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Science at the  
Environment Agency 
Science underpins the work of the Environment Agency. It provides an up-to-date 
understanding of the world about us and helps us to develop monitoring tools and 
techniques to manage our environment as efficiently and effectively as possible.  

The work of the Environment Agency’s Science Department is a key ingredient in the 
partnership between research, policy and operations that enables the Environment 
Agency to protect and restore our environment. 

The science programme focuses on five main areas of activity: 

• Setting the agenda, by identifying where strategic science can inform our 
evidence-based policies, advisory and regulatory roles; 

• Funding science, by supporting programmes, projects and people in 
response to long-term strategic needs, medium-term policy priorities and 
shorter-term operational requirements; 

• Managing science, by ensuring that our programmes and projects are fit 
for purpose and executed according to international scientific standards; 

• Carrying out science, by undertaking research – either by contracting it 
out to research organisations and consultancies or by doing it ourselves; 

• Delivering information, advice, tools and techniques, by making 
appropriate products available to our policy and operations staff. 

 

Steve Killeen 

Head of Science 
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Executive summary 
The Environment Agency is responsible for the regulation of Part A(1) industrial 
activities in England and Wales. Ambient monitoring and air quality modelling are the 
tools most frequently used to assess the impact of industrial emissions to air and 
ultimately provide evidence upon which regulatory decisions are based. However, the 
use of either modelling or monitoring alone may introduce a high degree of uncertainty 
into air quality impact assessment. In reality, monitoring and modelling are often used 
independently of one another. However, it is anticipated that by applying monitoring 
and modelling integration techniques, the strengths of both technologies can be 
complemented and the uncertainties associated with each technique reduced. 

The purpose of this report is to: 

i. Bring the Environment Agency up-to-date with recent developments in the 
field of monitoring and modelling integration methods; 

ii. Inform the Environment Agency of methods that could be used to resolve 
challenges to regulatory decisions, through the application of monitoring 
and modelling integration techniques; 

iii. Review the possibility of economic savings through more efficient use of the 
existing monitoring resources in England and Wales. 

To achieve effective integration, it may be necessary to increase investment in 
monitoring resources and ensure the optimal placement of monitoring sites. Existing 
monitoring networks such as the AURN are of limited use as they are often located far 
from industrial sources and the potential to attribute pollutant concentrations to such 
sources may be difficult due to the interference of pollution from roads and urban 
areas. It is essential that any monitoring resource must be optimised in terms of the 
number and placement of monitors, both to ensure cost effectiveness and to optimise 
the potential for effective integration of monitoring and modelling data. This can be 
achieved with the adoption of decision-support tools, which are able to prioritise 
multiple objectives such as population protection, ecosystem protection or targeting 
specific air quality metrics and are invaluable in designing an effective monitoring 
network. 

Improving the accuracy of modelled data is also crucial to the effective integration of 
modelling and monitoring data.  This may be achieved through the use of more 
representative meteorological data and the application of more appropriate background 
correction factors.  

Data assimilation (model calibration) methods applied to the Kincaid SO2 validation 
data set indicated that the optimum number of monitoring sites necessary to maximise 
the accuracy of data assimilation methods is between 10 and 15. However, the 
success of the more complex integration techniques, e.g. kriging, is limited. Of the 
simple techniques, the simple ratio method provided the best calibration using both the 
Kincaid data set and the Aire Valley data set. The linear regression method performed 
on a similar level to the simple ratio method when using a higher number of data 
points, but the performance of this method decreased dramatically when less than 
three monitoring points were used to calibrate the modelled data. It should be noted 
that calibration is designed to reduce uncertainty in model outputs caused by 
systematic errors and is of limited use when uncertainty is due to random errors. 

The application of modelling and monitoring integration methods to improve the 
extrapolation of short-term monitoring campaigns, currently calculated using the 
Environment Agency pro-rata extrapolation method, proved of limited value. The 
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Integration Scaling Method showed an improvement in the consistency of measured 
and predicted exceedences compared to the pro-rata method, although overall 
uncertainty was still high. 

A full set of recommendations for the Environment Agency stemming from this review 
is listed in Section 8 of this report. 
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1 Introduction 
The Environment Agency is responsible for the regulation of Part A(1) industrial 
activities in England and Wales, potentially the most polluting of all industrial sources.  
Part A(1) processes include activities within the energy industry, metal production and 
processing, the mineral industry, waste management, the chemical industry and 
intensive agriculture (PPC Regulations, 2000). 

Ambient monitoring and air quality modelling are the tools most frequently used to 
assess the impact of industrial emissions to air and ultimately provide evidence on 
which regulatory decisions are based. However, the use of either modelling or 
monitoring alone may introduce a high degree of uncertainty into air quality impact 
assessment. In reality, monitoring and modelling are often used independently of one 
another. However, it is anticipated that by applying monitoring and modelling 
integration techniques, the strengths of both technologies can be complemented and 
the uncertainties associated with each technique reduced. 

This report outlines the existing approaches adopted in England and Wales for the 
assessment of environmental impacts associated with aerial emissions from Part A(1) 
industrial sources. The uncertainties associated with these existing approaches (i.e. the 
independent use of either monitoring or modelling) are also discussed. Modelling and 
monitoring integration techniques for the improvement of air quality impact assessment 
and the design and optimisation of monitoring networks are reviewed. Several of these 
techniques are analysed using data from the Aire Valley monitoring network and the 
Kincaid SO2 validation data set, to determine their potential for improving the regulation 
of local air quality surrounding Part A(1) industrial sources. 

The purpose of this report is to: 

i. Bring the Environment Agency up-to-date with recent developments in the 
field of monitoring and modelling integration methods; 

ii. Inform the Environment Agency of methods that could be used to resolve 
challenges to regulatory decisions, through the application of monitoring 
and modelling integration techniques; and 

iii. Review the possibility of economic savings through more efficient use of 
the existing monitoring resources in England and Wales. 
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2 Monitoring ambient air quality 

2.1 The history of air quality monitoring in the UK 
Domestic emissions of air pollutants were first addressed by regulations set out in the 
1926 Smoke Abatement Act and the Clean Air Acts of 1956 and 1968. However it was 
not until 1987 that the first air quality measurement network (the Statutory Urban 
Network or SUN) was established in the UK. After the Environmental Protection Act in 
1990, the SUN network was expanded to monitor urban background air quality and 
was renamed the Enhanced Urban Network (EUN). The London Air Quality Network 
(LAQN) was subsequently formed in 1993 to co-ordinate and improve air pollution 
monitoring in London. In addition, under Section IV of the Environment Act 1995, each 
Local Authority was responsible for managing air quality within their area, which 
required both continuous and non-continuous monitoring of air pollutants. This 
expansion in monitoring led to the amalgamation of automatic monitoring sites in 1998 
to form the Automatic Urban and Rural Network (AURN), largely managed by the 
Department of Environment, Food and Rural Affairs (Defra). However, the AURN also 
includes automatic monitoring sites owned by Local Authorities and operated to 
standards equivalent to Defra-managed AURN sites. The AURN monitors a range of 
pollutants including sulphur dioxide (SO2), oxides of nitrogen (NOx), carbon monoxide 
(CO), ozone (O3) and fine particulate matter (PM10 and PM2.5). Several sites within the 
AURN are also part of a smaller Hydrocarbon Network (HCN), which in addition to the 
aforementioned pollutants, monitors 25 Volatile Organic Compounds including 
benzene, 1,3-butadiene and O3 precursors. To date (end of 2007) the AURN consists 
of 126 sites of which 107 are located in England and Wales (Figure 2.1). 

In addition to the automatic sampling networks, there are several non-automatic 
networks currently monitoring air quality around the UK: 

• Nitrogen Dioxide Diffusion Tube Network 

• Smoke and Sulphur Dioxide Monitoring Network 

• Rural Sulphur Dioxide Monitoring Network 

• Non-automatic Hydrocarbon Network (monitoring benzene at urban 
background and roadside locations) 

• Multi Element and Lead Monitoring Network 

• Toxic Organic Micropollutants (TOMPS) Network  

• Acid Deposition Network 

The AURN exists primarily to satisfy the statutory requirements of EC Directives 
through the implementation of Local Air Quality Management and therefore does not 
focus on assessing the impact of emissions from industrial sources. AURN sites are 
classified into eight groups, listed in Table 2.1. AURN sites classified as ‘kerbside’, 
‘roadside', ‘urban centre’ and ‘airport’ are considered inappropriate for measuring air 
concentrations arising from industrial sources because distant industrial air quality 
signals may be saturated by relatively close urban or traffic pollution sources. These 
classified sites account for 35% of all AURN sites. However, seven AURN sites are 
classified as ‘Urban Industrial’ (Table 2.2). These sites have been deliberately located 
In the vicinity of industrial sources and therefore may be of potential use in compliance 
assessment for Part A(1) processes. 
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Source: AURN site data supplied by AEA Energy and Environment and Part A(1) site data supplied by 
the Environment Agency. 

Figure 2.1 Part A(1) industrial sources and AURN network monitoring sites in 
operation during 2006 in England and Wales.  

 



 

Science Report - Integration of air quality modelling and monitoring methods: review and applications 4 

Table 2.1 Classification of AURN sites in England, Wales, Scotland and Northern 
Ireland. 

AURN Site 
Classification 

Abbreviation Description Number of sites 

Kerbside K Within 1 m of edge of busy 
road 

3 

Roadside Ro Within 5 m of kerbside 21 

Urban centre UC Non-kerbside sites within 
towns or cities 

25 

Suburban S Sites typical of residential 
areas 

11 

Urban 
background 

UB Urban locations distanced 
from sources 

37 

Urban industrial UI Sites where industrial 
emissions make a 

significant contribution to 
measured pollution levels 

7 

Rural/Remote Ru Open country/isolated 
locations 

21 

Airport A Within the grounds of an 
airport 

1 

 
Source: http://www.bv-aurnsiteinfo.co.uk/ 

 

An analysis of the location of AURN sites relative to Part A(1) industrial sources in 
England and Wales reveals that only 38 from a total of 180 have a single AURN site 
within 5 km, only twelve have two AURN sites within 5 km and only one source has 
three AURN sites within 5 km. Similar statistics for distances ranging through 1, 2, 5, 7 
and 10 km are shown in Table 2.3. Therefore AURN sites are of limited use in the 
regulation of industrial sources either because they are too far away from the source or 
there is interference from the contribution of pollutants from other sources e.g. roads or 
urban centres. However, AURN sites may be useful in supplying important information 
about background concentrations. 
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Table 2.2 AURN sites classified as Urban Industrial. 

Site Location Pollutants Description 

Billingham,    
Teesside Urban Area 

NO2 Situated in a council depot within a 
residential area, with a large complex of 
chemical/manufacturing plants 1-3 km 
to the south. 

Middlesborough, 
Teeside Urban Area 

CO, NO2, O3, 
PM10, SO2 

Situated in a residential area near 
Longlands College of Further 
Education. 

Scunthorpe Town, 
Yorkshire & 
Humberside 

PM10, SO2 Situated in a mixed 
industrial/commercial/ residential area. 

Sheffield Tinsley, 
Sheffield Urban Area 

CO, NO2 Situated in a mixed residential/industrial 
area, 200 metres from the M1. 

Salford Eccles, 
Greater Manchester 
Urban Area 

CO, NO2, O3, 
PM10, SO2 

Situated in a residential area adjacent 
to Eccles town centre with parkland 
immediately to the south and a 
suburban road 7 metres to the north.  

Grangemouth,  
Central Scotland 

CO, NO2, PM10, 
SO2 

Situated in a residential area with BP 
refineries 300 metres north with the 
nearest main road 250 metres away. 

Port Talbot,    
Swansea Urban Area 

NO2, O3, PM10, 
SO2 

Situated in the grounds of a small 
hospital, 700m from Port Talbot steel 
works and 75 metres from the M4 
motorway. 

 
 

Table 2.3 Number of Part A(1) sites with x AURN sites within 1-10 km in England 
and Wales. 

Distance (km) 1 AURN 2 AURNs 3 AURNs 4 AURNs 5+ AURNs 

0-1 7 0 0 0 0 

0-2 21 2 0 0 0 

0-5 38 12 1 0 0 

0-7 45 15 7 0 0 

0-10 56 24 11 3 6 
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2.2 Legislation and air quality monitoring 
The recent growth in the UK air quality monitoring infrastructure, as described in the 
previous section, has mainly been driven by European legislation. The European 
Directives associated with improving air quality and the transposition of those 
Directives into UK law is briefly outlined in the following sections. 
 

2.2.1 EU Air Quality Framework Directive 

European Union (EU) law, in particular the Air Quality Framework Directive 
(1996/62/EC), requires member states to ensure that air pollution does not exceed 
certain legal limits. The Air Quality Framework Directive (AQFD) defines the policy 
framework for 13 air pollutants known to have a harmful effect on human health and 
the environment. The limit values (or in some cases target values) for the 13 pollutants 
are set through a series of Daughter Directives: 

• First Daughter Directive (99/30/EC) sets limit values for sulphur dioxide, 
nitrogen dioxide and oxides of nitrogen, particulate matter and lead in 
ambient air.  

• Second Daughter Directive (2000/69/EC) sets limit values for benzene and 
carbon monoxide.  

• Third Daughter Directive (2002/3/EC) sets target values relating to ozone.  

• Fourth Daughter Directive (2004/107/EC) sets target values relating to 
arsenic, cadmium, mercury, nickel and Polycyclic Aromatic Hydrocarbons 
(PAHs) in ambient air. 

In addition, the National Emissions Ceilings Directive (2001/81/EC) seeks to reduce 
emissions of those pollutants that cause acidification, eutrophication and ground-level 
ozone by setting annual emission limits for SO2, NOx, ammonia (NH3) and Volatile 
Organic Compounds (VOCs) for each member state. 

2.2.2 UK Air Quality Strategy 

The UK Government's Air Quality Strategy (latest revision: Defra, 2007) makes it the 
responsibility of Local Authorities to work towards compliance with national objectives. 
In many cases these objectives replicate the legal limit values set in the EU AQ 
Daughter Directives. The Environment Agency is required to contribute to air quality 
action plans developed by Local Authorities and to have regard for the Air Quality 
Strategy. 

The Air Quality Strategy (AQS) sets air quality standards and objectives for ten air 
pollutants (listed in AQ Daughter Directives) to be achieved between 2003 and 2020 in 
order to improve ambient air quality in the UK. Two key concepts provide the central 
structure to the AQS: standards and objectives. Standards are the concentrations of 
pollutants in the atmosphere, which can broadly be taken to achieve a certain level of 
environmental quality and are based on assessment of the effects of each pollutant on 
human health. Objectives are policy targets generally expressed as a maximum 
ambient concentration, to be achieved either without exception, or with a permitted 
number of exceedences within a specified time scale. Most of these objectives are 
derived from the limit and target values set in the AQ Daughter Directives, however, 
objectives are also generally based on the recommendations of the Expert Panel on Air 
Quality Standards (EPAQS). As a consequence, some objectives have to be achieved 
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sooner than EU-specified limit or target values. In addition, some AQS objectives are 
even more stringent than those specified in EU legislation, for example, the 15-minute 
average objective for SO2 does not appear in EU legislation. The EU Daughter 
Directives also include limit values for oxides of nitrogen and sulphur dioxide for the 
protection of vegetation and ecosystems. However, the Government and the devolved 
administrations intend that these limit values should be treated as national objectives, 
against which compliance will be monitored at a national level.  

Objectives for seven of the ten pollutants addressed in the AQS are shown in Table 
2.4. These objectives are prescribed in regulations for the purposes of Local Air Quality 
Management (LAQM). The Environment Agency also has to have regard to the 
objectives set out in the AQS in its regulatory activities but the Pollution Prevention and 
Control Regulations for England and Wales (PPC, 2000) places a much stronger, direct 
duty on the Environment Agency for the achievement of EU limit values. 

National AQS objectives are listed in Table 2.5 and include the national objectives to 
protect vegetation and ecosystems. Because of its trans-boundary nature, ozone 
continues to be a national objective, and is therefore outside the scope of LAQM. The 
release and dispersion of PAHs continues to have significant uncertainties, so it too is 
outside the scope of LAQM and is managed at a national level.  

The Fourth Air Quality Daughter Directive (2004/107/EC) has only recently been 
transposed into UK law by the Air Quality Standards Regulations (2007) and therefore 
is not included in the current AQS. However, target values for pollutants listed in 
Daughter Directive 4 (known as Group B pollutants) are shown in Table 2.6. 

The 2007 AQS introduced a new concept into the control of air quality, namely 
exposure reduction for particulates. This will be in terms of a set reduction in 
concentrations of PM2.5 over a matter of years. Again this will be delivered at a national 
level and will be monitored at background sites in large conurbations (see Table 2.5).  

For many substances released to air, national objectives have not been defined. 
Therefore, the Environment Agency has adopted interim values known as 
Environmental Assessment Levels (EALs) for these substances. These values are 
listed in Appendix D of the Agency’s IPPC H1 Methodology, Environmental 
Assessment and Appraisal of BAT (Environment Agency, 2002a). 
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Table 2.4 Air Quality Strategy objectives included in regulations for the 
purposes of Local Air Quality Management (Group A pollutants). 

Objective 
Pollutant 

Standard Averaging 
period Metric 

To be achieved by 
and maintained 

thereafter 

Benzene 16.25 μg/m3 

 

*5.00 μg/m3 

Running 
annual mean 

Annual 
average 

 31st December 2003 

 

31st December 2010 

1,3-
Butadiene 

2.25 μg/m3 Running 
annual mean 

 31st December 2003 

Carbon 
monoxide 

10 mg/m3 Maximum daily 
running 8-hour 

mean 

 31st December 2003 

0.5 μg/m3 Annual mean  31st December 2004 Lead 

0.25 μg/m3 Annual mean  31st December 2008 

200 μg/m3 

 

1-hour mean 

 

Not to be 
exceeded more 
than 18 times a 

year 

31 December 2005 Nitrogen 
dioxide 

40.0 μg/m3 Annual mean  31 December 2005 

50.0 μg/m3 24-hour mean Not to be 
exceeded more 
than 35 times a 

year 

31st December 2004 Particulate 
Matter 
(PM10) 

40.0 μg/m3 Annual mean  31st December 2004 

266 μg/m3 15-minute 
mean 

Not to be 
exceeded more 
than 35 times a 

year 

31st December 2005 

 

350 μg/m3 1-hour mean 

 

Not to be 
exceeded more 
than 24 times a 

year 

31st December 2004 

 

Sulphur 
dioxide 

125 μg/m3 24-hour mean Not to be 
exceeded more 
than 3 times a 

year 

31st December 2004 

* Only England & Wales objective shown 
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Table 2.5 Air Quality Strategy objectives included in regulations for delivery at a 
national level (Group A pollutants). 

Objective 
Pollutant 

Standard Averaging period 

To be achieved 
by 

Objectives for the protection of human health: 

Ozone 100 μg/m3 
(Not to be exceeded 
more than 10 times/ 

year) 

8-hour mean 31 December 
2005 

Polycyclic 
Aromatic 
Hydrocarbons 

0.25 ng/m3 B[a]P Annual mean 31 December 
2010 

Particulate 
Matter (PM2.5) 

*25 μg/m3 

Target of 15% 
reduction in 

concentrations at urban 
background 

Annual mean 

Annual mean 

2020 

Between 2010 
and 2020 

Objectives for the protection of vegetation and ecosystems: 

Nitrogen 
oxides 

30 μg/m3 Annual mean 31 December 
2000 

Sulphur 
dioxide 

20 μg/m3 

20 μg/m3 

Annual mean 

Winter average (1st 
October – 31st 

March) 

31 December 
2000 

31 December 
2000 

Ozone Target value of 18,000 
μg/m3 based on AOT40 
to be calculated from 1-
hour values from May 

to July, and to be 
achieved, so far as 
possible, by 2010 

Average over 5 
years 

1 January 2010 

* Only England & Wales objectives shown 

Table 2.6 Air Quality Standards Regulations (2007) EU Target Values for 
delivery at a national level (Group B pollutants). 

Objective 
Pollutant 

Concentration* Averaging period 
To be achieved by 

Arsenic 6 ng/m3 Annual mean 31st December 2012 

Benzo(a)pyrene** 1 ng/m3 Annual mean 31st December 2012 

Cadmium 5 ng/m3 Annual mean 31st December 2012 

Nickel 20 ng/m3 Annual mean 31st December 2012 
*Total content of the relevant pollutant in the PM10 fraction averaged over one calendar year 

**Polycyclic Aromatic Hydrocarbon (PAH) 
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2.3 Industrial processes and air quality monitoring 
Air pollution from industry is regulated either by Local Authorities or by the Environment 
Agency, depending on the category of the industrial activity (Part A(1), Part A(2) or Part 
B processes). The Environment Agency regulates Part A(1) processes, potentially the 
most polluting of all industrial sources.  

In order to reduce the impact of aerial emissions from industrial processes on human 
health and the environment, industrial activities are subject to Pollution Prevention and 
Control (PPC) Regulations. The system of Pollution, Prevention and Control has 
replaced the Integrated Pollution Control (IPC) regime set up under Part I of the 
Environmental Protection Act (EPA, 1990) and implements the European Directive 
(EC/96/61) on Integrated Pollution Prevention and Control (IPPC).  

These regulations aim to ensure that industry adopts an integrated approach to 
pollution control in order to achieve a high level of protection for the environment and 
human health. Under these regulations, operators of Part A (1 and 2) and Part B 
industrial processes are required to obtain a permit to operate. In all cases, industrial 
operators must assess the impact of their emissions on human health and the 
environment and adopt Best Available Techniques (BAT) to minimise impacts. If a 
permit is issued, it will include conditions aimed at preventing or reducing pollution to 
acceptable levels. Depending on the size and scale of the process, stack emissions, as 
well as on-site and off-site ambient monitoring, may be required from the operator. In 
addition to these regulations, a number of complementary EU Directives specific to 
industrial emissions have been created. These include: 

• The Large Combustion Plant Directive (2001/80/EC), which aims to reduce 
emissions from large combustion plants with a thermal output of greater 
than 50 MW (e.g. power stations, refinery boilers and large industrial 
boilers). 

• The Sulphur Content of Liquid Fuels Directive (1999/32/EC), which aims to 
reduce emissions of SO2 resulting from the combustion of heavy fuel oil and 
gas oil. 

• The Solvents Directive (1999/13/EC), which aims to limit emissions of 
VOCs from the use of organic solvents in industrial processes. 

2.3.1 Emissions monitoring 

Under the requirements of IPPC regulations and the Large Combustion Plant Directive 
(LCPD), continuous emissions monitoring (CEM) of SO2, NOx and PM10 must be 
carried out by the operator for boilers with a thermal input greater than 100 MW. In 
addition to ensuring that the emission limits stated in the LCPD are adhered to, this can 
improve modelling of emissions to air from these sources. However, it should be 
recognised that there are still large uncertainties in continuously monitored 
concentrations and flow measurements.  

For the remaining Part A(1) activities, continuous or non-continuous emissions 
monitoring of air pollutants may be required by the Environment Agency depending on 
the process and the scale of the activity. Table 2.7 provides examples from a range of 
IPPC operating permit submissions to the Environment Agency, listing source-specific 
requirements for stack emissions monitoring to be undertaken by Part A(1) operators. 
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2.3.2 Ambient monitoring 

Ambient monitoring is also desirable to monitor the off-site impacts of emissions to air 
from industrial processes. However, while all the power generation operators are 
required to continuously monitor SO2, NO2 and PM10 concentrations off-site, 
requirements for off-site monitoring by other Part A(1) processes (e.g. refineries, steel 
and cement works) are examined on a case-by-case basis during the IPPC permit 
authorisation process. Compulsory on-site monitoring is limited to landfill sites, which 
are required to conduct ambient air monitoring along the entire site boundary and the 
landfill gas collection infrastructure on a monthly basis. Off-site monitoring by the 
landfill operator need only occur following a substantial odour complaint. Table 2.8 
summarises the ambient monitoring of air quality undertaken by operators of power 
stations in the Aire Valley and Table 2.9 summarises both on- and off-site ambient 
monitoring required from operators of landfill sites. 

 

Table 2.7 Examples from IPPC operating permit submissions to the 
Environment Agency, listing source-specific requirements for stack emissions 
monitoring for a range of Part A(1) processes.  

Part A Process Pollutant 

Power Refineries Steel Cement 

Sulphur dioxide        
(SO2) 

CEM CEM or 
2/yeara 

CEM or 
1/yearb 

CEM or 
2/year 

Nitrogen dioxide      
(NO2) 

CEM CEM or 
2/yeara 

CEM or 
1/yearb 

CEM or 
2/year 

Particulate Matter  
(PM10) 

CEM CEM or 
2/yeara 

CEM or 
1/yearb 

CEM or 
2/year 

Polychlorinated 
dibenzodioxin (PCDD)  

  2/year 2/year 

Polychlorinated 
dibenzofuran (PCDF) 

  2/year 2/year 

Polychlorinated biphenyl 
(PCB) 

  2/year 2/year 

Polycyclic aromatic 
hydrocarbons (PAHs) 

  2/year 2/year 

Volatile organic 
compounds (VOCs) 

 2/year 2/year 2/year 

Hydrochloric Acid     
(HCl) 

  2/year 2/year 

Hydrogen fluoride     
(HF) 

  2/year 2/year 

Carbon monoxide     
(CO) 

   2/year 

CEM = Continuous Emissions Monitoring 

aDependent on process e.g. iron ore sintering, steel making, iron making, concast, rolling mills, re-heat furnaces, power 
plant boilers or coke ovens 
bDependent on boiler size e.g. < 100MW thermal input requires a monitoring frequency of 2/year, >100MW requires 
CEM 
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Table 2.8 Continuous ambient air quality monitoring undertaken by operators of 
power stations (Eggborough, Ferrybridge and Drax) in the Aire Valley as part of 
an IPPC operating permit. 

Monitor Location Pollutant monitored Concentration 
averaging time 

Carr Lane Sulphur dioxide (SO2) 

 

15-min and 1-hour 

Hemingbrough Landing Sulphur dioxide (SO2) 

Nitrogen dioxide (NO2) 

15-min and 1-hour 

 

Downes Ground Sulphur dioxide (SO2) 

 

15-min and 1-hour 

 

West Bank Sulphur dioxide (SO2) 

 

15-min and 1-hour 

 

Smeathalls Farm Sulphur dioxide (SO2) 

 

15-min and 1-hour 

 

North Featherstone Sulphur dioxide (SO2) 

 

15-min and 1-hour 
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Table 2.9 On- and off-site ambient monitoring requirements for landfill sites. 

On-site monitoring 

Location Pollutant Monitoring frequency Trigger Level 

Methane (CH4) 12/year or following a 
substantiated odour 

complaint 

10 ppm 

 

Hydrogen 
Sulphide (H2S) 

12/year or following a 
substantiated odour 

complaint 

5 ppm (average 
of 10 consecutive 

readings) 

Site boundary 
(ambient air) 

Speciated VOCs 12/year or following a 
substantiated odour 

complaint 

EAL or species 
odour thresholdb 

Gas 
infrastructure 
integrity survey 

Methane (CH4) 12/year 10 ppm or 100 
ppmc 

Permanently 
capped areas 

Methane (CH4) 1/yeara 1x10-3 mg m-2 s-1 

Temporarily 
capped areas 

Methane (CH4) 1/yeara 1x10-1 mg m-2 s-1 

Off-site monitoring 

Location Pollutant Monitoring frequency Trigger Level 

Maximum 
ambient 
methane 
exceedence 
location 

Hydrogen 
Sulphide (H2S) 

When CH4 trigger level 
exceeded or following a 

substantiated odour 
complaint 

5 ppm (average 
of 10 consecutive 

readings) 

Maximum 
ambient 
methane 
exceedence 
location 

Speciated VOCs When CH4 trigger level 
exceeded or following a 

substantiated odour 
complaint 

EAL or species 
odour thresholdb 

aMonitoring should only take place under calm conditions (< Beaufort Force 2) unless an odour complaint is 
substantiated. 
b Environment Agency H1 Methodology (Environment Agency, 2002a) Environmental Assessment Level (EAL) or VOC 
species odour threshold, whichever is the greatest. 
c10 ppm for leachate well heads, all pre-combustion pipework, manifolds, knockout pots and booster fans. 100 ppm for 
leachate well annuli. 
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2.3.3 Air quality monitoring: Environment Agency  

In order to assist Part A(1) process operators to assess the impact of their aerial 
emissions on ambient air quality, or where the public have expressed concern over 
poor air quality arising from industrial emissions, the Environment Agency is able to 
conduct short-term monitoring campaigns. Sampling is undertaken using one of four 
Mobile Monitoring Facilities (MMFs), capable of continuously monitoring ambient 
concentrations of PM10, PM2.5, SO2, NO2, CO, hydrogen sulphide (H2S), methane (CH4) 
and a range of VOC species. Meteorological conditions (atmospheric pressure, 
temperature, relative humidity, wind direction and wind speed) are also measured by 
the MMFs. Table 2.10 summarises a number of short-term MMF campaigns 
undertaken by the Environment Agency in recent years.  

Monitoring campaigns are typically four to six months in duration. Annual air quality 
statistics are determined on a pro-rata basis, making the assumption that the 
meteorological conditions that prevailed during the monitoring period are representative 
of a typical year. In order to take into account seasonal variation in meteorology, 
monitoring campaigns should ideally include an equal number of winter and summer 
months as detailed in the M8 Technical Guidance Note (Environment Agency, 2000). 
However, as can be seen from Table 2.10, this is often not the case. 

The analysis of data from MMF campaigns includes a comparison with AQS objectives 
and a detailed consideration of significant pollution events that occurred during the 
monitoring campaign. The pollution events do not necessarily constitute exceedences; 
rather they are described as events during which pollutant concentrations increased 
significantly above the average level. Each event is considered separately and the 
prevailing wind speed and wind direction examined throughout the duration of the 
event. The maximum pollutant concentrations during the events are also summarised, 
along with the corresponding wind speed, wind direction and time of the monitored 
maximum concentration.  

Various directional analysis methods are applied to the monitored data to determine 
source apportionment. Routine analysis includes the creation of directional 
concentration plots, either of annual mean concentration or percentile breakdown. The 
directional concentration plots indicate whether sources impact consistently or only 
occasionally and whether higher or lower percentiles (or both) are affected. An 
example of the interpretation of directional percentile concentration plots is given in 
Table 2.11, with examples taken from a report on ambient air quality at Pen-y-ffordd, 
Flintshire (Shutt et al., 2005). Further directional analysis explores the variation in 
pollutant concentrations for various wind sectors, comparing pollutant concentrations 
with wind speed and/or time of day. An example of the evaluation of pollutant 
concentration by wind speed and wind sector is given in Figure 2.2, taken from a report 
on ambient air quality at Aberthaw (Sheppard et al., 2001). 
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Table 2.10 Selected short-term monitoring campaigns undertaken by the 
Environment Agency during the period 2001-2005 using Mobile Monitoring 
Facilities (MMFs). 

Monitoring site Duration of 
monitoring 

Purpose of campaign Pollutants 
monitored 

Port Talbot 5 months  

(21 June 2002 -
22 Oct 2002) 

Assess impact of Corus 
steel works on Neath 
AQMA. 

PM10, SO2, NO2, CO, 
H2S, selected VOCs 
(e.g. benzene) 

Dowlais,    
Methyr Tydfil 

5 months 

(17 Dec 2002  -
14 Apr 2003) 

Assess impact of 
Trescatti landfill on local 
air quality 

PM10, SO2, NO2, CO, 
H2S, selected VOCs 
(e.g. benzene), CH4 

Llanidloes, 
Powys 

5 months  

(30 June 2003 -
28 Oct 2004) 

Assess impact of Bryn 
Posteg landfill on local 
air quality 

PM10, SO2, NO2, CO, 
H2S, selected VOCs 
(e.g. benzene), CH4 

Clydach Vale, 
Rhondda 

4 months  

(29 Oct 2003  -
3 Feb 2004) 

Assess impact of closed 
Nant-y-Gwyddon landfill 
on local air quality 
following public 
complaints 

PM10, H2S, selected 
VOCs (e.g. 
benzene), CH4 

Port Talbot 7 months  

(20 Jul 2004   -
18 Jan 2005) 

Assess impact of local 
pollution sources on air 
quality within an AQMA. 

PM10, SO2, NO2, CO, 
selected VOCs 
(including benzene 
and 1,3 butadiene), 
CH4 

East Aberthaw 6 months  

(21 Jan 2005   -
21 June 2005) 

Assess impact of 
Aberthaw power station 
and cement works on 
local air quality 

PM10, SO2, NO2, CO 

Scunthorpe 5 months 

(25 May 2005 -
15 Sept 2005) 

Assess impact of Corus 
steel works on local air 
quality 

PM10, SO2, NO2, CO 

4 months  

(30 June 2005 -
26 Sept 2005) 

Assess impact of 
Padeswood Cement 
works on local air 
quality. 

PM10, SO2, NO2, CO 

 

Pen-y-Ffordd/ 
Dyke Farm, 
Flintshire 

10 months 

(17 Nov 2004 -
16 Sept 2005) 

Additional SO2 analyser 
for triangulation of data 
from two sites. 

SO2 only 
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Table 2.11 Examples of emission source characteristics derived from the 
interpretation of pollution rose percentile breakdown. 

Scenario Interpretation Example of percentile 
breakdown pollution rose 

PM2.5 Contribution from a 
source from 50°-
150° affecting lower 
percentiles. 

Contribution from a 
source from 130°-
140° affecting high 
percentiles.  

Sources in wind segment 
50°-150° emit levels 
slightly higher than 
average but never enough 
to activate the higher 
percentiles.  

Source between 130°-
140° emits relatively 
continuously and affects 
all percentiles. 

NO2 Contribution from 
sources between 0°- 
170° and 210°-330°.  

Concentration peaks 
affect the lower 
percentiles between 
0°- 170° and the 
higher percentiles 
between 210°-330°. 

Sources are assumed to 
emit continuously from 
between 0°- 170° but are 
never high enough to 
elevate the higher 
percentiles. 

Sources from 210°-330° 
only affect higher 
percentiles and are 
therefore intermittent. 

SO2 Contribution from a 
source(s) from 50°-
60°, 80°-90° and 
110°.  

Concentration peaks 
noted to affect 
higher percentiles 
but not as evident in 
lower percentiles. 

Sources only affect higher 
percentiles and are 
therefore intermittent and 
do not always affect SO2 
concentrations every time 
the wind is originating from 
these directions. 

Source: Shutt et al. (2005). 

Note: Percentiles are indicated by coloured lines on the pollution rose, from inner to outer, lines represent 
25th 50th, 75th, 90th, 95th and 99th percentiles). 
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Source: Sheppard et al. (2001) 

Figure 2.2 Directional analysis of PM10 concentrations against wind speed, 
measured during an Environment Agency MMF campaign at Aberthaw in 
2000/2001 (from Sheppard et al., 2001). 
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2.4 Uncertainties in air quality monitoring 
Although ambient monitoring can provide relatively accurate measurements of air 
quality at a single point in space and time, the number of monitors employed around 
industrial point sources in the UK and the frequency at which monitoring is undertaken 
is often limited. As a consequence, accurate temporal and spatial variations in air 
quality (environmental uncertainty) may not be captured. In addition, the error 
associated with a particular sampling instrument or analytical method may also 
introduce an element of measurement uncertainty. 

2.4.1 Measurement uncertainty  

Measurement uncertainty incorporates both sampling and analytical variability. 
Sampling variability is a measure of the inconsistencies in sampling methods and can 
be either random or systematic. For example, random variability may be introduced 
due to fluctuations in temperature or pressure that may affect the measurement 
instrument, whereas systematic variation may result from a built-in bias in the 
measurement equipment or procedure. Random sampling variability can be measured 
by the difference in concentrations between ‘like samples’, for example by collecting 
duplicate samples from the same location. In contrast, analytical variability is the 
difference in concentration measurements between ‘like laboratory analysis’, 
conducted on a common sample.  

AQF Daughter Directives 1 and 3 (1999/30/EC, 2002/3/EC) recommend measurement 
accuracy objectives for the continuous measurement of SO2, NO2 and NOx as 15% and 
for PM10 and Pb, 25%. In addition, the Environment Agency recommends quality 
control procedures for ambient air quality monitoring in Technical Guidance Note M8 
(Environment Agency, 2000) which aims to limit sampling and analytical variability. 

2.4.2 Environmental uncertainty 

Environmental uncertainty describes the spatial and temporal variability in monitored 
concentrations. Spatial variability is the difference in concentration measurements over 
an area, and gives a measure of the degree to which measurements made at one point 
are representative of other locations in space. Temporal variability is the difference or 
change in concentrations over time (daily, seasonally or inter-annually). Capturing 
sufficient temporal variability depends on the capability of the sampling rate, whereas 
the number of monitoring sites needed to adequately capture the spatial variability 
depends on the properties of the pollutant, the nature of the source and the area over 
which the impacts are being measured. 

2.4.2.1 Extrapolation from short-term monitoring campaigns 

Short-term monitoring campaigns undertaken by the Environment Agency aim to 
monitor air quality around Part A(1) sources to assess the impact of installations in 
relation to AQS objectives. The outcome of these assessments is then fed back into 
permit conditions which set controls on the plant. As stated in Section 2.3.3, MMF 
monitoring campaigns are usually limited to six-months or less, with annual air quality 
statistics derived on a pro-rata basis, assuming that meteorological conditions which 
occurred during the monitoring period are representative of a typical year. Uncertainties 
associated with the derivation of annual air quality statistics from short-term monitoring 
campaigns are likely to be high. This can have implications for permit holders, 
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especially when the total number of calculated exceedences is close to or exceeds an 
AQS objective. For example, the Environment Agency conducted a short-term 
monitoring campaign to study ambient air quality in the vicinity of Aberthaw power 
station between August 2000 and January 2001 (Sheppard et al., 2001). The five-
month campaign recorded 16 occasions when the 15-minute mean SO2 concentration 
exceeded the objective (266 μg m-3) set for this pollutant.  As a result, it was projected 
that 266 μg m-3 would be exceeded 38 times during the course of a single year, 
compared to the permitted 35 occasions allowed under the AQS. 

In addition, MMF’s are often sited where air quality complaints have been made by the 
local community (Sheppard et al., 2001) or to complement existing monitoring locations 
(Shutt et al., 2005). On many occasions, MMF’s are not located in the predicted area of 
peak concentration or in the prevailing wind direction because of practical constraints 
e.g. the availability of power supply or site accessibility. It is necessary to consider the 
implications of these factors if short-term monitoring campaigns are used to try to 
assess likely compliance with air quality objectives. 

2.4.3 Quantifying monitoring uncertainty 

To decide how resources may best be allocated to reduce uncertainty in monitoring 
data, it is useful to determine the relative contributions of the different sources of 
variability. Bortnick and Stetzer (2002) applied a statistical model for partitioning and 
quantifying different sources of variability using data from the United States 
Environmental Protection Agency (USEPA) Urban Air Toxics Monitoring Program 
(UATMP). An analysis of variance (ANOVA) model with random effects was applied to 
a data set consisting of duplicate (co-located samplers) and replicate (repeat laboratory 
analysis) samples of VOC and carbonyl air pollutants sampled between 1996 and 
1999. The method is similar to traditional ANOVA models in that each effect (spatial, 
temporal, sampling and analytical) is treated as a categorical factor (site, day, sampler 
and analysis) with multiple levels (“low”, “medium” and “high” categories). However, 
unlike traditional ANOVA, the effects of the levels of each factor are treated as random 
deviations from a null effect. The random effects ANOVA model separates out each 
contributing component as variability corresponding to each random factor included in 
the model and may be written as follows: 
 

)/()()()ln( ijkijkijiijkly εγβαμ ++++=    Equation 1 
 
where yijkl is the concentration for the lth replicate analysis (l = 1, 2) of the kth duplicate 
sample (k = 1, 2) collected on the jth day (j = 1, 2…, <7) at the ith monitoring location (i 
= 1, 2…, <10),μ  the overall mean across all the data, iα  the random deviation from 
the overall mean of the data that is due to the spatial variability, )(ijβ  the random 

deviation from a site-specific mean due to the temporal variability, )(ijkγ  the random 

deviation from a site × day-specific mean due to the sampling error and )(ijklε  the 
residual error of the model due to the effect of the analytical error. Bortnick and Stetzer 
(2002) refer the reader to Searle et al. (1992) and Searle (1971) for a more in depth 
discussion on classifying effects in the model as fixed versus random and on 
estimating variance components.  

 
The output from the model is a partitioning of the total data variability into each 
component ( iα , )(ijβ , )(ijkγ  and )(ijklε ). Each individual variance component was 
transformed into an estimate of percent relative error (known as the % coefficient of 
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variation, %CV) using a formula which expresses the ratio of mean to standard 
deviation for log-normal data (Equation 2): 
 

( )( ) 5.02 1exp100 −×= σCV     Equation 2 
 
Environmental variability (especially temporal variability) was shown by Bortnick and 
Stetzer (2002) to be much more significant than measurement variability, as is shown 
in the results for benzene in Table 2.12. Note that Equation 2 (above) is a non-linear 
function of the individual variances and therefore the individual relative error 
components do not sum to the overall relative error. Temporal variability was not 
always found to be the most significant source of error; for some pollutants sampling 
variability became more important at lower concentrations. In addition, the proportion of 
sampling versus analytical error in measurement variability was found to vary with 
compound. Although this study is applied to a national network with 17 monitoring sites 
spread over multiple cities, the random effects ANOVA model methodology could also 
be applied to determine the partitioning of relative errors in monitoring data around 
single point sources. This would determine how best to allocate monitoring resources 
to limit the uncertainty in regulatory decisions based on monitoring data. However, in 
order to apply this model it is necessary to obtain data with repeated measures of each 
factor, at each level. Although unlikely with the current provision of monitoring sites 
around industrial point sources, the development of low cost, high accuracy sensor 
technologies (See Section 5.4) may enable such analysis to be carried out before 
permanent monitoring networks are installed. 
 

Table 2.12 Sources of variability when monitoring benzene (from Bortnick and 
Stetzer, 2002). 

Relative error due to 
environmental 

variability* 

Relative error due to 
measurement 

variability* 

Conc. 
level 

No. of 
observations 

No. 
of 

Sites 

Mean  
No. 
of 

days 

Total 
relative 

error 
(%CV) 

Spatial Temporal Sampling Analytical 

Low 89 5 3 50.53 11.09 47.77 <1.00 9.83 

Medium 81 5 4 39.06 15.67 27.55 <1.00 21.34 

High 125 5 4 46.93 12.24 44.38 <1.00 6.63 

*Results are expressed as a percentage coefficient of variation (%CV), calculated by the ratio of standard deviation to 
the mean. 
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3 Modelling ambient air quality 

3.1 Modelling ambient air quality in the UK 
To comply with PPC and IPPC regulations, as part of a permit application all industrial 
process operators are required to undertake an assessment of the impacts arising from 
aerial emissions with reference to national air quality objectives. The impact 
assessment is carried out using the H1 methodology (Environment Agency, 2002a) 
which requires the calculation of process contributions to air and the subsequent 
screening out of insignificant emissions. Advanced modelling studies are required if a 
H1 assessment reveals that the predicted emissions are likely to be significant. 
Compliance is monitored under the requirements of the specific PPC application, which 
may involve air quality monitoring by the operator. However, power station operators 
are required to carry out advanced dispersion modelling on an annual basis and 
continuous monitoring throughout the year to demonstrate compliance with AQS 
objectives. This is carried out by means of a Risk Management Framework (Hunter, 
2004). Although the majority of modelling undertaken for PPC permit applications is 
undertaken by the process operator, the Environment Agency Air Quality Modelling and 
Assessment Unit (AQMAU) routinely audits air quality modelling assessments 
undertaken as part of PPC permit applications, compliance, enforcement and incident 
investigations. 

A range of numerical dispersion modelling software packages is available for advanced 
modelling studies, which allows the prediction of ambient ground level pollutant 
concentrations on a far greater spatial and temporal resolution that can be achieved by 
monitoring alone. For point source emissions, simple Gaussian dispersion models such 
as R91 (Clark, 1979) use the Pasquill Gifford (PG) stability category scheme to 
determine the dispersion characteristics of the atmosphere. However, more advanced 
‘new generation’ Gaussian dispersion models, e.g. ADMS and AERMOD, describe the 
atmospheric boundary layer using continuous parameters (e.g. boundary layer height, 
h, Monin-Obukhov length, LMO, sensible heat flux, Fθ0, and friction velocity, *u ), to allow 
continuous variation of boundary layer properties both spatially and temporally. Both 
ADMS (Carruthers et al., 1994) and AERMOD (Cimorelli et al., 1998) are used for 
regulatory purposes in the UK and are capable of simulating a wide range of buoyant 
and passive pollutant releases to the atmosphere. However, any model may be used, 
provided it is proven as ‘fit-for-purpose’. Since the release of ADMS and AERMOD, 
both models have undergone continuing development. At the time of publication of this 
report, the latest available versions are ADMS 4 and AERMOD (07026). 

3.2 Uncertainties in air quality modelling 
Although the use of dispersion models can increase the spatial and temporal coverage 
of ambient pollutant concentrations, the uncertainties associated with the model 
predictions are much more complex than those associated with air quality monitoring. 
Model uncertainty defines the ability of a model to accurately simulate atmospheric 
dispersion. This depends not only on the input of accurate data into the model, e.g. 
meteorological data and emissions data, but also on the choice of model and the model 
configuration options selected by the user. 
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3.2.1 Choice of model and user configuration 

Both ADMS and AERMOD use meteorological pre-processors to determine 
meteorological parameters necessary for estimating profiles of wind, turbulence and 
temperature from standard meteorological measurements. However, subtle differences 
in the way in which the ADMS and AERMOD meteorological pre-processors calculate 
surface parameters and the subsequent calculation of the boundary layer structure, 
can lead to differences in model output. A fundamental difference between ADMS and 
AERMET (the meteorological pre-processor used in the AERMOD system) is the 
parameterisation of the Atmospheric Boundary Layer (ABL). AERMET estimates of 
boundary layer height can be up to two or three times those of ADMS and furthermore, 
AERMET often predicts stronger unstable conditions (Brooke et al., 2003; Auld et al., 
2003). Thé et al. (2001) suggest this may be due to the estimation tool used to allow 
AERMET to process meteorological data without upper air data. For the modelling of 
emissions from tall stacks (> 60 m) and highly buoyant plumes, the discrepancy in 
estimation of h can have a large effect on modelled concentration predictions. This is of 
particular importance during low boundary layer conditions, where small differences in 
boundary layer height can determine whether a plume rises above the boundary layer 
or is trapped beneath it. The reader is referred to Auld et al. (2003) for a detailed 
description of the similarities and differences in the meteorological modelling 
approaches using ADMS 3 and AERMOD and the potential impacts of these 
approaches on dispersion calculations. 

The difference in the treatment of terrain and buildings in ADMS and AERMOD is also 
a source of inconsistency in model output. The Environment Agency carried out an 
extensive model comparison study, focusing on an assessment of AERMOD (99351), 
AERMOD-PRIME (04300)1 and ADMS 3.1 (Environment Agency, 2002b). The study 
tested the effects of plume rise, building entrainment and terrain on annual and hourly 
mean concentrations predicted by each of the three models using single meteorological 
conditions extracted from Lyneham meteorological data (1995). The results for the 
building entrainment analysis show that the difference between AERMOD (99351) and 
AERMOD-PRIME (04300) was limited to the wake region of the building, reflecting the 
inability of the earlier version of AERMOD to model the effects of building entrainment. 
Stack location and wind direction were both observed to have a significant impact on 
dispersion predictions from ADMS 3 and AERMOD-PRIME (04300). It is noteworthy 
that the treatment of buildings is approximate and neither model can be expected to 
provide an exact representation of flow and dispersion around such objects. 

In areas of complex terrain, the accurate calculation of the wind-field is of primary 
importance to be able to predict dispersion. Both ADMS and AERMOD have algorithms 
for determining the influence of terrain features on dispersion, however the wind field is 
calculated differently in both models. ADMS uses a linear analytical solution to 
determine the wind field, whereas AERMOD does not model the wind field explicitly but 
instead models the interaction of the dispersing plume with the underlying terrain. 
Several authors have found substantial differences between ADMS 3 and AERMOD 
when modelling the effects of complex terrain on atmospheric dispersion (Environment 
Agency, 2002b; Brooke and Stiff, 2006; Hill et al., 2005). Much of the meteorological 
data applied in the UK for regulatory modelling is derived from distant meteorological 
sites. As such, consideration should be given to how representative meteorological 
data may be, when applied to dispersion modelling in areas of complex terrain. 
Additionally, if a greater number of monitoring sites were placed around sources in 
areas of complex terrain, more rigorous model validation studies could be undertaken. 
The reader is referred to Hill et al. (2005) for a comprehensive review of dispersion 

                                                 
1 AERMOD-PRIME refers to the version of AERMOD (identified by a Julian date) which includes the 
PRIME plume rise and building downwash algorithms. Previous version of AERMOD also contained 
downwash and plume rise algorithms, although these algorithms were somewhat simpler than PRIME. 
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modelling in areas of complex terrain and Finardi et al. (1997) for guidance on model 
suitability for areas of complex terrain. 

Continuous improvements in model development also mean that different versions of 
the same model can provide different results. Several model comparison studies 
compare earlier and later versions of ADMS and AERMOD (Brooke et al., 2003; 
Brooke and Stiff, 2006; Environment Agency, 2002b; Futter, 2000; Sidle et al., 2004). 
Comparisons of the latest version of ADMS (Version 4) with previous versions of 
ADMS and AERMOD can be found in ADMS 4 model validation documentation (See: 
http://www.cerc.co.uk/software/publications.htm). 

In addition to the intrinsic differences between ADMS and AERMOD, model user 
configuration can give rise to discrepancies in dispersion parameterisation, which can 
significantly influence model predictions. Table 3.1 defines the major differences in 
configuration options in ADMS 3 and AERMOD. Some of the most important aspects of 
model user configuration to be considered are detailed below. 

3.2.1.1 Length of averaging period 

Length of averaging period is a minor difference between ADMS 3 and AERMOD but 
one that is worth considering. AERMOD does not have the capacity to calculate 
concentrations for averaging times less than 1 hour, which is of particular importance 
for estimating concentrations for the 15-minute mean SO2 objective. However, it may 
be argued that the resolution of meteorological data (normally one hour) may limit the 
capability of either model to produce accurate concentration predictions at a temporal 
frequency greater than once per hour. Under strongly convective conditions with high 
boundary layers, hourly average concentrations may vary significantly due to the time 
scales of convective motions, therefore, a period of several hours may be necessary to 
obtain a representative average (Auld et al., 2003). 

3.2.1.2 Treatment of low wind speeds 

The way models are configured to treat calm conditions is of particular importance. 
Calm conditions are synonymous with low wind speeds in both stable and unstable 
conditions and are often associated with peak concentration events, particularly for 
low-level sources. It is therefore necessary that these conditions can be accurately 
modelled. However, low wind speeds tend to give rise to uncertainty due to their effect 
on the dispersion of plumes and also from their treatment within models. 

The minimum wind speed required to detect air flow varies between anemometers. For 
Numerical Weather Prediction (NWP) data, this speed is assumed to be 1 m s-1, 
however site-specific measurements frequently use instruments that can detect speeds 
below this value. ADMS 3 and AERMET impose a minimum allowable wind speed for 
use in estimating the boundary layer parameters, below which dispersion calculations 
are not completed. For ADMS 3, the minimum allowable wind speed is 0.75 m s-1 
(CERC, 2007) and for AERMOD this value is 0.28 m s-1 (Environmental Protection 
Agency, 2004). However minimum wind speeds may be set above these values if the 
minimum detectable (threshold) wind speed of the site-specific anemometer is higher 
than 0.75 m s-1 in the case of ADMS or 0.28 m s-1 in the case of AERMOD. Auld et al. 
(2003) compared peak (100th percentile) short-term modelled concentrations in 
AERMOD using the default minimum wind speed of 0.28 m s-1 and the ADMS 3 
minimum wind threshold value of 0.75 m s-1 and found peak concentrations were 
reduced by almost 50% when using the ADMS threshold value. When reporting the 
percentiles of a concentration distribution, it would therefore be advisable for modellers 
to report the minimum threshold wind speed used and reference the frequency of low 

http://www.cerc.co.uk/software/publications.htm
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wind speed periods, i.e. the number of model time steps skipped due to below-
threshold wind speeds. 

If measured concentration exceedences commonly occur during low wind speed 
conditions, then consideration should be given to an alternative model which has the 
ability to treat calm conditions and low wind speeds more realistically, e.g. CALPUFF 
(Scire et al., 2000). ADMS 4 offers a new approach to treat calm conditions whereby at 
speeds of less than or equal to a user defined minimum wind speed (minimum allowed 
is 0.3 m s-1), a radially symmetric solution is applied, assuming equal probability of all 
wind directions. At wind speeds above a critical value (Ucrit), standard ADMS 
calculations for a Gaussian plume are applied and for meteorological lines with U 
between 0.5 m s-1 and Ucrit, a weighted average of both solutions is applied (CERC, 
2007). 

3.2.1.3 Surface roughness length 

The configuration of the roughness length (zo) parameter, used by meteorological pre-
processors to interpret the vertical profile of wind speed and the estimation of friction 
velocities, can also significantly affect model output. Historically, single values of zo 
were used to represent surface characteristics at the emission source. More recently, it 
has been possible to include additional values for the meteorological mast site. Further 
developments in ADMS 3 now allow the input of a zo grid over the model domain, whilst 
the AERMET preprocessor in AERMOD allows roughness length to vary on a seasonal 
and sectoral basis. Following an inter-comparison of the meteorological pre-processors 
in ADMS 3 and AERMOD, Auld et al. (2003) concluded that the parameterisation of 
surface roughness length was the largest contributor to differences in predicted 
ambient concentrations between the two models. 
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Table 3.1 ADMS (Version 3) and AERMOD configuration options. 

Configuration 
option 

ADMS AERMOD 

Observational or NWP data Observational data (including 
upper air measurements) or 
NWP data 

Meteorological 
data source 

Meteorological Office data 
sets may be supplied in 
ADMS format 

SCRAM, HUSWO, CD-144, 
NCDC and SAMSON formats 
may be used as input to 
AERMET 

Meteorological 
data format 

Hourly input (0-23) where 
the time refers to the mid-
point of each hour 

Hourly input (1-24) where the 
time refers to the end of each 
hour  

Minimum 
averaging time 

Sub-1 hour 1 hour 

Threshold wind 
speed below which 
dispersion cannot 
be calculated 

0.75 m s-1 0.28 m s-1  

Surface energy 
balance 
parameters 

Albedo (r) default value 
0.23 (possible to input 
hourly) 

Priestly-Taylor Parameter 
(α) default value 1 
(equivalent to β = 0.6), 
possible to input hourly) 

Seasonal values of Albedo (r) 
and Bowen ratio (β) input on 
sector-based level 

Surface roughness Values of zo can be 
assigned for the emission 
site and the meteorological 
site, in addition to a 
roughness length grid 
covering the model domain 

Values of zo can be assigned 
for the emission site and the 
meteorological site and also on 
a seasonal and sectoral basis 

Boundary Layer 
height limits 

50 – 4000 m 4 – 4000 m 

Boundary layer 
parameterisation 

Estimates h by 
incorporating mechanical 
and convective turbulence 
into boundary layer growth 
formulae 

Estimates h due to convective 
and mechanical turbulence 
individually  

Treatment of 
stacks 

Capacity to model hourly 
varying flue diameter 

Must represent multi-flue 
stacks as separate sources 

Treatment of 
buildings 

A maximum of 10 buildings, 
requires choice of main 
building to be made 

Unlimited number of buildings 

Treatment of 
complex terrain 

Terrain data may be 
imported using a terrain file 

Gridded terrain data may be 
imported using the AERMAP 
terrain preprocessor 
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3.2.2  Uncertainty in meteorological data 

A major source of uncertainty in air quality modelling is due to the measurement and 
treatment of meteorological data. In Gaussian dispersion models, airflow 
measurements are typically parameterised by wind speed, wind direction, and 
atmospheric stability, which may be derived from temperature and cloud cover or solar 
radiation measurements. Uncertainty can therefore be introduced through inaccuracies 
in meteorological measurement instruments. However, uncertainty is also introduced 
through the use of meteorological data that are not representative of the conditions at 
the dispersion site. 

3.2.2.1 Accuracy of measurement methods 

The accuracy of measurement methods can be divided in terms of measurement 
precision and methodological bias.  

Measurement precision is considered to be the amount by which a recorded value 
deviates from an accepted standard value. This standard can be quoted for individual 
parameter sensors or for the measurement system as a whole, allowing for data 
logging and signal processing limitations. The US EPA recommends system accuracy 
for in situ measurements of a number of variables for use in air quality models, based 
on standard averaging times of 1 hour (Table 3.2). The UK Met Office and other 
suppliers of UK meteorological data (e.g. ADM LTD) also follow these guidelines.  

Methodological bias is more difficult to quantify than measurement precision and its 
importance varies with each meteorological parameter. Although not mentioned in 
Table 3.1, cloud cover is an important input in the calculation of further boundary layer 
parameters in dispersion models. Cloud cover is recorded in oktas (eighths of sky 
covered) as part of the UK Met Office standard observing routine. However, weather 
stations are becoming increasingly automated, with measurements of cloud density 
and height often being taken from laser cloud base recorders (LCBRs). A typical error 
of ± 1 okta may occur in the daytime if these data are manually recorded which may 
increase to ± 2 or 3 oktas at night due to the limitations of darkness (Auld et al., 2003). 
This uncertainty may be reduced with the use of LCBRs although rather than take in 
the whole arc of the sky, a LCBR will only measure cloud cover at the highest point 
above the horizon and hence may not detect the presence of an approaching bank of 
cloud. In addition, the models themselves cannot account for the differences between 
high and low level cloud, which may exert a greater or lesser influence on surface heat 
fluxes. 

3.2.2.2  Representivity of meteorological parameters 
Figure 3.1 shows the location of Met Office Automatic Weather Stations (AWS) in the 
UK, in relation to Part A(1) industrial sources. Representivity of meteorological data is 
an important aspect of model uncertainty. Data are considered representative if 
obtained from a site similar in land use, geographic location and terrain to the emission 
site. However, representivity can also include issues surrounding data quality, 
encompassing aspects such as the size of the meteorological data set and the 
presence of gaps in the data. 
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Table 3.2 System resolution and accuracy for in-situ digital measurements 
recommended by the US-EPA (from Auld et al., 2003) 

Variable System Accuracy Measurement 
resolution Sensor specification 

Wind speed ± 0.2 m s-1 (+ 5% of 

observed) 

0.1 m s-1 Threshold ≤ 0.5 m s-1 

Wind direction ± 5 degrees 1 degree Threshold ≤ 0.5 m s-1 

at 10 degrees 

Ambient 

temperature 

± 0.5 °C 0.1 °C Time constant ≤ 1 min

Vertical temperature 

difference 

± 0.1 °C 0.02 °C Time constant ≤ 1 min

Precipitation 

 

± 10% of observed or 
± 5 mm 

0.3 mm  

Solar radiation 

 

± 5% of observed 10 W m-2 2nd class standard 
pyranometer 

Spectral response 
285 - 2800 nm 

Pressure ± 3 mb (0.3 kPa) 0.5 mb  

Dew point 

temperature 

± 1.5 °C 0.1 °C Time constant ≤ 30 
min 

 

Bethan and Teasdale (2005) investigated the representivity of meteorological data by 
modelling dispersion of SO2 from a generic power station emission source using three, 
30-year meteorological data sets. The three data sets, Lyneham, Waddington and 
Aberporth, were contrasting in terms of both site characteristics and distance from the 
emission site. The meteorological years that produced the highest and lowest values of 
99.9th percentile concentrations and exceedences above 266 μg m-3 (X266) were 
ranked accordingly (Table 3.3). On only one occasion did the year match for ranked 
statistics between meteorological data sets, highlighting the influence of meteorological 
data on modelled concentrations.  

Bethan and Teasdale (2005) also demonstrated that variations in meteorology can 
cause the location of predicted maximum impact to vary both between years and within 
a single year. Figure 3.2 shows that between 1977 and 1980, the location of predicted 
maximum concentrations varies significantly, with the maximum location falling 
anywhere within an area as large as 3 km2 for 100% load and 4 km2 for 60% load. It is 
worth noting that the distance to maximum impact from the source is relatively 
consistent in each case. The authors conclude that for a power station with a single 
monitoring site, the site would lie outside the representative area2 for one in every six 
years, and for a power station with two monitoring sites, the sites would lie outside the 
representative area for one in every ten years. The observations of Bethan and 
Teasdale (2005) have implications for monitoring stations that are sited according to 
                                                 
2According to AQMP compliance methodology, a representative monitoring site must be located within a 
contiguous area, bounded by a modelled 50% concentration isopleth corresponding to 50% of the 
maximum modelled 99.9th percentile 15-minute SO2 concentration. Note: this is not analogous to the 
definition of meteorological data representivity. 
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the location of maximum concentration predicted by models configured with five years 
of meteorology. To minimise the uncertainty associated with non site-specific 
meteorological data, the Environment Agency’s Air Quality Modelling and Assessment 
Unit (AQMAU) recommend using five years of representative hourly sequential 
meteorological data to account for inter-annual variability when performing dispersion 
modelling assessments for annual licensing purposes (Shi and Ng, 2002). 

 

 
Source: Met Office weather station data supplied by the Met Office and Part A(1) site data supplied by the Environment 
Agency. 

Figure 3.1 Part A(1) industrial sources and Met Office Automatic Weather Station 
sites open on 4th June 2006, measuring a minimum of wind speed, wind direction 
and dry bulb temperature. 
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Table 3.3 Ranking of years producing the highest and lowest modelled values 
of the 99.9th percentile 15-minute mean SO2 concentration (99.9th) and the 
number of exceedences of 266 μg m-3 (X266) using three meteorological data 
sets (from Bethan and Teasdale, 2005). 

Lyneham Waddington Aberporth Rank 

99.9th X266 99.9th X266 99.9th X266 

1st 1977 1977 1977 1977 2002 1990 

2nd 1993 1993 1975 1975 1994 2002 

3rd 2002 2002 1990 1986 1990 1994 

4th 1984 1994 1986 1980 2001 2001 

5th 1994 1976 1982 1982 1991 1996 

29th 1989 1987 2003 1996 1982 1993 

30th 1987 1995 2001 1987 1974 1989 
Note: Modelling undertaken using a generic emission source for a full load scenario. 

 

 (a) (b) 

 

Source: Bethan and Teasdale (2005) 

Figure 3.2 Location of maximum 99.9th percentile 15-minute mean SO2 
concentrations predicted using ADMS 3 configured for a generic power station 
operating at (a) 60% and (b) 100% load and using 30 years of meteorology 
between 1974 and 2003. 

 

An alternative to using data provided by the Met Office is the use of site-specific 
meteorological data provided the fetch requirements for obtaining representative 
meteorological measurements are met by minimising the influence of local structures. 
However, site-specific data are used infrequently by the UK modelling community due 
to the lack of sufficient instrumentation to provide inputs containing all the necessary 
parameters for dispersion modelling (Auld et al., 2003). 
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3.2.2.3 Numerical Weather Prediction (NWP) data  

Auld et al. (2003) suggest that the use of Numerical Weather Prediction (NWP) data 
should be considered when the nearest surface observation station is unrepresentative 
of the source location. NWP is the method behind modern weather forecasting and its 
primary purpose is to predict the state of the atmosphere into the future. In the current 
UK Met Office system, a mesoscale configuration of the Unified Model (UM) is used to 
generate NWP data in order to provide detailed weather forecasts for the UK. To 
generate these forecasts, the model requires meteorological observation data to be 
assimilated into the model from sources such as weather stations, radiosondes and 
satellites. The mesoscale model has a horizontal grid resolution of 12 km and a vertical 
resolution of 38 levels and provides advanced boundary layer parameters, which in 
atmospheric dispersion models are normally calculated using similarity profile 
relationships. 

Nelson et al. (2002) reviewed the potential of NWP data for input into dispersion 
models and considered this a promising alternative in the search for representative 
meteorological data. Kidd (2002) compared meteorological measurements obtained at 
Sellafield, West Cumbria, with NWP data from the nearest grid location to assess the 
influence of these data sets on ADMS model predictions. The author acknowledged 
that NWP data and site measurements showed good agreement, both spatially and 
temporally, although the observed data tended to show more extreme conditions. 

Lucas and Bethan (2004) compared concentrations modelled using NWP data, with 
those modelled using standard meteorological data supplied by the Met Office, to 
determine air quality around four UK power stations. In this study the NWP data were 
derived from the global configuration of the UM with a horizontal grid resolution of 60 
km, rather than the higher resolution mesoscale configuration. The report concluded 
that the differences between modelled and measured concentrations when using NWP 
data are of the same order as the differences between modelled and measured 
concentrations when using standard meteorological data. On this basis, Lucas and 
Bethan conclude that NWP would be a valid substitute if representative meteorological 
data were not available for all, or part, of the time period required. 

An advantage of NWP data over meteorological measurement data is the absence of 
gaps in the data series. If gaps in meteorological data are not accounted for, errors can 
occur in the reporting of percentile values. Data purchased from the Met Office is 
normally provided with greater than 99% coverage, with typically 2-3% calm conditions, 
however there is usually no information provided with the data on procedures that have 
been undertaken for gap filling (Auld et al. 2003). The US EPA recommends filling 
single hour gaps with interpolation techniques to maintain a low level of error. Data 
substitution from a site with similar surface conditions is recommended for longer gaps, 
although the error increases with the size of the gap. 

3.2.3 Uncertainty in emissions data  

Model uncertainty can also be introduced by the input of inaccurate or unrepresentative 
emissions data. Considering power stations, forecast emissions are often derived from 
anticipated hourly average power generation levels. However, emissions can also 
occur when a power station is in stand-by or start-up mode, which may be more difficult 
to forecast. Emissions during the start-up/stand-by process can be assigned to one of 
three categories: cold-start, hot-start and stand-by, as described in Table 3.4. Accurate 
modelling of emissions occurring during start-up and stand-by is particularly important 
for low load stations, which may be on stand-by for a large proportion of the time. An 
investigation by Hunter (2006) on the significance of stand-by emissions modelled 
using ADMS 3.1 reported that for very low load stations, impacts during stand-by 
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conditions are more significant than impacts which occur during main fuel burning, 
although these impacts are still small relative to air quality strategy thresholds. In 
addition, during start-up or stand-by, maximum ground level impacts were found to 
occur much closer to the station. 

Table 3.4 Characteristics of start-up and warming of a coal- or oil-fired power 
station (from Hunter, 2006). 

Start-up/stand-by 
conditions 

Description Time-frame 

Prolonged period of oil burning to raise 
temperature sufficiently 

12 hours Cold start 

Followed by main fuel ignition and a steady 
increase to full load 

3-4 hours 

Short period of oil burning to raise 
temperature sufficiently 

2 hours Hot start 

 
Followed by main fuel ignition and a steady 

increase to full load 
3-4 hours 

Warming Slow burning of oil to maintain temperature Unlimited 
 
The effects of increased emission rates during start-up conditions have also been 
found to occur in waste incinerators, in particular with respect to the release of 
polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) (Environment 
Agency, 2006; Gass et al., 2002; Wang et al., 2007). A study by Wang et al. (2007) 
examines the emissions of PCDD/Fs from one continually operating and five 
intermittent waste incinerators in Taiwan. To test the influence of start-up conditions 
upon PCDD/F emissions, three consecutive stack flue gas samples were taken when 
incinerators reached stable combustion conditions after start-up. For all intermittent 
incinerators, the first sample was found to be two to three times higher than the mean 
of the remaining two samples and emissions during start-up were found to reach 96.9 
ng I-TEQ N m-3.  

Dioxin releases in EU countries must meet the standards of the Waste Incineration 
Directive which has set the emission limit to 0.1 ng I-TEQ N m-3 (Environment Agency, 
2006). An investigation by the Environment Agency (2006) into the performance of 
dioxin sampling systems, measured emissions following start-up of 0.057 and 0.068 ng 
I-TEQ N m-3 using a 6-hour Manual Sampling Train (MST). These emissions are much 
lower in comparison to those recorded by Wang et al. (2007). However, this report 
indicates further work measuring dioxin levels during start-up is required. 

In addition to start-up and warming procedures, shut-down procedures have also been 
shown to increase emissions e.g. Lothgren and van Bravel (2005). 

3.2.4 Model uncertainty limits  

Data-quality objectives for the required accuracy of modelled concentrations are 
quoted in AQF Daughter Directives 1 and 3 (1999/30/EC, 2002/3/EC). The accuracy for 
modelling is defined as the maximum deviation of the measured and calculated 
concentration levels, over the period considered by the limit value, without taking into 
account the timing of the events. The uncertainty limit is 30% for annual averages, 50% 
for daily averages and 50-60% for hourly averages for SO2, NO2 and NOx, whereas for 
PM10 the only defined uncertainty level is 50% for annual averages. 
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4 Summary: uncertainty in 
monitoring and modelling 

It is evident that air quality impact assessment for the majority of Part A(1) industrial 
sources in England and Wales relies primarily on ambient air quality modelling. The 
use of numerical dispersion models such as ADMS and AERMOD provides a cheap 
and effective means of determining temporal and spatial variation in air quality over a 
large domain. However, uncertainties in model predictions associated with model 
choice, user configuration and the use of appropriate meteorological and emissions 
data means that effective integration of modelling and measurement data and 
improvements in the accuracy of model input and user configuration are necessary in 
order to reduce these uncertainties. 

Although air quality monitoring provides a relatively accurate indication of the temporal 
variation in pollutant concentrations at the site of measurement, this technique provides 
a poor indication of the spatial variation in concentrations. In addition, due to financial 
and practical restrictions, the number of continuous monitors employed around 
industrial point sources is limited. Furthermore, short-term monitoring campaigns 
carried out by the Environment Agency are subject to additional uncertainty due to 
extrapolation for comparison with annual statistics. The usefulness of national 
monitoring networks e.g. the AURN network, in providing an additional resource for air 
quality monitoring around industrial point sources may be limited due to the distance of 
monitoring sites from industrial sites and interference from the contribution of pollutants 
from other sources. The use of passive monitors such as diffusion tubes is a cheaper 
alternative, and thus can be employed in a dense monitoring network. However, while 
this may provide a better indication of the spatial variability in air quality, the fact that 
measurements are passively recorded means that temporal variation in air quality is 
poorly defined. Therefore, this method may only be appropriate where the source is low 
level and where air quality strategy objectives are long term averages e.g. annual 
averages. 
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5 Integration of modelling and 
monitoring 

The integration of modelling and monitoring could exploit the strengths of both 
techniques and provide better indications of the uncertainties associated with both 
methods. Integration currently has several applications within air quality impact 
assessment in England and Wales: 

• Model validation - The independent testing of dispersion models using 
monitored data. 

• Data assimilation – A procedure that combines model and observation 
data to improve a prediction (model calibration). 

• Data interpolation - The interpolation of monitoring data to derive spatial 
maps of ambient concentrations. 

• Inverse modelling - Ambient concentrations predicted by dispersion 
models using varying emission rates can be compared to monitored 
concentrations and thus assist in source strength estimation. 

• Placement of monitors - Spatial patterns of ambient concentrations 
predicted by dispersion models can be used to identify the location of peak 
long-term and short-term concentrations and can therefore be used in the 
optimum placement of monitors for short and long-term monitoring 
campaigns. Modelled concentrations may also be used to locate monitors 
in order to discriminate between the impacts of two or more sources. 

• Data extrapolation - Exceedences measured during short-term monitoring 
campaigns may be extrapolated to compare with annual standards. 

It should be noted that data assimilation is designed to reduce uncertainty in model 
outputs caused by systematic errors due to model formulation and is of limited use 
when uncertainty is due to random errors e.g. the stochastic nature of atmospheric 
turbulence. 

The following sections review existing examples of integration in modelling and 
monitoring for air quality assessments. The application of integration methods for 
network design optimisation and for the more representative extrapolation of short-term 
monitoring campaigns to long-term statistics will also be explored. The use of 
advanced methods of data assimilation and data driven statistical modelling are also 
reviewed to determine their suitability for use in air quality impact assessment. 

5.1 Model validation 

5.1.1 JEP Risk Management Framework 

An example of integration for model validation is the Risk Management Framework 
adopted by the Joint Environment Programme (JEP), which comprises of all major 
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electricity generators in England, Scotland and Wales3 (Hunter, 2004). The Risk 
Management Framework employed by the JEP encompasses an Air Quality 
Management Plan (AQMP) (Webb, 2005) which must be undertaken by all major coal- 
and oil-fired power stations to ensure compliance with AQS objectives, as agreed with 
the Environment Agency. The AQS objectives relevant to emissions from power 
stations are those for SO2 (15-minute, hourly and annual means), NO2 (hourly and 
annual means) and PM10 (daily and annual means). 

The Framework uses a combination of dispersion modelling and ambient air quality 
monitoring in a three-stage process consisting of the following elements: 

i. Pre-year projection 

ii. Exceedence evaluation system 

iii. Post-facto appraisal 

5.1.1.1 Pre-year projection 

Dispersion modelling is carried out for a pre-year projection using the anticipated 
generation scenario (variation in load factor typically at 4-hour resolution), the 
anticipated fuel sulphur content and five years of representative meteorological data, to 
investigate the potential impacts on air quality. A mean background correction is 
derived using Equation 3 and applied to all modelled annual mean and most short-term 
percentile values to account for the contribution from background sources that are not 
included in the model. In some locations, a higher background concentration is used for 
the percentile values. 

The mean background concentration, bC , is determined from the monitored annual 

mean, MonC  minus the modelled annual mean, ModC  (JEP, 2002): 

 

ModMonb CCC −=      Equation 3 
 
This background correction method is used only to calculate the contribution from 
background SO2. The formation of NO2 from NOx emissions is limited by the presence 
of O3, therefore, accounting for the prevailing background NOx concentration usually 
makes no difference to NO2 concentrations associated with the grounding of a plume 
(JEP, 2002). Estimates of background concentrations differ for each power station (or 
group of stations) and are reviewed annually on the basis of both recent and long-term 
trends in monitoring data. In reality, background concentrations may fluctuate over 
time, however the application of a constant correction for background is a reasonable 
approach for power stations as their buoyant plumes only mix to ground level where 
there is vigorous mixing and therefore generally low background concentrations. 

Following the pre-year modelling projection, the risk of non-compliance is categorised 
as low, medium or high and adjustments may be made to the planned generation/fuel 
scenario to reduce the risk if necessary. 

5.1.1.2  Exceedence evaluation system 
In the second stage of the Risk Management Framework, an exceedence evaluation 
system is operated whereby measured exceedences are compared to modelled 
                                                 
3 AEP, Drax Power Ltd, Eggborough Power Ltd, EDF Energy, International Power, E-on, RWE 
npower and Scottish Power 
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exceedences for an ongoing assessment of air quality impacts throughout the year. 
Given that seasonal variation in exceedences may occur, quarterly exceedence 
allowances are derived for each monitoring site by conducting modelling on a quarterly 
basis. Monitoring results are then evaluated by comparing the cumulative number of 
measured exceedences with the sum of exceedence allowances derived on a quarterly 
basis. As well as using modelled exceedences, the evaluation system uses percentage 
thresholds of AQS objectives to give broad indications of the risk of compromising an 
objective. For example, a threshold of 85% (equivalent to 30 exceedences of the 15-
minute mean SO2 concentration objective) is considered the threshold at which action 
is required to ensure future operations will not compromise AQS objectives. The status 
conditions are based on a ‘red-amber-green’ approach and the appropriate course of 
action taken when a particular threshold is crossed (either modelled exceedence 
allowance or AQS threshold) depends at which point in the year the threshold is 
reached. Table 5.1 details the thresholds and associated status conditions for the 
assessment of measured exceedences during each quarter. A detailed description of 
the exceedence evaluation process may be found in Hunter and Bethan (2005). 

5.1.1.3  Post facto appraisal 
In the third stage of the Risk Management Framework, a post-facto appraisal is 
undertaken to compare monitored concentrations with modelled or predicted 
concentrations as a form of validation for the pre-year modelling forecast. Results are 
compiled in an Annual Review document for each power station. Model performance is 
considered “reasonable” if predicted values lie within a factor of two of measured 
values, corresponding to a modelled concentration falling between 50% and 200% of 
the measured concentration. 

The primary method of assessing compliance is through the use of monitored data, 
although modelled data may also be used in the decision-making process, which is 
presented as a flow chart in Figure 5.1. However, if the monitoring site falls outside a 
defined area surrounding the pre-year modelled maximum concentration (Figure 5.2), 
then the monitoring data are considered ‘unrepresentative’. In this case modelled 
concentrations are used as the primary method of assessing compliance. 

An uncertainty margin of ± 50% is applied to all modelled concentrations used to 
assess compliance. For example, for the 15-minute mean metric of 266 μg m-3, 
concentrations above 133 μg m-3 could be considered to be “potential exceedences” 
whilst concentrations above the upper limit of the uncertainty (400 μg m-3) are 
considered as “highly likely” exceedences. Modelled concentrations are only 
considered exceedences if the upper limit of uncertainty is breached. This approach is 
necessary because there must be a high degree of confidence before the Environment 
Agency can consider further action on the basis of exceedences determined solely 
from modelling data.  
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Table 5.1 Thresholds and associated status conditions for the assessment of 
measured exceedences during each quarter (from Hunter and Bethan, 2005). 

Quarter Criteria Status Action required 
Less than 60% Q1 Green None 
Greater than 60% Q1 but 
less than Q1 + Max 
(Q2/2, 15%*AQS) 
And less than 85% AQS 

Green/Amber Establish cause; review whether 
there are any compliance 
implications for remainder of year. 

Greater than Q1 + Max 
(Q2/2, 15% AQS) 
And less than 85% AQS 

Amber/Red Establish cause; review future 
operations and compliance 
implications. Need high degree of 
confidence that future operations 
will not jeopardise AQS objective; 
otherwise operational modifications 
required. 

1 

Greater than 85% AQS Red Action required unless future 
operations will clearly not 
jeopardise AQS objective. 

Less than 60% (Q1 + Q2) Green None 
Greater than 60% (Q1 + 
Q2) but less than (Q1 + 
Q2) + Max (Q3/2, 15% 
AQS) 
And less than 85% AQS 

Green/Amber Establish cause; review whether 
there are any compliance 
implications for remainder of year. 

Greater than (Q1 + Q2) + 
Max (Q3/2, 15% AQS) 
And less than 85% AQS 

Amber/Red Establish cause; review future 
operations and compliance 
implications. Need high degree of 
confidence that future operations 
will not jeopardise AQS objective; 
otherwise operational modifications 
required. 

2 

Greater than 85% AQS Red Action required unless future 
operations will clearly not 
jeopardise AQS objective. 

Less than 60% (Q1 + Q2 
+ Q3) 

Green None 

Greater than 60% (Q1 + 
Q2 + Q3) but less than 
85% AQS 

Amber Establish cause; review whether 
there are any compliance 
implications for remainder of year. 

3 

Greater than 85% AQS Red Action required unless future 
operations will clearly not 
jeopardise AQS objective. 

Less than 60% AQS (20 
exceedences) 

Green None 

Greater than 60% AQS 
but less than 85% AQS 
(30 exceedences) 

Green/Amber Establish cause; review future 
operations and compliance 
implications. Consider need for 
operational modifications.  

Greater than 85% AQS 
but less than AQS 

Amber/Red Establish cause; review planned 
operations. As headroom is very 
low need very high degree of 
confidence that operations will not 
jeopardise objective; otherwise 
operational modifications required. 

4 

Greater than AQS Red Ensure station(s) can cause no 
further exceedences. 
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Source: Webb (2004) 

Figure 5.1 Schematic of the compliance assessment procedure for UK coal- and 
oil-fired power stations.   

 

 
Source: Webb (2004) 

Figure 5.2 Schematic illustrating the JEP definition of a ‘representative’ 
monitoring site.  
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5.2 Data assimilation 
Data assimilation may be defined as the combination of observational data with 
modelled data to provide a better estimation of the quantity of interest. 

Data assimilation in the context of air quality assessment has several purposes: 

• To improve the estimation of air quality and the associated uncertainties for 
compliance assessment. 

• To provide improved estimates of source attribution and estimates of 
source strength. 

• To optimise the design of monitoring networks in order to achieve 
maximum benefit from integration methods. 

Data assimilation methods may be described as simple or complex. Simple methods 
basically involve a global adjustment of the modelled concentration field, with no spatial 
or temporal dimension. Complex methods may incorporate either a spatially or 
temporally varying adjustment of the modelled concentration field, or for the most 
complex methods, both adjustments combined. 

Complex data assimilation methods for have been used frequently in the 
meteorological community over recent decades for Numerical Weather Prediction 
(NWP) e.g. Ghil et al. (1979), Rabier (2005) and Swinbank and O’Neill (1994). 
However, the use of these methods for the calibration of air quality assessments has 
been limited due to the complexity of the data assimilation methods involved. In 
addition, the effectiveness of these methods depends on an adequate spatial and 
temporal coverage of monitoring data. 

The following sections describe several data assimilation methods currently in use 
within the air quality community and also methods that may be of particular value to air 
quality assessments but which are not commonly used at present. The assimilation 
methods include simple linear regression and ratio calibration of modelled 
concentration fields, simple and complex geostatistical methods including inverse 
distance interpolation, kriging and simulation, and finally the use of Bayesian 
assimilation methods will be discussed. 

5.2.1 LAQM calibration methodology 

An example of a simple data assimilation (calibration) method is that recommended for 
use in Local Air Quality Management (LAQM) prescribed by LAQM Technical Guidance 
TG(03) (Defra, 2003). LAQM modelling assessments include all relevant point, area, 
grid and road sources that emit a pollutant of interest. Since results of the modelling 
studies are used to assist Local Authorities in making regulatory decisions, such as 
designating Air Quality Management Areas (AQMAs) within their district, the model 
needs to be calibrated and subject to uncertainty analysis. In order to achieve this, 
linear regression analysis is often used to determine the significance and strength of 
the relationship between predicted and measured concentrations. Linear regression is 
expressed using Equation 4, where M is the model field, LRM  is the resulting linear 
regression field and a  and b are coefficients representing the y-intercept and the slope 
of the fitted line respectively. 

 
bMaM LR +=       Equation 4 
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Linear regression is used to provide appropriate correction factors (slope and intercept) 
by which modelled concentrations are adjusted. The intercept parameter ( a ) also 
informs the modeller about the relevance of background concentrations. Figure 5.3 
illustrates the application of the linear regression method for validation of urban air 
quality models from Defra Technical Guidance (Defra, 2003). 

Analysis of the Root Mean Square Error (RMSE) allows the magnitude of error 
associated with the corrected model predictions to be derived. This is equivalent to one 
standard deviation from the mean and thus expresses uncertainty at the 68% 
confidence level. RMSE is calculated by taking the square root of the mean squared 
difference between monitored, iO , and the adjusted modelled, iM , concentrations 
(Equation 5). 

 

( )
n

MO
RMSE ii∑ −

=
2

    Equation 5 

 

 

Source: Defra (2003) 

Figure 5.3 Relationship between ambient NO2 predicted using an urban 
dispersion model and monitored ambient NO2. 

 

Linear regression is an example of a simple data assimilation method whereby air 
pollutant measurements are used to make controlled adjustments to model-predicted 
concentrations. However, linear regression models are global in nature and are 
therefore not appropriate when variations in modelled and measured concentrations 
are a result of local effects in wind, dispersion or emissions near monitoring sites 
(Denby et al., 2007). In addition, poor spatial representation of measured 
concentrations may mean that linear regression is not always the most appropriate 
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method to use. Ideally when applying this method, a large number of observations 
covering a range of concentrations (including regional background measurements) 
should be included. 

5.2.2 FRAME calibration methodology 

An example of a more complex data assimilation method is the standard calibration 
procedure routinely applied to output data from the FRAME (Fine Resolution 
Atmospheric Multi-pollutant Exchange) model (Dore et al., 2005). The FRAME model is 
used to forecast long-term annual mean deposition of nitrogen and sulphur at a 5km 
resolution over the United Kingdom, whereas mapped UK deposition estimates of 
nitrogen and sulphur for individual years are obtained from concentration-based 
measurements of wet deposition and gas concentrations (CBED). To compare CBED-
derived concentrations for the present year directly with model-derived concentrations 
for future years may provide misleading results due to the different methods used. 
Therefore, a calibration procedure is applied to the modelled FRAME projections 
(DEP(FRAMEproj)) to normalise the modelled projection by a factor determined by the 
relationship between the present CBED derived estimates (DEP(CBEDpres)) and the 
modelled deposition estimated using FRAME for the same time period (DEP(FRAMEpres)). 
This procedure is then used to calibrate the projected FRAME deposition estimate 
(CALDEP(FRAMEproj)) for each 5 x 5 km grid square in the UK using Equation 6. 
 

CALDEP(FRAME,proj) = DEP(FRAMEproj) * (DEP(CBEDpres)/(DEP(FRAMEpres)) Equation 6 
 

The calibration procedure is conducted for each 5 x 5 km grid square, thus producing a 
spatially varying model calibration, unlike the LAQM example which enables simply a 
global adjustment to the modelled concentration field. When applied to total deposition 
patterns from all sources in the UK, this method may be an appropriate way of 
calibrating measured and modelled data. However, for future projection, this method 
assumes that that ratio between measured and modelled estimates is constant year-
upon-year. 

Dore et al. (2005) applied this methodology to assess the magnitude and spatial 
distribution of individual deposition footprints of sulphur and nitrogen, associated with 
gaseous emissions from point sources in the UK. The application of this procedure was 
found to introduce unrealistic anomalies in the spatial distribution of deposition. Figure 
5.4 shows a comparison of the calibrated and uncalibrated deposition estimates from a 
single emission source in 2005. Notable differences include evidence of anomalous 
areas of peak deposition in urban areas located far from the source and the increased 
spatial extent of the highest deposition contour. It is possible that these anomalies have 
arisen because CBED data derives deposition from all emission sources rather than 
from individual sources.  

It is important to note that the FRAME calibration method is designed for application to 
relatively low resolution, multiple-source models, where widespread monitoring data 
are available to generate an interpolated concentration field from measurements. The 
FRAME calibration method is model-specific and therefore unsuitable for the calibration 
of high resolution, local area models e.g. ADMS or AERMOD. However the general 
principle of the ratio method for application to model calibration is explored in Section 7 
of this report. 

It is evident from the FRAME calibration example that it is necessary to account for the 
contribution of individual sources to measurement data prior to conducting model 
calibration. One way of addressing this problem would be to apply a correction to the 
modelled field to account for the influence of background sources. Another would be to 
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correct the measured data by isolating the contribution of individual sources. This 
method is discussed in Section 7 of this report. This problem does not occur in the 
LAQM example as all major sources of pollution are accounted for. 

 

(a) (b) 

Source: Dore et al. (2005) 

Figure 5.4 Uncalibrated (a) and calibrated (b) estimates of SO2 deposition (keq 
Ha-1 yr-1) in 2005 arising from a single source using the FRAME model. 
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5.2.3 Geostatistics 

Geostatistics is a powerful data assimilation tool, which may be used independently, to 
generate spatial information that would normally be modelled by an atmospheric 
dispersion model. The following are examples of where geostatistical techniques have 
been used in place of mathematical models, to devise an interpolated concentration 
field. This offers an alternative to deterministic model calibration using the integration of 
measurement data. 

5.2.3.1 The Inverse Distance Weighting method 

The Inverse Distance Weighting (IDW) method was used by Argyraki et al. (1999) to 
interpolate the results of an aerial radiometric survey carried out in West Cumbria in 
1988. These survey data were used to validate a risk classification system, developed 
to optimise sampling following a release of radioactive material. 

Argyraki et al. (1999) devised a system whereby a simple Gaussian plume model of 
airborne contamination could be integrated with information on meteorology, land cover 
and topography, to provide an objective and auditable means for assessing sampling 
strategies following the release of radioactive material. This method involved defining 
the area under consideration on the basis of deposition risk according to 
meteorological parameters, elevation, slope and land use. The composite map in 
Figure 5.5 shows the deposition risk categories based on elevation, slope and land 
use.  

The calculation of the overall risk factor is achieved by multiplying modelled deposition 
by the deposition risk value for a particular area. The results of which are 
superimposed onto the plume footprint (Figure 5.6). 

To verify the risk classification system, measured deposition data were interpolated 
using the IDW method. This method interpolates data at nodes on a pre-determined 
grid by applying a power weighting function to each measurement data point. The 
weight given to a particular data point when calculating a grid node is proportional to 
the inverse of the distance of the observation from the grid node. When calculating a 
grid node, the assigned weights are fractions, and the sum of all the weights is equal to 
1.  When an observation is coincident with a grid node, the observation is given a 
weight of 1, and all other observations are given a weight of 0. 

Figure 5.7 illustrates the aerial radiometric survey deposition measurements and Figure 
5.8 the interpolated spatial distribution of deposition. The interpolated surface enables 
the identification of areas where the highest concentrations occur for comparison with 
the deposition risk map (Figure 5.6). Areas of high, medium and low risk, defined by 
the risk classification system shown in Figure 5.6, can be seen to correspond well to 
the interpolated deposition surface in Figure 5.8. 
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Source: Argyraki et al. (1999) Source: Argyraki et al. (1999) 

Figure 5.5 Composite map showing 
risk categories based on elevation, 
slope and land use. 

Figure 5.6 Combined plume 
deposition and risk map following the 
Windscale Fire in 1957. 

 

 

 

Source: Argyraki et al. (1999) Source: Argyraki et al. (1999) 

Figure 5.7 Spatial distribution of 137Cs 
deposits from the Windscale Fire in 
West Cumbria. Map based on data 
collected from an aerial radiometric 
survey in 1988. 

Figure 5.8 Interpolated surface for 
137Cs deposits with the classification 
based on the standard deviation of the 
element’s concentration frequency 
distribution. 
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5.2.3.2 Kriging of the observed field 

Kriging is a more sophisticated spatial interpolation method than the IDW method 
although both revolve around the assumption that there is a spatial correlation between 
points of known value. The spatial correlation is related to the distance between the 
points, i.e. the closer the points, the higher the correlation. In kriging the relationship is 
described by a spatial variance function called the semi-variogram (Figure 5.9). 
Attributes of the semi-variogram include the range and the nugget:sill ratio. The range 
indicates the distance at which the maximum variance is reached, i.e. the separation 
between observations at which no spatial correlation is found. The nugget:sill ratio is 
the ratio of the separation between observations at which variance is no longer 
constant (nugget) and the upper limit of variance (sill). The semi-variogram is then 
used to interpolate any point in space by weighting nearby measurement points so that 
the variance at the interpolation point is minimised. 

 

 
Source: Denby et al. (2007) 

Figure 5.9 Parameters and terms used to define the kriging semi-variogram 
function and how the semi-variogram function may be fitted to the observed 
variance.  

 

Several types of kriging may be used, including the following three main types; 

• Simple kriging 

• Ordinary kriging 

• Kriging-with-a-trend or Universal kriging 

Simple kriging is the most basic form of kriging, which assumes that the measured 
values are realisations of a trend component with a constant known mean for the entire 
interpolated surface. In contrast, ordinary kriging uses a local average for each 
particular interpolation point based on a local ‘search area’ or search radius. As a 
result, ordinary kriging can be more accurate than simple kriging and therefore ordinary 
kriging is often used in preference. In both simple and ordinary kriging, the mean value 
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of the variable over the interpolated surface or search area is assumed constant. 
However, in some circumstances, a trend may be observed in the data such that the 
mean varies over the search area and is therefore no longer stationary. Kriging-with-a-
trend is a variant of ordinary kriging that can incorporate the effect of a trend on the 
local mean. For a detailed description of these kriging methods and their derivations, 
e.g. block kriging and co-kriging, see Webster and Oliver (2001). 

In terms of interpolating air quality monitoring data, ordinary kriging is more applicable 
to occasions where monitoring data are spread evenly over a whole area, e.g. urban 
scale air quality monitoring networks. Kriging-with-a-trend is more applicable to near-
field contamination, i.e. the deposition pattern formed by an idealised Gaussian Plume. 
In this case, sampling is often more dense in the area of highest deposition closest to 
the release and decreases with distance from the area of plume impact.  

Higgins et al. (2005) investigated the potential of kriging to provide guidance in 
establishing the likely extent of food restriction zones following the accidental release of 
radioactive substances to air. Kriging methods were applied to data from three nuclear 
accidents (Tomsk, Chernobyl and Windscale) to determine the usefulness of these 
techniques for a broad range of release scenarios.  

Ordinary kriging and kriging-with-a-trend interpolation techniques were applied to aerial 
gamma survey data points obtained 5 months after the Tomsk accident in April 1993. 
Figure 5.10 compares the ordinary kriging and kriging-with-a-trend interpolations 
applied to the global data set (812 data points) with ordinary kriging and kriging-with-a-
trend interpolations from a subset of 40 data points. Ordinary kriging was used for the 
initial interpolation (Figure 5.10 a.) because the density of data points was sufficient to 
enable adequate interpolation. Figures 5.10 c. and d. show ordinary kriging and kriging-
with-a-trend applied to the random subset of 40 data points, each showing distinctly 
different interpolations of the deposition field. Figure 5.10 c. shows that although the 
general pattern of deposition is replicated, interpolation at the edges of the plume, 
especially nearer the source, is very noisy. This is because when estimating locations 
at the edge of the plume, the search radius is extended to include enough sample 
points to generate an estimate, which results in the kriging algorithm using a mean 
more like the local mean of the interior than of the edge. The application of kriging-with-
a-trend to the subset (Figure 5.10 d.) gives a better estimate than ordinary kriging, with 
the surface appearing very similar to that derived when applying ordinary kriging to the 
global data set. 
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(a) (b) 

  
(c) (d) 

  
Source: Higgins et al. (2005) 

Figure 5.10 A comparison of the Tomsk aerial gamma survey global data set 
interpolated using ordinary kriging (a), kriging-with-a-trend (b), with the 
interpolation of the deposition field from 40 data points using ordinary kriging 
(c), and kriging-with-a-trend (d). 

5.2.3.3 Simulation of the observed field 

Simulation differs from kriging in that it attempts to model the variability of a surface 
rather than the best estimate value and hence can often produce a more realistic 
interpolated surface than that produced using kriging. Realisations are generated using 
a random number-based algorithm that obtains information about the spatial structure 
of the semi-variogram. 

During simulation, large numbers of equally probable realisations are generated, 
therefore simulation may be used to calculate the probability distribution of a value 
occurring. Simulation can be used to indicate areas with the highest variance and 
hence where there is least knowledge about the true data values; the values of the 
different realisations will be more widely distributed the further they are from 
measurements. This can help identify areas where additional information could be most 
effectively gained by making further measurements.  
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A sequential simulation is one in which the conditioning data for any location includes 
not only the measured values but also previously simulated values within a specified 
region. Figure 5.11 illustrates how sequential Gaussian simulation can be used to 
generate probability contour maps. Such maps are useful to determine where further 
measurements should be made to reduce uncertainty in the interpretation of such data. 
Further information on the sequential Gaussian simulation approach is detailed in 
Deutsch and Journel (1998).  
 

The simulations from Higgins et al. (2005) produce a clear visual representation of 
increased activity concentration in milk in the south-westerly direction of plume travel. 
Figure 5.11a. shows that variance is highest in the area remote from where 
measurements were taken. In these locations, sample data have less influence over 
the simulated concentration field thus resulting in higher variance. Figure 5.11 b. gives 
an indication of whether the measured value at any location will exceed the milk bank 
criterion. The green areas contain several sample locations, each of which is well 
below the milk ban criterion so it is possible to be confident that the measured value at 
a nearby location will be similarly low. However, as the value represented by the 95th 
percentile increases, the probability of exceeding the milk ban limit also increases. It 
may be noted from these maps that the probability increases in a north-easterly 
direction. Higgins et al. (2005) presume this to be an artefact stemming from the lack of 
measurement data at this distance. Since there are no real data available, the 
simulation algorithm returns a value close to the global mean for these locations. 
 

(a) (b) 

Source: Higgins et al. (2005) 

Figure 5.11 Maps generated from 100 realisations, showing (a) the relative 
variance and (b) the 95th percentile of 131I activity concentration in milk (μ Ci l-1) 
with reference to the milk ban criterion of 0.1 μ Ci l-1 (3700 Bq l-1). 
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5.2.3.4 Geostatistical methods integrating model and monitoring data 

At their simplest, geo-statistical techniques use only measured values, therefore the 
techniques can be applied in a very straightforward manner to interpolate a 
concentration field from measured data (as is described in the previous three sections). 
However, geostatistics may also be used to aid model calibration. The interpolation of a 
measured concentration field using kriging techniques, as conducted by Dore et al. 
(2005) using the FRAME model, can enable a modelled concentration field to be 
calibrated in a spatially varying manner. This is in contrast to simple data assimilation 
methods, which involve the global adjustment of a modelled concentration field, with no 
spatial or temporal dimension. 

Denby et al. (2007) used ordinary kriging to calibrate annual mean modelled 
concentrations of SO2, NO2 and PM10 in the city of Prague. The ATEM model (a 
statistical Gaussian model) was used to generate the modelled data and provided 
annual mean pollutant concentrations at a resolution of 250 m. Twelve monitoring 
stations provided annual mean measured concentrations for the year 2003. This study 
was conducted as part of the Air4EU project, which was set up in 2004 to provide 
recommendations on air quality assessment by monitoring and modelling for regulated 
pollutants in Europe (http://www.air4eu.nl/index.html). 

Denby et al. (2007) performed three kriging methods in order to interpolate measured 
annual mean concentration fields for SO2, NO2 and PM10: 

• Kriging of the observed field  

• Kriging of the residual field (observed - modelled)  

• Kriging of the normalised residual field (observed / modelled) 

The cross-validation procedure, explained in Section 5.2.5 of this report, was used to 
assess the effectiveness of each method. 

For kriging of the observed field to be effective, it is necessary to have enough 
observations so that the density of measurement points is equal to or greater than the 
spatial variation of the measurements. Figure 5.12 shows that the density of monitoring 
stations applied by Denby et al. (2007) was insufficient to generate a kriged 
concentration field purely from the observations as most of the detail shown in the 
modelled concentration field is lost in the kriged concentration field. In terms of the 
semi-variogram, this means that the empirically-derived variance does not give a clear 
definition of the actual spatial variance, therefore other methods must be used to 
determine the parameters of the semi-variogram. 

In contrast to kriging of the observed field, kriging of the residual allows the modelled 
concentration field to retain its detailed spatial variation. The modelled concentration 
field is calibrated by simply adding (or subtracting) a kriged residual field. Denby et al. 
(2007) also apply the kriging technique to the normalised residual or the ratio of 
observed to modelled concentrations. Rather than adding (or subtracting) the kriged 
field, the modelled concentration field is multiplied by a kriged ratio field to scale the 
modelled field in a spatially varying manner. Kriging of the residuals has been shown 
by Blond et al. (2003) to be an effective method for improving mapped concentration 
fields on regional scales. 

Table 5.2. compares the kriging methods used in the Denby et al. (2007) study using 
the cross-validation technique discussed in Section 5.2.5 of this report. The cross-
validation RMSE has been calculated for the uncalibrated model using the mean of the 
observations. Improvements in model vs. measured concentrations are expressed by 
RMSE values lower than those achieved for the uncalibrated model. The data in Table 

http://www.air4eu.nl/index.html
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5.2 show that neither kriging of the observations nor kriging of the residuals 
(normalised and non-normalised) result in an improvement in the RMSE above that 
achieved using a simple linear regression method with varying slope and intercept. 
This is because the kriging semi-variogram is less well defined when kriging the 
residuals, as the spatial correlation between the observed and modelled data is often 
removed by subtracting the modelled from the observed concentrations. This has the 
effect of defining the semi-variogram using a constant variance (or nugget), which 
simply interpolates the regional mean, producing a result similar to that obtained by 
using a global concentration field calibration such as the linear regression method 
(Section 5.2.1). The extent to which the spatial correlation is removed through kriging 
of the residual is dependent on the size of the residual, the scale over which the 
residual variations occur, e.g. sub-grid or super-grid, and whether the residual is a 
consequence of real effects or artefacts introduced due to model inadequacy. 

The ability of a modeller to interpret variogram characteristics is an important factor in 
determining the appropriate application of the above methods. Therefore, kriging would 
be difficult to apply in routine regulatory situations unless appropriate systems and 
methodologies were in place. This emphasises the need for substantial skill and 
expertise in the implementation and application of all complex data assimilation 
methods in connection with the integration of air quality models and observations.  

 

(a) (b) 

Source: Denby et al. (2007) 

Figure 5.12 Annual mean SO2 concentrations for 2003 in the city of Prague, (a) 
modelled and (b) produced by kriging of observations.  
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Table 5.2 Cross-validation RMSE (μg m-3) for a range of data assimilation 
techniques applied to annual mean SO2, NO2 and PM10 concentrations for 2003 
from the city of Prague (Denby et al. 2007). 

 

Data assimilation 
method 

Annual mean SO2 Annual mean NO2 Annual mean 
PM10 

Uncalibrated model1 1.13 7.80 5.90 

Linear regression2 0.95 6.19 5.81 

Linear regression3 1.28 9.32 4.45 

Linear regression4 1.25 6.24 4.51 

Kriging of 
observations5 

1.02 6.33 6.02 

Kriging of residuals 1.19 6.84 4.49 

Kriging of normalised 
residuals 

1.29 8.81 4.79 

Bayesian assimilation 
of modelled field 

1.23 7.75 5.85 

 

1Cross-validation using mean of observations 
2Linear regression model with varying slope and intercept such that MbaM LR 111 +=  
3Linear regression model with intercept or background = zero (0BG) and measured background concentrations 

subtracted from modelled concentrations such that BGBGLR MMbM 0)(22 +−=  

4Linear regression with slope = 1 but with varying intercept such that MaM LR += 33  
5Nugget:sill ratio adjusted to represent observational uncertainty 
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5.2.4 Bayesian assimilation 

There is a tendency with data assimilation methods, to treat observations as being 
error free. In reality there are uncertainties attached to observations, especially if 
observations are used to calibrate grid-based models where observations are assumed 
to be representative of the value averaged over a grid cell. Data assimilation methods 
based on Bayesian statistics can take into account these uncertainties when integrating 
modelled and measured data. 

Denby et al. (2007) compared a Bayesian assimilation method with kriging and linear 
regression methods used on the 2003 Prague data set described previously. The 
observation uncertainty was determined by performing kriging of the observations and 
calculating the variance at every monitoring point in the kriged observation field. The 
model uncertainty was defined by calculating the RMSE of the model field using the 
observations. The assimilated field was subsequently generated by combining the 
observation field with the modelled field to produce a concentration field weighted 
towards modelled or measured concentrations depending on the relative uncertainties 
in both fields. In areas far from observations, the assimilated value is closer to the 
modelled value and in areas closer to observations, the assimilated value approaches 
the observational value but still contains an uncertainty component. A comparison of 
this method with the linear regression and kriging methods explored by Denby et al. 
(2007) can be found in Table 5.2. In this example, Bayesian assimilation only 
marginally improves the cross-validation RMSE for annual mean NO2 and PM10 when 
compared to the uncalibrated model concentration field and provides no improvement 
upon the best performing non-Bayesian methods. 

The example of Bayesian data assimilation discussed in Denby et al. (2007) may be 
described as ‘offline’ as this method does not require automated interaction of 
modelled and monitoring data. However, there are more complex data assimilation 
methods, which do require direct interaction with a model. Examples include 4D-Var, 
Kalman filter methods and newer methodologies such as Sequential Monte Carlo 
(SMC) methods, otherwise known as particle filter (PF) methods. The advantage of 
using more complex ‘online’ methods of data assimilation is that they can produce both 
spatial and temporal assimilation of data, whereas ‘offline’ methods can only be applied 
to concentration fields that do not have a temporal dimension. Walker et al. (2006) 
provides a description of these data assimilation methods, for which a summary is 
provided in Table 5.3. 

Online Bayesian assimilation allows the data assimilation procedure to advance by 
analysis cycles whereby observations of the current state of a system are combined 
with a model forecast to produce the best estimate of the current state of the system. 
Described statistically, the prior expectations of critical model parameters are updated 
through the influence of measurements. This assimilation of data reduces uncertainty 
as predictions become increasingly based on measurements rather than on model 
results. In this way, Bayesian data assimilation may be described as a form of back-
fitting model parameters. Offline methods are simply applied on a one-off basis and 
therefore require no analysis cycles. 
To date, data assimilation methods applied to industrial point sources have been 
limited to emergency assessment methods for use after accidental radioactive release 
to the environment (e.g. Higgins et al., 2005; Politis and Robertson, 2003; Zheng et al. 
2007). In the context of data assimilation after an accident, Bayesian analysis can 
provide a method of evolving the predictions of models to take account of 
measurement data as it arrives. 
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As part of the SECTAR project4, Higgins et al. (2005) investigated the potential 
application of Bayesian assimilation techniques using data from two nuclear accidents 
(Tomsk and Windscale). In this example, the Bayesian approach returned a measure 
of how well the predictions of the process model compared with the observed data, a 
term known as ‘model inadequacy’. Model parameter uncertainties were adjusted 
before any observational data were incorporated so that model inadequacy could be 
examined only when the best parameter values had been determined. Model 
inadequacy was then examined, as with most calibration techniques, by comparing 
measurement data with model predictions. After determination of the initial probability 
distributions for the calibration parameters and the model inadequacy term, 
observations were used to evolve the model predictions. Such approaches are 
extremely useful in assessing the impact of pollution incidents associated with 
accidental releases of radioactivity. Similarly, they may also be applied to major air 
pollution incidents which require a fast response in terms of impact assessment and 
where data continues to be collected as the incident evolves, e.g. the 2005 
Hertfordshire oil storage terminal fire. 

5.2.5 Cross-validation 

To provide an indication of the uncertainty in a calibration method, cross-validation of 
the assimilated data may be performed. Cross-validation involves carrying out the data 
assimilation process with all but one of the concentration measurements. The 
difference between the excluded measurement and the assimilated concentration is 
then calculated and the process is repeated for all measurements. Descriptive 
statistics, e.g. RMSE (Equation 5), NMSE (Equation 8) etc., may be used to give an 
indication of the error of the method using the cross-validation errors. This cross-
validation method can be used to assess the suitability of integration methods using 
multiple monitoring observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4 Statistical Estimation and Characterisation Techniques for use during Accident Response 
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Table 5.3 Description of data assimilation methods for use in air quality 
assessments (from Walker et al., 2006). 

Method Description 

Variational 
Methods 

Variational methods are derived from formulating the data assimilation 
problem as a variational problem. The search for an optimal assimilated 
model state is formulated as an optimisation problem involving the 
minimisation of a cost function. The cost functions are then constructed to 
describe the goodness of fit with both forecasted model state and with 
observations.  
Examples of variational methods include 3D-Var, 4D-Var and Physical-
space Statistical Analysis System (PSAS). The PSAS method is 
equivalent to the 3D-Var method but is more appropriate for situations with 
a smaller number of observations and when using grid cell concentrations 
only, e.g. Eulerian grid models without any sub-grid models. The 4D-Var 
approach is an extension of the 3D-Var approach whereby in addition to 
current observations at time step k, a set of future observations at time 
steps k+1,k+2…,k+L for some given time lag L > 0 is used to provide an 
estimate of the current model state. 

Kalman Filter 
Methods 

Kalman Filter methods automatically update the model error covariance 
matrix from one time step to the next using the dispersion model itself. 
These methods are ensemble based, i.e. the dispersion model is run N 
times to propagate an ensemble of model states to the next time step. The 
ensemble size depends on the problem to be solved but N typically ranges 
between 25 and 100.  

Examples include the Ensemble Kalman Filter (EnKF), the Reduced 
rank Kalman Filter (RKF) and the Ensemble Kalman Smoother (EnKS) 
(similar to the 4D-Var method). An important feature of these methods is 
that model biases can be estimated and removed from the solution 
procedure. 

Sequential 
Monte Carlo 

(SMC) or 
Particle Filter 
(PF) methods 

SMC methods are based on statistical simulations of model error evolution 
using Monte Carlo random draw techniques and like Kalman Filter 
methods, are also ensemble-based. SMC methods are supported by a 
general Bayesian statistical framework, which makes no assumptions of 
linearity in model evolution or the Gaussian distribution of errors. 

Examples of this technique are Sequential Importance Re-sampling 
(SIR) and Guided SIR. Guided SIR is similar to 4D-Var and EnKS 
methods, whereby future observations are used to provide an estimate of 
the current model state. 
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5.3 Inverse modelling 
Rates of emission (E, in g s-1) can be predicted using inverse modelling methods, by 
dividing measured air concentrations (χa, in g m-3) by modelled dispersion factors (D, in 
s m-3). The dispersion factor can be calculated by conducting modelling assessments 
using a unit release rate providing model output as s m-3. The calculated dispersion 
factor is a function of the prevailing meteorological conditions, the surface roughness, 
the release conditions (particularly the height and geometry of the source) and the 
potentially complex interactions of the dispersing material with buildings and terrain 
features. 

Back-calculation techniques are particularly useful for application to diffuse emission 
sources and have been widely used in the determination of emission rates of 
atmospheric ammonia. Examples include determining emissions from single isolated 
sources, such as following the application of cattle slurry to grassland (McInnes et al., 
1985), from whole farms (Flesch et al., 2005) and from farm waste stores (Hill et al., 
2007). The application of dispersion models by McInnes et al. (1985) and Flesch et al., 
(2005) benefited from significant reductions in modelling complexity due to well defined 
sources and on-site meteorological measurements. Furthermore, situations were 
considered where building effects were either not present (McInnes et al., 1985) or 
where dispersion estimates were made at sufficient downwind distances (>10 obstacle 
heights) that neglecting the complexity of flows close to the source would not contribute 
a significant error term (Flesch et al., 2005).  This contrasts with the study of Hill et al. 
(2007) where the ADMS model was applied to disaggregate emissions from on-farm 
sources. 

Other uses of back-calculation methods include determining release rates during 
and/or following accidents. For example, Davoine and  Bocquet (2007) used inverse 
modelling to reconstruct the source term for the 1986 Chernobyl accident and Smith et 
al. (2007) applied the ADMS model to evaluate the source term arising from emissions 
of radioactive particles from the Windscale piles during the 1950s.  

Further research on the application of models for evaluating release rates will be 
included in “Techniques to analyse monitoring data for source attribution and to 
determine exceedence conditions”, to be completed by Westlakes Scientific Consulting 
on behalf of the Environment Agency, scheduled for 2009/2010. 

5.4 Optimisation of monitoring network design 
The previous examples of integration have all highlighted the necessity for a sufficient 
number of monitoring locations to be able to apply integration techniques effectively. In 
reality, there is often an insufficient number of monitoring locations around Part A(1) 
sites to fully integrate observed and modelled data. There is very little guidance in 
Environment Agency literature about methods for determining the optimum number of 
sampling locations considered necessary for monitoring impacts from industrial 
sources. However, for the installation of multi-site networks, the Environment Agency 
recommends one of four options:  

 

i. Location of sites on concentric circular lines around the area of interest 

ii. Location of sites on typical trajectories of surface winds 

iii. Location of a random heavy density of sites in the core of interest with 
random open spacing further out 
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iv. Location of sites on an equally spaced grid pattern  

(Environment Agency, 2000) 

 

When a large sampling network cannot be justified, the Environment Agency 
recommends sampling sites should be located to enable the maximum amount of 
information to be obtained from a minimum number of sites. For point sources, this is 
often achieved by the simple arrangement of upwind and downwind monitoring sites, 
located at a distance that depends on the height of the source. Area sources such as 
landfill sites require a different type of network design with monitors in the near-field 
and around the site boundary. 

It would be impractical to suggest that every Part A(1) operator in England and Wales 
should have such detailed monitoring networks. However, there are several areas in 
the UK where a high density of Part A(1) industrial sites occur and could benefit from 
operating a collaborative network of greater density than could be achieved on an 
individual site. However, to ensure a sampling network is optimised, it is necessary to 
determine how many sampling sites are necessary and where they should be located 
in order to provide adequate measurement data for effective integration. This may be 
achieved using single or multi-objective approaches.  

5.4.1 Single objective approaches 

When systematic approaches to air quality monitoring were first introduced, site design 
studies were based on single objectives, predominantly locating sites in areas of 
maximum average concentration (Graves et al., 1981; Nakamori et al., 1979; Noll et al., 
1977). The JEP Risk Management Framework adopts a single objective approach, 
which prioritises the most demanding AQS target (the 15-minute mean SO2 objective) 
in order to locate sites where an individual source has a high frequency of impact. 
Monitoring sites are located as close as practicable to the modelled maximum 99.9th 
percentile 15-minute SO2 concentration. As the site of maximum impact changes on a 
yearly basis, this maximum is bounded by an isopleth corresponding to 50% of the 
maximum 99.9th percentile 15-minute SO2 concentration (Figure 5.2). For monitored 
concentrations to be considered representative of the maximum impact, the location of 
the monitoring site must fall within this isopleth boundary. The boundary is justified on 
the basis that the uncertainty applied to modelled concentrations (set to 50%) is such 
that any modelled concentration within the isopleth boundary is not significantly 
different from any other modelled concentration in that area at the 95% confidence 
level (Webb, 2004, Appendix A). 

Along similar lines, Modak (1985) describes a method used to define the area around a 
monitoring site which can be considered representative of the measured concentration, 
otherwise known as the ‘detection area’. In this example, the size of a detection area 
can be determined by the spatial correlation of a monitoring site with adjacent sites. 
Elsom (1978) determined that a correlation coefficient of 0.8 was necessary to allow 
network rationalisation, whereby sites with a correlation of 0.8 or higher may be 
considered to provide the same information. Several authors have used spatial 
correlation to resolve detection areas (e.g. Liu et al., 1986; Langstaff et al., 1987; 
Arbeloa et al., 1993) with the approach also used to determine the potential for network 
rationalisation (Wu and Chan, 1997). It is important to note that an assumption of 
correlation analysis is that monitoring sites should be ideally located on a regular grid 
network on uniform terrain (Elsom, 1978; Handscombe et al., 1982). In using 
correlation analysis to determine the optimum number of monitoring locations for a 
point source, it may be appropriate to use modelled concentration data, where a 
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gridded network of point concentrations can be isolated and subsequent spatial 
correlation analysis performed. 

The single objective approach to network rationalisation has been adopted in the 
industrial district of Marghera (Province of Venice). An industrial consortium network 
(Ente Zona Industriale) consisting of 13 stations was set up in the late 1970’s to 
monitor the impact of emissions from process activities on air quality. The consortium 
network was established independently of another network consisting of 10 stations, 
located in the same district and operated by the Provincial Environmental Protection 
Department (Agenzia Regionale per la Prevenzione e Protezione Ambientale del 
Veneto) (Figure 5.13). Given the density of monitors within a small area, both network 
operators are now in collaboration with a view to rationalising the number of monitors. 

 

 
Basemap: Google Copyright 

Figure 5.13 Map illustrating the location of monitors in the Marghera industrial 
district, Province of Venice. 

5.4.2 Multi-objective approaches 

The single-objective approach assumes that the optimal location for a monitoring site is 
determined by only one criterion which is most commonly the point of maximum impact 
or potential for violation of an air quality objective. However, in reality the optimal 
design of a monitoring network can be influenced by many criteria. These criteria 
characterise both the degree of exposure and the hazard or consequence of exposure 
to a pollutant. Hazard criteria may include short-term concentration, long-term 
concentration or the frequency of plume impact at a particular location. Exposure 
criteria may include population density, sensitivity of population receptors or sensitivity 
of ecological receptors. Aspects of data validity may also be included in multi-objective 
analysis, including criteria such as the spatial representivity of a particular monitoring 
location. 

Multi-objective analysis enables the consideration of several criteria to be incorporated 
in a decision making process. Examples of research into multi-objective analysis 
include Truijillo-Ventura and Ellis (1991) who proposed a model which applied 
weighting to the criteria of spatial coverage, air quality objective violation potential and 
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data validity to find the most suitable design for a monitoring network in Tarragona, 
Spain.  

Arbeola et al. (1993) used similar objectives (spatial coverage and violation potential) 
to find the optimal multi-pollutant network design for a hypothetical pot ash plant and 
two thermal power stations in open countryside, using a technique called Pareto 
optimal design (Modak, 1985). This technique calculates what is known as a ‘utility 
function’, taking account of the spatial coverage and violation potential of each 
monitoring site location for each pollutant. A global utility function is built as a weighted 
sum of the individual utility functions depending on the preference for an individual 
pollutant. 

Kahn and Sadiq (2005) applied a fuzzy synthetic evaluation technique to determine a 
risk-based prioritisation of air pollution monitoring around a petroleum refinery. 
Potential monitoring locations were identified at 2 x 2 km grid node intersections of an 8 
km x 12.5 km area grid. Fuzzy evaluation matrices were developed for all grid nodes, 
for hazard parameters calculated for a range of pollutants (CO, NOx, PM10 and SOx) 
and exposure parameters including population density, population location and 
population sensitivity. A modular hierarchical model was developed to provide a 
framework for the aggregation of hazard and exposure parameters in order to rank the 
potential monitoring sites. 

Kao and Hsieh (2006) used a multi-objective mixed integer programming model to 
determine the optimum location for up to seven potential monitoring sites located 
around an industrial district in Taiwan. The following criteria were used to determine the 
optimal placement for monitors within the network: 

i. The number of significant plumes5 captured by a monitor (Maximum 
Detection Capability, DC) 

ii. The maximum long-term exposure captured by a monitor (Maximum 
Dosage Detection Capability, DDC) 

iii. The maximum detection area captured by a monitor (Maximum Detection 
Area, DA)  

iv. The maximum population coverage captured by a monitor (Maximum 
Population Protection, PP) 

The area affected by emissions from the industrial sources was divided into a series of 
grid squares to which the multi-objective model was applied (Figure 5.14b). In this 
study the Industrial Source Complex Short-Term (ISCST3) model was used to simulate 
pollutant distributions under hourly wind fields for an entire year, the results of which 
were then integrated with the multi-objective model. The multi-objective model allows 
the desired number of monitoring sites to be selected (in this example the desired 
number of monitoring stations ranges from 4 to 7) and also applies weighting to the 
criteria considered to be most important. 

Figure 5.14c shows a scenario whereby optimal locations for five monitoring sites are 
modelled using single-objective analysis, from which the following conclusions were 
drawn. When ‘Maximum Detection Capability’ and ‘Maximum Dosage Detection 
Capability’ are the single objectives, the selected sites are distributed downwind of the 
major industrial sites. When ‘Population Protection’ is considered, sites are generally 
located close to a significant population concentration, shown in Figure 5.14b. When 
using the ‘Maximum Detection Area’ criterion, the established correlation coefficient 

                                                 
5 A ‘significant plume’ is defined according to the ‘potential zone’ based on the concept 
of Noll et al. (1977), delineated by the daily average SO2 concentration threshold (Kao 
and Hsieh, 2006). 
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cut-off value is not related to concentration level and consequently sites based on the 
Maximum Detection Area objective are distributed throughout the model domain.  

Figure 5.14d shows the results of multi-objective analysis for the same scenario, using 
three different criteria weighting scenarios (Case 1, 2 and 3). As the highest weighting 
has been given to the Maximum Detection Capability and Maximum Dosage Detection 
Capability criteria in all cases, the location of the monitoring sites has remained largely 
similar. However, the optimal monitoring locations are noticeably different to those 
derived using single-objective analysis. 

There may be many more decision-making tools and techniques currently described in 
the literature, which could be applied to help locate monitors on the basis of multiple 
criteria. However, research into the application of such techniques to air pollution 
network design is limited. To determine the most applicable network design tool for 
industrial point sources, there is a need for a comprehensive review of the literature, 
both of existing techniques, e.g. Pareto optimal design, and techniques which are 
currently used as decision-making tools in other areas of scientific research. 

5.4.3 Network design for source attribution 

Where multiple sources are present, it is also desirable to be able to discriminate 
between the impacts of different sources. For example, Stewart et al. (2004) 
investigated a method to determine the optimum placement of monitoring sites within 
the Aire Valley, UK, for source attribution. Figure 5.15a depicts the “hour-glass 
formation”, relating to the area in which monitoring sites may be placed to determine 
the impacts of individual sources. The hourglass shape of Figure 5.15 is formed by 
assuming that it is possible to discriminate plume trajectories separated by angles 
greater than ± 20°. The current arrangement of monitoring sites was designed to 
measure maximum combined impacts from the Aire Valley stations and achieves either 
none or only partial separation of sources for source attribution. Figure 5.15b indicates 
the proportion of hours downwind of each power station for varying locations within the 
full separation zone. This identifies the optimum location for a monitoring site, which 
would allow the attribution of impacts to an individual power station source. The 
optimum monitoring site is the one that experiences the largest percentage of hours 
downwind of each power station in equal proportion. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Science Report - Integration of air quality modelling and monitoring methods: review and applications 59  

 

 

(a) (b) 

  

(c) (d) 

  

Note: Abbreviations: DC, DCC, DA and PP denote the optimum location of monitoring sites based on maximum 
Detection Capability, maximum Dose Detection Capability, maximum Detection Area and maximum Population 
Protection, respectively. 

Figure 5.14 Multi-objective monitoring network design in an industrial district in 
Taiwan. Emission sources, modelling grid and meteorological monitoring station 
in the study area (a), grids with high population density or low accumulated 
concentration (b), single-objective results (c) and multi-objective results (d) for 5 
desired monitoring stations (from Kao and Hsieh, 2006). 
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(a) 

 

(b) 

 

Figure 5.15 Network design for source attribution, showing full, partial and no 
separation zones (a) and optimal locations for monitoring sites in the full 
separation zone (b) (from Stewart et al., 2004). 
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5.5 Emerging technologies  
The number of monitoring stations required to generate sufficient amounts of data for 
effective integration with models far exceeds the infrastructure currently in place 
around industrial sites in the UK. However, improvements in accuracy and cost from 
new sensor technologies may mean that the use of integration techniques in air quality 
assessment may become both economically and practically justifiable. Examples of 
emerging technologies are discussed in this section. 

New generation air pollution sensors, Generic Ultraviolet Sensors Technologies and 
Observations (GUSTO) are based on open-path DUVASTM (Differential Ultraviolet 
Absorption Spectroscopy) technology (Richards et al., 2006). These sensors are able 
to measure and transmit the volume-mixing ratio of key urban pollutants (SO2, NOx, 
NO2, O3, NH3 and benzene) in real time. GUSTO sensors can record data on much 
shorter time scales than other analytical instruments (2 second scan rate) and have an 
open variable path of up to 30 metres, enabling spatially integrated measurements to 
be made. The sensors are also relatively cheap and robust and are therefore sufficient 
for large-scale deployment on moving platforms as well as stationary positions. 

The downside of the development of large sensor networks is the need for data 
management, computation management, information management and knowledge 
discovery associated with the sensors and the generated data. Richards et al. (2006) 
developed the idea of a ‘sensor grid’ to standardise the way a sensor network is 
distributed and data collected, analysed and interpreted for specific end users. The 
author describes the Discovery Net system (Curcin et al., 2002) which is a form of high 
level informatics software, designed to support the analysis of large volumes of 
scientific data. Within this system, visual pollution trend analysis supported by 
Geographical Information Systems provides an effective way for an end user to monitor 
sensor data in real time and also to explore historical data sets. If the improvement of 
sensor technology enables the increased use of data-driven interpolation modelling, 
then the development of sensor grid assessment software will be necessary for the 
implementation of data analysis techniques. 
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6 Application of integration 
techniques: The extrapolation 
of short-term monitoring data 

The Environment Agency conducts short-term monitoring campaigns using Mobile 
Monitoring Facilities (MMFs) in order to assess whether process operators are likely to 
meet air quality objectives. MMF campaigns are commonly limited to 3-6 months in 
duration and a pro-rata extrapolation method is used to convert the number of 
exceedences measured over the short-term to yearly exceedence figures. For 
example, if a monitoring campaign is 6 months in duration, then an estimate of the 
number of exceedences in a 12-month period is calculated by multiplying the short 
term total by 2. There is evidence that high ambient concentrations are associated with 
particular meteorological conditions (Bethan and Teasdale, 2005), therefore it is likely 
the Environment Agency extrapolation methodology may under- or over-estimate the 
true number of exceedences.  

An analysis was conducted to test the efficiency of the Environment Agency’s 
extrapolation method using the Aire Valley data set, comprising of six monitoring sites 
measuring the impact of emissions from three coal-fired power stations. The potential 
for the use of monitoring and modelling integration methods to improve the accuracy of 
short-term extrapolation was also examined. 

6.1 Testing the Environment Agency pro-rata 
extrapolation method 

6.1.1 Methodology 

To examine the accuracy of the Environment Agency extrapolation method, hourly 
average SO2 concentration data from 2003-2005 were analysed from all six monitoring 
sites. Sub-hourly average data (15-minute average) were also available but due to the 
complex analysis procedure it was only possible to examine hourly data.  

A succession of rolling monitoring periods was simulated for each monitoring site from 
the 3-year dataset. Monitoring periods were defined as 3 and 6 months in length and 
were rolled on a monthly basis to produce 33, 3-month and 30, 6-month rolling 
monitoring periods for each monitoring site. The number of exceedences was then 
calculated for each rolling monitoring period at each monitoring site. 

Table 6.1 shows the number of exceedences of the hourly SO2 air quality objective 
(350 μg m-3) for each monitoring site on a yearly basis. As it was necessary to compare 
predicted and measured exceedences to determine the accuracy of the method, the 
number of exceedences of the hourly objective were too few to use 350 μm-3 as the 
defined exceedence level. Therefore, rather than consider the formal SO2 hourly 
average objective, it was considered necessary to use a lower concentration cut-off 
(200 µm-3) to generate more data. Monitoring data for 2005 were excluded from the 
analysis as no exceedences of the 200 µg m-3 threshold occurred at any of the 
monitoring stations during this year. Figure 6.1 illustrates the general trend for 
decreasing emissions from all three power stations from 2003 to 2005. Most noticeable 
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is the decrease in emissions from Eggborough, which installed Flue Gas 
Desulphurisation (FGD) during 2004. 

 

Table 6.1 Number of exceedences of hourly mean SO2 concentrations: 350 μg 
m-3 and 200 μg m-3 at monitoring sites in the Aire Valley during 2003, 2004 and 
2005. 

Monitoring Site 
SO2 Cut-off Year 

CL DG HL NF SM WB 

2003 1 0 0 0 4 0 

2004 0 0 0 0 0 1 

2005 0 0 0 0 0 0 
350 µg m-3 

Total 1 0 0 0 4 1 

2003 6 5 4 3 6 11 

2004 1 2 2 0 3 5 

2005 0 0 0 0 0 0 
200 µg m-3 

Total 7 7 6 3 9 16 
CL = Carr Lane, DG = Downes Ground, HL = Hemingbrough Landing, NF = North Featherstone, SM = Smeathalls 
Farm, WB = West Bank 

 

Figure 6.1 Emissions (g s-1) of SO2 from Aire Valley Power Stations (Eggborough, 
Drax, Ferrybridge) during 2003-2005 displayed as a rolling average of 100 hours.  
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The number of exceedences of 200 µg m-3 within each simulated monitoring period 
was calculated and extrapolated to 12 months using the pro-rata method. The 
extrapolated exceedence frequencies were then compared to the measured 
exceedence frequencies obtained from 12-month rolling monitoring data. However, 
where no exceedences were recorded in a 12-month monitoring period, the data were 
excluded from the analysis as any extrapolation based on this comparison would lead 
to an assumption of 100% accuracy of the method, which may be misleading. 

6.1.2 Results and discussion 

Table 6.2 shows the properties of linear regressions comparing measured annual 
exceedences with annual exceedences predicted using the Environment Agency pro-
rate method. It is evident that extrapolating from a 6-month campaign provides a more 
accurate estimate of total exceedences than extrapolating from a 3-month campaign as 
6-month gradient and r2 values are generally much closer to 1. The exception is 
Smeathalls Farm (SM) where the gradient is equal to 1 for the 3-month monitoring 
period. However, the r2 value for this relationship is very poor (0.10), and the RMSE 
very high (4.0). The RMSE statistic shows that uncertainty approximately doubles for a 
3-month campaign when compared to a 6-month campaign. 

Table 6.2 Properties of linear regressions comparing measured annual 
exceedences and annual exceedences predicted using the Environment Agency 
pro-rata method. 

 
Monitoring 

Site 
Length of 
simulated 

monitoring period

r2 Gradient RMSE N 

3 months 0.66 2.08 3.0 16 
CL 

6 months 0.88 1.38 1.5 16 

3 months 0.18 2.09 3.7 20 
DG 

6 months 0.16 0.95 2.1 20 

3 months 0.49 2.88 2.6 20 
HL 

6 months 0.51 1.23 0.9 20 

3 months 0.01 -0.29 2.8 8 
NF 

6 months 0.16 0.71 1.8 8 

3 months 0.10 1.01 4.0 20 
SM 

6 months 0.52 1.36 2.4 20 

3 months 0.12 0.81 6.4 21 
WB 

6 months 0.45 0.98 3.2 21 
CL = Carr Lane, DG = Downes Ground, HL = Hemingbrough Landing, NF = North Featherstone, SM = Smeathalls 
Farm, WB = West Bank 

n = Number of rolling monitoring periods used in analysis 
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6.2 Integration Scaling Method (ISM) 
There is potential to use a method that integrates monitoring and modelling to enable 
more accurate extrapolation from short-term monitoring campaigns. The Integration 
Scaling Method (ISM) uses modelled concentration data to produce a ratio of 6-month 
to 12-month exceedences, to provide scaling factors that can be used to extrapolate 
from short-term monitoring campaigns to annual exceedence estimates. The Aire 
Valley data set was used to test this method, in order to make a direct comparison with 
the previous analysis of the Environment Agency’s extrapolation method. 

6.2.1 Methodology 

Within the Aire Valley, six monitoring sites measure the maximum combined impact of 
emissions from three power stations: Ferrybridge, Eggborough and Drax. The available 
data set contains measured 15-minute mean SO2 concentrations for the period 2003 – 
2005 for all six monitoring sites.  

Modelled concentration data for each monitoring site within the Aire Valley were 
generated using ADMS 3.3. Hourly sequential meteorological data were supplied by 
the Met Office for Linton-on-Ouse (Grid reference 4492 4613), approximately 40 km 
north of the Aire Valley. A roughness length of 0.2 m was applied to the model domain, 
consistent with the roughness length used in the JEP modelling scenarios for the Aire 
Valley (Brooke et al., 2003).  A separate roughness length was not assigned to the met 
data site as the roughness length at Linton was considered similar to that of the Aire 
Valley. The emissions data supplied by the Environment Agency were in the form of 
ADMS time-varying emission files, with emission rates measured in g s-1. No correction 
was made for the influence of background concentrations. A higher than expected 
frequency of very calm conditions (18%) was recorded in 2003; for these hours 
concentrations were not modelled. 

6.2.1.1 Frequency distribution analysis 

To determine whether the generation of scaling factors from modelled data was 
appropriate, it was first necessary to examine the frequency distribution of measured 
and modelled concentrations, to determine the consistency of both data sets.  

The frequency distribution of modelled and measured concentrations for all monitoring 
sites collectively, was calculated for 6-monthly rolling periods, using the following 
concentration bins: <40, 40-80, 80-120, 120-160, 160-200 and >200 μg m-3 (see 
Appendix A1 and A2 for frequency distribution data). It was expected that the 
frequency distribution should exhibit a log-linear relationship, characteristic of point 
source monitoring data, whereby frequency decreases with increasing concentration. 
However, rolling monitoring periods including data from January to August 2003 
showed an unusually high occurrence of concentrations in the >200 concentration bin 
relative to the 120-160 concentration bin (Figure 6.2). 

Figure 6.3 compares the average frequency of measured and modelled concentrations 
for all Aire Valley monitoring sites, within five concentration bins for 31, 6-monthly 
rolling monitoring periods. The frequency of modelled concentrations exhibits the 
characteristic log linear relationship as outlined above, however the frequency of 
measured concentrations is higher than expected for the >200 concentration bin. 

Table 6.3 shows that for 2003, modelled and measured frequency distributions were 
consistent in all concentration bins, apart from the >200 bin. However, for 2004 and 
2005 the difference between modelled and measured frequency distributions in all 
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concentration bins increases, with modelled frequency consistently overestimating in all 
concentration bins >40 μg m-3 apart from the >200 bin. This suggests that the raw 
modelled data are not entirely representative of the raw measurement data. However, 
trend lines fitted to the frequency distribution of modelled and measured data (shown in 
Figure 6.3) are not significantly different and show high r2 values (0.99 for measured 
data and 0.89 for modelled data). This indicates that the modelled trends may be 
sufficiently representative to determine integration scaling factors.  
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Figure 6.2 Comparison of the average frequency of measured concentrations for 
8, 6-monthly rolling monitoring periods from January to August 2003, within five 
concentration bins; 40-80, 80-120, 120-160, 160-200, >200 μg m-3.  
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Figure 6.3 Comparison of the average frequency of measured and modelled 
concentrations for 31, 6-monthly rolling monitoring periods from 2003-2005 
within five concentration bins, 40-80, 80-120, 120-160, 160-200, >200 μg m-3.  
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Table 6.3 Comparison of average frequency distribution of measured 
concentrations for rolling 6-month periods for 2003, 2004, 2005 and all years. 

Frequency distribution of concentration bins (μg m-3) Year Measured/  
Modelled 

<40 40-80 80-120 120-160 160-200 >200 

Measured 25675 439 135 50 13 19 
2003 

Modelled 25701 390 158 64 14 3 

Measured 25874 354 98 23 15 8 
2004 

Modelled 25633 413 202 92 28 5 

Measured 26112 160 28 9 1 0 
2005 

Modelled 25882 318 104 23 4 1 

Measured 25903 293 78 24 9 8 All 
years* Modelled 25813 318 127 47 13 3 

* Includes rolling 6-month periods overlapping years. 

6.2.1.2 Generation of scaling factors 

Modelled concentration data were used to generate scaling factors from which the 
number of exceedences measured during a 6-month campaign could be extrapolated 
to a 12-month period. 

The ‘best fit’ power law relationship applied to the modelled and measured data (shown 
in Figure 6.3) was used to determine ‘filtered’ data sets to remove the ‘noise’ from the 
data.  Filtered frequency distributions were derived for modelled concentration data for 
each of the monitoring sites in the Aire Valley. This process generated decimal 
numbers, which were subsequently rounded to integers. Scaling factors were 
subsequently calculated as the ratio of 6-month to 12-month modelled exceedences, 
using the filtered modelled data. 

These scaling factors were then applied to the measured data to extrapolate the 
number of exceedences from 6 to 12 months. Scaling factors were applied to both 
filtered and un-filtered measured data for comparison. The number of exceedences 
predicted using the scaling factors was rounded to the nearest whole number before a 
comparison was made with measured 12-month exceedences. To maintain a similar 
approach to that used for testing the Environment Agency extrapolation method, the 
concentration defining an exceedence was classified as 200 μg m-3. 

To summarise, comparisons were made between measured 12-month exceedences 
(>200 μg m-3) and; 

• Predictions derived by applying scaling factors generated from filtered 
modelled data to unfiltered measured data (Integration Scaling Method 1) 

• Predictions derived by applying scaling factors generated from filtered 
modelled data to filtered measured data (Integration Scaling Method 2) 

6.2.2 Results and discussion 

Table 6.5 compares the application of both scaling methods by examining properties of 
the linear regression (r2 and gradient) fitted to measured vs predicted exceedences and 
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the RMSE statistic. The RMSE values indicate that neither method is consistently 
better than the other in accurately predicting 12-month exceedences.  

When comparing these results to the results from the analysis of the pro-rata 
extrapolation method, the ISM methods provide a consistent improvement in RMSE, 
with the exception of West Bank (WB).  However, the ISM method does not show any 
significant improvement over the Environment Agency data extrapolation method with 
respect to r2 and gradient properties of the linear regression. 

The integration scaling method aims to improve the accuracy of extrapolation of 
measured exceedences by utilising modelled concentration data. By comparing the 
cumulative frequency distributions of concentration bins for all monitoring sites, the 
frequency distributions for monitoring and modelling data showed some 
inconsistencies. The ‘filtering’ of modelled frequency distribution data aimed to reduce 
these inconsistencies, although it is possible that this had an adverse affect on the 
success of this method and that better agreement between the frequency distribution of 
modelled and measured data is necessary for this method to be successful.  

The modelled concentrations used in this analysis were not adjusted for background 
SO2 concentrations, which may have influenced the scaling factors by affecting the 
frequency of modelled data in each concentration bin. However, upon closer 
examination of the SO2 annual average and 99.9th percentile pollution rose plots 
(Figures 6.4 and 6.5), it is evident that a SO2 source to the South East of the Aire 
Valley monitoring site was influencing concentrations measured at the monitoring sites 
to varying degrees. It is possible this source may have been the Trent/Soar Valley 
network of power stations (Environment Agency, 2003), although this is not conclusive 
and in any case, recent data suggest this source is now a historic issue. However, in 
the data shown here, a substantial proportion of the total number of exceedences at 
several Aire Valley monitoring sites may be directionally attributed to a source other 
than the three Aire Valley power stations. It is therefore not surprising that the scaling 
integration method fails to consistently improve the extrapolation of exceedences from 
short-term monitoring campaigns. It is necessary therefore to ensure that modelled 
concentration data are representative of measured concentrations before the 
integration scaling method is applied. Where appropriate, it may be possible to use 
wind direction filtering to exclude impacts from unmodelled sources to improve the 
performance of this technique. 

Table 6.4 Results of the application of the scaling methodology measurement 
data. 

Pro-rata Method aIntegration 
Scaling Method 1 

bIntegration 
Scaling Method 2 

Monitoring 
Site 

r2 Grad RMSE r2 Grad RMSE r2 Grad RMSE 

CL 0.88 1.38 1.5 0.78 0.94 0.6 0.51 0.48 1.0 

DG 0.16 0.95 2.1 0.19 1.41 1.9 0.12 0.79 1.7 

HL 0.51 1.23 0.9 0.45 0.72 0.6 0.15 0.38 0.8 

NF 0.16 0.71 1.8 0.00 0.07 1.0 0.03 0.29 1.1 

SM 0.52 1.36 2.4 0.30 1.08 1.9 0.25 0.49 1.4 

WB 0.45 0.98 3.2 0.28 1.05 3.9 0.18 0.57 3.5 
CL = Carr Lane, DG = Downes Ground, HL = Hemingbrough Landing, NF = North Featherstone, SM = Smeathalls 
Farm, WB = West Bank 

aFiltered ratio applied to unfiltered measured data; bFiltered ratio applied to filtered measured data  



 

Science Report - Integration of air quality modelling and monitoring methods: review and applications 69  

440000 445000 450000 455000 460000 465000 470000
420000

425000

430000

CL

DG

HE

NF

SM WBEgg

Drax

Ferry

440000 445000 450000 455000 460000 465000 470000
420000

425000

430000

CL

DG

HE

NF

SM WBEgg

Drax

Ferry

440000 445000 450000 455000 460000 465000 470000
420000

425000

430000

Egg

Drax

Ferry

CL

DG

HE

NF

SM WB

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330 0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

0

5

10

15

20
0

30

60

90

120

150

180

210

240

270

300

330

(a)

(b)

(c)

 
3 5 6 7 8 94210

 
Note 1: Abbreviations; ‘Ferry’, ‘Egg’ and ‘Drax’ denote power stations; Ferrybridge 1 and 2, Eggborough and Drax, 
respectively. 

Note 2: Abbreviations; NF, SM, WB, HE, CL and DG denote monitoring sites; North Featherstone, Smeathalls Farm, 
West Bank, Hemingbrough Landing, Carr Lane and Downes Ground, respectively. 

Note 3: Pollution rose segments are split into 30˚ sectors with intervals of 5 μg m-3. 

Figure 6.4 Interpolated plots of annual average SO2 concentrations (μg m-3) for 
monitoring sites in the Aire Valley network, with superimposed sector-specific 
annual average pollution rose diagrams for (a) 2003, (b) 2004 and (c) 2005. 
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Note 1: Abbreviations; ‘Ferry’, ‘Egg’ and ‘Drax’ denote power stations; Ferrybridge 1 and 2, Eggborough and Drax, 
respectively. 

Note 2: Abbreviations; NF, SM, WB, HE, CL and DG denote monitoring sites; North Featherstone, Smeathalls Farm, 
West Bank, Hemingbrough Landing, Carr Lane and Downes Ground, respectively. 

Note 3: Pollution rose segments are split into 15˚ sectors with intervals of 20 μg m-3. 

Figure 6.5 Interpolated plots of 99.9th percentile SO2 concentrations (μg m-3) for 
monitoring sites in the Aire Valley network, with superimposed sector-specific 
99.9th percentile pollution rose diagrams for (a) 2003, (b) 2004 and (c) 2005.  
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6.3 Meteorology-based extrapolation method 
In contrast to the integration scaling method assessed above, there is evidence to 
suggest that exceedences may be commonly associated with specific meteorological 
conditions. The JEP have identified meteorological conditions associated with 
exceedences by examining modelled SO2 concentrations for a receptor site using three 
meteorological data sets (Bethan and Teasdale, 2005). They identified that 
exceedences of the 15-minute SO2 objective are associated with a weakly unstable 
boundary layer (L MO ≈ -1000 m), moderately high wind speeds (9-12 m s-1) and a 
positive sensible heat flux (>70 W m-2). In combination, these events are relatively rare 
occurrences and according to Bethan and Teasdale (2005), usually occur on a windy 
spring/summer day in the early afternoon. In contrast, they found conditions that give 
rise to the maximum concentration (100th percentile) arise from very low heat flux 
values and wind speeds between 4-6 m s-1. However, there are also other factors to 
consider when relating monitored concentrations to meteorological conditions. Both the 
strength of the emission source and the connectivity of the source to the receptor 
(determined by the wind direction) will have a crucial influence on whether 
exceedences occur at a receptor, regardless of atmospheric stability or wind speed. 

6.3.1 Methodology 

Multiple regression analysis was conducted to determine whether a simple model could 
be used to predict concentrations at receptor sites using local point source emission 
data and meteorological data. If this was shown to be true, then an extrapolation 
method similar to that used in the integrated scaling method could be applied. This 
would consist of estimating the ratio of exceedences for a period equivalent to a short-
term monitoring campaign and a full year, according to the occurrence of specific 
meteorological conditions and source emissions. The ratio may then be applied to 
short-term measured exceedence figures to extrapolate the total number of 
exceedences in one year. 

The response variable consisted of hourly average SO2 concentrations from monitoring 
sites in the Aire Valley. The square root of the concentration data was used in an 
attempt to normalise the response variable to satisfy the assumptions of the analysis 
method. Explanatory variables included SO2 emissions in g s-1 from three power 
stations (Eggborough, Drax and Ferrybridge) and meteorological variables (wind speed 
(m s-1) and Monin-Obukhov Length). Wind direction was accounted for by including in 
the analysis only those hours in which wind direction originated from the direction of the 
source relative to the receptor. The multiple regression analysis for a specific receptor 
site only included hours when the wind direction occurred within a 25-degree wind arc 
from the receptor to the source. The analysis also considered overlapping wind arcs 
from multiple sources. 

The statistical package Statistica® (Version 5) was used to perform multiple regression 
analysis in a forward stepwise process for each monitoring site. Forward stepwise 
regression starts with an empty model and subsequently adds the variable that has the 
smallest (most significant) P value. Each subsequent step adds the variable that has 
the smallest P value in the presence of the predictors already in the equation. Variables 
are added one-at-a-time as long as their P values are small enough, typically less than 
0.05 or 0.10. Explanatory variables are removed from the model if they become non-
significant as other predictors are added. This process continues until the model 
converges, i.e. no more explanatory variables are significant. 
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6.3.2 Results 

Table 6.5 shows the significance of the explanatory variables included in the multiple 
regression analysis carried out for each of the monitoring sites. Generally, emissions 
emerge as the most significant explanatory variables in the regression and frequently 
the emission source emerging as most significant is the source closest to the 
monitoring site. The only exception to this is Carr Lane, for which the multiple 
regression includes all emission sources as their wind-arc boundaries overlap. In this 
case Drax is the closest power station to the receptor (Drax 1.1 km, Eggborough 9.6 
km and Ferrybridge 19.9 km). However, emission from Ferrybridge is the only 
explanatory variable included when the model converges. In this instance, the short 
distance from Drax to Carr Lane monitoring site is unlikely to have been sufficient to 
allow Drax’s plume to impact at ground level, meaning it simply over-flies the monitor. 

Higher emissions are generally associated with higher concentrations, although there 
are exceptions to this rule associated with Drax emissions. Of the three occasions 
when Drax emissions are brought into the model before convergence, decreases in 
emissions are associated with increases in monitored concentrations on two occasions 
(Downes Ground and North Featherstone). However, in these instances the variable is 
not classed as significant at the 95% level. 

For Downes Ground, Drax is the nearest emission source (4.9 km from the receptor), 
which appears to influence concentrations. However, Drax emissions are negatively 
correlated with concentration. In the second multiple regression including Eggborough 
and Ferrybridge (12.6 and 22.9 km from the receptor respectively), only Eggborough is 
included when the model converges. 

For Hemingbrough Landing, Eggborough (10 km from the receptor) has a significant 
effect and although included in the same wind arc, Ferrybridge (20.1 km from the 
receptor) is not significant at the 95% level. In a separate analysis Drax (2.6 km from 
the receptor) is close to being significant at the 95% level and on this occasion has a 
positive relationship with concentration. 

North Featherstone, is located to the west of all emission sources which in distance-
order, occur as follows; Ferrybridge 5.3 km, Eggborough 15.4 km and Drax 23.8 km.  
Ferrybridge is included in the model and is significant but Eggborough is not included. 
Therefore the closest emission source is the most significant. Drax is also included but 
is again negatively correlated with concentration. 

Smeathalls Farm is located between Ferrybridge to the west and Eggborough to the 
east, which are 3.7 and 6.6 km from the receptor respectively. Both emissions from 
Eggborough and from Ferrybridge are found to be significant in the separate analyses. 
Emissions from Drax are not included in the converged model. 

West Bank is closest to Eggborough in the west and Drax to the east, with Ferrybridge 
also to the west of the receptor. For the wind-arc from the west, Eggborough is 
significant but Ferrybridge is not included in the model. From the East, no emission 
source is included in the converged model. 

In terms of meteorological conditions (windspeed, U, and stability, 1/LMO), U is a highly 
significant variable on all but one occasion and frequently significant to the 99.9% level. 
LMO is also included in the converged model for 6 out of 10 regression models, 
although is only significant on 4 occasions. However, the percentage of the variance 
explained by the models is very poor, indicated by the range of r2 values (0.2-17%). 
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Table 6.5 Multiple regression results. 

P-values Monitoring 
site 

Wind 
Arc 
Min 

Wind 
Arc 
Max Drax Egg Ferry U LMO 

Adjusted 
r2 

CL 245º 274º - - 0.00E+00 0.00E+00 - 1.32E-01 

70º 101º - 1.61E-02  0.00E+00 3.98E-02 1.74E-01 SM 

248º 273º   0.00E+00 0.00E+00 - 1.30E-01 

286º 311º 1.26E-01   - 0.00E+00 6.69E-02 DG 

257º 285º  3.66E-04 - 1.20E-05 4.35E-02 7.84E-02 

232º 268º  3.09E-03 - 0.00E+00 - 1.58E-01 HL 

185º 210º 5.63E-02   2.15E-02 3.21E-01 2.28E-01 

NF 56º 92º 1.61E-01 - 2.00E-06 0.00E+00 - 1.37E-01 

256º 288º  1.67E-04 - 0.00E+00 6.09E-02 1.43E-01 WB 

47º 72º -   3.57E-02 1.89E-01 4.92E-02 

Note: Emissions from sources outside the wind-arc boundary are denoted by grey cells in the table and are not included 
in the analysis. 

Note: Variables that are included in the analysis but excluded from the converged model are denoted by the symbol, -. 

6.3.3 Discussion 

The results in Table 6.5 indicate that it is inappropriate to generate a simple model to 
explain the complex controls on monitored concentrations. However, an explanation for 
the poor results may be found in the choice of statistical method. Multiple regression is 
a parametric statistical technique with several assumptions and limitations: 

• Assumption of linearity between response and explanatory variables 

• Assumption of normality of residuals 

• Potential for multi-colinearity between explanatory variables i.e. explanatory 
variables may be implicitly related 

• Needs sufficient sample size (should be greater than ten times the number 
of explanatory variables) 

It is likely that some or all of the basic assumptions of this statistical test are not met 
and therefore that the results are not representative of the true relationship between 
the response and explanatory variables. An investigation of the use of more complex 
non-parametric tests may be necessary for the further development of this method. 

In addition to the problems outlined above, relating concentrations directly to emission 
rates implies that the impact of emissions is felt immediately at the receptor site. In 
reality, pollutants emitted from a source will impact on receptor sites at an unknown 
time after their release. This time lag will vary with wind speed and distance from 
source to the receptor. In addition, the use of time-series data may be inappropriate for 
multiple regression because of the potential for auto-correlation of the response 
variables, i.e. concentration measured during one hour may be affected by the 
concentration measured during adjacent hours at the same location. 
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7 Application of integration 
techniques: Exploring 
integration methods for 
model calibration 

A major application for the integration of monitoring and modelling is model calibration. 
For retrospective assessment purposes, model calibration is useful in determining 
realistic impacts in areas for which monitoring data are not available and also to 
validate pre-year modelling assessments, e.g. the LAQM methodology (5.2.1). 
However, there is also the potential to apply model calibration to prospective modelling 
assessments, for example, the FRAME calibration methodology uses measurement 
data to normalise modelled data for projected estimates of deposition (5.2.2). This 
analysis will examine four calibration methods to determine their effectiveness in 
calibrating modelled predictions of air quality impacts from industrial point sources. 
Throughout the discussion, it should be remembered that although calibration 
techniques are able to address uncertainty in model outputs caused by systematic 
errors, they are unable to address the uncertainty due to random errors. 

The four calibration methods examined are: 1) linear regression method; 2) simple ratio 
method; 3) kriging of the ratio; 4) kriging of the residual. 

Both the linear regression and simple ratio methods are simple offline methods, which 
perform a global adjustment of the modelled concentration field. The linear regression 
method is similar to the LAQM methodology whereby a linear regression model is 
derived from a comparison between measured and modelled data and the modelled 
data are subsequently corrected according to the properties of the regression. The 
simple ratio method is similar to the FRAME integration methodology in that a ratio of 
measured to modelled concentrations is derived, however, in this application a global 
adjustment of the modelled concentration field is conducted using the average of all 
measured to modelled concentration ratios. The kriging methods are more complex in 
that they involve a spatially varying calibration of the modelled concentration field. It is 
possible to produce a kriged surface using raw measurement points. However, for the 
purposes of model calibration, ratios of modelled to measured concentrations and 
residuals (meaning the difference between modelled and measured concentrations) 
have been derived in order to generate a kriged surface with which to calibrate the 
modelled data.  

The cross-validation technique referred to in Section 5.2.5 is used to determine the 
influence of monitoring site density on the performance of the calibration methods. 
However, in this case, rather than removing just one monitoring point from the data set, 
the systematic removal of several monitoring points will determine the number of 
monitoring points necessary to optimise the calibration. Specifically, optimisation is 
achieved when the rate of improvement in model calibration no longer increases with 
the use of additional monitoring data. The same analysis is also applied to the 2003 
Aire Valley SO2 monitoring data set, to determine whether results are consistent 
between data sets with multiple rather than singular sources. However, the Aire Valley 
is not a validation data set and therefore has a limited number of monitoring sites with 
which to conduct the cross-validation process. 



 

Science Report - Integration of air quality modelling and monitoring methods: review and applications 75  

7.1 Methodology 

7.1.1 Kincaid data set 

The Kincaid data set is a model evaluation data set containing 6024 hours of SO2 data, 
which were reported at 28 sites around the Kincaid power plant in Illinois, USA, during 
1980-1981. The Kincaid power plant is situated on flat terrain surrounded by farmland 
and lakes, consequently the roughness length used for the modelling lies between 5 
and 15 cm and the height of the source stack is 187 metres. The reported data 
(monitoring and modelling predictions) are available from the US Environmental 
Protection Agency web site (http://www.epa.gov). 

7.1.2 Aire Valley data set 

Discussed previously in Section 6.2.1. 

7.1.3 Sector-correcting measured concentrations 

In an ideal scenario, a model will incorporate all major pollution sources and the 
calibration procedure then acts to compensate for model inadequacy and poorly 
defined background contributions. However, in both the Aire Valley and Kincaid data 
sets, the measured concentrations are affected by sources that are external to the 
model domain. Pollution rose plots clearly show that for both data sets, external 
sources influence the annual mean and 99.9th percentile concentrations measured at 
monitoring sites. Figures 6.4 and 6.5 show that a strong influence from the south-east 
is apparent in the Aire Valley whereas Figures 7.1 and 7.2 show that for the Kincaid 
data set, the influence is greatest for monitoring sites in the north-west of the model 
domain. Therefore, in order to analyse the performance of the different calibration 
methods, it was necessary to remove the influence of external sources on the 
measured concentrations by ‘sector-correcting’ the measurement data. This was 
achieved by calculating mean concentrations using measured data only where the wind 
was blowing the plume from the source to the receptor site. The calculation of mean 
concentrations using wind arcs ranging from 5° to 100°, increasing in increments of 5° 
(Figure 7.3), was necessary to determine the optimum sector size. Note that in the Aire 
Valley, the JEP apply a constant background correction prior to comparison with 
modelled data, rather than using the sector-correction approach described here. 

The Root Mean Square Error (Equation 5) and the regression r2 of the modelled vs. 
sector-corrected monitored data were calculated for each sector and used to determine 
the sector size for which optimum data compatibility could be achieved.  

The optimum sector size was determined where the RMSE is minimised, the r2 is 
maximised, and where RMSE/R2 is closest to zero. Determining the optimum sector 
size may be quite subjective, for example, for the Kincaid data set, the optimum sector 
size was determined to be 25° as even though the RMSE is not at its minimum, the r2 
rapidly decreases above this sector size (Figure 7.4). However, for the Aire Valley data 
set, the RMSE is fairly constant above a sector size of 25°, although the r2 is 
maximised and RMSE minimised at 60° (Figure 7.5). Consequently, optimum sector 
sizes of 25° and 60° were used for the Kincaid and Aire Valley data sets respectively. 

 

http://www.epa.gov


 

Science Report - Integration of air quality modelling and monitoring methods: review and applications 76  

0

10

20
30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20
30

40

50
0

30

60

90

120

150

180

210

240

270

300

330 0

10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0

10

20
30

40

50
0

30

60

90

120

150

180

210

240

270

300

330

0

10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30

40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0

10

20
30

40

50
0

30

60

90

120

150

180

210

240

270

300

330
0

10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20
30
40

50
0

30

60

90

120

150

180

210

240

270

300

330
0

10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20
30

40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20
30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20
30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0

10

20

30

40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20
30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0

10

20
30

40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0

10

20
30

40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

0
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

3300
10

20

30
40

50
0

30

60

90

120

150

180

210

240

270

300

330

 

Figure 7.1 Interpolated plots of annual mean SO2 concentrations (μg m-3) for 
monitoring sites in the Kincaid network, with superimposed annual mean sector-
specific pollution rose diagrams for data from 1980/81. 
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Figure 7.2 Interpolated plots of 99.9th percentile SO2 concentrations (μg m-3) for 
monitoring sites in the Kincaid network, with superimposed exceedence 
frequency pollution rose diagrams for data from 1980/81. 

 

 

Figure 7.3 Sector correction analysis schematic.  
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Figure 7.4 Sector correction analysis for Kincaid data set. Vertical red line shows 
optimal sector size.  

 

 

Figure 7.5 Sector correction analysis for Aire Valley data set. Vertical red line 
shows optimal sector size. 

7.1.4 Analysis of the calibration methods 

The calibration methods were analysed using a cross-validation technique, which 
involved the systematic removal of monitoring data. The retained monitoring data were 
used to conduct the calibration and the removed monitoring data were used to test the 
method by comparison with the calibrated model results. In this way, the performance 
of each calibration method could be assessed and the optimisation of each method on 
the basis of monitoring site density could be determined.  

For the Kincaid data set, a maximum of twenty-four monitoring points was used to 
conduct the analysis of annual average concentrations and twenty-three for the 
analysis of 99.9th percentile concentrations. This difference was due to the presence of 
an anomalous modelled result at monitoring point 20 where the modelled 99.9th 
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percentile concentration was 817 μg m-3 compared to a corrected measured 
concentration of 271 μg m-3.  

For the Aire Valley data set, a maximum of five data points was used to conduct the 
analysis, as there are six monitoring sites in total with at least one site necessary to 
test the performance of the calibration. In terms of the minimum requirements for 
monitoring data, the simple ratio method requires a minimum of one data point, the 
linear regression method a minimum of two data points, and the kriging methods a 
minimum of three data points. Each calibration performed is termed a ‘calibration 
scenario’ which may be described by a specific calibration method and a specific 
number of data points used to conduct the calibration. In total, for the Kincaid data set, 
seven calibration scenarios were conducted for each calibration method for both mean 
and 99.9th percentile concentration metrics. For the Aire Valley data set, five scenario’s 
were conducted using the simple ratio method, four using the linear regression method 
and three using the kriging methods, repeated for both mean and 99.9th percentile 
concentration metrics. This was the maximum number of scenarios possible with the 
available data. The kriging residual and kriging ratio interpolations were carried out 
using Surfer® (Golden Software) and the kriging method selected was ordinary kriging, 
(‘Grid Method 1’). 

To test the performance of each calibration method, one hundred random combinations 
of monitoring sites (including repetitions where necessary) were generated for each 
calibration scenario and subsequently used to conduct one hundred separate 
calibrations. The random selection of monitoring site combinations means that any 
repetition will not skew the subsequent analysis. The remaining monitoring sites were 
then used to compare the calibrated modelled concentrations to the remaining 
measured concentrations. For example, there would be 400 randomly generated 
modelled vs. measured comparisons for a calibration scenario which used twenty-four 
monitoring points with which to conduct the calibration (i.e. one hundred times the four 
remaining monitoring points).  

The randomly generated comparisons were then analysed using standard model 
evaluation statistics: Normalised Mean Square Error (Equation 7, 8), Mean Bias 
(Equation 9) and the percentage of modelled predictions within a factor of x (Fx) of 
measured predictions (e.g. F1.2, F1.5, F2, F5 and F10). The Fx statistic is expressed 
as a value from 0 to 1. The F2 statistic will be the only Fx statistic discussed in this 
report but all summary statistics may be found in Appendix B.  

( )
n

concconc
MSE measmod

2∑ −
=     Equation 7  

( )measmod
MSENMSE
×

=     Equation 8 

measmodMB ÷=      Equation 9 

7.2 Results 

7.2.1 Kincaid data 

Figures 7.6 (a, b and c) and 7.7 (a, b and c) show summary statistics (NMSE, F2 and 
MB) for the Kincaid data set, generated by comparing measured vs. calibrated model 
values for the mean and 99.9th percentile concentration metrics, respectively. Shown 
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below each diagram, in bold, is the average summary statistic (NMSE, F2 or MB) 
generated by comparing measured vs. uncalibrated model values. 

For the mean concentrations, all summary statistics show that by using sector-
corrected measured data, all four calibration methods have improved the consistency 
between modelled and measured concentrations when compared with uncalibrated 
modelled values. In addition, Figures 7.6 (a) and (b) indicate that as the number of data 
points used to perform the calibration increases, the F2 statistic increases, with the 
exception of the kriging ratio method in Figure 7.6 (b) which maintains a relatively 
constant F2 value of 0.93-0.96.  

For the 99.9th percentile metric, shown in Figures 7.7 (a), (b) and (c), the summary 
statistics produced using the calibrated modelled data are very similar to those 
produced using the uncalibrated modelled data. However, it is clear that below a 
defined number of monitoring points, the NMSE rapidly increases and the F2 rapidly 
decreases as the calibration is based on too few data points, especially for the linear 
regression method. The number of data points that are required for optimum model 
calibration appears to fall between 10 and 15 for all calibration methods for both mean 
and 99.9th percentile metrics. This is based on the interpretation of Figures 7.6 and 7.7 
(a) and (b), which show stabilising summary statistics around this point. However, the 
relationship with the number of data points used for the calibration and the mean bias 
(MB) statistic is complex and does not allow the same conclusions to be drawn. It is 
also important to remember that this analysis is based on an example with a single 
pollution source and for only one pollutant. For multiple-pollution sources in close 
proximity, the number of monitoring sites required for optimum calibration is unlikely to 
be linearly related to the number of pollution sources. 

Overall, the simple ratio method appears to perform best as this method constantly 
produces the lowest NMSE and the highest F2 statistics, regardless of the number of 
data points used to conduct the calibration. This is surprising as the kriging method 
offers a spatially varying calibration. Comparing only the two kriging methods, Figure 
7.8 shows that the kriging ratio method is superior to the kriging residual method, as 
the kriging ratio method minimises the NMSE and maximises the F2 statistic for both 
the mean and the percentile metrics. 

7.2.2 Aire Valley data 

Unlike the Kincaid data set, not all of the calibration methods improved the consistency 
between modelled and measured concentrations. Figures 7.6 (e) and (f) show that the 
linear regression method performs particularly poorly, especially when only 2 data 
points are used to perform the calibration. 

Another inconsistency in the Aire Valley results is shown in Figure 7.6 (f) where for all 
calibration methods, the mean bias is lower using the uncalibrated rather than the 
calibrated modelled data. 

The NMSE statistic in Figure 7.6 (d) indicates that the simple ratio method is the best 
performing calibration method when applied to the mean concentration metric using the 
Aire Valley data. This also appears to be the case for the 99.9th percentile metric, 
shown in Figure 7.7 (d), although for 4 and 5 data points, the linear regression method 
has an even lower NMSE.  

It is difficult to tell how the kriging methods perform with the Aire Valley data set, as a 
minimum of three data points is needed to produce a kriged surface and again the 
maximum number of data points used for the calibration is limited to five. This is a 
consistent problem with this data set and limits any comparisons with the Kincaid data 
set. 
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For most calibration methods, NMSE and MB statistics show that as the number of 
data points used to perform the calibration increases, the calibration performance is 
improved. However, Figure 7.6 (e) illustrates that this is not the case for the linear 
regression method when used to calculate the annual average concentration. This may 
be because an outlier is affecting the linear regression properties and therefore 
producing a poor calibration. For example, the data in Table 7.1 shows that there is a 
significant difference between mean modelled and mean measured concentrations at 
West Bank and North Featherstone monitoring sites, possibly due to the influence of 
background sources. 

The analysis of the Aire Valley data identified that calibration was optimised using five 
monitoring points (the maximum number available). Although Figures 7.6 (d) and (e) 
seem to show stabilising summary statistics for the simple ratio method, it is difficult to 
ascertain whether increasing the number of monitoring sites, beyond the six already 
established, would further improve the performance of the calibration methods. 

Table 7.1 Aire Valley SO2 concentrations (in μg m-3) measured in 2003. 
Measured data sector corrected to 60-degree sectors. 

Monitoring site Mean 
Modelled 

Mean 
Measured 

99.9th%ile 
Modelled 

99.9th%ile 
Measured 

CL 3.8 3.1 189 108 

DG 2.4 2.7 158 106 

HL 3.1 3.2 111 112 

NF 0.8 1.3 131 112 

SM 3.2 3.5 140 142 

WB 2.8 3.7 146 165 
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Figure 7.6 Statistical analysis of calibration method performance when applied 
to annual average concentrations for the Kincaid (1980/81) and Aire Valley (2003) 
data sets.  
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Figure 7.7 Statistical analysis of calibration method performance when applied 
to 99.9th percentile concentrations for the Kincaid (1980/81) and Aire Valley 
(2003) data sets.  



 

Science Report - Integration of air quality modelling and monitoring methods: review and applications 84  

 

Mean 99.9th percentile 
 (a) 

 

(d) 

 
 (b) 

 

(e) 

 
(c) 

 

(f) 

 

  
  

Figure 7.8 Statistical analysis of kriging calibration methods when applied to 
99.9th percentile concentrations for the Kincaid (1980/81) data set.  
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7.3 Discussion  
Four calibration methods have been analysed to determine their effectiveness in 
calibrating modelled predictions of air quality impacts from industrial point sources. The 
simple ratio method proved best using both the Kincaid data set and the Aire Valley 
data set. The linear regression method performed on a similar level to the simple ratio 
method when using a high number of data points but the performance of this method 
declined dramatically with the use of only two monitoring points. This is due to the poor 
definition of the linear regression when using a low number of data points. 

The more complex kriging methods appear to be less effective than the simple 
methods, although this may be because the basic principle of kriging is undermined by 
the data used. Kriging revolves around the assumption of spatial correlation. If this 
spatial correlation is removed or is diluted, for example by kriging the residual or ratio 
rather than the original measured values, this may reduce the spatial correlation in the 
data such that the technique is unable to interpolate effectively between points of 
known value. The other potential problem with the kriging technique is the lack of 
monitoring points. It is likely that the spatial variation in the concentration field may be 
much larger than can be accounted for by the density of monitoring points and 
therefore this method may not be optimised by the number of available data points. 
When this occurs, ordinary kriging tends to return a value close to the global mean, 
which would therefore produce similar results to the simple ratio or linear regression 
methods.  

The analysis of the Kincaid data set suggests that the number of monitoring points 
required to enable optimum calibration is between 10 and 15. The integration of data 
using more than 15 monitoring points was found not to provide further reductions in 
cross-validation error terms, possibly due to the effect of irreducible random 
uncertainties. Statistical optimisation of model calibration is only one consideration in 
determining the number of monitoring sites for regulatory purposes. Nonetheless, if the 
costs of monitoring decline through developments in low cost, high-resolution sensor 
technologies, these larger data fields may become achievable. 

A major issue for both study sites seems to be how to correct modelled concentrations 
for influences external to the model domain. In the case of the Aire Valley, prospective 
modelling assessments conducted by the JEP are corrected for background 
concentrations by applying a correction equal to the monitored annual mean minus the 
contribution from modelled sources (Equation 3). However, ‘background’ 
concentrations in the 2003 Aire Valley data set may be partially attributed to the 
influence of point sources outside the model domain, e.g. the Trent/Soar Valley power 
stations to the South East of the Aire Valley. While the Trent/Soar stations are now 
unlikely to cause a significant problem regarding compliance with air quality standards 
in the Aire Valley, the point should be made that ‘external’ sources do not always 
contribute a relatively steady background to monitored concentrations. The temporal 
variation of ‘external’ point sources could have a significant impact on compliance with 
air quality objectives if the sources are of sufficient size and located upwind in the line 
of frequent wind directions at a distance where impacts could be noted.  

If the influence of external point sources is found to be significant, it may be necessary 
to adopt the approach of sector-correcting measured concentrations rather than 
applying a constant background adjustment for modelled concentrations, especially if 
the contribution of local sources is to be isolated for regulatory purposes. However, to 
assess the total impact upon receptors, it would still be necessary for the model to take 
account of all sources, including those outside the model domain. In this case, the 
application of a time-varying background contribution may be a suitable solution and 
would be more realistic than a constant background correction, although this is rarely 
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feasible and would only be considered if air quality standards were significantly 
threatened. 
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8 Recommendations 
The following are recommendations based on the review of modelling and monitoring 
for integration in air quality assessment and the findings from the investigative work in 
Sections 6 and 7 on the application of integration methods for the extrapolation of 
short-term monitoring data and model calibration. 

8.1 Towards more effective integration of monitoring 
and modelling data 

The JEP Risk Management Framework provides a working example of integration of 
modelling and monitoring procedures for industrial sources in the UK. Approaches 
using the integration of monitoring and modelling data could also be used for other Part 
A(1) sources, especially where there is evidence of frequent exceedences or where 
modelling studies are subject to a high degree of uncertainty, e.g. for sites located in 
coastal areas or areas of complex terrain. Though the exact specification of integration 
methods should be decided on a case-by-case basis due to the uncertainties 
highlighted herein. 

8.2 Expansion of the monitoring infrastructure 
The application of the integration approaches reviewed in this document, in particular 
the more complex techniques such as kriging and Bayesian assimilation, requires 
greater investment in monitoring infrastructure. Existing monitoring networks such as 
the AURN network are of limited use as they are often located far from industrial 
sources and the potential to attribute pollutant concentrations to such sources may be 
difficult due to the interference of pollutants from roads and urban areas. However, 
AURN sites classified as ‘suburban’, ‘urban background’ or ‘rural’ may be useful for 
defining background influences and should not be dismissed. While practical factors 
such as prohibitive costs limit the expansion of the monitoring infrastructure at present, 
developments in low cost, high-resolution sensor technologies may make this more 
achievable in the future. 

8.3 Optimisation of the monitoring infrastructure 
It is essential that any monitoring resource must be optimised in terms of the number 
and placement of monitors, both to ensure cost-effectiveness and to optimise the 
potential for effective integration of monitoring and modelling data. It may be necessary 
to first identify where uncertainty in monitoring data is most prevalent, for example: in 
sampling; analysis; temporal or spatial resolution. Techniques similar to those 
described by Bortnick and Stetzer (2002) could be applied. Once such uncertainties 
have been identified, the adoption of decision-making tools, which are able to prioritise 
multiple objectives such as population protection, ecosystem protection or targeting 
specific air quality metrics, for example the maximum 99.9th percentile concentration, 
are invaluable in designing an effective monitoring network. 

If the number of monitoring sites around Part A(1) processes remains limited, the 
adoption of a flexible approach to off-site monitoring by both the Environment Agency 
(for MMF campaigns) and process operators is necessary as in these situations it will 
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be impossible to optimise a network for source attribution to distinguish between 
individual sources. For example, where several large industrial processes are located 
within close proximity to one another, operators could form a consortium to establish a 
jointly-funded ambient monitoring network. However, a network for an industrial zone 
cannot expect to have sites at all individual maxima; instead it would be more 
advantageous to have sites where there is good source attribution. These factors may 
also be incorporated into a multi-objective analysis procedure. 

For Part A(1) sources located in areas of complex terrain, terrain grids should be 
included in dispersion model configurations when slope is greater than 1:10. Given the 
effect of complex terrain on dispersion, the provision of extra monitoring sites should be 
considered in these areas as this may allow model uncertainty to be better defined. 

8.4 Determination of effective calibration methods 
The exploration of data assimilation methods in this report followed on from the work of 
Denby et al. (2007) by applying several simple and complex offline methods to 
calibrate point source modelling data. Four offline data assimilation methods were 
applied to the Kincaid and Aire Valley data sets and cross-validation analysis was 
conducted in order to determine the number of monitoring points required for optimum 
model calibration.  

The simple ratio method performed best using both the Kincaid and the Aire Valley 
data set. The linear regression method performed to a similar level when using a high 
number of data points although the performance of this method declined dramatically 
with the use of only two monitoring points. The more complex kriging methods 
appeared to be less effective than the simple methods, despite offering a spatially 
varying model calibration. However, ordinary kriging was the only kriging option used in 
the analysis of the data assimilation methods. Therefore, it may be useful to test the 
kriging of residual and kriging of ratio methods using other kriging options, e.g. kriging-
with-a-trend, as this option is more suited to trended data, i.e. the deposition pattern 
formed by an idealised Gaussian Plume. 

The analysis suggests that the number of monitoring points required for optimum 
model calibration using the techniques analysed is between 10 and 15. The integration 
of data using more than 15 monitoring points was found not to provide further 
reductions in cross-validation error terms, possibly due to the effect of irreducible 
random uncertainties. Statistical optimisation of model calibration is only one 
consideration in determining the number of monitoring sites for regulatory purposes. 
Nonetheless, if the costs of monitoring decline through developments in low cost, high-
resolution sensor technologies, these larger data fields may become achievable. 

The analysis of the Kincaid data sets determined the number of monitoring sites 
necessary for optimum data assimilation. However, monitoring sites in the Kincaid data 
set are not organised according to optimal network design priorities. In order to 
determine both the correct number and arrangement of monitoring sites, it would be 
necessary to conduct a validation study that considered both aspects of network 
design. Initially, optimal placement of sites could be determined using multi-objective 
analysis applied to modelled concentration data, as this would enable the use of a 
large data set with minimal cost. This would determine the optimal locations for a 
varying number of monitoring sites. Each optimal monitoring arrangement could then 
be analysed to determine the number of monitoring sites necessary for optimal 
performance of a selected model calibration technique. However, this would require the 
use of real monitoring data. Emerging technologies in monitoring instrument design 
may enable investment into such validation studies. In addition, it is likely that the 
optimal number of monitoring sites will differ for different pollutants and different 
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sources, for example: point vs. area sources, such as landfill sites, or point sources 
with different stack heights. Further work is therefore necessary to determine the 
variation in the number of required monitoring sites according to these factors. 

8.5 Application of suitable background correction 
factors 

It is important to bear in mind that for the analysis of the integration methods the 
measurement data was sector-corrected to allow an unbiased analysis of the data 
assimilation methods by removing any influence from external sources that were not 
incorporated in the modelled scenario. The uncertainty introduced by the influence of 
sources external to the model domain is normally accounted for by using a background 
correction factor. If the external sources are relatively homogenous and widespread 
then a single correction can be applied to the model to correct for any background 
influence before calibration is carried out. However, in the case of the Kincaid and Aire 
Valley data sets, the background source can be identified as originating from a specific 
direction and seems to vary in magnitude temporally. In cases such as these, it may be 
necessary to consider the influence of background sources in more detail. This could 
include modelling the external source specifically or through conducting an analysis of 
background measurement data. However, an appropriate background correction may 
be difficult to apply if the calibration is intended for application to prospective modelling 
studies as opposed to retrospective model calibration for validation purposes. In this 
case, background correction factors from previous years could be examined and the 
most representative correction factor applied to the prospective model data prior to 
calibration. Further work is necessary to determine how effective retrospective 
calibration factors would be in adjusting prospective modelling assessments and what 
may be defined a ‘representative’ correction factor. 

8.6 Extrapolating from short-term monitoring 
campaigns 

From the analysis of the pro-rata extrapolation method, it is evident that extrapolating 
from a 6-month campaign provides a more accurate estimate of total exceedences 
than extrapolating from a 3-month campaign. 

The Integration Scaling Method (ISM), an alternative to the pro-rata method, was 
analysed using the same routine used to test the pro-rata method. The ISM relies on 
the determination of an appropriate scaling factor, determined as the ratio of modelled 
exceedences for the duration of the monitoring period to modelled exceedences for the 
full 12-month period. The ratio of modelled 6-month to 12-month exceedences is then 
used to scale the short-term measurement data to obtain an estimate of the number of 
exceedences during a 12-month period. Although the ISM showed an improvement in 
the consistency of measured and predicted exceedences compared to the pro-rata 
method, the RMSE values were still relatively high. It would be beneficial to repeat this 
analysis with modelled concentration data that are more representative of the 
measured concentrations, i.e. modelled data which have been corrected for the 
influence of background concentrations and sources outside the model domain. 

In contrast to the ISM, the multiple regression scaling method aimed to determine 
whether a multiple regression model could be used to relate SO2 emissions and 
meteorological parameters in order to predict concentrations of SO2 and therefore 
extrapolate the frequency of exceedences beyond those measured during short-term 
monitoring campaigns. However, the complexity of the controls on monitored 
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concentrations and the constraints of the assumptions of the multiple regression 
method resulted in very low percentage of explained variance (0.2-17%) so it was 
considered inappropriate to conduct further analysis of the application of this method. 
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Appendices 

Appendix A 

1. Unfiltered frequency distribution for measured data – 6 month 
rolling, all sites 

Concentration bin Start 
month <40 40-80 80-120 120-160 160-200 >200 
2003_1 25349 489 134 58 14 14 
2003_2 25366 495 123 53 13 14 
2003_3 25779 490 137 58 14 18 
2003_4 25698 430 136 51 15 22 
2003_5 25884 399 135 45 12 21 
2003_6 25704 414 149 51 11 23 
2003_7 25943 357 129 37 9 21 
2003_8 25987 331 115 34 9 20 
2003_9 25792 294 80 25 9 8 
2003_10 25956 293 72 18 8 5 
2003_11 25793 316 69 14 9 7 
2003_12 25963 303 63 8 10 5 
2004_1 25822 297 66 8 10 5 
2004_2 25740 354 85 12 12 5 
2004_3 25942 393 109 25 15 12 
2004_4 25770 401 123 30 18 10 
2004_5 25979 354 109 29 17 8 
2004_6 25866 336 98 27 17 8 
2004_7 25997 344 98 30 19 8 
2004_8 26108 252 82 28 18 8 
2004_9 25802 184 52 14 11 1 
2004_10 26045 132 21 6 4 0 
2004_11 25878 151 23 8 4 0 
2004_12 26032 144 21 8 3 0 
2005_1 25889 141 25 7 2 0 
2005_2 25851 170 31 11 1 0 
2005_3 26265 187 32 11 1 0 
2005_4 26116 190 34 11 1 0 
2005_5 26297 160 29 9 1 0 
2005_6 26159 156 27 9 1 0 
2005_7 26208 118 19 7 0 0 
Average 25903 293 78 24 9 8 
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2. Unfiltered frequency distribution for modelled data – 6 month 
rolling, all sites 

Concentration bin Start month 
<40 40-80 80-120 120-160 160-200 >200 

2003_1 29746 364 127 53 14 8 
2003_2 29891 397 158 60 11 5 
2003_3 30278 449 177 76 13 3 
2003_4 30404 445 172 71 16 2 
2003_5 30631 450 184 72 17 2 
2003_6 30720 359 168 72 17 2 
2003_7 31372 268 117 46 13 2 
2003_8 31279 181 80 34 14 2 
2003_9 30458 157 72 20 11 2 
2003_10 30031 184 75 18 7 3 
2003_11 30191 184 63 24 9 3 
2003_12 30358 251 92 46 12 3 
2004_1 29674 361 158 60 14 3 
2004_2 30049 457 213 107 31 7 
2004_3 30759 461 232 108 34 8 
2004_4 30519 473 242 114 33 5 
2004_5 30358 444 228 105 30 5 
2004_6 30361 395 203 83 27 5 
2004_7 30721 297 136 70 25 5 
2004_8 30143 221 82 20 7 1 
2004_9 29394 187 53 16 2 0 
2004_10 29528 149 37 4 0 0 
2004_11 29363 231 63 9 4 0 
2004_12 29275 265 71 13 4 0 
2005_1 29057 323 93 18 4 1 
2005_2 29554 355 114 24 6 1 
2005_3 30584 398 127 30 6 1 
2005_4 30764 403 133 31 6 1 
2005_5 31215 315 103 26 2 1 
2005_6 31422 254 89 20 2 1 
2005_7 31626 176 66 14 2 0 
Average 30315 318 127 47 13 3 
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3. Filtered frequency distribution for measured data – 6 month 
rolling, all sites 

Concentration bin Start month 
40-80 80-120 120-160 160-200 >200 

2003_1 565 111 43 22 13 
2003_2 550 106 41 21 12 
2003_3 545 114 46 24 14 
2003_4 464 109 47 26 16 
2003_5 440 100 42 23 14 
2003_6 470 106 45 24 15 
2003_7 395 89 37 20 12 
2003_8 357 82 35 19 12 
2003_9 328 63 24 12 7 
2003_10 333 54 19 9 5 
2003_11 315 56 20 10 6 
2003_12 293 48 16 8 4 
2004_1 293 48 17 8 4 
2004_2 381 60 20 9 5 
2004_3 413 84 33 17 10 
2004_4 458 90 35 18 10 
2004_5 415 81 31 16 9 
2004_6 381 76 30 15 9 
2004_7 390 80 31 16 10 
2004_8 287 67 29 16 10 
2004_9 267 37 11 5 3 
2004_10 127 21 7 3 2 
2004_11 148 24 8 4 2 
2004_12 145 22 7 3 2 
2005_1 162 20 6 3 1 
2005_2 233 22 5 2 1 
2005_3 255 23 6 2 1 
2005_4 264 23 6 2 1 
2005_5 216 20 5 2 1 
2005_6 207 20 5 2 1 
2005_7 117 20 7 3 2 
Average 330 60 23 12 7 
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4. Filtered frequency distribution for modelled data – 6 month 
rolling, all sites 

Concentration bin Start month 
40-80 80-120 120-160 160-200 >200 

2003_1 486 92 35 17 10 
2003_2 630 95 31 14 8 
2003_3 807 103 31 13 7 
2003_4 840 100 29 12 6 
2003_5 866 103 30 12 6 
2003_6 705 93 29 12 6 
2003_7 477 69 22 10 5 
2003_8 296 52 19 9 5 
2003_9 244 43 15 7 4 
2003_10 262 44 15 7 4 
2003_11 251 46 17 8 5 
2003_12 388 65 23 11 6 
2004_1 635 90 29 13 7 
2004_2 741 140 53 27 16 
2004_3 747 147 57 29 17 
2004_4 851 145 51 25 14 
2004_5 790 136 48 23 13 
2004_6 678 120 43 21 12 
2004_7 465 94 37 19 11 
2004_8 387 44 12 5 2 
2004_9 267 32 9 4 2 
2004_10 185 21 6 2 1 
2004_11 292 36 11 5 2 
2004_12 344 43 13 5 3 
2005_1 551 47 11 4 2 
2005_2 645 57 14 5 2 
2005_3 751 63 15 5 2 
2005_4 774 65 15 5 2 
2005_5 608 47 10 4 2 
2005_6 474 40 9 3 2 
2005_7 272 33 9 4 2 
Average 539 74 24 11 6 
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Appendix B 

1. Kincaid data, mean metric. 

Linear regression method 
Number of data points used to perform calibration Statistic 

3 4 8 12 18 20 24 
NMSE 0.43 0.22 0.13 0.11 0.11 0.11 0.11 
R2 0.07 0.14 0.27 0.31 0.31 0.34 0.36 
F1.2 0.29 0.32 0.38 0.37 0.37 0.37 0.35 
F1.5 0.61 0.66 0.74 0.78 0.82 0.82 0.83 
F2 0.85 0.91 0.95 0.98 0.99 0.99 0.99 
F5 0.99 0.99 1.00 1.00 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MB 1.05 1.04 0.98 1.01 1.00 0.99 0.99 

Simple ratio method 
Number of data points used to perform calibration Statistic 

3 4 8 12 18 20 24 
NMSE 0.12 0.12 0.11 0.10 0.10 0.10 0.10 
R2 0.29 0.30 0.33 0.37 0.38 0.38 0.41 
F1.2 0.39 0.41 0.38 0.38 0.35 0.37 0.35 
F1.5 0.74 0.76 0.80 0.83 0.85 0.85 0.83 
F2 0.96 0.97 0.98 0.99 1.00 1.00 1.00 
F5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MB 1.02 0.99 1.01 1.00 0.99 0.99 1.00 

Kriging residual method 
Number of data points used to perform calibration Statistic 

3 4 8 12 18 20 24 
NMSE 0.21 0.21 0.17 0.17 0.19 0.17 0.18 
R2 0.28 0.28 0.31 0.31 0.25 0.31 0.25 
F1.2 0.30 0.30 0.35 0.39 0.38 0.43 0.43 
F1.5 0.60 0.60 0.65 0.68 0.66 0.70 0.72 
F2 0.84 0.85 0.89 0.89 0.88 0.89 0.89 
F5 0.98 0.97 1.00 0.99 1.00 1.00 1.00 
F10 0.99 0.99 1.00 0.99 1.00 1.00 1.00 
MB 0.97 0.99 1.01 1.01 0.99 1.03 1.02 

Kriging ratio method 
Number of data points used to perform calibration Statistic 

3 4 8 12 18 20 24 
NMSE 0.14 0.15 0.13 0.13 0.14 0.14 0.12 
R2 0.24 0.22 0.31 0.30 0.26 0.29 0.35 
F1.2 0.36 0.34 0.42 0.44 0.46 0.45 0.46 
F1.5 0.71 0.70 0.75 0.74 0.74 0.75 0.76 
F2 0.94 0.94 0.96 0.94 0.94 0.93 0.93 
F5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MB 0.99 1.01 0.99 0.99 0.96 0.99 0.96 
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2. Kincaid data, 99.9th percentile metric 

Linear regression method 
Number of data points used to perform calibration Statistic 

2 3 7 11 17 19 23 
NMSE 1.22 0.32 0.11 0.10 0.09 0.09 0.08 
R2 0.02 0.05 0.20 0.20 0.24 0.24 0.25 
F1.2 0.32 0.36 0.43 0.48 0.51 0.49 0.52 
F1.5 0.59 0.64 0.75 0.75 0.76 0.74 0.77 
F2 0.80 0.89 0.97 0.98 0.99 1.00 1.00 
F5 0.97 0.99 1.00 1.00 1.00 1.00 1.00 
F10 0.99 0.99 1.00 1.00 1.00 1.00 1.00 
MB 1.03 1.00 1.02 0.99 0.99 1.01 0.99 

Simple ratio method 
Number of data points used to perform calibration Statistic 

2 3 7 11 17 19 23 
NMSE 0.14 0.11 0.09 0.08 0.08 0.08 0.09 
R2 0.16 0.22 0.28 0.30 0.32 0.33 0.28 
F1.2 0.39 0.40 0.47 0.52 0.51 0.52 0.49 
F1.5 0.73 0.76 0.80 0.81 0.82 0.84 0.82 
F2 0.94 0.97 0.99 1.00 1.00 1.00 1.00 
F5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
MB 1.00 1.04 0.99 0.98 1.01 1.02 0.99 

Kriging residual method 
Number of data points used to perform calibration Statistic 

3 7 11 17 19 23 
NMSE 0.14 0.12 0.10 0.11 0.10 0.11 
R2 0.20 0.27 0.29 0.31 0.32 0.30 
F1.2 0.36 0.41 0.44 0.45 0.47 0.46 
F1.5 0.70 0.75 0.77 0.77 0.78 0.75 
F2 0.92 0.94 0.97 0.98 0.99 0.99 
F5 1.00 1.00 1.00 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 1.00 1.00 
MB 1.00 0.98 1.00 1.02 1.00 1.04 

Kriging ratio method 
Number of data points used to perform calibration Statistic 

3 7 11 17 19 23 
NMSE 0.13 0.10 0.10 0.10 0.09 0.09 
R2 0.20 0.30 0.30 0.32 0.35 0.37 
F1.2 0.40 0.46 0.47 0.49 0.50 0.56 
F1.5 0.74 0.80 0.78 0.77 0.82 0.81 
F2 0.95 0.97 0.98 0.99 0.99 1.00 
F5 1.00 1.00 1.00 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 1.00 1.00 
MB 1.01 0.98 0.98 0.97 0.99 0.97 
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3. Aire Valley data, mean metric 

Linear regression method 
Number of data points used to perform 

calibration 
Statistic 

2 3 4 5 
NMSE 0.21 0.11 0.08 0.09 
R2 0.04 0.01 0.10 0.09 
F1.2 0.44 0.51 0.46 0.48 
F1.5 0.82 0.91 0.86 0.78 
F2 0.92 0.92 0.90 0.78 
F5 0.98 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 
MB 1.17 1.11 1.10 1.12 

Simple ratio method 
Number of data points used to perform calibration Statistic 
1 2 3 4 5 

NMSE 0.12 0.07 0.06 0.05 0.04 
R2 0.49 0.58 0.60 0.57 0.67 
F1.2 0.28 0.42 0.53 0.57 0.53 
F1.5 0.74 0.87 0.83 0.89 0.83 
F2 1.00 1.00 1.00 1.00 1.00 
F5 1.00 1.00 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 1.00 
MB 1.08 1.03 1.00 1.02 0.99 

Kriging ratio method 
Number of data points used to 

perform calibration 
Statistic 

3 4 5 
NMSE 0.08 0.09 0.10 
R2 0.56 0.51 0.53 
F1.2 0.23 0.13 0.00 
F1.5 0.86 0.92 0.84 
F2 1.00 1.00 1.00 
F5 1.00 1.00 1.00 
F10 1.00 1.00 1.00 
MB 0.99 0.99 0.98 

Kriging residual method 
Number of data points used to 

perform calibration 
Statistic 

3 4 5 
NMSE 0.06 0.07 0.07 
R2 0.51 0.45 0.58 
F1.2 0.25 0.25 0.40 
F1.5 0.93 0.94 1.00 
F2 0.99 1.00 1.00 
F5 1.00 1.00 1.00 
F10 1.00 1.00 1.00 
MB 0.99 0.98 0.95 
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4. Aire Valley data, 99.9th percentile metric 

Linear regression method 
Number of data points used to perform 

calibration 
Statistic 

2 3 4 5 
NMSE 0.37 0.19 0.09 0.06 
R2 0.02 0.05 0.22 0.53 
F1.2 0.35 0.36 0.46 0.30 
F1.5 0.67 0.71 0.87 1.00 
F2 0.81 0.89 1.00 1.00 
F5 0.98 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 
MB 1.12 1.12 1.06 1.06 

Simple ratio method 
Number of data points used to perform calibration Statistic 
1 2 3 4 5 

NMSE 0.15 0.12 0.11 0.10 0.09 
R2 0.04 0.06 0.08 0.13 0.06 
F1.2 0.41 0.31 0.32 0.29 0.12 
F1.5 0.59 0.72 0.78 0.79 0.85 
F2 1.00 1.00 1.00 1.00 1.00 
F5 1.00 1.00 1.00 1.00 1.00 
F10 1.00 1.00 1.00 1.00 1.00 
MB 1.06 1.00 1.00 1.02 1.01 

Kriging ratio method 
Number of data points used to 

perform calibration 
Statistic 

3 4 5 
NMSE 0.13 0.11 0.12 
R2 0.02 0.00 0.00 
F1.2 0.33 0.39 0.48 
F1.5 0.66 0.64 0.48 
F2 1.00 1.00 1.00 
F5 1.00 1.00 1.00 
F10 1.00 1.00 1.00 
MB 1.03 0.99 0.92 

Kriging residual method 
Number of data points used to 

perform calibration 
Statistic 

3 4 5 
NMSE 0.17 0.16 0.17 
R2 0.02 0.00 0.00 
F1.2 0.26 0.31 0.47 
F1.5 0.57 0.55 0.47 
F2 0.90 0.86 0.84 
F5 1.00 1.00 1.00 
F10 1.00 1.00 1.00 
MB 0.97 0.97 0.98 
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