

Reducing Energy Costs with Combined Heat & Power

Introduction of CHP – The Flexible Option

Mahmoud Abu-ebid
CHPQA Programme Director

Power Station

- Average efficiency in the order 38%
- Waste enough energy to heat most of the buildings in the UK

What is CHP?

Primary Energy Saving [PES] = (465-325)/465 = **30**%

- Is the simultaneous production of electricity and heat (Useful Heat)
- Concerns the recovery of heat from power generation and its application for useful purposes
- Not a single technology but a design philosophy
- Delivers multiple benefits:
 - Primary energy savings
 - Emissions reductions
 - Cost savings

Why CHP?

"CHP Schemes generate electricity and at the same time recover the majority of the heat and put it to good use"

➤ In a CHP application heat is recovered, unlike power station heat, which is rejected to atmosphere

Benefits of CHP?

Some History

- On-site CHP has been used over many decades in industries with large and simultaneous demands for heat and power... examples Paper, Chemicals, Refineries, Sugar
- ➤ Initially based on steam turbines using steam raised in high pressure boilers, usually coal-fired, with turbine exhaust steam used for process heating.
- Over the last 40 years with the availability of natural gas, gas turbine and engine electricity generating sets with heat recovery became the norm.

The Flexible Approach

Flexible Fuels

Conventional Fuels:

- Natural Gas
- > Fuel Oil
- Coal

Alternative Fuels:

- Biogas
- Liquid Biofuels
- Liquid Waste
- Biomass
- ➤ Solid Waste (% of Biomass)

Flexible Technology

Established Technologies:

- Reciprocating Engines
- Gas turbine
- Steam Turbines
- Combined cycle gas turbine
- Organic Rankine Engines
- Fuel Cells

Emerging Technologies:

- AD with Reciprocating Engines
- Standard Gasification with Steam Turbines
- Advanced Gasification with Engines
- Pyrolysis with Engines

Heat & Power Options

Heating and cooling:

- Hot Water
- > Hot Air
- Steam (low and high pressure)
- Direct drying
- Cooling via Absorption Chillers

Power:

- Electrical
- Direct drive

CHP Applications

Available in different sizes from 1 kWe (domestic) to 100s of MWe (large refineries)

- Industrial (all sectors...Chemicals, Refineries, Food & Drink, etc)
- Buildings
 - Hospitals
 - Universities
 - Leisure Centres
 - Hotels
 - Commercial Buildings
- Community/District Heating
 - Small community schemes (Residential buildings)
 - Medium community schemes (mixed public, commercial and residential buildings)
 - City Wide DH Schemes (including industrial sites)

Heat Loads – Domestic CHP

Heat Loads – Simple Community Heating

Heat Loads – District Heating Network Mixed loads

Heat Load – District Heating Network

DECC recognises that the development of heat networks will be a major factor in enabling low carbon heat (specially biomass and EfW CHP)

Heat Load – District Heating Network

- To meet this role, DECC is now taking the following steps to support this:
 - Established a Heat Networks Delivery Unit (HNDU) to support authorities develop heating and cooling networks where innovative projects such as EfW CHP plants will be favoured
 - Provision of £6m grant funding to local authorities for the production of technical studies
 - Main aim is to help LAs develop business plans that are sufficiently robust to attract a range of finance options.
 - Application has bee submitted from 20th September and will continue for 18 months through a series of six bidding rounds.

school New CHP ~ 3.5MWe

What can be achieved: Pimlico Community Heating with

What can be achieved: Sheffield EfW

- Utilises 225,000 tonnes of waste
- To produce 60
 MWth Heat
- 19 MWe Electric
- 2 linked Networks12 km & 32 km)
- 2800 dwellings, and 140 buildings

To Summarise....

Advantages of DH/CHP

- DH can utilise heat at low grade, from CHP, EfW plants, and process waste heat
- Can deliver low/No carbon heat
- Easy to change fuel or use of mix fuels
- Help utilise waste heat
- Improve utilisation factors
- Deliver higher efficiencies
- Will help in delivering ZERO Carbon buildings (CHP and renewable heat is Zero Carbon rated)
- Help alleviate fuel poverty

You can help delivering this

If you need help call the GHP Focus Helpline on 08453655153

Thank You