Standards, Emissions and Concentrations

David Carslaw

Workshop on current issues regarding nitrogen dioxide 2–3 March 2011

Outline

- **1** Trends in ambient measurements of NO_x and NO_2
- **2** Vehicle emissions of NO_x and NO_2
- **3 Concluding remarks**

- **1** Trends in ambient measurements of NO_x and NO_2
- How have NO_x and NO₂ concentrations changed in the UK over the past decade or so?
- How do these trends compare with Europe?
- Estimated trends in primary NO₂ emissions derived from ambient measurements
- $\Rightarrow\,$ What conclusions can be drawn from this information?

\mathbf{NO}_x trends in London

- Typical of pattern seen elsewhere in the UK^a
- Reduction in concentration from late 1990s; weakly decreasing since 2002/4–2010
- Median changes 2002–2009:
 - —0.6 %/year in inner London
 - −1.7 %/year in outer London
 - -1.4 %/year in rest of UK

^aMean of 23 long-term roadside sites.

Standards, Emissions and Concentrations

NO₂ trends in London

- NO₂ concentrations have increased at many sites^a
- Median changes 2002–2009:
 - -0.5 %/year in inner London
 - —0.8 %/year in outer London
 - –0.6 %/year in rest of UK

^aMean of 23 long-term roadside sites.

How does the UK compare with the rest of Europe?

- Analysis of hourly data from 2,728 sites in Europe from *Airbase*
- Similar proportion of sites in 2008 exceed annual mean LV of 40 µg m⁻³
 - Also evidence of stabilising concentrations of NO₂ for most countries

Standards, Emissions and Concentrations

Primary NO₂ trends — UK

- The ratio of NO₂:NO_x has clearly increased over the past decade^a
- Values today in the UK are around 15–17% by vol.
- ⇒ Maybe some evidence that this ratio is stabilising?

^asee Carslaw (2005) for more details.

Primary NO₂ trends — London

- The ratio of NO₂:NO_x has clearly increased over the past decade
- Values today in the UK are around 20–25% by vol.
- ⇒ Higher in London than the rest of the UK — on average

Bit of an aside: NO₂ at an extreme location

Modelled primary NO₂ scenarios

primary NO ₂ (% by vol.)	annual mean (µg m ^{—3})	hours $>$ 200 µg m $^{-3}$
5	84	2
10	106	99
15	128	709
20	151	1563
25	173	2423
30	195	3086
35	217	3559

- Highest NO₂ concentrations in Europe/World? Highest NO₂ concentrations of any time over the last few centuries?
- In 2008 the annual mean NO₂ was 217 µg m⁻³ and there were 4015 exceedences of the hourly limit value ...
- In-car exposure and similar environments?

Standards, Emissions and Concentrations

2 Vehicle emissions of NO_x and NO_2

- What we expected to happen
- Recent evidence from vehicle emission remote sensing
- Links with emissions inventories and ambient measurements

Vehicle emissions legislation in Europe

- Approximate limits of NO_x and PM — for diesel cars
- \approx order of magnitude reduction in NO_x g km⁻¹ emissions since early 1990s
- ⇒ Expect considerable effect on ambient concentrations of NO_x and NO₂

Emission inventory projections of NO_x

- For UK urban areas expect a 5–6% reduction in NO_x per year
- Comparable ambient measurement sites suggest ≈1–2% per year

Standards, Emissions and Concentrations

Vehicle emissions remote sensing

- Remote sensing
 - Infrared/UV beam across road using ESP Remote Sensing Detector (RSD-4600)
 - · Individual vehicle exhausts measured
 - Measures ratios of NO, CO, HC, "smoke" to CO₂ i.e fuel-based emission factors
 - Some practical limitations
 - Several campaigns from 2008–2010 in 5 urban areas
 - About 72,000 vehicles sampled
 - Number plates matched by CarweB (http://www.carwebuk.co.uk/)

Typical NO₂:NO_x emission ratios

Vehicle class	Euro class	% NO ₂ (by volume) Grice et al. (2009)	% NO ₂ (by volume) Jerksjö et al. (2008)
Petrol cars			
	All	3	≈1 [12551]
Diesel cars and LGVs			
	Euro 2 and earlier	11	14-20 [177]
	Euro 3	30	30-47 [538]
	Euro 4–6	55	55-60 [881]
HGVs			
	Euro II and earlier	11	7 [218]
	Euro III	14	9 [353]
	Euro IV–VI	10	13 [52]
Buses			
	Euro II and earlier	11	10 [78]
	Euro III (no trap)	14	30 [93]
	Euro III (trap)	35	25-52 [45]
	Euro IV–VI	10	48

Petrol and diesel car emissions of NO_x by year

- NO_x emissions from petrol cars have decreased by ≈96% since the early 1990s
- Diesel car emissions have increased, or at best been stable for the past 25 years or so
- Possible to see the effects of different Euro class legislation

Petrol and diesel car emissions of NO_x by Euro class

- Effectiveness of the progressive improvement of petrol catalysts is apparent
- Highlights the relative stability of diesel car NO_x emissions

Diesel LGV emissions of NO_x by year

- Similar to diesel cars
- Little evidence of any reduction in NO_x emissions

HGV emissions of NO_x by year

 Evidence that introduction of Euro IV led to a NO_x reduction of about one third cf. Euro III

Bus emissions of NO_x by year

- Emissions, if anything, have increased, but —
- Need to be careful about specific bus fleets

Effect of different emission factor assumptions for petrol cars

- Current UK emission factors show rapid and considerable reduction in NO_x emissions through the Euro classes
- Remote sensing data suggest that old (Euro 1/2/3) cars emit more NO_x than previously thought — emissions system degradation

Effect of different emission factor assumptions for diesel cars

- Current UK emission factors show considerable reduction in NO_x emissions from Euro onwards
- Remote sensing data suggest NO_x emissions have been relatively stable from pre-Euro to Euro 5
- Euro 6 estimates should be considered speculative
- Also note increased *absolute* emissions of NO_x according to remote sensing data

Effect of different emission factor assumptions for diesel LGVs

Effect of different emission factor assumptions for HGVs

Effect of different emission factor assumptions for buses

- Care needed because of specific bus fleets
- Dip for Euro II can be explained (London buses with catalytic particle filters)
 - Euro IV somewhat higher for remote sensing data

Have we got the fleet right for inventories?

- Inventories do not used "observed fleets"
- Remote sensing data captures mileage-weighted fleet statistics

Have we got the fleet right for inventories?

- Inventories do not used "observed fleets"
- Remote sensing data captures mileage-weighted fleet statistics
- ⇒ In other words: more higher emitting petrol cars than we thought (Euro 1/2) and increased use of modern diesel cars which are high NO_x and NO₂ emitters

3 Concluding remarks

- Trends in NO_x and NO₂ have levelled off in the past 6–8 years
 - UK inventories are in clear disagreement with ambient trends
 - The situation in much of the rest of Europe looks similar
- Vehicle emission remote sensing data has proved to be extremely valuable
 - Key has been linking with comprehensive vehicle information databases (CarweB)
 - Can re-calculate NO_x emissions and compare with inventories

Standards, Emissions and Concentrations

- Light duty vehicle emissions seem to account for most of the disagreement
- Understanding emission inventory trends is far from simple
 - Many, many influences which change over time
 - Seems that changes in emission factors (even large changes) on their own are not enough to reconcile modelled trends with ambient trends
 - Raises many questions concerning how inventories are constructed
- Future trends in NO₂
 - Turn over in vehicle stock will be important e.g. number of older petrol cars on the road

- The emissions performance of Euro 6/VI is of critical importance and evidence of 'real-world' performance is key
- Draft report for Defra should be available on http://uk-air.defra.gov. uk/library/
 - Will cover far more information than presented here along with implications for measures and policy development

Acknowledgements

This work has relied on significant input from others:

Sean Beevers, Emily Westmoreland and Martin Williams (ERG, King's College London)

James Tate (ITS, University of Leeds)

Tim Murrells, Yvonne Li, John Stedman and Andrew Kent (AEA)

Enviro Technology Services plc (for provision of some of the remote sensing data)

References

Carslaw, D. C. (2005). "Evidence of an increasing NO₂/NO_X emissions ratio from road traffic emissions." In: *Atmospheric Environment* 39.26, pp. 4793–4802.

- Grice, Susannah et al. (2009). "Recent trends and projections of primary NO₂ emissions in Europe." In: Atmospheric Environment 43.13, pp. 2154 –2167. ISSN: 1352-2310. DOI: DOI: 10.1016/j.atmosenv.2009.01.019. URL: http://www.sciencedirect.com/science/ article/B6VH3-4VDS8MT-3/2/4a692307ac35ebf6ba37560cf32b4cf9.
- Jerksjö, M. et al. (2008). On-road emission performance of a European vehicle fleet over the period 1991–2007 as measured by remote sensing. 18th CRC On-Road Vehicle Emissions Worskhop San Diego, March 31 April 2, 2008.

Thank you for your attention!!

