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Executive Summary 

Background / Need 

The Water Framework Directive (WFD) states that all European surface waters should 
achieve good ecological status by 2015.  Ecological status is an expression of the 
quality of the structure and functioning of biological elements associated with surface 
waters, classified in Annex V. Ecological status should be assessed using a reference 
condition approach and classification tools based on five biological elements (EU 
2000). 
 
To help achieve comparability of monitoring systems between the different Member 
States, each Member State is required to express the results from their monitoring  
systems as ecological quality ratios (EQRs) for the purposes of classification of 
ecological status. It is also stipulated that the precision and confidence achieved by the 
monitoring results must be quantified.  
 
In developing the techniques required to implement this system, the Environment 
Agency and SNIFFER have collaborated on related R&D projects that are investigating 
sources of uncertainty in the application of the classification tools and the implications 
for the reliability of the classification schemes. To date, this work on quantifying the 
uncertainty in WFD water body assessment has mostly focused on a ‘classical’ or 
‘frequentist’ statistical approach. This has led to the Confidence of Class (CofC) 
method, as described by Ellis & Adriaenssens (2006) and subsequently used by many 
of the WFD tool developers.  

In a follow-on project entitled: ‘Uncertainty estimation for monitoring for each of the 
WFD biological classification tools – Further work on classification, uncertainty and 
variability aspects‘, the question was raised as to whether or not an alternative to the 
Confidence of Class approach could be the application of a Bayesian statistical 
approach. Accordingly it was decided to select a WFD tool for which there was a good 
set of historical data and to use this dataset to demonstrate the Bayesian approach. 
The data would also be analysed using the existing CofC approach, thus enabling the 
two sets of results to be contrasted.  

Main objectives / Aims 

A comparative analysis has been carried out for the DARES diatom tool using both a 
frequentist approach (as currently adopted by most of the WFD tools) and a Bayesian 
approach (as adopted by the Fisheries WFD tool). 

Results 

We have used the two statistical approaches to analyse illustrative data sets for each 
of seven ‘new’ sites.  This has shown that, provided similar statistical assumptions are 
made in analysing the data for the 105 historical sites, there is very little practical 
difference between (a) the Confidence of Class values generated by the frequentist 
approach for the new sites and (b) the corresponding Probability of Class values 
arising from the Bayesian method.  

More generally, the exercise has demonstrated the ease with which the Bayesian 
approach (allied to the WinBUGS software) can be adapted to incorporate extensions 
to the statistical model. For example this approach can accommodate differences in 
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the expected within-site variability between historical sites and allow the assessment of 
a new site to be influenced not only by the number of samples, but also by the degree 
of variability seen in that site’s monitoring data. Similar generalisations of the 
Confidence of Class approach, although possible in principle, would not be practicable 
with the existing spreadsheet-based methodology. 

The extensions to the current DARES model explored by the Bayesian analysis 
(Models 2 and 3) have shown that the Probability of Class can change markedly 
according to the statistical assumptions. For example, the probability of ‘Moderate or 
worse’ typically falls by 10% or more in moving from Model 1 to Model 3 – and in all 
but one case (site 106) the choice of model determines whether or not the site fails the 
critical 95% PoM trigger. This demonstrates that the need to evaluate alternative 
statistical models (en route to adopting the most appropriate one) is not merely an 
academic nicety.  

Conclusions / Recommendations 

The exercise has illustrated the general principle that differences in the underlying 
statistical model and its associated assumptions are likely to have a much greater 
influence on data analysis results than whether the statistical methodology employed 
to fit the model is frequentist or Bayesian. One consequence of practical use is that 
there is no immediate and pressing need to adopt one approach to the exclusion of the 
other: either may be used depending on both the modelling circumstances and the 
statistical preferences of the tool developer. 

In the longer term, however, this argument is less convincing, given the variety of 
complex statistical issues being discussed in relation to various WFD tools. These 
include: the development of monitoring programmes to obtain more reliable estimates 
of spatial and temporal components of variance; the growing need for analysis 
methods that can supplement future monitoring data with information from (relevant) 
historical data; and the long-running debate over how best to deal with spatial 
variability in extending site-based results to water body-wide assessments.  Given the 
superior flexibility and greater intuitive appeal of the Bayesian approach, we believe 
there is a good case for a more comprehensive assessment of Bayesian methods and 
software, building on the foundations laid by the present exercise.  
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1  Introduction 

1.1 Background 
The Water Framework Directive (WFD) states that all European surface waters should 
achieve good ecological status by 2015.  Ecological status is an expression of the 
quality of the structure and functioning of biological elements associated with surface 
waters, classified in Annex V. Ecological status should be assessed using a reference 
condition approach and classification tools based on five biological elements (EU 
2000). 
 
To help achieve comparability of monitoring systems between the different Member 
States, each Member State is required to express the results of their monitoring 
systems as ecological quality ratios (EQRs) for the purposes of classification of 
ecological status. It is also stipulated that the precision and confidence achieved by the 
monitoring results must be quantified.  
 
In developing the techniques required to implement this system, the Environment 
Agency and SNIFFER have collaborated on related R&D projects that are investigating 
sources of uncertainty in the application of the classification tools and the implications 
for the reliability of the classification schemes. To date, this work on quantifying the 
uncertainty in WFD water body assessment has mostly focused on a ‘classical’ or 
‘frequentist1’ statistical approach. This has led to the Confidence of Class (CofC) 
method as described by Ellis & Adriaenssens (2006) and subsequently used by many 
of the WFD tool developers.  

In a follow-on project entitled: ‘Uncertainty estimation for monitoring for each of the 
WFD biological classification tools – Further work on classification, uncertainty and 
variability aspects’, the question was raised as to whether or not an alternative to the 
Confidence of Class approach could be the application of a Bayesian statistical 
approach. Accordingly, it was decided to select a WFD tool for which there was a good 
set of historical data and to use this dataset to demonstrate the Bayesian approach. 
The data would also be analysed using the existing CofC approach, thus enabling the 
two sets of results to be contrasted.  

                                                 
1 The term ‘frequentist’ relates to a main-stream body of statistical thought developed in the 
early decades of the 20th century (although the word itself was only coined in mid-century). The 
central idea is that the probability of an event is the limiting value of the relative frequency of 
occurrence of that event over a number of repetitions of some well-defined random experiment.  
It may be that all possible outcomes can be enumerated. For example, if we roll two dice, there 
are just 6×6 = 36 possible outcomes. Suppose we are interested in the event ‘total = 10’. This is 
achieved by three of the outcomes (4+6, 5+5 and 6+4) - and so the probability of the event is 
3/36, or 1/12. Alternatively, there may be an indefinitely large number of possible experiments - 
such as the taking of a random sample at a particular point in a water body within some 
specified time and date window - and the event of interest may be ‘NH4 concentration exceeds 
1 mg/l’. The probability of this event is then defined as being the limiting value of the proportion 
of samples with NH4 exceeding 1 mg/l, as the number of samples gets very large. 
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1.2 The DARES diatom data 
After some discussion between the Environment Agency and several of the tool 
developers, the river diatom tool DARES was selected as an appropriate test case.  A 
comprehensive account of the DARES tool can be found in Kelly et al. (2007). 

The historical dataset kindly made available by Martyn Kelly (Bowburn Consultancy) 
consisted of Trophic Diatom Index (TDI) data for 105 sites spanning 1992 to 2003. 
Between 6 and 20 samples were taken per site, with an average frequency of about 9. 
In addition to the actual TDI data, the expected TDI value for each site was also 
provided. Individual EQR values could be calculated by: 

EQR  =  (100 - Actual TDI)/(100 - Expected TDI). 

1.3 Scope of project 
The primary objective of the project was to illustrate and contrast the principles 
underlying the frequentist and Bayesian approaches. Consequently it was agreed that 
we would restrict the analyses to a basic set of statistical models. In particular:  

• we have not explicitly taken account of temporal variation (such as seasonality 
and longer-term trend). Temporal variability at a site is treated as a random 
component indistinguishable from short-term environmental variation and 
measurement error; 

• we have ignored the important issue of spatial variability (especially relevant 
when more than one site in the water body is being sampled). We are 
regarding the site as the primary unit to be assessed; and  

• we have assumed that the EQR class boundaries are given quantities with no 
associated uncertainty.  

These and other complicating issues can of course readily be handled by statistical 
methods (whether frequentist or Bayesian), but their treatment would not especially 
illuminate the main objective and would in any case require more effort than was 
available for the present brief exercise.  

1.4 Structure of report 
Following this introduction, the report contains five main sections. First, Section 2 
provides some essential background to the two statistical approaches we have 
applied. Next, Section 3 outlines the application of the existing frequentist approach to 
the DARES data2. Section 4 describes the corresponding Bayesian treatment of the 
data. We have duplicated the structure of these two sections, as closely as possible, to 
emphasise aspects that are common to both approaches and where the essential 
differences occur.  However, as the report is principally concerned with the Bayesian 
approach to water body assessment, the Bayesian sections of the report include 
                                                 
2 The material in Section 3 will be familiar to some readers, but we include it for the purpose of 
comparison. 
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comparisons and contrasts, where relevant, with the equivalent frequentist approach. 
(We felt that this was simpler than a stand-alone section later in the report that 
compared the two approaches.) 

Section 5 broadens the discussion and presents a table summarising the pros and 
cons of the two approaches. Finally, Section 6 presents the conclusions and 
recommendations from the project. 
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2  Statistical background 

2.1 Introduction 
Suppose a water body (WB) is to be characterised by mean EQR, with the 
assessment applying to the WB as a whole over a three-year period. If we could 
sample the WB at a large number of locations on each of a large number of occasions 
over the three years, the resulting mean EQR would be very close to the ‘true’ 
population value.  

In practice, of course, that is never possible. Any quantity or ‘parameter’ estimated 
from a set of samples will never be equal to the true value of that parameter, except by 
a lucky chance; and the discrepancy between them is generally known as ‘sampling 
error’3.  One of the main benefits of a statistical approach is the ability to quantify the 
uncertainty in the estimate for a parameter. This is fundamental to both the frequentist 
and the Bayesian approach.  The mechanisms used to achieve this - the confidence 
interval in the frequentist case and the probability interval in the Bayesian case - are 
superficially similar. However, the assumptions behind their derivation and the 
interpretation of the intervals themselves, are fundamentally different. It is useful, 
therefore, in any comparison of the two approaches to start with some introductory 
discussion outlining their underlying principles - and that is the purpose of the following 
two sections. 

2.2 Frequentist approach 

2.2.1 The confidence interval 

Suppose we take n samples at random from some specified population and use the 
mean of these values to estimate the population mean.  The basis of the frequentist 
approach to quantifying sampling error is to visualise what would happen if we 
repeated this sampling exercise many times, each time taking n random samples and 
calculating the sample mean.  Let us suppose we know that the values in the 
population are Normally distributed with standard deviation σ.  (The Normality 
assumption is not essential to the general argument, but it keeps the details simple).  
From statistical theory we can say that, in the long run, 90% of the sample means will 
fall within 1.65σ/√n of the true mean.  

The next step is to turn this statement round to say that, in the long run, the true mean 
will fall within 1.65σ/√n of the sample mean on 90% of occasions.  (See the discussion 
and illustration in Annex B.) 

                                                 
3 The term ‘sampling error’ is something of a misnomer, as it carries connotations of a mistake 
of some sort. But if a coin comes down tails 6 times in 10 spins rather than the expected 5, 
clearly this is not an ‘error’: it is simply an example of the random variability to be expected with 
any type of sampling. 
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In reality we never have the luxury of being able to repeat our sampling exercise an 
indefinite number of times: we have just one sample mean based on one set of n 
samples; but we nevertheless wish to make some statement about its uncertainty. To 
resolve this impasse, there now follows a sleight of hand (which some people call a 
‘confidence trick’).  Starting with the statement: 

“The true mean will fall within 1.65σ/√n of the sample mean on 95% of occasions” 

we reword this to say that: 

“We are 95% confident that the true mean falls within 1.96σ/√n of the observed sample 
mean.” 

This defines what is known as a confidence interval. Note that it is not a statement of 
probability.  The true mean is a fixed (unknown) quantity. It either does, or does not, lie 
within 1.96σ/√n of the sample mean; there is no question of there being a ‘90% 
chance’ of its doing so. Rather, we have to accept that this is the definition of 
confidence. It is a long-run probability of the statement being true - but is applied in the 
uneasy circumstances of our never having more that the one actual sample mean in 
our possession.  

This may seem a somewhat bleak criticism of the confidence interval (‘CI’) approach. 
To counter it, therefore, here is a practically useful interpretation of the phrase ‘in the 
long run’.  Suppose we carry out a monitoring programme covering 100 WBs and for 
each WB we calculate the sample mean EQR and its 90% confidence interval. What 
we can then say is that about 90 of these 100 intervals will be correct - that is, they will 
bracket the true mean EQR for that WB.  

2.2.2 Confidence of Class 

In the context of WFD classification, a key concern is to be able to say how confident 
we are, on the basis of data from a monitoring programme, that the WB falls within any 
particular class. This measure, termed ‘Confidence of Class’ (CofC) calls for a 
somewhat unconventional application of the confidence interval concept that involves 
an inverted form of the usual calculation. The following two examples introduce the 
approach and illustrate how CofC is calculated. 

Example 1 
Suppose a WB is to be classified by taking the mean EQR, derived from some 
specified monitoring programme and comparing this with a set of predetermined class 
boundaries. Let us say that the sample mean falls within the Good range (0.60 to 
0.80). Clearly our best estimate of the true class is ‘Good’, However, because of 
sampling error, there is the possibility that the site may truly be High, or Moderate (or 
even worse) and so we need to calculate the confidence that the site is truly Good. 

 Suppose the sample mean EQR is 0.70 and the 90% confidence interval by 
coincidence is [0.60 - 0.80]. This means we are 90% confident that the true mean EQR 
for the site lies in the range 0.60 to 0.80. But this is exactly the range defining Good! 
We can therefore be 90% confident that the class is Good. Moreover, because of the 
way confidence intervals are calculated, the confidence that the true mean falls outside 
the interval can be split equally between the low and high ends. We can therefore be 
5% confident that the site is truly High and 5% confident that it is Moderate or worse.  
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Example 2 
A more realistic example is described in Annex A, showing how the ‘repeated 
sampling’ paradigm can be visualised in the context of CofC. It is useful to summarise 
the outcome here, as it illustrates how CofC calculations are done in practice.  

The situation is similar to that described in Example 1, except that now we imagine 
obtaining a sample mean EQR of 0.717, with standard error 0.0954.  This means that a 
90% confidence interval would be 0.717 ± 1.65×0.095, namely [0.56 - 0.87].  As this is 
wider than [0.60 - 0.80], we can say at once that CofC(Good) is less than 90%. But by 
how much?  

To quantify this, we have to perform two calculations.  First, we ‘tune’ the confidence 
level so as to make the lower confidence limit exactly equal to 0.60.  This leads us to a 
78% CI of [0.60 - 0.83]. From this, we can say that the confidence of being below 0.60 
is (100 - 78)/2 = 11%.   

Secondly, we determine the confidence level that makes the upper confidence limit 
exactly equal to 0.80. This gives us a 62% CI of [0.63 - 0.80], from which we can say 
that the confidence of being above 0.80 is (100 - 62)/2 = 19%.  

Finally, it follows that the confidence of being inside [0.60 - 0.80] must be 100 - 11 - 19 
= 70%. 

2.3 Bayesian approach 

2.3.1 Introduction 

In recent years, Bayesian statistics has become a common approach to data analysis 
in many areas of science.  However, Bayesian statistics is not new – it was first 
described in 1763 by the Rev. Thomas Bayes, an English vicar.  The reason for this 
recent rise in popularity is due to the availability of powerful computers which can 
readily cope with the complexity of the Bayesian calculations.   

Most data analyses require the construction of a statistical model that describes the 
relationship between the observed data (e.g. individual TDI values) and the unknown 
model parameters (e.g. mean EQR).  With frequentist statistics, the starting point for 
data analysis is the data set itself, from which the unknown parameters are estimated.  
However, with Bayesian statistics, the starting point for data analysis is the prior belief 
about the unknown parameters, which are expressed in the form of ‘prior probability 
distributions’.  The data is then used to modify the prior distributions for each unknown 
parameter, to give ‘posterior probability distributions’.  This use of data to transform 
prior distributions into posterior distributions is governed by Bayes' Theorem: 

Prob (parameter given data)   ∝   Prob (data given parameter)   x   Prob (parameter) 

or, in more formal statistical language, 

                                                 
4 We assume that the standard error has been estimated from historical data with a large 
number of degrees of freedom, so that there is no need to introduce the t distribution in 
calculating the CI. 
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Posterior distribution of parameter  ∝   Likelihood of data   x   Prior distribution of  
parameter 

Bayesian analysis can therefore be thought of as a process of using data to update our 
belief in the values of model parameters.  This process of updating (achieved by a 
chain of Bayesian analyses that sequentially improve our assessments) can be used 
utilising historical data to improve our assessment of new data (see the next section). 

2.3.2 The prior distribution 

The first step in the Bayesian analysis is to choose prior probability distributions for the 
unknown model parameters.  In many practical situations, there is no prior information 
on the parameters of interest and in this situation so-called ‘uninformative’ prior 
probability distributions are used.  These prior distributions are a compulsory 
component of the Bayesian approach, but they will have minimal influence on the data 
analysis. However, it will often be desirable to use ‘informative’ prior distributions, 
which ideally should be objectively derived from a data analysis.  Where this is not 
possible, informative prior distributions could be derived from expert opinion or from 
the scientific literature. 

Consider a site with a single observed TDI5 of 60 and an expected TDI of 36.6.  The 
‘face value’ estimate of the EQR for this site is: 

EQR  =  (100 – Actual TDI)/(100 – Expected TDI)  =  40/63.7  =  0.628.  

A Bayesian estimate of the mean EQR for a site from this one sample requires 
specification of prior distributions for the mean EQR of the site and the temporal 
variability of samples around this mean.  For the purpose of describing prior 
distributions, we will only consider the mean EQR; further details of the variance will be 
described in Section 4.  A possible prior distribution for the mean EQR could be 
derived from an analysis of historic data, to obtain the overall frequency distribution of 
the mean EQRs at sites throughout rivers in England and Wales.  This prior 
distribution for the mean EQRs has a mean of 0.659 and is shown by the thin 
continuous curve in Figure 1. 

                                                 
5 The Bayesian analysis of the DARES data described in Section 4 keeps the actual and expected TDI 
scores as distinct variables, rather than modelling the EQR directly. 
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Figure 1 Prior distribution, likelihood of data and posterior distribution for 
the mean EQR at a site with a single observed TDI of 60 and an 

expected TDI of 36.3. 

2.3.3 The likelihood function 

The likelihood function describes the information about the model parameters 
contained in the data set.  Whilst the term may not be often encountered in applied 
data analysis, it is at the heart of most frequentist methods, which are based on the 
idea of “maximum likelihood”.  For example, the likelihood function peaks at 0.628 (the 
dotted curve in Figure 1) and so the maximum likelihood estimate of the mean EQR is 
0.628 – the same as the face-value estimate calculated above.  The concept of 
‘likelihood’, as distinct from ‘probability’ and ‘confidence’, will not be described further 
in this report. 

From Bayes’ Theorem, the posterior distribution is proportional to the product of the 
prior distribution and the likelihood function (Figure 1).  The posterior distribution can 
therefore be thought of as the combination of the information about a parameter 
contained in the data (likelihood function) and the prior knowledge about the parameter 
(prior distribution).  

In many situations, the data will provide considerable information about the unknown 
parameter and will be the dominant influence on the posterior distribution.  Conversely, 
in situations where the data values are few or noisy and there is strong prior 
information, the prior distribution will dominate the posterior distribution.  In this 
example, with just a single sample, neither the prior nor the likelihood provide much 
information about the mean EQR and the posterior distribution covers a wide range of 
possible values.  However, the variability of the posterior distribution is less than that of 
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the likelihood function.  Thus a Bayesian analysis that is based on informative prior 
information will be more precise than the corresponding frequentist analysis (based on 
the likelihood function alone). 

2.3.4 The posterior distribution 

The posterior distribution provides all of the information available about a parameter 
from the Bayesian analysis, from which other summary statistics can be derived, such 
as the mean, median, mode, standard error, or probability of class (PofC).  In this 
example, the mean of the posterior probability distribution is 0.648, which is slightly 
higher than the face-value estimate of 0.628, due to the influence of the informative 
prior distribution. 

With frequentist statistics, all parameters, such as the mean EQR of a site, are 
regarded as fixed, unknown constants.  However, the Bayesian posterior distribution 
gives us the probability that the parameter will take a particular value, conditional on 
the data collected.  It is possible with Bayesian statistics to talk about the probability 
that a mean EQR is above some threshold or between two class boundaries.  It is not 
possible – or indeed meaningful – to do this with frequentist statistics, where 
parameters are viewed as constants. 

A Bayesian 95% probability interval for a parameter is defined as an interval that 
encloses 95% of the posterior probability distribution for that parameter (see Figure 2).  
So we can state that there is a 95% probability that the mean EQR lies within the 
interval.  With frequentist statistics, in contrast, we state that on repeated sampling the 
confidence interval will enclose the true parameter value for 95% of data sets (See 
Annex B).  The basis for the Bayesian probability interval is the inverse of the 
frequentist confidence interval: with Bayesian intervals, the parameter is viewed as a 
variable and the data set is constant, whereas with frequentist confidence intervals, the 
parameter is viewed as a constant and the data set is a variable.  This inversion of the 
(frequentist) probability of data given a parameter, to the (Bayesian) probability of a 
parameter given data, is what has been achieved by the application of Bayes’ 
Theorem.  
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Figure 2 Bayesian posterior distribution, showing 95% probability interval, 
for the mean EQR at a site with a single observed TDI of 60 and an 

expected TDI of 36.3. 

The Bayesian approach leads directly to the calculation of PofC. For any specified 
class this is defined as the probability that the unknown parameter falls within the class 
and is calculated from the proportion of the posterior probability distribution that falls 
between the two relevant class boundaries.  The boundaries for the high, good, 
moderate, poor and bad EQR classes are 0.93, 0.78, 0.52 and 0.26 respectively and 
the probabilities of class are shown in Figure 3. 

This illustrates one of the advantages of Bayesian statistics, by using data to modify a 
(prior) probability distribution, the output from Bayesian data analysis is also in the 
form of a probability distribution.  This provides a very simple and intuitive way of 
summarising the uncertainty associated with the data analysis – something that is not 
so readily done with frequentist analysis.  Compare the intuitive description of 
Bayesian PofC with the more complex description of frequentist CofC in Section 2.2 
and Annex A.  Indeed, many descriptions of CofC incorrectly describe the approach in 
terms of probability of class, thereby inadvertently switching to the more natural 
Bayesian definition!  
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Figure 3 Probability of class for the mean EQR at a site with a single 
observed TDI of 60 and an expected TDI of 36.3.
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3 Applying the frequentist   
approach 

3.1 Statistical model 

Notation 
TDIi,,j = Observed value of TDI for the j-th sample at site i. 

ExpTi = Expected value of TDI at site i (calculated from reference sites model)  

EQRi,j = Value of EQR for the j-th sample at site i   

 =   (100 - TDIi,j)/(100 - ExpTi). 

Model  
Given our initial decision to work with the aggregated DARES data, we had two main 
modelling options. One was to model TDI and ExpT separately and hence derive a 
model for (100 - TDIi,j)/(100 - ExpTi). The other option was to model the EQR ratio 
directly.  Given that we had little information about the error structure of ExpT – and 
that its standard error was in any case likely to be small in relation to the variability 
shown by TDI – we decided to adopt the latter option. 

The simplest model we can fit to the DARES data is as follows: 

EQRi,j = μ  +  αi  +  ei,j,  where: 

μ  = the overall mean;  

αi = effect (i.e. deviation from the overall mean) for site i; and 

ei,j = deviation from model at sampling occasion j due to temporal trends at 
the site, random environmental variability and measurement error.  

We also assume that the ei,j values are Normally distributed, with mean zero and 
standard deviation σi. 

Note that, to keep the analysis as simple as possible, we have allowed the within-site 
temporal variation to be absorbed within the ei,j term.  This is not too crude a 
simplification: unless there is a marked year-to-year trend applying across most or all 
of the 105 sites, a substantial part of the temporal variability would actually be spatial-
temporal interaction, in which event this would be confounded with the ei,j term 
anyway.   

We further assume that σj , the site-specific standard deviation term, is related to the 
site mean μj by the following relationship: 

σi = A  +  PX  +  QXk, where X is the mean for site i (i.e. X = μ + αi). 
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We also impose the further constraints that the end points of the curve - that is, where 
X = 0 and X = 1 - are ‘anchor points’ specified by the user, having regard to the 
measurement error to be expected in these limiting cases.  This is equivalent to 
specifying A (the predicted value of σ at X = 0) and A + P + Q (the predicted value of σ 
at X = 1).  

Future assessments 
For any future WB assessment, we assume for simplicity that:  

• the WB will be sampled at just one site; 

• samples will be taken randomly through time;  

• the number of samples (n) will be too small to allow a site-specific standard 
error to be calculated and so a default value of s/√n will instead be used (where 
s is the predicted standard deviation for the observed mean EQR at the site). 

The associated CofC values can then be calculated as indicated in Section 2.2.2, 
making the assumption that the within-site variability is Normally distributed. 

3.2 Software 
Three Excel tools were circulated in mid-2006 at the end of the ‘quantifying 
uncertainty’ project:  

CAVE (Combines Appropriate Variance Estimates)   
This assumed that the user had previously obtained various relevant components of 
variance (spatial, temporal, random environmental and measurement error) and now 
wished to combine them to obtain an appropriate uncertainty measure for WB 
assessment. The purpose of CAVE was to illustrate how this task depended critically 
on (a) the proposed monitoring programme and (b) the monitoring objective. 

SDvMean   
This assumed that the user had replicated or time-series EQR data at each of a 
number of sites and that the variability at each site was representative of that which 
would apply in future WB assessments. SDvMean provided a method for fitting an 
‘upturned wok’ curve to a plot of standard deviation at a site to mean EQR at the site - 
the idea being to reflect the tendency for the standard deviation to fall off towards zero 
for very poor and very good sites.  

CofC 
Finally, CofC took the model determined by SDvMean, plus information on the number 
of planned samples per site and the EQR class boundaries and produced two plots - 
one showing CofC curves for the five WFD classes and another showing the Risk of 
Misclassification as a function of the true mean EQR.   
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Limitations of the current software 
It should be emphasized that the above Excel tools were made available to the WFD 
tool developers primarily as a working illustration of how the recommended approach 
could be applied in certain specific circumstances, rather than purporting to be 
definitive software and they were accepted in that spirit. It was not intended that the 
tools would be able to cope with extensions or generalisations of the statistical model 
that incorporated, for example, further spatial or temporal components of variability or 
allowed for a site-specific variance component. Developments of that sort would call 
for the use of proper statistical software rather than spreadsheet-based analysis.  

3.3 DARES results 

3.3.1 Standard deviation model 

In the present example we have no need of CAVE, as our starting point is the set of 
EQR means and standard deviations for the 105 sites.  We can therefore proceed 
immediately to the SDvMean spreadsheet. This produces the scatter diagram shown 
in Figure 4. (Note that six of the mean EQR values were slightly greater than 1.0. As 
the tool expects all EQR values to fall within the range [0-1] we had to truncate these 
to 1.0.) 
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Figure 4 Plot of EQR standard deviation versus EQR mean for DARES sites 

The plot also shows the standard deviation model that the tool fitted to the data, using 
anchor points of 0.01 and 0.08.  We took the parameters of this model and plugged 
them into the CofC tool. We were then ready to calculate the CofC curves for any 
specified number of samples. 
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3.3.2 CofC results based on one sample at a site 

Figure 5 shows the CofC curves that would apply if a DARES assessment were 
carried out on the basis of a single sample.  The degree of discrimination is fairly good 
for sites at the poor end of the scale, but gets progressively worse as we move from 
left to right. For example, given an observed EQR of 0.4 we could be nearly 90% 
confident that the site was Poor, but given an EQR of 0.85 we would have less than 
50% confidence that the site was Good and about 25% confidence both for Moderate 
and for High.   

Note, the calculations go haywire at the extreme right-hand end of the plot because 
the artificially imposed limit of 1.0 is clearly inconsistent with the substantially non-zero 
standard deviations seen at the right-hand end of Figure 4. (This could be tidied up if 
necessary). 
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Figure 5 CofC curves for DARES assessments based on one sample 

3.3.3 CofC results based on four samples at a site 

Figure 6 shows the CofC curves that would apply if a DARES assessment were 
carried out on the basis of four randomly selected samples over the monitoring period 
rather than just one.  The standard error for a site is now only half of what it was before 
(i.e. s/√4) and as a consequence the degree of discrimination is much improved. For 
the examples cited earlier, the CofC values for the face-value class are now 100% for 
an EQR of 0.4 and 77% for an EQR of 0.85 (with the confidence of either neighbouring 
class down to about 11%). 
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Figure 6 CofC curves for DARES assessments based on four samples 

3.3.4 Application of CofC to new sites 

Suppose we have seven additional DARES sites, each with the same expected TDI of 
36.3 and with the observed TDI data shown in Table 1. The ‘face value’ estimate of the 
EQR for each of the sites is: 

EQR  =  (100 - Mean TDI)/(100 - Expected TDI)  =  40.0/63.7  =  0.628.  

Thus the seven sites all fall a little below the centre of the Moderate class (for which 
the boundaries are 0.52 and 0.78). 
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Table 1 Illustrative TDI data for seven new sites 

Site Observed TDI values Mean TDI 

106 60 60 

107 60, 60, 60 60 

108 60, 60, 60, 60, 60, 60 60 

109 50, 60, 70 60 

110 50, 50, 60, 60, 70, 70 60 

111 40, 60, 80 60 

112 40, 40, 60, 60, 80, 80 60 

  

For Site 106, the EQR is based on n = 1 samples, so we can determine the CofC 
values directly from Figure 5. The results are as shown in the first row of Table 2 
below. In particular, we can be 69.3% confident that the site is Moderate.  

Sites 107, 109 and 111 are all based on n = 3 samples, so their CofC values can be 
obtained from Figure 6. For these sites, the confidence of Moderate has risen to 
90.4%.  

Finally, we can obtain the results for Sites 108, 110 and 112 from the equivalent CofC 
graph for n=6. We see that the confidence of Moderate has now risen to 97.3%.  

Table 2 Confidence of Class for seven new sites 

Site                              Confidence of Class (%) 

 Bad Poor Moderate Good High 

106 0.3 21.2 69.3 9.3 0.0 

107 0.0 8.5 90.4 1.1 0.0 

108 0.0 2.6 97.3 0.1 0.0 

109 0.0 8.5 90.4 1.1 0.0 

110 0.0 2.6 97.3 0.1 0.0 

111 0.0 8.5 90.4 1.1 0.0 

112 0.0 2.6 97.3 0.1 0.0 
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4 Applying the Bayesian  
approach 

4.1 Introduction 
In the analysis of the DARES data using the frequentist approach, the historical data 
from 105 sites is first analysed to quantify the level of temporal variability using the 
SDvMean spreadsheet (Section 3.3.1).CofC curves are then calculated for different 
numbers of samples (Sections 3.3.2 to 3.3.3).  This information is applied to a new 
data set of seven sites for which classification errors need to be calculated (Section 
3.3.4).  

A similar two-stage analysis of the two data sets could be employed with the Bayesian 
approach (Figure 7a).  In the first stage of the analysis, a Bayesian analysis of the 
historical data would produce the posterior distributions for the overall mean EQR and 
the within-site variability.  As we have no prior expectation regarding these 
parameters, we would use uninformative prior distributions.  Then in the second stage 
of the analysis, the posterior distributions from the historical analysis are used as 
informative prior distributions for the analysis and classification of the new data.  This 
two-stage Bayesian analysis is, therefore, similar to the two-stage frequentist analysis, 
except that the Bayesian analysis transfers information on the variability of EQRs via a 
probability distribution (rather than a single value from Figure 4) and transfers 
information on both the variability and mean EQR values. 

Whilst this two-stage Bayesian analysis would help to contrast the Bayesian and 
frequentist approaches, in practice the Bayesian approach would probably be 
undertaken in a single step with all of the data analysed in a single model (Figure 7b).  
This means that in practice, only uninformative priors need to be specified.  However, 
the Probability of Class (PofC) values estimated from these two procedures will be 
nearly identical. 

In contrast, the analysis of all available data, both past and present, in a single model 
is not possible with the frequentist approach described in Section 3 and it would be 
quite a complicated matter to extend the approach so that it could do so.   
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Figure 7 Bayesian analysis of DARES data using a) a two-stage approach 
and b) a one-stage approach. 

4.2 Statistical model 
As with the frequentist approach (Section 3.1) the Bayesian analysis is based on a 
statistical model. The most basic model for the Bayesian approach (Model 1) is: 

 
Bayesian Model 1 

logit(TDIij/100) ~ Normal(αi, τ) 

αi ~ Normal(μα, τα) 

EQRi = (1 - logit-1(αi)) / (1 - ExpTi/100) 

where 

TDIij is the TDI of the jth sample at the ith site, 

αi  is the mean (logit transformed) TDI at the ith site, 

τ is the temporal variability in TDIs within sites (measured as 1/variance) 

 α is the mean (logit transformed) TDI across all sites, 

τα  is the spatial variability between sites (measured as 1/variance) 

ExpTi is an estimate of the expected TDI at the ith site under reference conditions and 
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EQRi  is the EQR at the ith site. 

This is very similar to the model underlying the frequentist approach except that here, 
for reasons that we explain shortly, we have chosen to model the TDI (expressed as a 
proportion) rather than the EQR. (This makes practically no difference as far as the 
later comparisons with the frequentist results are concerned.) As TDI/100 must lie 
between 0 and 1, it is appropriate to model it on a logistic scale. Accordingly, we 
assume that logit(TDIij/100) varies randomly according to a Normal distribution with 
mean α i and 1/variance6 τ. This brings a useful benefit regarding the implied variance 
of the EQR.  As logit(TDI/100) has a constant variance (1/τ) the TDI on an un-
transformed scale will have a maximum variance at  a TDI of 50 and zero variance at 
TDIs of 0 and 100.  (See the discussion on this in Ellis and Adriaenssens (2006)).  For 
data that has an expected TDI (ExpTi) of around 36, therefore, the variance of the 
EQR will have a maximum at a mean EQR of 0.78 (= (100-50)/(100-36)) and a 
minimum at mean EQRs of 0 (= (100-100)/(100-36)) and 1.56 (= (100-0)/(100-36)).  
Thus, by modelling logit(TDI/100) the relationship between the variance of the EQR 
and the mean EQR naturally follows an ‘upturned wok’, similar to that in Figure 4, but 
without the explicit need either to set arbitrary anchor points,or to model the shape of 
the relationship. 

A further difference between Bayesian model 1 and the frequentist model is that the 
former assumes not only that the logit(TDIij/100) varies randomly within a site 
according to a Normal distribution, with mean α i and 1/variance τ, but also that the site 
means themselves vary randomly according to a Normal distribution with mean μα and 
1/variance τα.  Thus, there are two sources of random variation in this model, 
described by τ and τα. 

One advantage of the Bayesian approach and the use of Bayesian software is that the 
models can easily be changed, if necessary, to better describe the data. For example, 
it was clear from the data that the variability within each site (1/τ) was not constant, 
with some sites exhibiting a greater degree of variation than others. We therefore 
decided that the degree of variability should itself vary from site to site. This led to 
Model 2, shown below, in which the changes from Model 1 are shown in bold: 

Bayesian Model 2 

logit(TDIij/100) ~ Normal(αi, τi) 

αi ~ Normal(μα, τα) 

log(τi) ~ Normal(μτ, ττ) 

EQRi = (1 - logit-1(αi)) / (1 - ExpTi/100) 

where 

                                                 
6 For technical reasons WinBUGS expresses variability in terms of a quantity called ‘precision’, 
which is defined as 1/variance.  Unfortunately this usage clashes with the frequentist meaning 
of ‘precision’, namely the half-width of a confidence interval - with the further complication that 
the two usages work in opposite senses. (A numerically large Bayesian precision is equivalent 
to a numerically small frequentist precision.)  To avoid confusion, therefore, we will refer to 
precision in the WinBUGS sense as ‘1/variance’.  
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τi is the temporal variability in TDIs within the ith site (measured as 1/variance) 

μτ is the mean (log transformed) variability across all sites and 

ττ  is the degree to which temporal variability varies between sites (measured as 
1/variance). 

In a final refinement (Model 3) the uncertainty associated with modelling reference 
conditions was included.  To do this, we assumed that ExpTi, the expected value of 
TDI at site i (which is calculated from the reference sites model) was an imprecise 
estimate of the truth (TrueTi) and that the 1/variance associated with the reference 
sites model (τe) was assumed to be known.  The model (with the refinements from the 
previous model again shown in bold) now becomes: 

Bayesian Model 3 

logit(TDIij/100) ~ Normal(αi, τi) 

αi ~ Normal(μα, τα) 

log(τi) ~ Normal(μτ, ττ) 

ExpTi ~ Normal(TrueTi, τe) 

EQRi = (1 - logit-1(αi)) / (1 - TrueTi/100) 

where 

TrueTi is the true (unknown) expected TDI at the ith site under reference conditions 
and 

τe  is the error associated with the reference condition model (measured as 
1/variance). 

Model 3 has four unknown parameters (μα, τα, μτ, ττ) for which Bayesian prior 
distributions have to be specified.  As previously mentioned, we chose to use 
uninformative priors in this analysis. This is appropriate when we have no prior 
knowledge of the parameters (e.g. from the literature) before analysing the data.  For 
τα and ττ (which must be positive) uninformative Gamma distributions were used and 
for μα and μτ (which can be positive or negative) uninformative Normal distributions 
were used.   

4.3 Software 
Whilst the Bayesian approach is conceptually simpler than the frequentist approach, 
until recently it has been much more difficult to implement.  However, with the increase 
of computing power, Bayesian statistics has become much more accessible, thanks to 
computer-intensive methods that use iterative calculations. 

One such iterative method is ‘Gibbs Sampling’, which is used by the Bayesian 
statistical software package BUGS (Bayesian inference Using Gibbs Sampling, Lunn 
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et al. 2000).  BUGS is freely available and the Windows version, WinBUGS 1.4.3, was 
used for this project (www.mrc-bsu.cam.ac.uk/bugs). 

With WinBUGS, it is possible to specify models within the software just by drawing flow 
diagrams, known as ‘doodles’, with the mouse.  The doodle for Model 1 is shown in 
Figure 8 (a screen-shot from the software).  Each parameter of the model is 
represented by a node and the dependencies between the parameters are shown by 
arrows. Single arrows denote stochastic relationships – that is, relationships involving 
statistical uncertainty  – whereas double arrows denote deterministic relationships.  
Repeated components of the model are enclosed within the large rectangles (‘plates’) 
with i denoting each site, j denoting each observation within a site and c denoting the 
five WFD classes. 

The doodle corresponds exactly with the three equations given above for Model 1.  
Alpha (αi) is stochastically linked to mu.alpha (μα) and tau.alpha (τα) TDIij is 
stochastically linked to alpha (αi) and tau (τ) and the EQRi is deterministically 
calculated from ExpTi and logit-1(αi).  This doodle also shows the calculation of the 
PofC for each site (class[i,c]) given the class boundaries (held in the array 
‘boundary[c]’).  The text at the top of the doodle gives details of the highlighted node – 
in this example, mu.alpha (μα).  This is a parameter that requires an uninformative prior 
distribution and the details show that it is a stochastic node with a prior that is a 
Normal distribution (density is ‘dnorm’) with a mean of zero and a very low 1/variance 
(1.0E-6) i.e. a high variance.  This distribution is therefore very nearly flat, which 
means that our prior belief is that all values, negative or positive, are equally likely. 

for(c IN 1 : 5) for(j IN 1 : n.obs[i])

for(i IN 1 : n.site)

ExpT[i]

class[i,c]boundary[c]

EQR[i] logit.alpha[i]

logit.TDI[i,j]

tau

alpha[i]

tau.alphamu.alphamu.alpha

name: mu.alpha type: stochastic density: dnorm
mean 0.0 precision 1.0E-6 lower bound upper bound

 

Figure 8 Doodle for Bayesian Model 1 

To specify Model 2 in WinBUGS, the doodle is modified (see Figure 9) to show the 
between-site differences in variability.  Log.tau[i] (that is, log(τi) in the algebraic model 
notation) is the highlighted node in this example, showing that it is now a stochastic 

http://www.mrc-bsu.cam.ac.uk/bugs
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node that follows a Normal distribution with mean mu.tau (μτ) and 1/variance tau.tau 
(ττ). 

Model 3 (see Figure 10) adds one final refinement; it assumes that the expected TDI 
score (ExpT[i]) from the reference sites model is an imprecise estimate of the true 
expected TDI score (TrueT[i]) with 1/variance tau.e (τe).  The highlighted node is 
EQR[i], showing that it is a deterministic node that is a function of the true, but 
unknown, expected TDI score (TrueT[i]). 

Once the model has been specified as a doodle, the raw data is entered into 
WinBUGS.  The complete data set comprises the observed TDI score for each site 
and occasion (TDI[i,j]); the expected TDI score for each site (ExpT[I]); and, for Model 
3, the assumed level of error in the reference site model (tau.e).   

for(c IN 1 : 5) for(j IN 1 : n.obs[i])

for(i IN 1 : n.site)

ExpT[i]

class[i,c]boundary[c]

EQR[i] logit.alpha[i]

logit.TDI[i,j]

tau[i]

log.tau[i]alpha[i]

tau.taumu.tautau.alphamu.alpha

log.tau[i]

name: log.tau[i] type: stochastic density: dnorm
mean mu.tau precision tau.tau lower bound upper bound

 

Figure 9 Doodle for Bayesian Model 2. 
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for(c IN 1 : 5) for(j IN 1 : n.obs[i])

for(i IN 1 : n.site)

tau.e ExpT[i]

class[i,c]boundary[c]

TrueT[i]

EQR[i] logit.alpha[i]

logit.TDI[i,j]

tau[i]

log.tau[i]alpha[i]

tau.taumu.tautau.alphamu.alpha

EQR[i]

name: EQR[i] type: logical link: identity

value: (1-logit.alpha[i])/(1-TrueT[i]/100)

 

Figure 10 Doodle for Bayesian Model 3. 

4.4 DARES results 

4.4.1 Estimates of model parameters 

Model 1 has three primary unknown parameters (μα, τα, τ) and Models 2 and 3 have 
four (μα, τα, μτ, ττ).  The uncertainty associated with the reference site model (τe) was 
assumed to be 0.01.  The Bayesian estimates for these parameters are given in Table 
3. 
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Table 3 Results for the three Bayesian models 

Parameter WinBUGS Estimate        Std error   95% probability interval

 node                  Lower      Upper 

Model 1   

μα  mu.alpha 0.401 0.0618 0.281 0.523 

τα tau.alpha 2.531 0.3589 1.883 3.284 

τ tau 6.716 0.3322 6.075 7.380 

Model 2      

μα  mu.alpha 0.401 0.0608 0.282 0.519 

τα tau.alpha 2.554 0.3623 1.896 3.306 

μτ mu.tau 2.081 0.08169 1.925 2.247 

ττ tau.tau 2.738 0.7876 1.568 4.622 

Model 3      

μα  mu.alpha 0.401 0.0614 0.280 0.523 

τα tau.alpha 2.551 0.3602 1.903 3.316 

μτ mu.tau 2.081 0.0813 1.924 2.241 

ττ tau.tau 2.733 0.7946 1.562 4.627 

τe tau.e 0.01* 0 N/A N/A 
    * Assumed value. 
 
 
These results show that the three models are very similar in terms of the primary 
parameters. The low values for the parameter ττ suggest that there is a high degree of 
between-site variability in the within-site variances, confirming that Model 2 is a more 
realistic description of the data than Model 1.  The Bayesian approach provides 
estimates of the uncertainty associated not only with the means but also the variances, 
and these uncertainties are all reflected in the final estimates of PofC.  

 

4.4.2 Application of model to historic sites 

The mean EQR values for the 105 historic reference sites are shown in Figure 11.  
The differences between Models 1 and 2 are small, but the uncertainty associated with 
model 3 is considerably higher than for the other two models.  It should be 
remembered that Model 3 currently uses an assumed value for the uncertainty 
associated with the reference model. Even so, this result illustrates the potential 
influence of this source of uncertainty. 
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4.4.3 Application of model to new sites 

Using a Bayesian approach, the PofC for new sites will vary according to both the 
number of samples contributing to the mean TDI value and the variability of those 
samples.   In contrast, the CofC calculated using the frequentist approach takes 
account of the first of these elements, but not the second. It has generally been 
assumed that there will typically be too few samples to allow us to estimate the 
variability solely from the new data and so we have fallen back on the ‘upturned wok’ 
plot from historical data, showing the typical variability in EQR as a function of mean 
EQR at the site. 

With the Bayesian approach, however, both the current variability (i.e. the likelihood of 
the variance parameter) and the historical variability (used to derive the prior 
distribution for the variance parameter) are utilised in the PofC calculation. The two 
extremes are: 

• We have a lot of historical data and only a small amount of new data. In that 
case, the variability used in calculating PofC will be practically unchanged from 
the typical historical value (as with the CofC approach). 

• We have limited historical data but a substantial amount of new data. In that 
case, the variability used in calculating PofC will be close to that obtained from 
the new data and only slightly modified by the historical evidence. 

Most situations fall between these two extremes - and the statistical machinery of 
Bayes’ Theorem determines precisely how much weighting to give to the two 
components. 

The PofC results for the seven sites described in Section 3.3.4, all of which have a 
‘face value’ estimate of the EQR of 0.628, are shown in Table 4. 
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Figure 11 Mean EQR and 95% probability intervals for 105 sites 
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Table 4 Probability of Class for seven new sites 

Site Model Probability of Class 
 Bad Poor Moderate Good High

106 1 0.000 0.184 0.698 0.110 0.009
 2 0.000 0.155 0.745 0.090 0.009
 3 0.001 0.213 0.597 0.134 0.055

107 1 0.000 0.076 0.892 0.032 0.000
 2 0.000 0.041 0.942 0.017 0.000
 3 0.000 0.146 0.716 0.107 0.031

108 1 0.000 0.026 0.970 0.004 0.000
 2 0.000 0.004 0.995 0.001 0.000
 3 0.000 0.113 0.770 0.097 0.021

109 1 0.000 0.086 0.887 0.027 0.000
 2 0.000 0.087 0.880 0.032 0.001
 3 0.000 0.173 0.687 0.109 0.031

110 1 0.000 0.032 0.964 0.004 0.000
 2 0.000 0.035 0.959 0.007 0.000
 3 0.000 0.145 0.734 0.098 0.023

111 1 0.000 0.120 0.860 0.020 0.000
 2 0.000 0.174 0.766 0.057 0.003
 3 0.000 0.234 0.617 0.109 0.039

112 1 0.000 0.056 0.942 0.002 0.000
 2 0.000 0.129 0.845 0.025 0.001
 3 0.000 0.214 0.655 0.102 0.029

  Note: the shaded row corresponds to the example used in Section 2.3 
 
From these results we see that, as expected, Site 106 has the greatest uncertainty 
(lowest probability of Moderate status) as the mean is based on only one sample.  By 
comparing sites with the same variability but different sample sizes, we can see that 
sites with higher sample sizes (n=6) have lower uncertainty than sites with lower 
sample sizes (n=3).  Furthermore, by comparing sites with the same sample size, but 
different variability, we can see that sites with the highest sample variability have the 
greatest uncertainty.  This is in contrast to the frequentist approach (Table 2) where no 
account is taken of the variability in the sample data.  

The Probabilities of Class also enable us to examine the differences between the three 
models in more detail. Whilst the PofC values from Models 1 and 2 are similar, Model 
2 is more sensitive to the variability of the sample and less influenced by the variability 
of the 105 reference sites, when compared to Model 1.  At sites with zero variability 
(107 and 108) Model 2 has the lowest uncertainty. At sites with high variability (111 
and 112) Model 2 has the highest uncertainty; whereas at sites with intermediate 
variability (109 and 110) Models 1 and 2 are very similar.  Model 3 builds on Model 2 
by adding uncertainty in the expected TDI scores and, as a result, has greater 
uncertainty for all sites. 

It is sometimes necessary to classify sites or water bodies where there are no data.  In 
this situation, a Bayesian analysis enables classification to be based on the prior 
distribution, rather than the posterior distribution.  For example, if a site has had no 
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sampling then the likelihood of the data cannot be calculated and the prior distribution 
(Figure 1) provides probabilities of class (from Bad to High) of 0.030, 0.295, 0.381, 
0.146 and 0.147 respectively.  The probability of Moderate status is now only 0.381; as 
would be expected, the probabilities of class are much less precise when there are no 
data!
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5  Discussion 

5.1 Comparison of the two approaches 
Bayesian Model 1 is the one most similar to the frequentist model and so it is 
instructive to compare the frequentist CofC values from Table 2 with the Model 1 PofC 
values from Table 4 (converted to percentages). This has been done in Figure 12. 
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Figure 12 Comparison of frequentist and Bayesian results for seven new 
sites 
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It can be seen that the two sets of results are numerically in remarkably close 
agreement.  This may appear to be something of a paradox, given the profoundly 
different philosophy underpinning the frequentist and Bayesian approaches. However, 
it is simply an illustration of the general principle (readily acknowledged by most 
statisticians with an unbiased foot in either camp) that, provided the same statistical 
model is fitted in each case, there will commonly be relatively little difference between 
the two sets of results unless there is good reason to use a very strong prior. In this 
example, a moderately strong prior from the historical data was used for classifying the 
new sites, but it appears that the increase in precision obtained has largely been offset 
by the more realistic assessment of uncertainty achieved by the Bayesian approach. 

A more general comparison of the frequentist and Bayesian approaches, gathering 
together and summarising a number of points, identified. in earlier sections, is provided 
by Table 5.   

5.2 Uncertainty in class boundaries 
At the start of this report we stated that we would be assuming that the class 
boundaries were given quantities, with no associated statistical uncertainty.  This is a 
convenient point to return to this issue and to discuss some of the consequences of 
relaxing this assumption. 

Hamill & Ellis (2003) provided an illustrative Bayesian example to show how, given two 
overlapping reference sets of Good and High sites, these could be used to classify a 
new site without ever needing to set an (essentially arbitrary) Good/High boundary.  It 
was perhaps unfortunate that this illustration immediately followed a description of the 
frequentist CofC approach in which the class boundaries were (as has traditionally 
been the case) assumed to be fixed quantities known without error. On a casual 
reading, therefore, It might have seemed that the marked difference in outcomes was 
attributable to some fundamental difference between the frequentist and Bayesian 
approaches, whereas in fact it was almost entirely due to the changed assumption 
about the class boundaries. The premises were different and so naturally the 
outcomes were different.  

A particularly dramatic contrast was seen more recently when Wyatt (pers.comm, 
2006) subjected the European Fish Index data to a Bayesian analysis. Wyatt used the 
five (heavily overlapping) sets of EFI reference sites as source data, rather than the 
derived class boundaries. This produced PofC curves that were much flatter and more 
widely spread across classes than the relatively sharply defined CofC curves 
previously reported for EFI by Adriaenssens and Ellis (2006). Again, it would have 
been incorrect to attribute these differences to the change in analytical method from 
frequentist to Bayesian. Rather, they were the consequence of a huge change in the 
assumptions made about the class boundaries – firstly that they were precisely known 
and secondly that they were very loosely defined because of the poor discrimination 
achieved by the sets of reference sites. A frequentist analysis that adopted the latter 
stance could be expected to produce similarly weak conclusions.  
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Table 5 Comparison of frequentist and Bayesian approaches for assessing 
WFD classification errors 

Feature Frequentist Bayesian 

Measure of 
classification errors 

Confidence of Class (CofC) Probability of class (PofC) 

Interpretation of 
classification errors 

Not straightforward (see 
Annex A) and easily 
misunderstood 

Intuitive (see Figure 3) 

Uncertainty in 
variance estimates 

Ignored by present approach Included in all models 

Use of historic data Used to estimate variances Used to provide prior 
information for both means 
and variances 

Variance – mean 
EQR relationship 

Modelled empirically with ‘up-
turned wok’ power curve 

Included automatically within 
probabilistic structure of 
model 

Variability of sample 
being classified 

Ignored in CofC calculations Included in PofC calculations 

Uncertainty of 
classification 

Determined by sample size 
alone (together with typical 
value of historical variability) 

Bayesian approach based on 
informative priors from 
historical data, so more 
realistic. 

Analysis of data from 
reference sites and 
new sites 

Reference data set analysed 
first and results applied to new 
data for which CofC required 

Reference data and new data 
can be incorporated into a 
single analysis 

Software A series of custom-designed 
spreadsheets 

Bayesian software, e.g. 
WinBUGS (free) 

Implementation Requires a number of steps:  
1) initial analysis, 2) 
SDvMean, 3) CofC 

Analysis goes from raw data 
to PofC in a single step 

Modification of 
models 

Alternative models would 
require re-designing the 
spreadsheets, or graduating 
to proper statistical software 

Alternative models can be 
simply explored by modifying 
the WinBUGS ‘doodle’ 

Within-site variability Assumed constant Allowed to vary from site to 
site in Models 2 and 3 

Error in reference 
site model 

Ignored Included in Model 3 
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6  Conclusions and 
 Recommendations 

A comparative analysis has been carried out for the DARES diatom tool using both a 
frequentist approach (as currently adopted by most of the WFD tools) and a Bayesian 
approach (as adopted by the Fisheries WFD tool). 

We have used the two approaches to analyse illustrative data sets for each of seven 
‘new’ sites.  This has shown that, provided similar statistical assumptions are made in 
analysing the data for the 105 historical sites, there is very little practical difference 
between (a) the Confidence of Class values generated by the frequentist approach for 
the new sites and (b) the corresponding Probability of Class values arising from the 
Bayesian method.  

More generally, the exercise has demonstrated the ease with which the Bayesian 
approach (allied to the WinBUGS software) can be adapted to incorporate extensions to 
the statistical model. For example, differences in the expected within-site variability 
between historical sites can be accommodated and the assessment of a new site can be 
influenced both by the number of samples and the degree of variability in that site’s 
monitoring data. Similar generalisations of the Confidence of Class approach, although 
possible in principle, would not be practicable with the existing spreadsheet-based 
methodology. 

The extensions to the current DARES model explored by the Bayesian analysis (Models 
2 and 3) have shown that the Probability of Class can change markedly according to the 
statistical assumptions. For example, the probability of ‘Moderate or worse’ typically falls 
by 10% or more in moving from Model 1 to Model 3. In all but one case (site 106) the 
choice of model determines whether or not the site fails the critical 95% PoM trigger. 
This demonstrates that the need to evaluate alternative statistical models (en route to 
adopting the most appropriate one) is not merely an academic nicety.  

The exercise has illustrated the general principle that differences in the underlying 
statistical model and its associated assumptions are likely to have a much greater 
influence on data analysis results than whether the statistical methodology employed to 
fit the model is frequentist or Bayesian. One practically useful consequence of this is that 
there is no immediate and pressing need to adopt one approach to the exclusion of the 
other: either may be used depending on both the modelling circumstances and the 
statistical preferences of the tool developer.  

In the longer term this argument is less convincing, given the several complex statistical 
issues being discussed in relation to various WFD tools. These include: the development 
of monitoring programmes to obtain more reliable estimates of spatial and temporal 
components of variance; the growing need for analysis methods that can supplement 
future monitoring data with information from (relevant) historical data; and the long-
running debate over how best to deal with spatial variability in extending site-based 
results to WB-wide assessments.  Given the superior flexibility and greater intuitive 
appeal of the Bayesian approach, we believe there is a good case for a more 
comprehensive assessment of Bayesian methods and software, building on the 
foundations laid by the present exercise. 
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Glossary of terms 
Bayesian statistics An alternative method of data analysis to the more 

traditional ‘frequentist’ statistics.  Most types of data 
analysis (e.g. estimating a mean, regression analysis, 
ANOVA) can be undertaken using frequentist or Bayesian 
statistics. 

Bayes’ Theorem A simple equation for conditional probabilities, showing 
how to calculate the probability of [A given B] from the 
probability of [B given A].  This is the basis for Bayesian 
statistics, where it is used to calculate the probability of a 
parameter given a data set. 

Doodle A flow diagram used to represent a statistical model in the 
WinBUGS software. 

Frequentist statistics The most common statistical basis of data analysis, as 
implemented with spreadsheets such as Excel, or 
statistics packages such as Minitab. 

Likelihood function Function describing how the probability of observing a 
particular data set depends on the values of the 
underlying parameters of a statistical model.  The 
likelihood function is central to both frequentist and 
Bayesian statistics. 

Parameter A constant in a statistical model, such as a mean or a 
variance. 

Posterior probability 
distribution (‘Posterior’) 

A probability distribution describing the belief in possible 
values for a parameter.  This is the output from a 
Bayesian data analysis. 

Precision In frequentist statistics, precision mans the half-width of 
the confidence interval, whereas in Bayesian statistics, it 
means 1/variance. 

Prior probability distribution 
(‘Prior’) 

A probability distribution describing the belief about the 
possible values for a parameter, prior to analysing any 
data.  An essential component of Bayesian analysis. 

Statistical model A formal probabilistic description of the relationship 
between observed data and unobservable parameters.  A 
statistical model lies behind most types of data analysis 
(estimating a mean, regression analysis, ANOVA etc). 
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List of abbreviations 
BUGS Bayesian inference Using Gibbs Sampling (software) 

CAVE Combines Appropriate Variance Estimates 
(spreadsheet tool) 

CI Confidence interval 

CofC Confidence of Class 

DARES Diatoms for Assessing River Ecological Status (WFD 
tool) 

EQR Ecological quality ratio 

PofC Probability of class 

PoM Programme of Measures. 

TDI Trophic Diatom Index. 

WB Water body 

WFD Water Framework Directive 

WinBUGS The Windows version of BUGS, a Bayesian data 
analysis package. 
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Annex A Demonstrating 
Confidence of Class 

A.1 Setting the scene  
Suppose for simplicity that we are interested in just the two EQR class limits defining the 
‘Good’ class, namely L = 0.60 and U = 0.80. On the basis of some agreed monitoring 
programme we obtain a mean EQR of 0.717.  We know that the standard error of the 
mean is 0.095 and that this applies uniformly across the EQR scale from L to U. (That is 
another simplifying assumption not critical to the argument.) Given this information, how 
confident can we be that the site is ‘Good’? 

A.2 Lower confidence limit 
First, consider the situation where the true mean is at L. If we imagine a succession of 
20 randomly sampled EQR values, they would be scattered around the true mean as 
illustrated in Figure 13. The figure also shows the corresponding 78% confidence 
intervals (CIs) for the true mean. (The reason for the choice of 78% will emerge 
shortly...) 

Figure 13 Randomly generated sample means when true mean = 0.6 
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We expect about 16 of the intervals (= 78% of 20) to straddle the true mean - and that is 
what we see here. The other four intervals (shown in red) fail to do so, as they lie either 
wholly above or wholly below the true mean.  In this example, the half-width of each CI is 
0.117. So, given any one sample mean, we can be 78% confident that the true mean lies 
within the interval {sample mean ±0.117}. Furthermore, if we are interested solely in the 
lower end of the confidence interval, we can be 89% confident that the true mean is 
greater than the lower confidence limit. 
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Now we focus on our actual sample mean of 0.717 (shown at the right-hand end of the 
figure by the green square). This lies well above the L boundary of 0.60. But how 
confident are we that the true mean is greater than L?  Well, from the previous 
statement, we can be 89% confident that the true mean is greater than {sample mean - 
0.117}, namely 0.717 - 0.117 = 0.60. (And that is why we made the unusual choice of 
78% for our confidence coefficient: it was to ensure that the lower confidence limit just 
touched 0.60.)   

On the basis of the observed EQR estimate, therefore, we can make these statements: 

We have 89% confidence that the true EQR is at least as high as 0.60 and  
We have 11% confidence that the true EQR is less than 0.60. 

 

A.3 Upper confidence interval 
Now consider the situation where the true mean is at U, the upper class limit. Again, a 
succession of 20 randomly sampled EQR values would be scattered around the true 
mean as illustrated in Figure 14. The figure also shows the corresponding 62% 
confidence intervals for the true mean. (And, as before, the figure 62% has been chosen 
with an eye to the actual EQR estimate).  

Figure 14 Randomly generated sample means when true mean = 0.8 
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We expect about 12 of the intervals (= 62% of 20) to straddle the true mean - and that is 
what we see here. The other eight intervals (shown in red) fail to do so, as they lie either 
wholly above or wholly below the true mean.  In this example, the half-width of each CI is 
0.083. So, given any one sample mean, we can be 62% confident that the true mean lies 
within the interval {sample mean ±0.083}. Furthermore, if we are interested solely in the 
upper end of the confidence interval, we can be 81% confident that the true mean is 
below the upper confidence limit. 

Now we return to our actual sample mean of 0.717 (again shown by the right-hand green 
square). This lies well below the U boundary of 0.80. But how confident are we that the 
true mean is lower than U?  Well, from the previous statement, we can be 81% confident 
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that the true mean is lower than {sample mean + 0.083}, namely 0.717 + 0.083 = 0.80. 
We can therefore make these statements: 

We have 81% confidence that the true EQR is no higher than 0.80 and  
We have 19% confidence that the true EQR is higher than 0.80. 

 

A.4 Confidence of Class 
Finally, we can combine these two sets of statements to produce the following CofC 
values: 

Location of  
true EQR 

<L 
(Moderate) 

Between L and U 
(Good) 

>U 
(High) 

Confidence 11% 70% 19% 
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Annex B The ‘Confidence 
Distribution’ 

Suppose we have an independent random sample of n = 9 values and we obtain the 
following summary statistics:  mean = 62.8 and standard deviation (s) = 35.1.   

We can calculate a 90% confidence interval for the mean in the usual way, viz:  
CI  =  mean ± ts/√n. This produces the values shown below...  

Confidence 
coeff  (%) 

t Lower Upper Width 

90 1.860 41.0 84.6 43.6 
     
 

There is nothing to stop us repeating the calculation for a whole collection of confidence 
coefficients. We have done this below in Table 6, for confidence coefficients running 
from 2% to 99.9%. We see that the confidence intervals start off being very narrow for 
low confidence levels and grow progressively wider as our desired confidence increases.  

Table 6 Confidence intervals for a succession of confidence coefficients 

Confidence 
coeff  (%) 

t Lower Upper Width Conf. 
density 

2 0.026 62.5 63.1 0.6 3.30 
4 0.052 62.2 63.4 1.2 3.30 
6 0.078 61.9 63.7 1.8 3.29 
8 0.104 61.6 64.0 2.4 3.28 

10 0.130 61.3 64.3 3.0 3.27 
20 0.262 59.7 65.9 6.1 3.18 
30 0.399 58.1 67.5 9.4 3.02 
40 0.546 56.4 69.2 12.8 2.80 
50 0.706 54.5 71.1 16.5 2.52 
60 0.889 52.4 73.2 20.8 2.16 
70 1.108 49.8 75.8 25.9 1.74 
80 1.397 46.4 79.2 32.7 1.24 
90 1.860 41.0 84.6 43.6 0.66 
92 2.004 39.3 86.3 46.9 0.53 
94 2.189 37.2 88.4 51.3 0.40 
96 2.449 34.1 91.5 57.3 0.27 
98 2.896 28.9 96.7 67.8 0.13 
99 3.355 23.5 102.1 78.6 0.06 

99.9 5.041 3.8 121.8 118.1 0.00 
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We have plotted this collection of intervals in Figure 15. The lower and upper ends of 
each interval are plotted on the ‘horizontal’ scale and the height of the interval in relation 
to the ‘vertical’ axis has been arranged so that, for any confidence interval running from 
(say) A to B, the area under the curve between A and B is proportional to the 
corresponding confidence coefficient.  (A numerical approximation to this scaling 
calculation is shown in the final column of Table 6, headed 'Conf. density'.) Thus the (low 
confidence) narrow intervals near the top of the curve bracket only a thin strip of the area 
under the curve, whilst the (high confidence) intervals near the base of the curve bracket 
nearly all the area.  

We have coined the term 'Confidence Distribution' to describe this curve, which is 
specific to the particular data set and required population parameter. It is an 
unconventional way of looking at statistical confidence and not one that will generally be 
seen in frequentist textbooks. However, we think it is a helpful device in the context of 
this exercise as a counterpart to the Bayesian probability distribution illustrated in Figure 
2. 

The 'Confidence Distribution'
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Figure 15 Example of a ‘confidence distribution’ 

Returning to the specific example of the 90% confidence interval introduced at the 
outset, we see this represented by the dashed purple line in Figure 16 below. As 
described earlier, the curve has been constructed in such a way that the area within the 
red shape is 90%; and a similar property holds for all the other confidence intervals in 
the table.   
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The 'Confidence Distribution'
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Figure 16 Interpretation of the ‘confidence distribution’ 

We can now disclose the reason for the particular choice of numerical example. The 
sample mean, 62.8, corresponds to the estimated EQR (0.628) for the hypothetical Site 
106 in Table 2. The value of s/√n was chosen to match the expected standard deviation 
for that EQR value (see Figure 4). Thus, we could determine the confidence that the site 
was truly in class ‘Good’ by finding the area under the curve between 52 and 78. (As we 
have seen in Table 2, the answer is 69.3%.) 

The actual method of calculating Confidence of Class (see Section 2.2.2) does not, of 
course, involve constructing a confidence distribution and calculating the area between 
any relevant pair of class boundaries. However, the point of the above discussion is to 
demonstrate that it could equivalently be done that way. So to that extent there is a 
closer parallel, than is at first apparent, between the frequentist’s Confidence of Class 
and the Bayesian’s more intuitively appealing Probability of Class. 
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We are The Environment Agency. It's our job to look after 
your environment and make it a better place – for you, and 
for future generations.  

Your environment is the air you breathe, the water you drink 
and the ground you walk on.  Working with business, 
Government and society as a whole, we are making your 
environment cleaner and healthier. 

The Environment Agency.  Out there, making your 
environment a better place. 
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