

## **QUALITY MANAGERS CONFERENCE**

4th February 2014

**Birmingham** 

## Agenda

| Morning plenary   |                                                         |                      |                                       |                       |
|-------------------|---------------------------------------------------------|----------------------|---------------------------------------|-----------------------|
| 10:45             | Welcome                                                 |                      |                                       | June Guiness OBE      |
| 10:50             | Australian Standards Framework                          |                      |                                       | Dr Linzi Wilson-Wilde |
| 11:15             | DNA contamination - a global issue                      |                      |                                       | Dr Ingo Bastisch      |
| 11:45             | A review: forensic quality standards framework          |                      |                                       | Andrew Rennison       |
| 12:00             | Quality Standards                                       |                      |                                       | Jonathan Vaughan      |
| Breakout sessions |                                                         |                      |                                       |                       |
| Fingerprints      |                                                         | Chair: Gary Pugh OBE | Unexpected item in the reporting area | Chair: Dr. Roger King |
| Afternoon plenary |                                                         |                      |                                       |                       |
| 15:50             | The court dependence on the quality of forensic science |                      | HHJ Andrew Goymer                     |                       |
| 16:15             | Forensic Science Regulation                             |                      | Prof. Bernard<br>Silverman            |                       |
| 16:20             | Closing remarks                                         |                      |                                       | Andrew Rennison       |



## Morning plenary

# ANZPAA NIFS

# "THE AUSTRALIAN STANDARDS FRAMEWORK"

Dr Linzi Wilson-Wilde OAM 2014





## FORENSIC SCIENCE STANDARDS GLOBALLY







## **ISSUES AND RISKS**









## **DUPLICATION**

Duplication of procedures between forensic science laboratories

## **NO AGREEMENT**

Lack of agreed formal standards across LEAs & forensic science agencies

### **CONSISTENCY**

Forensic
Standards would
help ensure that
methodologies
and training is
consistent across
jurisdictions

#### RISK

Significant risk that forensic standards will be developed without stakeholder involvement





## **ISSUES AND RISKS**



## **DUPLICATION**

**Duplication of** procedures between forensic science **laboratories** 



Lack of agreed

fJUSTICEOUTCOMESwould across LEAs &

forensic science

This nies led to variated hining is practice between differentiacross laboratories which sdictions threatens reliable justice outcomes

**Forensic** 

help ensure that

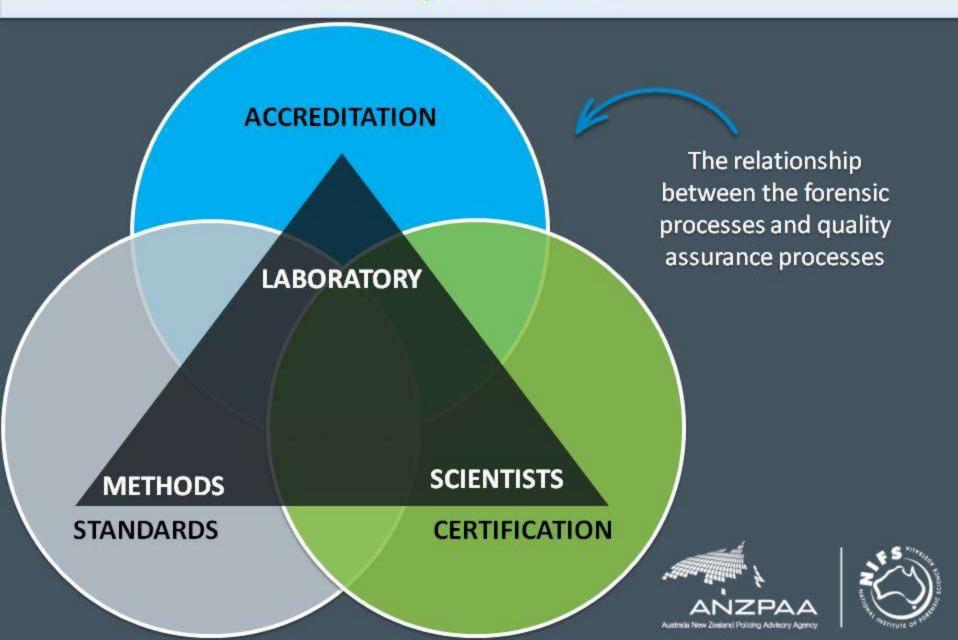
methodologies



Significant risk that forensic standards will be developed without stakeholder involvement






## **PURPOSE OF STANDARDS**



## FORENSIC STANDARDS BENEFITS

- 1 Consistency of practice and procedures
  - **2** Defined reliability and quality criteria
- (3) Ensure standard practices across agencies
  - (4) Acceptable in a judicial setting
- (5) Provides additional guidelines for accreditation
  - Provides judicial confidence in laboratories

## FORENSICS AND THE QA PROCESS



## **KEY OBJECTIVES**

- Do not replace procedure documents, laboratory methods or forensic facility policies
  - Engage key stakeholder groups to ensure transparency and acceptance
- Resolve competing interests to maximise consensus
  - Practitioners determine the appropriate method to apply to a particular forensic process



# AUSTRALIAN PROCESSES AND LESSONS LEARNT







## WHAT STAKEHOLDERS UNDERSTAND

- 1) Standards development rules
  - **2** Terminology
- (3) Takes longer than you think
  - 4) More complicated than you think
- **5** Always things you did not think of
  - (6) It is a compromise

## WHAT STAKEHOLDERS DO NOT UNDERSTAND

- Standards development rules
  - How to comment

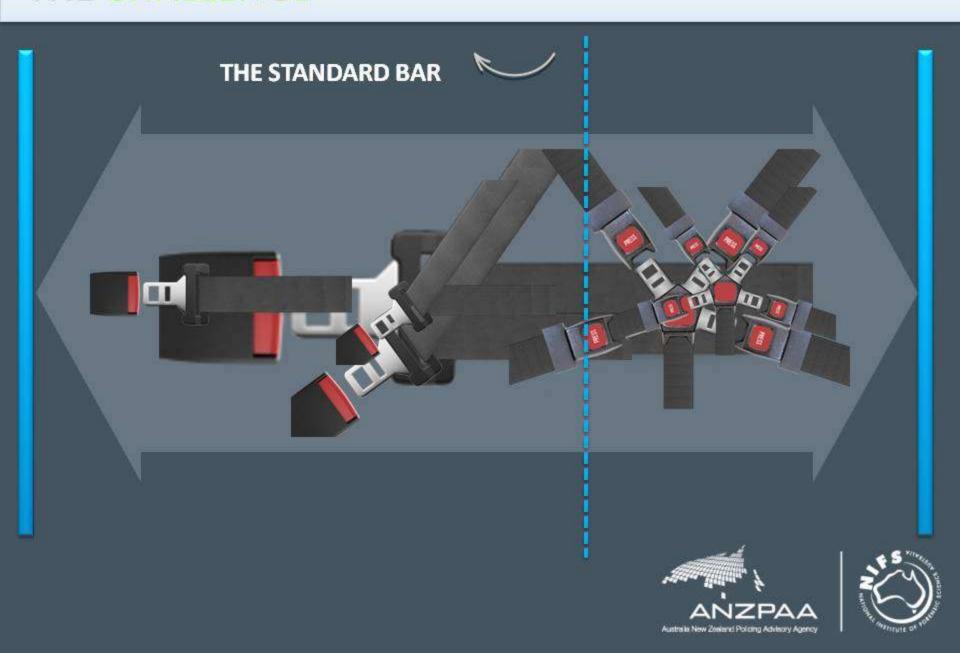
What a standard is



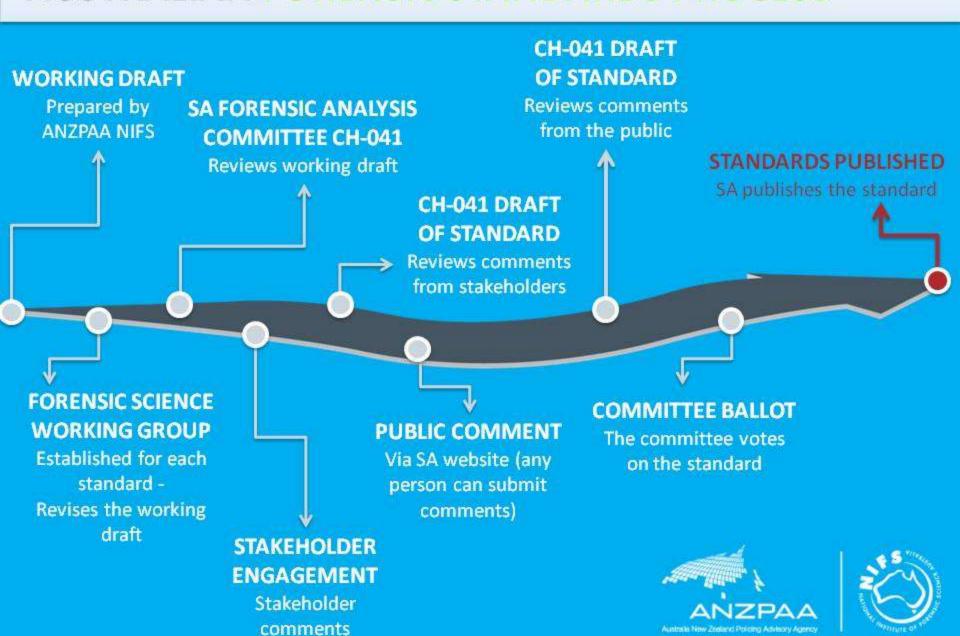
# CASE STUDY THE SEATBELT LIFECYCLE












## THE CHALLENGE



## **AUSTRALIAN FORENSIC STANDARDS PROCESS**



## **AUSTRALIA'S STANDARDS FRAMEWORK**

COLLECTION

RECOGNITION

**PRESERVATION** 

RECORDING

COLLECTION

**PACKAGING** 

TRANSPORT

STORAGE

ANALYSIS STANDARD

CONTINUITY

RECORDING

SAMPLING

**PRESUMPTIVE** 

**ANALYSIS** 

COMPARISON

**IDENTIFICATION** 

INTERPRETATION STANDARD

**OBSERVATION** 

RESULTS

CALCULATIONS

INTERPRETATION

VERIFICATION

**OPINIONS** 

CONCLUSIONS

REPORTING STANDARD

FORMAT

METHOD

RESULTS

**OPINIONS** 

CONCLUSIONS

**LIMITATIONS** 

**QUALIFICATIONS** 

The 'core' forensic standards cover the universal aspects of forensic science practice

#### DISCIPLINE SPECIFIC STANDARDS

SPECIFICATIONS FOR PRODUCTS USED TO COLLECT AND ANALYSE BIOLOGICAL MATERIAL

EXAMINATION OF IGNITABLE LIQUIDS IN FIRE DEBRIS





"

# FORENSIC ANALYSIS THE CORE STANDARDS

"



## **COLLECTION STANDARD**



## RECOGNITION

Recognising and preserving material of forensic interest

## RECORDING

Recording and collection of material from a scene

## **EQUIPMENT**

OH&S, packaging and labelling

#### **TRANSPORTATION**

Transport, storage and security of material

## **STORAGE**

Storage requirements for different types of material





## **ANALYSIS STANDARD**



#### **TESTING**

Presumptive and preliminary tests

#### **ACCEPTANCE**

Acceptance and rejection of physical material for analysis

#### **EXAMINATION**

Order of examination and preservation of evidence

#### CONTINUITY

Item continuity: management and security

## SAMPLING

Representative and sub-samples - statistical sampling

#### RECORDING

Recording material received

#### **METHODOLOGY**

Analysis and examination of physical material

#### **IDENTIFICATION**

Method selection, comparative testing and recording results





## INTERPRETATION STANDARD



#### **PRINCIPLES**

Defines underpinning principles, highlights professional judgement, technique limitations

#### TRANSFORMING

Transforming data and observations into information that may be reported as results

#### REVIEW

Review of information (results) and opinions

#### INTERPRETATION

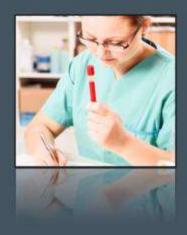
Presumptive and preliminary tests

## **FORMULATION**

Estimating probability and inconclusive opinions

#### **OPINIONS**

Review of opinions


#### REPORTING

Reporting of results





## REPORTING STANDARD



#### **GENERAL**

General considerations concerning the scope and format of reports

#### **CASE FILE**

Case file technical and administrative review

#### **FORMATTING**

Formatting of reports

#### **REPORTS**

Considers issue and control of reports

#### CONTENTS

Guidance on report contents; Limitations; Reporting of opinions, facts and results

#### **OPINIONS**

Guidance on reporting of investigative, evaluative, definitive, qualified and inconclusive opinions

#### **CHARACTERISTICS**

Class and individual characteristics

#### REVIEW

Report and testimony review





## www.anzpaa.org.au





# DNA contamination — a global issue



**Dr. Ingo Bastisch**Head of the human DNA laboratory at the BKA

Birmingham, 04 Feb 2014

NOT PROTECTIVELY MARKED



## The evidential value of a DNA profile

|          | Stain |      |
|----------|-------|------|
| SE33     | 28,2  | 29,2 |
| D21S11   | 28,0  | 31,0 |
| VWA      | 17,0  | 18,0 |
| TH01     | 9,3   | 9,3  |
| FGA      | 22,0  | 22,0 |
| D3S1358  | 17,0  | 18,0 |
| D8S1179  | 12,0  | 13,0 |
| D18S51   | 13,0  | 14,0 |
| D1S1656  | 15,0  | 16,3 |
| D2S441   | 10,0  | 11,0 |
| D10S1248 | 14,0  | 15,0 |
| D12S391  | 21,0  | 22,0 |
| D22S1045 | 15,0  | 15,0 |
| D16S539  | 11,0  | 13,0 |
| D2S1338  | 23,0  | 27,0 |
| D19S433  | 14,0  | 15,0 |

Likelihood ratio that a person with this profile was the donor of that stain compared to a random unrelated person

LR= 2,8 x 10<sup>21</sup>

Or 1 in about 1 sextillion persons



## The evidential value of a mixed DNA profile

|          | Stain |      |      |      |
|----------|-------|------|------|------|
| SE33     | 28,2  | 29,2 | 17,0 | 25,2 |
| D21S11   | 28,0  | 31,0 | 28,0 | 31,0 |
| VWA      | 17,0  | 18,0 | 14,0 | 16,0 |
| TH01     | 9,3   | 9,3  | 7,0  | 9,3  |
| FGA      | 22,0  | 22,0 | 24,0 | 26,0 |
| D3S1358  | 17,0  | 18,0 | 15,0 | 16,0 |
| D8S1179  | 12,0  | 13,0 | 12,0 | 13,0 |
| D18S51   | 13,0  | 14,0 | 12,0 | 15,0 |
| D1S1656  | 15,0  | 16,3 | 13,0 | 16,0 |
| D2S441   | 10,0  | 11,0 | 14,0 | 15,0 |
| D10S1248 | 14,0  | 15,0 | 12,0 | 15,0 |
| D12S391  | 21,0  | 22,0 | 18,0 | 19,0 |
| D22S1045 | 15,0  | 15,0 | 11,0 | 16,0 |
| D16S539  | 11,0  | 13,0 | 9,0  | 10,0 |
| D2S1338  | 23,0  | 27,0 | 20,0 | 23,0 |
| D19S433  | 14,0  | 15,0 | 14,0 | 15,0 |

Likelihood ratio that a person with this profile was the donor of that mixed stain compared to two other random unrelated persons LR= 1,03 x 10<sup>11</sup>
Or 1 in about 100 billion persons

Loss in evidential value: A factor of 10 billion



## The evidential value of a mixed DNA profile but one identified as contamination

|          | Stain |      | Contamination |      |
|----------|-------|------|---------------|------|
| SE33     | 28,2  | 29,2 | 17,0          | 25,2 |
| D21S11   | 28,0  | 31,0 | 28,0          | 31,0 |
| VWA      | 17,0  | 18,0 | 14,0          | 16,0 |
| TH01     | 9,3   | 9,3  | 7,0           | 9,3  |
| FGA      | 22,0  | 22,0 | 24,0          | 26,0 |
| D3S1358  | 17,0  | 18,0 | 15,0          | 16,0 |
| D8S1179  | 12,0  | 13,0 | 12,0          | 13,0 |
| D18S51   | 13,0  | 14,0 | 12,0          | 15,0 |
| D1S1656  | 15,0  | 16,3 | 13,0          | 16,0 |
| D2S441   | 10,0  | 11,0 | 14,0          | 15,0 |
| D10S1248 | 14,0  | 15,0 | 12,0          | 15,0 |
| D12S391  | 21,0  | 22,0 | 18,0          | 19,0 |
| D22S1045 | 15,0  | 15,0 | 11,0          | 16,0 |
| D16S539  | 11,0  | 13,0 | 9,0           | 10,0 |
| D2S1338  | 23,0  | 27,0 | 20,0          | 23,0 |
| D19S433  | 14,0  | 15,0 | 14,0          | 15,0 |

Likelihood ratio that a person with this profile and the contaminant were the donors of that mixed stain compared to random unrelated person and the contamination LR= 1,53 x 10<sup>19</sup>
Or 1 in about 10 pentillion persons

Loss in evidential value:

A factor of 100



|                                        | LR                      | LR                        |
|----------------------------------------|-------------------------|---------------------------|
| Single stain                           | 2,8 x 10 <sup>21</sup>  | 2,800,000,000,000,000,000 |
| Mixed stain contamination known        | 1,53 x 10 <sup>19</sup> | 15,300,000,000,000,000    |
| Mixed stain contamination not detected | 1,03 x 10 <sup>11</sup> | 103,000,000,000           |



## Last year's presentation

## Forensic consumables: Reducing the Risk

Dr Kevin Sullivan

Forensic Science Regulator's Quality Managers Conference 1st March 2012

Drieft PAS 377:2012

**Draft PAS 377**:2012

#### Specification for consumables used in the collection, preservation and processing of material for forensic analysis

Requirements for product, manufacturing and forensic kit assembly

Draft2.1 for SG meeting

This is a working draft and must not be circulated beyond the Steering Group

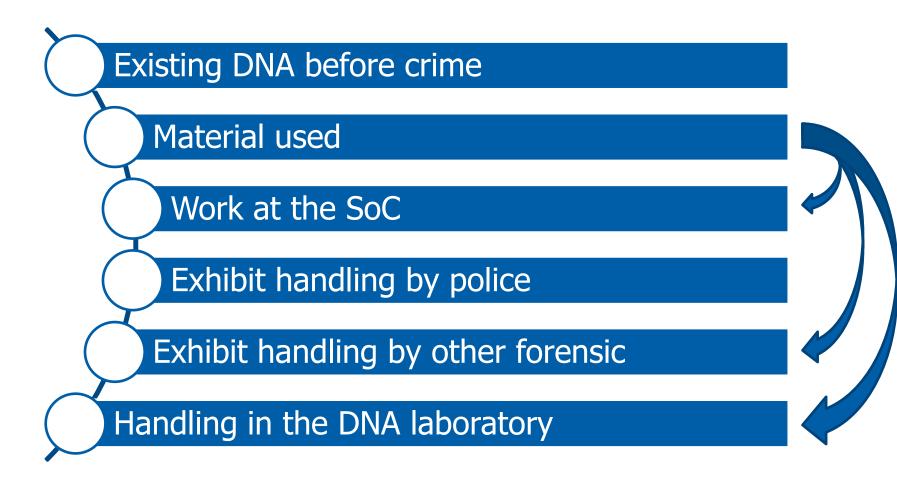
No copying is allowed, in any form, without written permission from BSI except as permitted under the Copyright, Design and Patent Act. 1988 or for circulation within a participating organization and/or its membership network for briefing purposes. Electronic circulation is limited to dissemination by small within such an organization and its members

PAS 377 Draft 2.2 post SG meeting (03.02.12) SC 1 DBSI and Nome Office 7-Feb-12



## This year

- Staff/police elimination
- ISO Standard 18385
  "Minimizing the risk of contamination in products used to collect and analyse biological material for forensic DNA purposes"
- Cooperation with the International Commission on Missing Persons (ICMP) regarding
  - International manufacturer database
  - International database for unsourced profiles
- How we deal with it in Germany




## A study...

- In 2009 a study by a German police office
- Checking unmatched touch DNA profiles in the database
- Collection of samples from officers involved
- About 30 % of those profiles could be matched to an officer involved in sample collection
- Is this an exception????



## Better question: Which parts of the process have a risk of contamination





#### **But why?**

- Touch samples help law enforcement regularly to find the right perpetrator
- But often nothing or only little material is collected
- Any contamination will be detected
- Especially when using the newest typing kits



#### **Measures**

- Easiest: Use better material
- More problematic: Handling of items
  - Lack of precaution
  - Lack of knowledge
  - Lack of training
- Even if this is solved one can never avoid and it should not be regarded as inappropriate work
- Only way to deal with it is to discover



#### **Solution is detection**

- Not all gaps in the process can be closed
- Need to compare to profiles of staff involved (this should also include all staff who have access to areas where evidence ist handled, stored or processed otherwise)
- Best is automatic comparison to a regional staff elimination database



#### **ISO Standard 18385**

- Minimizing the risk of contamination in products used to collect and analyse biological material for forensic DNA purposes
- More detailed than PAS 377 and internationally accepted
- Will reduce risks of contamination but not eliminate them



### Monitoring for contaminations by the manufacturing process

- The Forensic Science Service had two databases:
  - Manufacturer elimination database
  - Database for unsourced profiles
- Discussion already with FSS in order to find global solution
- International Commission on Missing Persons (ICMP) programed web-database search tool for accessing both
- FSS unsourced profile database was already transfered to ICMP



# The German model for dealing with potential contaminations

Some introduction first

16 States

16 State Crime Investigation offices (LKA)

Federal Crime investigation office (BKA)

40-50 labs

1 central database

Data owned by submitting state





### **Investigation of stain-stain matches**

- Every high profile crime or
- 5 matches in high volume crime
- Check for contamination of lab or police personnel
- Check for investigative value
- Check for manufacturer based contamination
- 2 levels of checks
  - 1st within investigation/within laboratory
  - 2nd discuss jointly if not solved on 1st level



### **Summary**

- Contaminations take place
- Do not ignore
- Implement measures to prevent
  - Equipment
  - Training
- Implement measures to detect
- In addition implement a follow up of scene-to-scene serial matches if not linked otherwise





## Thank you for your attention

Ingo Bastisch

**BKA** (Federal Criminal Police Office)

ingo.bastisch@bka.bund.de

**\***+49 611 55-16030

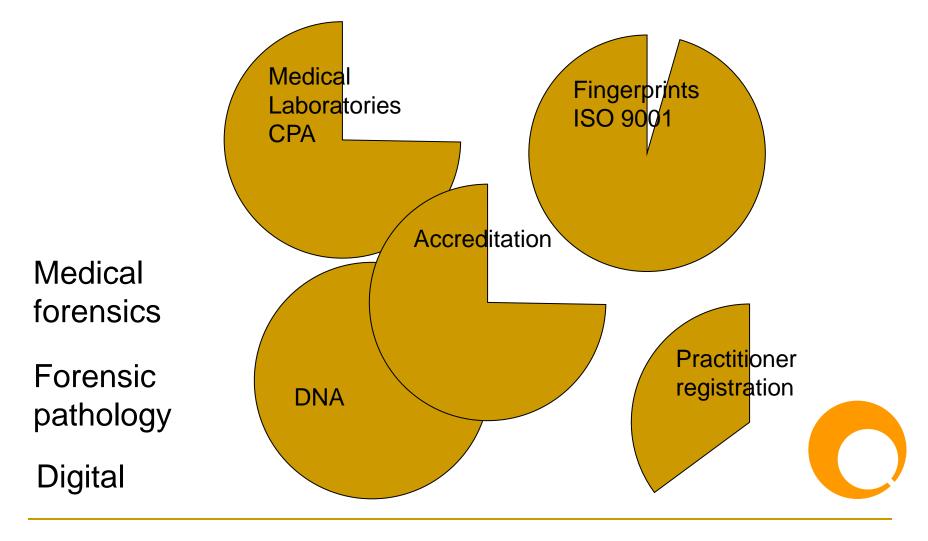


Review

Andrew Rennison M.Sc.

### Context

- DNA expansion programme
- Neoliberal policies
- Europe
- Expert witnesses
- National Academy of Sciences
- Government spending




## Background

- Quality failings
- Royal Commission
- Reviews
- House of Commons Science and Technology Committee
- Commercial market



## Standards 'ad hocracy'



## Regulating quality

- Competent organisation
- Competent practitioners
- Reliable and valid methods
- Impartiality
- Compliance mechanism (UKAS)
- Guidance and standards
- Professional bodies

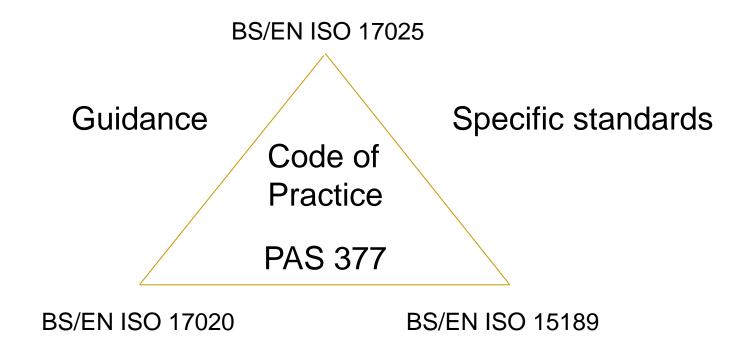


### Standards framework

Forensic pathology

Professional bodies

Codes of practice




British standard for consumables

Guidance



### Standards framework



BS PAS 377:2012 Specification for consumables used in the collection, preservation and processing of materials for forensic analysis. Requirements for product, manufacturing and forensic kit assembly.



### Professional bodies

- Royal College of Pathologists
- Royal College of Physicians (Faculty of Forensic and Legal Medicine)
- Royal Anthropological Institute
- Forensic Science Society
- Fingerprint Society
- Institute for Archaeologists
- UK and Ireland Association of Forensic Toxicologists
- UK Association of Forensic Nurses



## Codes of practice 2013 / 14

- Fingerprints
- Crime scenes
- Contamination
- Digital / video
- Fire scenes
- Evidence interpretation
- Shoe marks
- Firearms discharge residue
- Human contact trace BPA
- Drugs
- Entomology

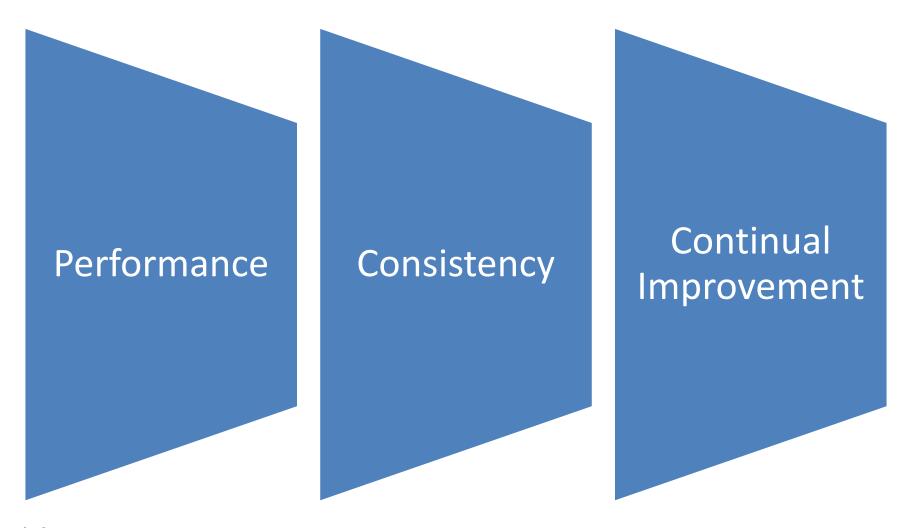
- DNA
- Firearms
- Fibres
- Tool marks
- Medical
- Nuclear
- Exhibit handling





## **Quality Standards**

## **Accreditation Landscape**


| Forensic Area                                   | Number of Forces<br>Accredited | Seeking Accreditation Applications (Predicted Date)                                                                                                                       |
|-------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DNA                                             | 28                             | [3] Cheshire (Feb14), Hampshire (Feb14), North Wales (April 14)                                                                                                           |
| Fingerprint<br>Enhancement<br>Lab               | 10                             | [7] Dyfed-Powys (Feb 14), Avon & Somerset (March 14), Norfolk/Suffolk (April 14), Devon & Cornwall (May 14), West Yorkshire (Nov 14), City of London (Jan 15)             |
| Other-Footwear,<br>drugs, glass &<br>ballistics | 6                              | [8] Cheshire (Footwear-Feb14), Bedfordshire/Hertfordshire/Cambridgeshire (Footwear-March 14), West Yorkshire/North Yorkshire/South Yorkshire/Humberside (Footwear-May 14) |



### **Achievements**

- Improved working methods
- A network of Quality Managers
- Auditing (UKAS, Internal and a national register for inter-force auditing)
- A focus on competence
- A national proficiency test for DNA screening

## Why Accreditation?





### **End of morning plenary**

| Remaining Agenda  |                                                         |                      |                                       |                            |  |  |
|-------------------|---------------------------------------------------------|----------------------|---------------------------------------|----------------------------|--|--|
| Breakout sessions |                                                         |                      |                                       |                            |  |  |
| Fingerprints      |                                                         | Chair: Gary Pugh OBE | Unexpected item in the reporting area | Chair: Dr. Roger King      |  |  |
| Afternoon plenary |                                                         |                      |                                       |                            |  |  |
| 15:50             | The court dependence on the quality of forensic science |                      |                                       | HHJ Andrew Goymer          |  |  |
| 16:15             | Forensic Science Regulation                             |                      |                                       | Prof. Bernard<br>Silverman |  |  |
| 16:20             | Closing remarks                                         |                      |                                       | Andrew Rennison            |  |  |

#### © Crown Copyright 2014

The text contained in this document may be reproduced in any format or medium providing it is reproduced accurately, is not otherwise attributed, is not used in a misleading context and is acknowledged either to the individual author or as Crown copyright. The views expressed in this presentation are those of the authors, not necessarily of the parent organisations or those of the Home Office (nor do they reflect Government policy).