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Executive summary 
 

An eco-epidemiological approach has been applied to existing biological and surface 
water chemistry data for England and Wales to investigate its potential in helping 
identify biological impacts from multiple pressures and understand their causes.  The 
method uses a geographic information system (GIS)-based weights-of-evidence 
(WOE) and weighted logistic regression (WLR) application for watershed assessment 
proposed by Kapo and Burton (2006).  The spatial association between stressor 
variables and biological condition is determined by statistically combining stressor 
concentration maps to predict the locations of known biologically impaired sample 
sites. Output from the method includes probability maps delineating locations within the 
study area having the greatest predicted risk of biological impairment, as well as 
estimates of stressor influence and risk values for the entire study area.  The primary 
objective of this project was to conduct a pilot study to test the applicability of the 
WOE/WLR method to river data for England and Wales collected by the Environment 
Agency.  As a result, the scope and content of the work in this study was limited by 
both practical time constraints and data availability.   

In this pilot study, ten variables including water chemistry, nutrients, and toxicity 
(metals and pesticides) were analysed for their spatial association with macrofauna 
impairment. In this study impairment was defined as sample sites within the 25th 
percentile of observed:expected macrofauna values based on an Environment Agency 
reference model.  Models for the entire study area were created for the spring season 
(March-May) and the autumn season (September-November).  Additionally, land-use 
specific models for urban and agricultural land use were created for each season.   

The application of the WOE/WLR method to the data was successful. On average, the 
models successfully predicted 85 per cent of the biologically impaired sites based on 
the spatial distribution of various stressor concentrations, and accurately predicted 80 
per cent of non-impaired sites. Most (86 per cent) of the false positives produced by the 
model had some degree of impairment present (fewer observed macrofauna than 
expected). 

The spring season model for the overall study area was most influenced by the chloride 
variable, which may serve as a proxy for stress associated with surface run-off.  
Biological oxygen demand (BOD) was the most influential variable in the autumn 
season model for the overall study area, likely representing increases in eutrophication 
as a result of the seasonal influx of organic matter (leaf fall) combined with existing 
anthropogenic sources of eutrophication.  Ammonia was the most influential variable in 
the agricultural land use models for both seasons.  A poor performance of the pesticide 
toxicity variable may indicate the need for further refinement of the variable.  pH and 
BOD were important factors in the urban land use model in both seasons.  Metals 
toxicity was most significant in urban land use, particularly during the autumn season.  
Nitrate, likely from run-off after crop harvest, was a significant factor in the autumn 
season for both agricultural and urban land use.   
 
Stressor identification and influence information from the WOE/WLR models for the 
study area were compared to results obtained by a different method, the Effects and 
Probable Cause methodology (Environment Agency, 2008), which employs a 
completely different analysis framework, statistical technique, and communicative 
output.  The methods strongly agreed in site stressor identifications (75-80 per cent 
agreement), however the agreement in the influence of identified stressors at sites 
(ranked importance) was much lower, though still significant.  Differences in model 
design likely account for differences in the results, with the EPC method utilising raw 
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species abundance data to attribute stressor influence and the WOE/WLR method 
directly modelling discrete species loss.  A potential option to reduce uncertainty in 
stressor prioritisation for watershed management is the use of the methods in 
combination as screening-level lines of evidence, highlighting the importance of 
stressors identified by both models as significant at a site. 

Results from this study yielded macrofauna impairment predictions (location and 
stressors) potentially useful to river basin managers, and suggest the potential for the 
WOE/WLR method as a tool for the Water Framework Directive (WFD). 
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1 Introduction 
It remains challenging for watershed managers to effectively prioritise stressors and 
develop targeted management strategies over large geographic areas.  The use of 
existing monitoring programmes and their data in the development of future watershed 
management plans is beneficial in terms of cost, time, and effort.  The term “eco-
epidemiology” in the context of this study refers to the analysis of biological and 
chemical data in order to identify relationships between biological condition and 
environmental variables, identify possible or likely causes of stress to the ecosystem, 
and quantify the effects.  Eco-epidemiological approaches range from simplistic to 
highly complex data analyses, and statistical analysis and modelling can range from 
having a high degree to almost no input or oversight by the researcher performing the 
computations.  A goal in these studies is to find a compromise between employing 
statistical approaches that can handle complex ecological relationships, while also 
allowing for some degree of “expert judgement” in the process to ensure that data 
relationships are biologically plausible, and not simply data-crunching exercises.   

A geographic information system (GIS)-based statistical method combining the 
techniques of weights-of-evidence (WOE) and weighted logistic regression (WLR) was 
introduced as an eco-epidemiological tool in a large-scale watershed risk assessment 
case study in the United States (Kapo and Burton, 2006).  The GIS-based WOE/WLR 
method is a spatial analysis technique that involves combining map patterns of different 
variables to predict the map pattern of an event of interest.  The method was 
developed as a mineral exploration model in which various regional geologic map 
patterns were combined to predict undiscovered gold deposits using known regional 
gold deposit locations as a training dataset (Agterberg et al., 1992).  In the eco-
epidemiological application of the method, spatial patterns of environmental variables 
are combined to predict the spatial patterns of biologically impaired sites.   

In this pilot study, a GIS WOE/WLR analysis was applied to monitoring and spatial data 
to develop quantitative risk assessment models for macroinvertebrates in catchments 
of England and Wales.  The goal of the study was to test the applicability of the method 
to the available data, to map the probability of macroinvertebrate impairment across the 
study area, to generate hypotheses of stressor influence across the study region, and 
to examine the influence of broad classes of land use on risk assessment hypotheses. 
Additionally, the results of the analyses were compared with results from an alternate 
eco-epidemiological technique (Effects and Probable Cause method, Environment 
Agency, 2008) using the same data sources. 
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2  Methodology 

2.1 Data sources and software 
Data sources used in this study included:  

• Water chemistry data (hardness, chloride, total suspended solids, pH, biological 
oxygen demand (BOD), phosphate, ammonia and nitrate). 

• Biological sample data (aquatic macroinvertaberate taxon composition and 
abundance data recorded at Biological Monitoring Working Party (BMWP) level 
for over 5,000 sites.  The data were collected according to highly standardised 
protocols over the time period 1993-2004. Sampling locations were sampled 
every three years in spring and autumn as part of the Environment Agency’s 
General Quality Assessment (GQA) protocol. 

• Surface water concentrations of a number of toxicants were available (metals 
and pesticides).  Metals included cadmium, chromium, copper, nickel, zinc and 
lead. Measured total concentrations were converted to bioavailable fractions 
and the bioavailable fractions were used to calculate local toxic pressures per 
compound (Potentially Affected Fractions, PAF) and subsequently multi-
substance PAF values at each sampling site.   Expressing toxicity as a 
potentially affected fraction (PAF) is a useful way of generating summary 
statistics for toxic loadings.  The Potential Affected Fraction is defined as the 
fraction of species that can occur locally that is probably affected at a level 
higher than the 50 per cent effect level. These values were provided by de 
Zwart (RIVM). Use of a single, multi-substance PAF value per group of 
compounds minimises the number of predictors in the assessment and so 
increases statistical power.  For a full discussion on the derivation and use of 
PAF and multi substance-PAF values, please see de Zwart et al. (2008). 

•  For pesticides, the measured data available was limited and typically restricted 
to old compounds that are no longer approved.  Predicted surface water 
concentrations for pesticides were therefore derived using the Environment 
Agency’s Prediction of Pesticide In the Environment (POPPIE) tool.  POPPIE is 
a GIS-based catchment scale pesticide model.  Predicted annual average 
concentrations were readily available for individual pesticides in England and 
Wales and were supplied by the Environment Agency to de Zwart (RIVM).  A 
multi-substance-PAF was calculated for total pesticides (see de Zwart et al., 
2008 for full details)   

•  Delineated catchment data (UK Centre for Ecology and Hydrology (CEH) 50 
km data). 

• Classified land cover data from the Land Cover Map 2000 dataset (CEH).   

All GIS tasks were performed in ArcGIS version 9.1, with WOE/WLR analysis 
performed with Spatial Data Modeller version 3.1.81 (Sawatzky et al., 2002). Additional 
statistical analyses were performed in SAS Statistical Package version 9.0.   
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2.2 GIS-based Weights-of-Evidence and Weighted 
Logistic Regression 
The GIS-based WOE/WLR method for eco-epidemiology involves three major 
components: 1) study area and variable definition, 2) WOE analysis, and 3) WLR 
modelling.  The WOE analysis identifies potential stressors by examining the strength 
of spatial association between individual variables and biologically impaired sites, 
including the variable concentrations at which the association becomes significant.  
The information from WOE is used to select and optimise stressor variables to be 
included in the WLR model. The WLR model combines significant variables to predict 
the probability of site impairment across the study area.  The components of the 
WOE/WLR method are discussed in detail in the following sections. 

2.2.1 Data preparation 

The study area extent included catchments in England and Wales with biological and 
water chemistry sample data (Figure 2.1). The most general catchment classification 
identifier was used in order to best represent the largest study area scale, while 
omitting major drainage areas lacking sample data.  For a number of areas, no data 
was available and these areas are shown as unshaded in Figure 2.1. 

¯
0 10050 km

Figure 2.1  Study area extent; catchments containing sample data  

Ten water chemistry parameters were examined in this study as potential stressor 
variables (Table 2.1).  Sample data from the time period 1995-2004 was divided into 
spring (sampling season 1: March-May) and autumn  (sampling season 3: September-
November) groups for all water chemistry variables with the exception of metals toxicity 
and pesticide toxicity, which were derived from an external source (De Zwart et al., 
2008) based on annually grouped data.  The mean value for each variable for each site 
was computed for all ten water chemistry variables. The result was a 10-year averaged 
spring and autumn season dataset for each variable, with the exception of metals and 
pesticide toxicity, which had an annual averaged dataset each.  A discussion of data 
variability is provided later in this report (Section 3).  GIS raster maps for the study area 
were created for each variable by interpolating sample point concentrations.  The raster 
maps were created using localised interpolation, where grid cells are assigned the 
variable value of the nearest sample point at a grid cell resolution of 0.25 km2.  
Interpolated estimates for each variable were made only for study area catchments 
containing sample data. Any study area catchments lacking data for a particular 
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variable had a “null” value in the variable raster map. To reduce noise in the data and 
prepare the maps for WOE analysis, the raw values of each variable raster map were 
ranked into five general classes (value ranges) from low to high using Jenk’s Natural 
Breaks classification algorithm in ArcGIS.  Jenk’s Natural Breaks was chosen because 
it produces a gradient of value classes having minimal variability within each individual 
class. 

Table 2.1 Water chemistry variables 

Parameter  Abbreviation (Units) N sites (Spring, Autumn) 
Ammonia  NH4

+ (mg/L, ionized as N) 901, 901 
Biological Oxygen Demand  
Chloride  

BOD (mg/L, ATU as O2) 
Cl- (mg/L, chloride ion) 

901, 901 
880, 897 

Hardness 
Nitrate 
Orthophosphate 
pH  
Suspended solids 
Toxicity, metals 

Toxicity, pesticides 

CaCO3 (mg/L, total CaCO3) 
NO3

- (mg/L as N) 
PO4

- (mg/L as P) 
pH (standard units) 
TSS (mg/L at ˚C) 
Metals (% species affected, msPAF1) 
Pest (% species affected, msPAF1) 

901, 901 
900, 901 
901, 901 
901, 901 
898, 829 
294 (annual value) 
350 (annual value) 

 
Notes: 1msPAF = multi-substance potentially affected fraction of species (Posthuma 
and De Zwart 2006), data provided by De Zwart et al. (2008).  This variable represents 
the percentage of macrofauna species exposed to their EC50 for one or more metals 
and pesticide concentrations at a site.   
                                           

Biological sample data was used to develop biological training point datasets for the 
WOE/WLR analysis.  The Environment Agency used RPBATCH III+:RIVPACS (River 
Invertebrate Prediction and Classification System) Release 3.3 to produce the 
probability of capture (Pc) of each BMWP family and the expected abundance for each 
family at each site.  The Pc values are summarised over species per site by calculating 
the observed-expected ratio (O/Esite).  A high O/E indicates a favourable site.  
RIVPACS O/E values for years within the study time range (1995-2004) were 
separated into spring and autumn season groups (spring N sites = 889, autumn N sites 
= 881), and the mean O/E value per site was determined for each season (average of 
two samples per site per season). A training dataset definition for impaired biological 
sites was created by selecting the 25th percentile of all RIVPACS O/E values, which 
corresponded to a value of O/E ≤ 0.66. A training dataset definition for high-quality 
biological sites, also required for the WOE/WLR analysis, was created using the 
highest 25 per cent of O/E values, a threshold value of O/E > 1.00. The end result was 
an impaired and high-quality training dataset for both spring (impaired N sites = 216, 
high-quality N sites = 195) and autumn (impaired N sites = 210, high-quality N sites = 
211), respectively.    Sites with O/E> 0.66 but <1.00 were excluded from use as training 
sites in this study, but were used to evaluate model fit, as described later in the Results 
section.                   

2.2.2 Weights of evidence method                                                                             

The water chemistry variable raster maps and the impaired and high-quality site 
training point datasets were used in WOE analyses. The WOE analysis is a data 
exploration exercise to delineate which variables, and which variable values, most 
significantly increase the odds of the occurrence of a training site. The analysis takes 
into account the prior odds (chance observation) of a training site given the extent of 
the study area.  Both impaired (O/E < 0.66) and high-quality (O/E > 1.00) sites were 
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independently used as training site datasets in separate WOE analyses, to adjust for 
sampling bias and detect biologically relevant trends.  

Raster cell calculations are used to compute the prior odds of observing a training site 
(y) over the entire study area (all catchments) independent of other variables, as 

}yp{

p{y}
(simply the proportion of raster cells containing a training site divided by the 

proportion of raster cells without training site).   

Next, the posterior odds of observing a training site both within, 
}ix|yp{

}ix|p{y
, and outside, 

}ix|yp{

}ix|p{y
, each of the five Natural Breaks value classes for each of the 10 stressor 

variables was calculated. The ratio between the prior and posterior odds is referred to 
as a weight (‘W’), and a pair of weights (‘W+’ for within and ‘W-‘ for outside a value 
class) was computed for each of the five value classes for each of the 10 stressor 
variables. The difference between the weight pairs, ‘W+ - W-‘, called the ‘contrast’ 
value, is computed for each value class as an overall measure of spatial association 
between the value class and the training sites. A contrast value of zero is equivalent to 
association by random chance, a positive contrast indicates a positive association 
between site occurrence and the value class, and a negative contrast indicates a 
negative association between site occurrence and the value class.  An adjusted 
‘studentised’ contrast value is used to interpret significance, with a studentised contrast 
confidence value of +/- 1.95 approximate to 95 per cent confidence (Robinson and 
Kapo, 2004).   

Figure 2.2 shows a plot of the computed studentised contrast values for the raster map 
for BOD (spring season), showing the odds of impaired and high-quality site 
occurrence over the five-class concentration gradient of the variable.  A similar plot is 
produced for each variable.  In the example for BOD (spring season) in Figure 2.2, 
impaired sites are much more likely to occur above a value range of 2.98-4.09 mg/L, 
while high-quality sites are generally more likely to occur below this value range.   

 

Figure 2.2  Example Weights-of-Evidence analysis plot for BOD (spring).  

The plotted WOE trends are used in an expert judgement process to evaluate whether 
a water chemistry variable was a potential stressor, based on evidence of a positive 
association with impaired sites combined with an inverse or unrelated trend for high-
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quality sites.  Variables that did not show any response over the gradient, or whose 
response was similar between impaired and high-quality sites, were dropped from 
further evaluation. The threshold value range, shown as a dotted line in Figure 2.2, is 
the point at which association with impairment became positive for the variable. In the 
BOD example presented in Figure 2.2, this range is 2.98-4.09 mg/L).  This was used to 
simplify the raster maps for each identified potential stressor into a binary map, with a 
value of “1” attributed to stressor values having increased odds of impairment (for 
example in the BOD example, >2.98 mg/L), and a value of “0” given to values having 
decreased odds of impairment (BOD ≤ 2.98).  The rationale for this step is to improve 
the weighted logistic regression model by optimising the individual input variables for 
maximum predictive strength (Robinson and Kapo, 2004). Relationships need not be 
linear- non-linear relationships; for example stress associations at low and high values 
of a stressor can be addressed by grouping all values associated with stress together 
(binary =1), or creating separate variables to represent the different types of response.  
In this study, however, no stressor variables examined had a strong enough trend of 
this type to be delineated at the large scale of the study area and general biological 
endpoint evaluated.     

A new set of WOE analyses were run for the binary stressor variables, yielding a single 
contrast value for each variable.  Stressor variables having a contrast value with p< 0.1 
confidence were selected for input into the weighted logistic regression model. The 
stressor variables selected for the various models in this study are listed later in the 
Results section (Tables 3.1, 3.2, and 3.3). 

2.2.3 Weighted logistic regression  

Weighted logistic regression (WLR) was used to integrate the new binary raster maps 
delineated in the WOE analysis for each potential stressor to predict the locations of 
impaired sites over the entire study area extent.  WLR models the probability of 
impairment as a function of the unique combinations of stressor variables.  Before final 
model convergence by maximum likelihood estimation, the unique combinations are 
weighted by the amount of map area they occupy to adjust for the fact that large areas 
are more likely to contain a site based on random chance. Further information on WLR 
can be found in Agterberg (1992). WLR does not assume variables are independent, 
allowing for collinearity among variables without impacting model predictions (Robinson 
and Kapo, 2004). However, due to the effects of multicollinearity on confidence of 
interpretation of the parameter coefficients, collinearity diagnostics were performed 
using SAS Statistical Package.  Variance inflation factors (VIF) were computed on both 
the raw and binary values of the stressor variables inputted into the WLR models to 
determine the amount of error associated with the parameter coefficient due to 
collinearity.  The most conservative VIF threshold of >2.5 was selected as a value of 
potential concern.  If a stressor variable had a VIF value of >2.5 but had a significant 
WLR coefficient (p<0.5), the interpretation of the coefficient was sound, but if the WLR 
coefficient was not significant, the stressor variable was removed from the WLR model.  
This process ensured that the magnitude of the WLR coefficients (that is, stressor 
influence) could be compared between stressor variables with confidence.    

The results from a WLR model include an impairment probability map for the study 
area, and a ranking of the relative influence of the individual variables (WLR 
coefficients).  The WLR coefficient indicates the increase in odds of impairment when 
moving from a binary value of 0 to 1.  Separate WLR models were created for spring 
and autumn seasons for the study area.  Model fit for WLR was determined by 
overlaying all UK RIVPACS sample points for a season over the impairment probability 
model map and computing the proportion of sample values correctly predicted by the 
model, as well as false positives and false negatives.  A correct prediction would be a 
RIVPACS O/E value ≤ 0.66 in WLR map areas with elevated impairment probability 
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(above the mean WLR model value), or a O/E value > 0.66 in WLR map areas with low 
impairment probability (mean WLR model value or below).   

2.2.4 Evaluation of sample variability 

An area of potential concern in this study was the grouping of 10 years of data (1995-
2004) into representative seasonal mean values for the various variables.  A limitation 
of the WOE/WLR method is that because geographic maps are used for the statistical 
analyses, there cannot be more than one representative value per location for a 
particular model. If various years were to be explored separately, it would require a 
separate WOE/WLR model for each year, a feasible task but beyond the practical 
scope of this case study.  The use of seasonal groupings sought to reduce variability in 
the grouped data, as well as allow study of seasonal relationships.  To address how 
much increased variability the use of 10-year seasonal groupings introduced compared 
to the alternative use of means computed for a group of few years, including looking at 
one year, a brief examination of sample variability was conducted by comparing the 
site standard deviations for the 10-year seasonal groupings with data grouped for only 
three years and only one year.  Results from this analysis are presented in Section 3.2. 

2.3 Cross-comparison with effects and probable cause 
methodology 

Stressor identification and prediction of the most influential stressors for the study area 
from the WOE/WLR method were compared with results from an alternate eco-
epidemiological method, the Effects and Probable Cause (EPC) approach (de Zwart et 
al., 2006), performed for the same study area and variable types (de Zwart et al., 
2008).  The EPC approach uses Poisson regression to model species abundance as a 
function of the continuous (raw) distributions, water chemistry variables and natural 
factors. Species missing from sites are determined using RIVPACS.  The species 
abundance Poisson models for all species missing from a particular site are used to 
estimate the contribution of each stressor variable to decreased species abundance at 
a site.  This is computed by summing the negative variable coefficients for each model, 
dividing the individual coefficients by the sum to attain the individual percentage 
stressor variable influence, and then averaging the percentage influence for each 
stressor over all models for missing species at a site.  The results are visually 
displayed as pie charts on a map, with pie size related to 1 minus the RIVPACS value 
(larger size = more impacted), with the pie slices proportional to the site stressor 
influence.  For more information about the EPC model, see de Zwart et al. (2006, 
2008).   

The site predictions as stressor percentage contributions from the EPC model, were 
computed by year, yielding multiple results for each site. In order to directly cross-
compare with the WOE/WLR method, which grouped years together, the mean 
percentage stressor contribution of each variable was computed for each site over all 
years (1995-2004), and these results were compared with WOE/WLR results for the 
spring and autumn season, respectively.  Another difference between the methods is 
the requirement of the EPC method to have co-located data for all variables (each site 
must have a sample value for all variables, N = 307 sites), while the WOE/WLR 
method handles data gaps for one or more variables using interpolation or null values, 
allowing for more sample sites to be included.  We were therefore able to include more 
sites from England and Wales in this study than could be included in the EPC 
approach. 
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A subset of WOE/WLR impaired sites that were also used in the EPC model were used 
to cross-compare stressor identification and influence results (N sites spring = 62, N 
sites autumn = 57).  Three major cross-comparison exercises were conducted between 
the methods:  

• A comparison of site stressor identification per site. 

• A comparison of dominant (most influential) stressors.  

• A comparison of the relative influence (ranking) of identified stressors.   

A stressor was identified by the WOE/WLR method at a site if the stressor had a binary 
value of 1.  While the EPC method did not have a clear threshold for site stressor 
identification, for the purpose of this study a stressor identified at a site by the EPC 
method had an average contribution of at least 1 per cent to the abundance models for 
missing species at the site.  This value was chosen because a discrete threshold 
needed to be set in order to compare between the WOE/WLR and EPC methods, and 
the EPC method attributed small amounts <1 per cent of stress contribution to every 
stressor variable as an artefact of its averaging scheme.  A selected threshold of ≥1 per 
cent stress contribution as an EPC stress identification resulted in a similar number of 
identified stressors per site between the WOE/WLR and EPC methods (~ 3-4 per site).  
If a variable at a site met both these criteria (WOE/WLR binary = 1, EPC contribution ≥ 
1 per cent), the methods had a “match” in stressor identification.  Similarly, if a variable 
at a site did not meet both these criteria (WOE/WLR binary = 0, EPC contribution < 1 
per cent), the methods also had a “match” (the stressor was not identified by either 
method).  The overall “per cent matching” was computed for both the WOE/WLR spring 
and autumn season cross-comparisons with the EPC method, and the significance of 
this value was determined using Cohen’s Kappa statistic, which adjusts for agreement 
due to chance.   

A cross-comparison of dominant stressors identified by the methods was conducted by 
computing the frequency of the highest-ranked site stressor variables, over all sites.  In 
the WOE/WLR method, stressor rankings at a site were determined by the magnitude 
of the WLR coefficient for identified stressor variables, while in the EPC method 
variable rankings were determined by the average percentage contribution of identified 
stressor variables to the species abundance models for the site.  To further compare 
stressor influence between the methods, stressor variables identified by both methods 
at a site were attributed a rank based on the ranking criteria just discussed, and a 
correlation analysis was performed between the rank values over all sites.  This 
comparison provided information about how similarly the methods ranked stressor 
variables in importance.   

2.4 Land use specific analyses 
Additional WOE/WLR analyses were conducted for spring and autumn season data 
considering two specific land use types.  For the land use specific analyses biological 
and water chemistry variables were adjusted to include only those occurring within 
dominant land cover classifications of agricultural and urban land use. Classified data 
from the Land Cover Map 2000 (LCM2000, CEH) was generalised into an urban 
category (LCM2000 classes “171” and “172”) and an agricultural category (LCM2000 
classes “41”, “42”, and “43”).  Impairment probability maps and stressor rankings were 
created and model fit evaluations were performed for urban and agricultural land use 
model for each season. 
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Figure 2.3  General land cover classifications for the WOE/WLR study area 
(yellow = agriculture, red = urban, green = other) based on LMC2000 data (CEH). 
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3 Results 

3.1 UK study area WOE/WLR analysis 
WOE/WLR analyses for spring and autumn seasons were successfully conducted for 
the study area.  The stressor values above or below which biological impairment was 
more likely to be observed (binary map value = 1, determined by WOE analysis) are 
given in Table 3.1 for the stressor variables included in the WLR model.  These 
threshold values are given as ranges based on the original Natural Breaks 
classification of the variables in the WOE analysis. At this level of analysis, the exact 
point within the value range where the trend occurs cannot be delineated (that is, the 
most conservative estimate is at the low or high end, depending upon the variable). 

The WLR impairment probability model map (Figure 3.1), which statistically combined 
the binary stressor maps, delineates areas with the highest probability of impairment. 
The probability values should be interpreted as relative probabilities (that is, 
favourability) for the study area, not as literal probability values (Robinson and Kapo, 
2004).  The map colour gradient from grey to red indicates increasing probability 
categorised by standard deviations, allowing for direct comparisons between model 
maps (spring season vs. autumn season, and so on).  Green to red map areas 
delineate regions of the study area where sites with impaired macrofauna are most 
likely to occur. Grey colour indicates either no data, below average, or average 
impairment probability (similar to random chance).  Red colour indicates the highest 
probability for the occurrence of impaired sites.   

The WLR coefficients for each variable (Table 3.2) are used to rank the influence of 
each stressor in the overall study area model, and at the site-specific level based on 
the stressor values present at the site.  Each unique combination of stressor variables 
in the raster map has been assigned a WLR impairment probability and an associated 
ranking of stressors.  Each grid cell of the raster map belongs to one of the unique 
combinations, allowing for an interactive query of impairment probability and stressor 
influence within the GIS interface. 

Table 3.1 UK study area impairment association thresholds for stressors 

Model  Stressor Impairment association threshold range1   
Spring 
 
 
 
 
 
Autumn 

 Chloride 
Ammonia 
pH 
Suspended solids 
BOD 
Metals  
BOD 
Ammonia 
pH 
Metals 
Chloride 
Nitrate 

> (33.2 - 68.6) mg/L 
> (0.15 - 0.55) mg/L 
< (7.6 - 7.9) 
> (9.3 - 19) mg/L 
> (2.98 - 4.1) mg/L 
> (1.8 - 3.9) % species affected 
> (2.07 - 2.81) mg/L 
> (0.097 - 0.5) mg/L 
< (7.39 - 7.73) mg/L 
> (1.8 - 3.9) % species toxicity 
> (36.3 - 88.06) mg/L 
> (5.88 - 8.63) mg/L 

 
Notes: 1The impairment association threshold is the value range determined in WOE 
analysis above or below which the odds of site impairment increase (classified as a 
binary map value = 1 for the WLR model). Stressors are shown ranked by influence for 
each land use/season model. 
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Figure 3.1  WLR impairment probability map for macrofauna, extracted by river 
network   

Chloride and ammonia were the most influential variables in the spring model, while 
BOD and ammonia were most influential in the autumn model.  Suspended solids 
(TSS) were only significant in the spring model, while nitrate was only significant in the 
autumn model.  The influence of ammonia was consistent between the two seasonal 
models. 

Table 3.2 Ranked stressor variables for the study area (* = Variable had 
variance inflation factor > 2.5 but a significant WLR coefficient, p<0.05) 

Season Rank Stressor WLR Coefficient  

(p<0.05 unless noted otherwise) 
Spring 
 
 
 
 
 
Autumn 

1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 

Chloride 
Ammonia* 
pH 
Suspended solids 
BOD  
Metals 
BOD 
Ammonia* 
pH 
Metals 
Chloride 
Nitrate 

1.41  
1.35  
0.85  
0.40  
0.34  
0.26 (p = 0.09)  
1.47  
1.37  
0.64  
0.56  
0.39  
0.26 (p = 0.11) 

 

 

Below to mean 

0 – 1 std.dev. 

1 – 3 std.dev. 

Impairment 
Probability 

Spring Season Autumn Season
No data  
in catchment 

 > 3 std.dev. 
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Figure 3.2  Stressor influence (WLR coefficients) for seasonal models  

Model fit evaluations were performed for the spring and autumn models.  When 
overlaying all biological sample values (all values of O/E) on the impairment probability 
map, the overall percentage prediction accuracy (impaired or not impaired) of the 
models was 75 per cent for spring and 76per cent for autumn, respectively.  When 
evaluating the success of prediction for impaired sites only (O/E ≤ 0.66), the models 
successfully predicted 81 per cent and 85 per cent of the impaired sites for spring and 
autumn, respectively.  Most of the error associated with the models was due to false 
positives (the model predicting a site to have O/E ≤ 0.66 when in reality it was higher). 
Most (56 per cent) of those false positive site predictions for the two models had O/E 
values of 0.85 or lower.  Pearson correlation analyses performed between the site O/E 
values and the associated predicted impairment probabilities yielded significantly 
negative relationships for both the spring (R = -0.59, p<0.0001) and autumn (R = -0.57, 
p<0.0001) models.  This result indicates that as the probability of impairment 
increases, the magnitude of impairment (species loss) increases as well (orange and 
red map areas in Figure 3.1 generally have the worst conditions).   

3.2 Sample variability evaluation 
The sample variability associated with grouping 10 years of seasonal data compared 
with an alternative of grouping fewer years of annual data was considered. The 
frequency distribution of standard deviations associated with the mean site values for 
each environmental variable were compared between 10-year seasonally grouped 
data, three-year annually grouped data, and one-year annually grouped data. The 
variance associated with mean values for 10-year seasonal data did not show a major 
difference with annually grouped data for three-year or one-year groupings The 
evaluation of sample variability for ammonia is given in Figure 3.3, suggesting that 
grouping by season allowed a reduction in variability in the 10-year data comparable to 
that of grouping of fewer years, and/or the variability in sample measurements at a site 
acts on a smaller temporal scale than a year.    
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Ammonia: Histogram of Site Variation
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Figure 3.3  Sample variability for ammonia; comparison of year groupings 

 

3.3 Cross-comparison results 
The WOE/WLR model outputs were compared with outputs from the de Zwart et al.  
application of the EPC method to the same data set (de Zwart et al. (2008)) to see 
whether the ranked lists of potential stressors identified by each model were 
comparable. The spring WOE/WLR model and EPC model had a good agreement rate 
of 80 per cent (Cohen’s Kappa = 0.39, p<0.0001).  On average, the spring WOE/WLR 
model predicted 70 per cent of the stressors per site predicted by the EPC model, while 
the EPC model predicted 54 per cent of the stressors per site predicted by the 
WOE/WLR method.  The autumn WOE/WLR model and EPC model had an agreement 
rate of 75 per cent (Cohen’s Kappa = 0.49, p<0.0001).  On average, the autumn 
WOE/WLR model predicted 69 per cent of the stressors per site predicted by the EPC 
model, while the EPC model predicted 72 per cent of the stressors per site predicted by 
WOE/WLR.   
 
An examination of the dominant stressors, that is, those most frequently ranked the 
highest at a site, indicated that the dominant stressor in the EPC model was pH, in the 
spring WOE/WLR model chloride, and in the autumn WOE/WLR model BOD (Figure 
3.4).  
 
The methodologies demonstrated little similarity in the way that they ranked stressor 
variables at a site, despite showing strong similarity in identification of stressors.  A 
Spearman correlation analysis was performed on the site-specific rankings of stressor 
variables predicted by both the WOE/WLR model and the EPC model. This exercise 
was performed twice using the spring, and then the autumn WOE/WLR models. As 
discussed in the methods section, the WLR coefficient magnitude, and the percentage 
stress contribution were the criteria used to rank site stressors by the WOE/WLR and 
EPC methods, respectively. The correlation between the site-specific stressor rankings 
of the spring WOE/WLR model and the EPC model was 0.17 (p<0.06). The correlation 
between the site-specific stressor rankings for the autumn WOE/WLR model and the 
EPC model was higher and significant at 0.29 (p = 0.0002), but still a relatively low 
value.   
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Figure 3.4 Dominant site stressors: frequency of variable as highest ranked (#1) 
site stressor for EPC and seasonal WOE/WLR models over all sites 

The degree of agreement in identification of various stressors between the spring 
WOE/WLR model and the EPC model, and between the autumn WOE/WLR model and 
the EPC model, is shown in Figures 3.5 and 3.6, respectively.  The most frequent site 
stressor identification overlap between the spring model and the EPC model included 
ammonia, BOD, chloride, and pH.  
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Figure 3.5  Comparison of stressor identification agreement (by stressor) 
between the spring WOE/WLR model and the EPC model  
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Figure 3.6  Comparison of stressor identification agreement (by stressor) 
between the autumn WOE/WLR model and the EPC model 

 

3.4 Land use specific WOE/WLR 
Impairment probability maps based on land-use specific WLR models for spring and 
autumn are presented in Figures 3.7 and 3.8, respectively. Visually comparing the 
models between spring and autumn reveals increased impairment probability (and 
hence likely severity) in agricultural areas in the northeast of the country, during the 
spring season.  It is surprising that some of the most intensive arable areas in the 
Anglian region have not been highlighted by this method, but this may be due to 
missing input data in this area and possibly the nature of the modelled pesticide input 
data used (see below).  In the autumn season, impairment probability is increased in 
the drainage areas around London, in the NW of England and some locations in central 
England.  

 Figure 3.9 shows the relative stressor influence of various water chemistry variables in 
the land use specific models for both seasons and indicates ammonia is significant in 
agricultural areas in both spring and autumn.  Suspended solids and hardness were 
exclusively significant stressor variables in the agricultural areas, while pH, phosphate, 
and metals were more significant in urban areas than agricultural land use.  The 
pesticide toxicity variable was only found to be a significant predictor of impairment in 
urban land use in the spring season. However, the modelled pesticide data used was 
unlikely to reflect the peak pesticide concentrations most likely to cause biological 
effects. Pesticides exposure is peaky and transient in nature, only occurring in certain 
months of the year for some compounds, depending on use patterns.  Annual average 
modelled pesticide concentrations were used and this will effectively have removed the 
peak concentrations most likely to cause ecotoxicological effects.  For the purposes of 
this scoping study, the annual average modelled data used was the only data available 
at a national scale within the timescales of the project.  Further work is required to 
generate more realistic national surface water pesticide concentrations that better 
represent the typical concentrations that macroinvertebrates are exposed to. 

The impairment association threshold value ranges, determined by WOE analysis, for 
all variables in the WLR model are provided in Table 3.3.  These value ranges 
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delineate the variable values above or below which the odds of site impairment 
increase.  

Figure 3.7  Land use specific macrofauna impairment models: Spring season.  

 

Figure 3.8  Land use specific macrofauna impairment models:  Autumn season. 
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Figure 3.9  Stressor influence (WLR coefficients) for land use specific models.      
* = WLR coefficient significant at p<0.05. 

Model fit analyses for the land use WOE/WLR models found an overall accuracy 
(comparing predicted biological impairment to actual impairment at all sites) of 85 per 
cent for the agricultural spring model and 74 per cent for the autumn season model. 
The overall accuracy for spring and autumn urban land use models was 74 per cent 
and 72 per cent. When looking at just impaired sites, success rate for prediction of 
impaired sites (O/E ≤ 0.66) for the agricultural models was 77 per cent for spring and 
93 per cent for autumn and for the urban models was 71 per cent for spring and 100 
per cent for autumn.  As with the overall study area models, observed impairment 
severity increased as impairment probability increased. Significant Pearson 
correlations were found between the raw site O/E values and the predicted impairment 
probability, for both the agricultural models (spring R = 0.56, p<0.0001; Autumn R = 
0.5, p<0.0001), and the urban models (spring R = 0.56, p<0.0001; Autumn R = 0.24, p 
= 0.05).   

 

Table 3.3 Land use specific impairment association thresholds for stressors 

Model  Stressor Impairment association threshold range1   
Spring, 
Urban 
 
 
 
 
Autumn, 
Urban 
 
 
 
Spring, 
Agriculture 
 
 

 pH 
Pesticide toxicity 
BOD 
Chloride 
Phosphate 
Metals toxicity 
BOD 
pH 
Chloride 
Phosphate 
Metals toxicity 
Ammonia 
Chloride 
Hardness 
pH 

< (7.6 – 7.9)  
> (1 – 1.2) % species affected 
> (3.1 – 4.5) mg/L 
> (43 - 86) mg/L 
> (4.6 – 7.5) mg/L 
> (1.1 – 2.5) % species affected 
> (2.02 – 2.75) mg/L 
< (7.7 - 7.8) mg/L 
> (40 – 79) mg/L 
> (2.8 - 7.9) mg/L 
> (1.1 – 2.5) % species affected 
> (0.15 – 0.55) mg/L 
> (43 – 83) mg/L 
> (420 – 500) mg/L  
< (7.7 – 8) 
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Model  Stressor Impairment association threshold range1   
 
 
Autumn, 
Agriculture 

TSS 
Nitrate 
Ammonia 
TSS 
BOD 
Hardness 
Nitrate 
 

> (11.2 – 20.8) mg/L 
> (8.3 – 11.3) mg/L 
> (0.09 – 0.21) mg/L 
> (20.2 – 41.5) mg/L 
> (2.5 – 3.8) mg/L 
> (295.5 – 419.7) mg/L 
> (9.6 – 13.4) mg/L 
 

    
    
 
Notes: 1The impairment association threshold is the value range determined in WOE 
analysis above or below which the odds of site impairment increase (classified as a 
binary map value = 1 for the WLR model). Stressors are shown ranked by influence for 
each land use/season model. 
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4  Discussion 
This study has evaluated the applicability of the GIS-based WOE/WLR methodology to 
the readily available data on surface waters and invertebrate macrofauna for England 
and Wales, held by the Environment Agency.  Although a limited data set has been 
used, the study, which should be considered as a scoping study, has yielded   
significant results and map products that may be of use to river basin managers for the 
purposes of the Water Framework Directive.  The model fit evaluations for both the full 
study area as well as the land use specific WOE/WLR models showed strong 
explanatory power, consistent with, and in many cases stronger than, previous 
analyses in other geographic regions (Kapo and Burton, 2006; Kapo et al., in Press)  
The seasonal models for the study area provide geographic predictions of biological 
impairment based on spatial patterns of stressor variables which allow for more 
targeted studies.  The impairment maps, while informative as a static map, are also 
interactive GIS maps with stressor rankings associated with each study area grid cell.  
The result is the ability to perform a targeted assessment with information on location 
and a list of stressors of concern, based on available data from an established 
monitoring programme.   This is potentially useful not only for river basin 
characterisation work under the Water Framework Directive, but also in developing 
appropriately targeted Programmes of Measures.   

The most influential variable in the spring season WOE/WLR model for the study area 
was chloride, which may serve as a proxy variable for surface run-off from spring rain 
events.  Run-off magnitude, particularly urban run-off, has been found to be a highly 
important factor determining biological impairment in previous WOE/WLR analyses on 
a geographic region of the United States (Kapo et al., in review).  The chloride variable 
in the full study area model may serve as a useful proxy for urban run-off.  The 
examination by specific land use type removes some of the influence of the chloride 
variable, which suggests a possible use as a land use proxy itself in the full study area 
model.  For example, when examining the data by land use, other stressor variables 
(Figure 3.9) become stronger predictors of impairment than the chloride variable.  
While the full study area model provides useful information about impairment location 
and stressor source, this information is even more refined by further evaluating the 
data by specific land use.  This finding highlights the benefit of taking a land-use 
specific approach to eco-epidemiological modelling.  

Another interesting result when comparing the results in stressor influence between the 
full study area WOE/WLR seasonal models and the land use specific WOE/WLR 
models is the influence of metals toxicity.  The influence of metals toxicity was higher in 
urban land use compared with agricultural land use, and higher in the autumn season 
compared with the spring season.  An increased influence of metals in urban areas 
would be expected because of the greater number of potential sources of metals 
(industrial, vehicular) in urban land use.  There are two possible explanations for the 
seasonal difference in metals toxicity influence, which may both be correct to some 
extent.  One is a potentially higher overall bioavailability of metals in the autumn 
season due to seasonal fluctuations in water chemistry (Antunes et al., 2007).  The 
metals toxicity variable used in this study considers only hardness-adjusted 
bioavailable amounts (Posthuma and de Zwart, 2006).  Another potential explanation is 
the increased importance of other factors in the spring season, which outweigh the 
predictive power of metals stress for macrofauna impairment.  This is supported by the 
relatively higher influence of the pesticide toxicity variable in the urban model for 
spring, which may simply serve as a proxy for stressors associated with agricultural 
run-off.  This would indicate that in the spring season in urban areas a significant 
proportion of macrofauna stress may be a result of a combination of urban and 
agricultural-based stressors.  The pesticide toxicity variable was not significant in the 
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agricultural models, however, this is unsurprising given the shortcomings of the 
modelled pesticide data used, as discussed in Section 3.  Improving pesticide toxicity 
estimates, and predictions of run-off constituents in general, would be of potentially 
great benefit to future work.  Nitrate was found to be a more influential factor in the 
autumn agricultural land use model compared with the spring model.  Nitrate is 
commonly released to surface waters through crop harvest practices in the autumn 
season (Vos and van der Putten, 2004).  

Cross-comparison of the WOE/WLR method with de Zwart et al.’s EPC analysis (2008) 
showed a strong agreement in stressor identification between the methods, but less 
agreement in the relative influence of stressor variables.  While both methods may 
have identified a particular variable as a site stressor, in many cases they disagree on 
the relative significance of a stressor compared with others present.  An obvious factor 
potentially complicating interpretation and contributing to the differences in results is 
the seasonal split of the data in the WOE/WLR method, and the averaging of EPC site 
results over all sample years in structuring the comparison. In addition, the 
inconsistency in stressor influence between the methods is not highly surprising given 
the different statistical methodologies used.  In particular, while the EPC approach 
visually displays biological impairment based on species loss estimates from 
RIVPACS, the actual statistical relationships between stressor variables and biological 
condition are based on species abundance.  The WOE/WLR method, in contrast, 
statistically models the relationship between stressor variables and RIVPACS derived 
O/E values.  It is possible, therefore, that the differences in predicted stressor influence 
between the methods may in fact reflect that the EPC method gives more weight to 
stressors with the greatest effect on raw species abundance, and the WOE/WLR 
method gives more weight to stressors whose presence most increases the probability 
of obtaining a RIVPACS value below a certain threshold.  The general type of stressor 
(water chemistry, habitat alteration, and so on) may affect how the statistical 
differences between the methods impact the strength of agreement of the results.  For 
example, the weak correlation between stressor rankings of the methods for the water 
chemistry variables in this study was similarly found for water chemistry variables in a 
previous cross-comparison study for fish communities in the state of Ohio, USA (Kapo 
et al., in press). However, in the Ohio study, the site-specific rankings of habitat 
stressors (which were not evaluated in this current study) showed a strong positive 
correlation between the methods.  A potential explanation requiring further study is that 
RIVPACS-based O/E and raw species abundance values respond more similarly to 
habitat alteration than to water chemistry variability. 

The disparity between the outputs from these methods causes an obvious problem for 
interpretation and use of the information by river basin managers.  Further work to 
compare the two approaches more directly is recommended.  Careful thought should 
also be given how the outputs from these methods should be used and interpreted.  It 
is envisaged that the most appropriate application of these methods may be within an 
evidence-based framework for decision making, alongside other lines of evidence for 
likely cause of observed biological impact. 

It should also be borne in mind that the limited nature of the data used thus far has 
limited the outputs.  Any future work should look to improve the accuracy of some of 
the existing stressor variables, such as pesticide surface water concentrations.  In 
addition, data on other potentially significant stressor variables such as hydrological 
modification should be included.  In addition, inclusion of other biological information 
such as diatom and fish data would be a valuable addition, since macroinvertebrates 
will not be the most sensitive endpoint for all stressors. 
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5  Conclusions 
• The GIS-based WOE/WLR method was successfully applied in the context of a 

scoping study, to the available biological, chemical, and land use data for 
England and Wales.   

• Outputs from the method included GIS-based maps predicting the location of 
macro-faunal impairment, together with a ranked list of probable stressors.  
Visual outputs such as these can be effective communication tools. 

• Cross-comparison of the WOE/WLR method with another eco-epidemiological 
method, the Effect and Probable Cause  (EPC) method (de Zwart et al., 2008) 
found that both methods generally agreed on identification of significant 
stressors at a site, but there were differences between the results.  In particular, 
the relative rank order of stressors was different between each method. 

• Differences between the outputs are likely to be because of the different 
statistical methodologies used.  Further work to understand the reasons for the 
differences is required before outputs can usefully be used in a river basin 
management context. 

• The inclusion of more data on additional stressor variables such as 
hydromorphological data would increase the usefulness of the method and its 
outputs and is strongly recommended.  Collation of national datasets of 
sufficient quality and extent for these methods is not a trivial task and the time 
and effort required should not be underestimated. 

• To be of real long-term value, future monitoring programmes should be targeted 
to ensure that the data collected can be used in eco-epidemiological methods 
such as those described here and in de Zwart et al. (2008). 

• Eco-epidemiological approaches such as the WOE/WLR and EPC methods are 
potentially very useful tools for river basin managers under the Water 
Framework Directive, especially as part of an evidence-based framework for 
decision making.  Further work should be targeted at developing such a 
framework. 
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EPC: Effects and Probable Cause 

GIS: Geographic Information Systems 

WOE: Weights of Evidence 

WLR: Weighted Logistic Regression  

RIVPACS: River Invertebrate Prediction and Classification System 
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