671311.htm
- DNV (2011); see <u>http://www.dnv.com/binaries/dnv-position_paper_co2_utilization_tcm4-445820.pdf</u>
- CSLF (2011). Phase I Final Report by the CSLF Task Force on CO2 Utilization
 Options

Algae cultivation

- European Biofuels Technology Platform; Algae Task Force (accessed 1 December, 2013); see <u>http://www.biofuelstp.eu/algae.html</u>
- Pulz O., 2001, Photobioreactors: production systems for phototrophic microorganisms, Appl. Microbiol. Biotechnol., 57: 287-293.
- CSLF (2013), Final Phase II Report by the CSLF Task Force on CO2 Utilization Options, Carbon Sequestration Leadership Forum, October 2013
- Algenol (<u>www.algenolbiofuels.com</u>)
- Solazyme (<u>www.solazyme.com</u>)
- MDB Energy (<u>www.mdbenergy.com</u>)
- Solix (<u>www.solixbiofuels.com</u>)
- Eni (<u>http://www.eni.com/en_IT/attachments/innovazione-tecnologia/technological-answers/scheda-pt-biodiesel-da-alghe-rev-dic10-eng.pdf</u>
- Origin Oil (<u>www.originoil.com</u>)
- HR BioPetroleum (<u>www.hrbp.com</u>)
- Benemann, J. R. 1997, CO2 mitigation with microalgae systems, Energy Convers. Mgmt., 38: 475-479.

- Benemann, J. R. 2003, Biofixation of CO2 and greenhouse gas abatement using microalgae: technology roadmap. US Department of Energy, National Energy Technology Laboratory, and the International Energy Agency greenhouse Gas Abatement Programme
- Styring et al (2011) Carbon Capture and Utilisation in the green economy
- GCCSI (2011), Accelerating the uptake of CCS: Industrial use of captured CO2
- Muylaert, K. and Sanders, J., 2010. Inventarisatie Aquatische Biomassa: Vergelijking tussen algen en landbouwgewassen,. K.U.Leuven Campus Kortrijk, 17 pp. Studie uitgevoerd in opdracht van Agentschap NL.
- RWE (accessed 11 May, 20120); see <u>http://www.rwe.com/web/cms/mediablob/en/234586/data/213188/2/rwe-power-ag/innovations/coal-innovation-centre/rwes-algae-project/Brochure-RWEs-algae-project-.pdf</u>
- EnAlgae (27 August, 2013); see http://www.enalgae.eu/search.htm?q=tata&x=-1251&y=-104
- IEA (2009) Biomass Roadmap; see <u>http://www.ieabioenergy.com/LibItem.aspx?id=6826;</u>
- Schurr, U., 2009, 'CO2 utilisation on the basis of biological processes', in CO2 Utilisation Potential: Summary of the joint seminar of BMBF and Siemens 22 – 23 September 2009, Bonn

- Campbell, P.K.,, Beer, T. & Batten, D., 2009, 'Greenhouse Gas Sequestration by Algae – Energy and Greenhouse Gas Life Cycle Studies', Transport Biofuels Stream, CSIRO Energy Transformed Flagship, Melbourne, Australia.
- Huntley, M.E and Redalje, D.G., 2006. CO2 mitigation and renewable oil production from photosynthetic microbes: a new appraisal, in Mitigation and Adaptation Strategies for Global Change, Springer.
- Fernandez, A., Medina, A.R. and Chisti., Y., 2003, Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances 20: 491-515.
- Norsker, N-H, M.J. Barosa, M.H. Vermue and R.H.Wijffels, 2010, Microalgal production A close look at eth economics, Biotechnol. Adv., 29: 24-27.
- Bradford, T. and Kagan, J. (2009) The Economics of Biofuels Point to Near-Term Opportunities for Cellulosic Ethanol and Long-Term Ascendancy of Algal Biofuels.
- Emerging Market
- IEA (2009) Bioenergy A sustainable and reliable energy source, A review of status and prospects, IEA Bioenergy; see www.ieabioenergy.coms Online (Biodiesel to 2020 - A Global Market Sur
- IEA (2011) An Assessment of the Current Status and Potential for Algal Biofuels Production;http://www.task39.org/LinkClick.aspx?fileticket=esGoBD1Q9BY%3d&tabid =4348;vey; Algae 2020

- Harmelen, T., van, and H. Oonk, 2006, Microalgae biofixation processes: applications and potential contributions to greenhouse gas mitigation options. TNO Built Environment Geosciences.
- Passell, H. et al (2013) Algae biodiesel life cycle assessment using current commercial data, Journal of Environmental Management 129 (2013) 103e111
- Sander, K. and Murthy, G.S., 2010. Life cycle analysis of algae biodiesel Int J Life Cycle Assess (2010) 15:704–714
- Muylaert, K., and Sanders, J., 2010. Inventarisatie Aquatische Biomassa: Vergelijking tussen algen en landbauwgewassen. K.U. Leuven Campus Kortrijk, 17pp. Studie uitgevoerd in opdracht van Agentschap NL.

Helioculture

- GCCSI (2011) Accelerating the uptake of CCS: Industrial use of captured CO2
- Wall Street Journal (16 Oct, 2011); see <u>http://online.wsj.com/article/SB10001424052970204524604576610703305792650.ht</u> <u>ml?mod=WSJ_WSJ_News_JOURNALREPORTS7_2</u>
- Joule Unlimited website (accessed 2 December, 2013); see <u>www.jouleunlimited.com</u>
- Boston Business Journal (26 Jan 2012); see <u>http://www.bizjournals.com/boston/blog/startups/2012/01/joule-unlimited-raises-70m-round-in.html</u>
- Reuters (26 July, 2009); see <u>http://www.reuters.com/article/2009/07/27/us-biofuels-joule-idUSTRE56Q5P520090727</u>
- Technology Review (26 July, 2009); See <u>http://www.technologyreview.com/business/23073/</u>

Counter Rotating Ring Receiver Reactor Recuperator

- New Scientist (6 June, 2010); see http://www.newscientist.com/article/dn18993-green-machine-cars-could-run-on-sunlight-and-co2.html
- Phys.org (23 November, 2009); see http://phys.org/news178203219.html
- GCCSI (2011) Accelerating the uptake of CCS: Industrial use of captured CO2

Photocatalytic CO₂ split

- GCCSI (2011) Accelerating the uptake of CCS: Industrial use of captured CO2
- University of California (17 April 2007); see
 <u>http://ucsdnews.ucsd.edu/newsrel/science/04-07CO2split.asp</u>
- Joint Centre for Artificial Photosynthesis (JCAP) website accessed 10 December 2013; see <u>http://solarfuelshub.org/</u>
- Berkeley Lab News Centre (29 August, 2013); see <u>http://newscenter.lbl.gov/feature-stories/2013/08/29/hydrogen-fuel-from-sunlight/</u>
- Moore, G. et al, (2013) Photofunctional Construct That Interfaces Molecular Cobalt-Based Catalysts for H2 Production to a Visible-Light-Absorbing Semiconductor
- New Scientist (15 May, 2007); see http://www.newscientist.com/article/dn11390
- 4CU research network; see <u>http://4CU.org.uk</u>
- Frédéric Goettmann Dr., Arne Thomas Dr., Markus Antonietti Prof. (2007) Metal-Free Activation of CO2 by Mesoporous Graphitic Carbon Nitride, Angewandte Chemie International Edition Volume 46, Issue 15, pages 2717–2720, April 2, 2007

Photocatalytic CO₂ split

- GCCSI (2011) Accelerating the uptake of CCS: Industrial use of captured CO2
- University of California (17 April 2007); see
 <u>http://ucsdnews.ucsd.edu/newsrel/science/04-07CO2split.asp</u>
- Joint Centre for Artificial Photosynthesis (JCAP) website accessed 10 December 2013; see <u>http://solarfuelshub.org/</u>
- Berkeley Lab News Centre (29 August, 2013); see <u>http://newscenter.lbl.gov/feature-stories/2013/08/29/hydrogen-fuel-from-sunlight/</u>
- Moore, G. et al, (2013) Photofunctional Construct That Interfaces Molecular Cobalt-Based Catalysts for H2 Production to a Visible-Light-Absorbing Semiconductor
- New Scientist (15 May, 2007); see http://www.newscientist.com/article/dn11390
- 4CU research network; see <u>http://4CU.org.uk</u>
- Frédéric Goettmann Dr., Arne Thomas Dr., Markus Antonietti Prof. (2007) Metal-Free Activation of CO2 by Mesoporous Graphitic Carbon Nitride, Angewandte Chemie International Edition Volume 46, Issue 15, pages 2717–2720, April 2, 2007
Nanomaterial catalysis

- GCCSI (2011) Accelerating the uptake of CCS: Industrial use of captured CO2
- West Virginia Coal Assoc (14 April, 2012); see <u>http://www.wvcoal.com/Research-Development/usdoe-hires-penn-state-to-enable-co2-recycling.html</u>
- Nano letters Vol 9. No. 2 (2009); see <u>http://www.cuantaciencia.com/pdf/2009/CO2metano.pdf</u>
- Nanopatents and Innovations (16 May 2010) ;see <u>http://nanopatentsandinnovations.blogspot.co.uk/2010/05/organocatalysts-to-turn-carbon-dioxide.html</u>
- New Energy and Fuel (27 August, 2008); see <u>http://newenergyandfuel.com/http:/newenergyandfuel/com/2008/08/29/a-new-leading-process-for-co2-to-methanol</u>
- University of Bath Dept. of Chemistry website (accessed 10 December, 2013), Nano-Integration of Metal-Organic Frameworks and Catalysis for the Uptake and Utilisation of CO2; see <u>http://www.bath.ac.uk/chemistry/research/co2_removal/</u>
- Science20 (5 March, 2009); see <u>http://www.science20.com/news_releases/photocatalysis_using_solar_power_make_methane_carbon_dioxide</u>

- Oluwafunmilola Ola and Mercedes Maroto-Valer, 2013. Nanostructured Vanadium Based TiO2 Monoliths for CO2 Reduction. Centre for Innovation in Carbon Capture and Storage (CICCS), Heriot-Watt University, UK. ICCDU XII, Washington D.C. June 26, 2013.
- New Energy and Fuel (27 August, 2008); see <u>http://newenergyandfuel.com/http:/newenergyandfuel/com/2008/08/29/a-new-leading-process-for-co2-to-methanol</u>
- International Methanol Producers and Consumers Association; see <u>http://www.impca.be/en/about_methanol</u>

Enhanced Geothermal System with CO₂ (EGSCO₂)

- GCCSI (2011) Accelerating the uptake of CCS: Industrial use of captured CO2
- Stanford University, US (2011); see <u>http://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2011/apps.pdf</u>
- Brown, D., 2000. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, pp.233–238, Stanford University, Stanford, CA.
- Randolph et al, 2013. Wellbore Heat Transfer in CO2-based Geothermal Systems; <u>http://www.geo.umn.edu/orgs/geofluids/pubs/2012_RandolphAdamsKuehnSaar_GRC</u> <u>Transactions.pdf</u>
- GreenFire Energy/Enhanced Energy Resources <u>www.greenfireenergy.com</u>
- Geodynamics Limited/Origin Energy <u>www.geodynamics.com.au</u>
- Think Goe-energy (30 October, 2009); see http://thinkgeoenergy.com/archives/2826
- Kubik, M (ed.) 2006, The future of geothermal energy: Impact of Enhanced Geothermal Systems on the United States in the 21st Century, Massachusetts Institute of Technology, Massachusetts, US

Supercritical CO₂ power cycles

- Supercritical CO2 Power Cycles Symposium (2011); see <u>http://www.sco2powercyclesymposium.org/</u>
- NREL (2011); see http://www.nrel.gov/docs/fy11osti/50787.pdf
- Science Daily (4 March, 2011); see <u>http://www.sciencedaily.com/releases/2011/03/110304090459.htm</u>

Urea yield boosting

- GCCSI (2011), Accelerating the uptake of CCS: Industrial use of captured CO2
- Mitsubishi Heavy Industries Ltd 2008, 'Mitsubishi's carbon capture technology', Carbon Capture Journal, January-February 2008, pp. 24–26
- CSLF (2013), Final Phase II Report by the CSLF Task Force on CO2 Utilization Options, Carbon Sequestration Leadership Forum, October 2013
- IPCC (2005) Special Report on Carbon Dioxide Capture and Storage
- International Fertilizer Association 2013, accessed 10 December 2013; see http://www.fertiliser.org

Methanol yield boosting

- Methanol Institute (accessed 10 December 2013); see <u>http://methanol.org/Methanol-Basics/Overview/How-is-Methanol-Made-.aspx</u>
- Saudi Methanol Co (2006); see <u>http://www.co2management.org/proceedings/Abdulatif_Al_Musabbeh_Final.pdf</u>
- An optimization-oriented green design for methanol plants (Journal of Chemical Technology and Biotechnology, 25 Jan 2012)
- IPCC (2005) Special Report on Carbon Dioxide Capture and Storage
- Mitsubishi Heavy Industries (15 March, 2012); see <u>http://www.mhi.co.jp/en/news/story/1203151511.html</u>
- Methanex (10 December 2013); see <u>http://www.methanex.com/products/methanolprice.html</u>
- Business Wire: Research and Markets: Methanol Industry in the UK (12 July, 2012) see <u>http://www.businesswire.com/news/home/20120712005658/en/Research-Markets-Methanol-Industry-UK</u>

Mineral carbonation

- Styring et al (2011) Carbon Capture and Utilisation in the green economy.
- GCCSI (2011) Accelerating the uptake of CCS: Industrial use of captured CO2
- O'Connor et al., 2001. Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products, SME Annual Meeting and Exhibit, Denver, CO, Feb 26-Mar 1, 2001. See: <u>http://www.osti.gov/bridge/product.biblio.jsp?osti_id=897114</u>
- Polarcus, 2012, Research collaboration with Cambridge Carbon Capture, <u>http://polarcus.com/en-us/tech/research-collaboration-with-cambridge-carbon-capture.php</u>
- Innovation Concepts BV, see <u>www.innovationconcepts.eu</u>
- Carbon8, see <u>http://www.c8s.co.uk</u>
- Cambridge Carbon Capture, see <u>www.cacaca.co.uk</u>
- Novacem; see <u>http://www3.imperial.ac.uk/engineering/ourresearchhome/impactresearch/novacem</u>
- Calix, see <u>http://www.calix.com.au/</u>
- IPCC (2005), Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge
- Huijen (2007), Carbon Dioxide Sequestration by Mineral Carbonation

- Calera, 2013, information available at: <u>http://calera.com/site/beneficial-reuse-of-co2/process.html</u>
- The Guardian (12 October 2012); Novacem's green technology rights bought by mystery firm, see <u>http://www.theguardian.com/business/2012/oct/11/mystery-firm-buys-novacem-green-technology-rights</u>
- Bertos, F, et al, 2004. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2, Journal of Hazardous Materials B112 (2004) 193–205
- Li, X., et al, 2006, Accelerated carbonation of municipal solid waste incineration fly ashes, Waste Management 27 (2007) 1200–1206
- Styring, P., 2013. Carbon Dioxide Utilization: Footing the Costs of CCS from a UK Perspective,CO2Chem presentation, 2013
- GCCSI (2013). Innovation to drive cuts in CCS costs. [cited 2013 25 March]; See http://www.globalccsinstitute.com/institute/news/innovation-drive-cuts-ccs-costs
- RWE, 2009, Potential of CO2 utilisation, BMBF CCU seminar 2009
- Huijgen W.J.J., 2007, Carbon dioxide sequestration by mineral carbonation, Thesis, Energy Research Centre of the Netherlands, The Netherlands, ISBN: 90-85
- Sipila, J., Teir, S. and Zevenhoven, R., 2008, Carbon dioxide sequestration by mineral carbonation - Literature Review Update 2005-2007. Abo Akademi Univ., Heat Engineering Lab. report VT 2008-1, Turku, Finland

- Zevenhoven (Abo Akademie University), 2009, Inorganic CO2 utilisation and mineralisation, BMBF CCU seminar 2009
- DOE (2010), <u>http://fossil.energy.gov/recovery/projects/beneficial_reuse.html</u>
- Rebecca Sweeney, 2012, presentation on the ETI mineralisation project
- CSLF (2011). Phase I Final Report by the CSLF Task Force on CO2 Utilization
 Options
- Geerlings (TU Delft), 2009, Inorganic CO2 utilisation and mineralisation, BMBF CCU seminar 2009
- EC, 2011, European Workshop CO2: from waste to value

Sodium bicarbonate

- GCCSI, 2011, Accelerating the uptake of CCS: Industrial use of captured CO2
- W.J.J. Huijgen & R.N.J. Comans, 2003. Carbon dioxide sequestration by mineral carbonation, ECN-C--03-016
- Lackner, K. S. 2002. Carbonate chemistry for sequestering fossil carbon, Annual review of energy and the environment 27, pp. 193-232.
- Twence (accessed 11 December, 2013), http://www.twence.nl/en/actueel/Dossiers/
- DOE (2010), <u>http://fossil.energy.gov/recovery/projects/beneficial_reuse.html</u>
- Skyonic (accessed 11 December, 2013), see <u>http://www.zeroco2.no/projects/capitol-skymine-project</u>
- Kostick, D., 2006. Soda Ash, chapter in 2005 Minerals Yearbook, United States Geological Survey.
- United States Geological Survey (USGS) Minerals Resources Program, 2010
- UNEP, 2002, Sodium Bicarbonate, http://www.chem.unep.ch/irptc/sids/OECDSIDS/Sodium_bicarbonate.pdf

CO₂ concrete curing

- GCCSI, 2011, Accelerating the uptake of CCS: Industrial use of captured CO2
- Shell, 2012, C-Fix, <u>http://www.shell.be/home/content/bel-nl/innovation/managing_emissions/reducing_co2/cfix/</u>
- Shi, C Wu, Y 2009, 'CO2 curing of concrete blocks', Concrete International, vol, 31
- Shao, Y Monkman, S Boyd, AJ 2010, 'Recyling carbon dioxide into concrete: a feasibility study', 2010 Concrete Sustainability Conference, Tempe, Arizona, April 13– 15
- C-fix, 2008, C-fix elementen voor kust defensie, https://www.surfgroepen.nl/sites/kndw/Innovatie%20ontmoet%20locatie%203092008/ C-Fix_InnovatieOntmoetLocatie.pdf

Bauxite residue carbonation (red mud)

- GCCSI, 2011, Accelerating the uptake of CCS: Industrial use of captured CO2
- Cardile, CM, inventor; filed 5 February 1993, Process for the treatment of red mud, International Patent Application No. WO 93/16003
- Cooling, DJ, Hay, PS & Guilfoyle, LM, inventors; 25 August 2005, Treatment of Alkaline Bayer Process Residues, International Patent No. WO 2005/077830 A2
- Alcoa website (accessed 11 December 2013), see
 <u>www.alcoa.com/australia/en/info.../Residue_Management_Reuse.asp</u>
- URS Australia Pty Ltd 2010, Report: Bauxite Residue (Alkaloam®) Sustainability Assessment: Technical, Community Consultation, Benefit-Cost and Risk Assessment, Centre for Sustainable Resource Processing, Bentley, W
- Wikipedia, 2012, Bauxite, <u>http://en.wikipedia.org/wiki/Bauxite</u>
- Mbendi, 2012, Bauxite Mining in Europe overview, <u>http://www.mbendi.com/indy/ming/baux/eu/p0005.htm</u>

Polymer processing

- GCCSI, 2011, Accelerating the uptake of CCS: Industrial use of captured CO2
- Styring et al (2011) Carbon Capture and Utilisation in the green economy
- S. Bringezu (2013). Assessment of long-term options for carbon recycling for strategic orientation of industry, Presentation given at CO2Chem Industrial Applications meeting at Nabarro LLP, Sheffield on October 2013
- Alexis Bazzanella (BMBF), 2012, Research on chemical CO2 utilization in Germany
- VCI and DECHEMA (2009), Position Paper: Utilisation and Storage of CO2, Version 12: January 2009
- Aresta, M. (Ed.), 2010, Carbon Dioxide as a Chemical Feedstock, Wiley-VCH, Weinheim. ISBN: 978-527-32475-0
- IPCC (2005) Special Report on Carbon Dioxide Capture and Storage
- RWE, 2009, Potential of CO2 utilisation, BMBF CCU seminar 2009
- DOE (2010), see http://fossil.energy.gov/recovery/projects/beneficial_reuse.html
- CSLF (2011). Phase I Final Report by the CSLF Task Force on CO2 Utilization
 Options

Existing commercial uses of CO₂

- IPCC (2005), Special Report on Carbon Dioxide Capture and Storage
- GCCSI, 2011, Accelerating the uptake of CCS: Industrial use of captured CO2
- EIGA, 2008. Carbon Dioxide Source Qualification Quality Standards and Verification. European Industrial Gases Association, Brussels. See <u>http://www.ascoco2.com/fileadmin/user_upload/ascoco2.com/Bilder_und_Dokumente</u> /<u>CO2-_und_Trockeneislieferungen/EIGA_Spezifikationen_CO2.pdf</u>
- Rasmus Find, 'Carbon Dioxide Maunfacturing overview' presentation 2013
- CSLF (2013), Final Phase II Report by the CSLF Task Force on CO2 Utilization Options, Carbon Sequestration Leadership Forum, October 2013
- OMAFRA (2012). Carbon Dioxide In Greenhouses Factsheet. Ontario Ministry of Agriculture and Food. See <u>http://www.omafra.gov.on.ca/english/crops/facts/00-077.htm</u>
- ECN, 2006. CO2 use in greenhouses. see
 <u>https://www.ecn.nl/fileadmin/ecn/units/bs/Optiedoc_2005/factsheets/co2-ovg-01.pdf</u>
- The OCAP network; see <u>www.ocap.nl</u>; the WarmCO2 network; see <u>www.warmco.nl</u>
- Repsol website (accessed 20 December, 2013) see <u>http://www.repsol.com/es_en/corporacion/conocer-repsol/canal-tecnologia/proyectos-casos-estudio/otros-proyectos/proyecto-funnels/</u>

Deployment scenarios (assumptions)

- IMPCA, 2013: see http://www.impca.eu/en/about_methanol/
- INEOS, 2014: see http://www.ineos.com/businesses/INEOS-Paraform/Markets/
- ICIS, 2014: see <u>http://www.icis.com/resources/news/2014/01/03/9733640/outlook-14-europe-methanol-prices-to-stay-historically-high/</u>
- DECC, 2013: Fossil Fuel Price Projections, July 2013; see <u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/212521</u> /130718_decc-fossil-fuel-price-projections.pdf
- PlasticEurope, 2012: see <u>www.plasticseurope.org/documents/document/20121120170458-</u> <u>final_plasticsthefacts_nov2012_en_web_resolution.pdf</u>
- ICIS, 2013: see <u>http://www.icis.com/resources/news/2013/10/25/9718765/market-outlook-polymers-world-turned-on-its-head/</u>
- ICIS, 2014: see <u>http://www.icis.com/resources/news/2010/12/23/9421967/ineos-targets-125-135-t-january-rise-for-europe-polyethylene/</u>
- GCCSI, 2011: Accelerating the uptake of CCS: Industrial use of captured CO₂
- Find, 2013: Rasmus Find, 'Carbon Dioxide Maunfacturing overview' presentation 2013

Acknowledgements

- The authors express sincere thanks to the Project Steering Board and other organisations who have provided data and/or participated in consultations for this study. These include DECC, BIS, CCSA (Luke Warren), Tata Steel (Bruce Adderley), LaFarge Tarmac (Nizar Ghazireh), NEPIC (Mark Lewis), TSB (Liz Flint), UKPIA (Andy Roberts), UKCCSRC (Jon Gibbins and Hannah Chalmers), Imperial College, BOC-Linde, Air Liquide, Mineral Products Association, EEF, GrowHow, Ineos, PICCSI, Scottish Enterprise, IEA, BP, SSI, Costain, E.On, Carbon Trust, IEA GHG, SABIC, PB Power, CarbonCleanSolutions, Chemistry Innovation KTN Ltd., ITM Power, Ineos, Hanson, SABIC, Lotte Chemicals, IEA, Hull University, Newcastle University, Loughborough University, Oxford University, Bangor University, Heriott-Watt University, Haldor Topsoe, Viridor, Arup, DNV, SINTEF, Cambridge Carbon Capture, Liquid Light, LanzaTech, Nova Institut.
- Any conclusions represent the views the authors alone and not those of DECC, BIS, the project industrial steering board, or the consultees.

Caveat

- While the authors consider that the data and opinions contained in this report are sound, all parties must rely upon their own skill and judgement when using it.
- The authors do not make any representation or warranty, expressed or implied, as to the accuracy or completeness of the report.
- There is considerable uncertainty around the development of industrial carbon capture and the available data are extremely limited.
- All databases and models discussed in this document involve many assumptions and necessary simplifications of a complex reality.
- Therefore all modelling outputs should be viewed as illustrative and should not be used for investment decisions.
- The authors assume no liability for any loss or damage arising from decisions made on the basis of this report.
- The views and judgements expressed here are the opinions of the authors and do not reflect those of the UK Government or any of the stakeholders consulted during the course of this project.