

using science to create a better place

Tiered approach to the assessment of metal compliance in surface waters. Extension report: nickel

Science Report – SC050054/SR1b

The Environment Agency is the leading public body protecting and improving the environment in England and Wales.

It's our job to make sure that air, land and water are looked after by everyone in today's society, so that tomorrow's generations inherit a cleaner, healthier world.

Our work includes tackling flooding and pollution incidents, reducing industry's impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats.

This report is the result of research commissioned by the Environment Agency's Science Programme.

Published by:

Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, BS32 4UD Tel: 01454 624400 Fax: 01454 624409

ISBN: 978-1-84432-942-7

© Environment Agency

September 2008

All rights reserved. This document may be reproduced with prior permission of the Environment Agency.

The views and statements expressed in this report are those of the author alone. The views or statements expressed in this publication do not necessarily represent the views of the Environment Agency and the Environment Agency cannot accept any responsibility for such views or statements.

This report is printed on Cyclus Print, a 100% recycled stock, which is 100% post consumer waste and is totally chlorine free. Water used is treated and in most cases returned to source in better condition than removed.

Further copies of this report are available from: The Environment Agency's National Customer Contact Centre by emailing:

enquiries@environment-agency.gov.uk or by telephoning 08708 506506.

Author(s):

Sean Comber and Karyn Georges

Dissemination Status: Released to all regions Publicly available

Keywords: background concentrations, biotic ligand models, consent setting, metals, compliance, water, nickel

Research Contractor: Atkins Limited, Woodcote Grove, Ashley Road, Epsom, Surrey, KT18 5BW Tel: +44 (0)1372 726140

Environment Agency's Project Manager: Lindsey Sturdy, Science Department

Science Project Number: SC050054

Product Code: SCHO0908BOPK-E-P

Science at the Environment Agency

Science underpins the work of the Environment Agency. It provides an up-to-date understanding of the world about us and helps us to develop monitoring tools and techniques to manage our environment as efficiently and effectively as possible.

The work of the Environment Agency's Science Department is a key ingredient in the partnership between research, policy and operations that enables the Environment Agency to protect and restore our environment.

The science programme focuses on five main areas of activity:

- Setting the agenda, by identifying where strategic science can inform our evidence-based policies, advisory and regulatory roles;
- Funding science, by supporting programmes, projects and people in response to long-term strategic needs, medium-term policy priorities and shorter-term operational requirements;
- **Managing science**, by ensuring that our programmes and projects are fit for purpose and executed according to international scientific standards;
- Carrying out science, by undertaking research either by contracting it out to research organisations and consultancies or by doing it ourselves;
- **Delivering information, advice, tools and techniques**, by making appropriate products available to our policy and operations staff.

Steve Killen

Steve Killeen Head of Science

Executive summary

The aquatic environment is sensitive to damage from a wide range of chemicals. Environmental quality standards (EQSs) are one of the instruments used by the Environment Agency to protect and improve water quality. Derived from toxicological data, the EQS values set limits for chemicals and elements in water bodies.

The Environment Agency is considering options for implementing proposed metal EQSs under the Water Framework Directive (2000/60/EC). The use of a tiered assessment system for metals has been shown to offer a viable option for considering metal compliance. The three levels of this tiered approach progressively take account of the background concentrations of metals and their bioavailability:

Tier 1: compares observed concentrations with the provisional EQS for the metal. This takes little account of either background concentrations or bioavailability.

Tier 2: compares observed concentrations with the EQS plus an accepted aquatic background concentration of the metal to reflect regional or local situations.

Tier 3: compares observed concentrations with a 'bioavailable' predicted no-effect concentrations (PNEC) derived from biotic ligand models (BLMs).

This report considers compliance against nickel EQSs using this approach, and provides an assessment of data generated for the first two tiers. A full assessment including Tier 3 may be completed when the Ni-BLM is finalised. Two Environment Agency datasets were used in the assessment:

- a complete sample set including biological monitoring data 1995;
- a concentration database extending from 1993 to 2004 used to determine concentration trends and compliance with the EQS.

In general, a much higher degree of compliance is observed for nickel compared with copper and zinc (covered in a previous assessment). Only around 1 per cent of the available data exceeded the proposed EQS and was mostly associated with highly urbanised discharges or minewater inputs.

There was no correlation between nickel levels and the ecological quality of the rivers, probably due to two factors: a lack of sensitivity to metals by the available metric for determining ecological quality (invertebrate presence and numbers) and/or acclimatisation of indigenous species to local elevated nickel concentrations.

Differences in levels of compliance between the first two tiers were limited because of the relatively small background addition $(3.6 \ \mu g/l)$ made to the EQS $(20 \ \mu g/l)$. The choice of background concentrations is critical to the overall assessment of compliance and is the subject of previous Environment Agency research. For the purpose of this assessment, median values given in a draft report from a project done in collaboration with the British Geological Survey were used. However, reported data are limited and biased towards the east of England and the Midlands. Therefore, the selected background concentrations may lead to an underestimate of concentrations based on local mineralogy.

Overall, the level of compliance for nickel has improved significantly over the past decade owing to tighter regulation and a general decline in the manufacturing industry in England and Wales. However, the proposed nickel EQS of 20 μ g/l is a provisional value and is dependent on the outcome of the EU risk assessment for nickel currently being completed. Should the EQS be reduced to less than 5 μ g/l, as originally proposed, the number of exceedances may be expected to increase significantly.

Acknowledgements

The authors wish to thank those Environment Agency staff who supplied the data required for this project. Particular thanks go to Caroline Potter who was responsible for providing information from the Environment Agency's WIMS database and Dr David Trigg of Staffordshire University for supplying nickel and organic carbon data.

Contents

1	Introduction	1
1.1	Derivation of quality standards	1
1.2	Consideration of background concentrations	2
1.3	Nickel bioavailability	3
1.4	Options for a tiered approach to the assessment of regulatory	
	compliance	3
1.5	Nickel-specific issues	4
1.6	Project objectives	7
2	Methodology	8
2.1	Datasets	8
2.2	Tiered assessment	8
2.3	Comparison of tiered assessment data with biological monitoring data	11
2.4	Implications of a change in the EQS on compliance	12
3	Results and discussion	13
3.1	Tiered assessment	13
3.2	Comparison of the tiered approach with biological monitoring data	16
3.3	Implications for compliance monitoring	19
4	Conclusions	21
5	Recommendations	22
Reference	S	23
List of abb	previations	24
Annex A	Summary of selected sites and data available for the tiered assessment (1995 only)	25
Annex B	Summary of dissolved nickel concentrations with time (1993–2004)	36

List of tables

Table 1.1	Summary of HC5s at the 50% confidence level using a log-	
	normal fit for the eco-regions in the draft nickel RAR	6
Table 2.1	Current EQSs for dissolved nickel derived under the Dangerous	
	Substances Directive	9
Table 2.2	Proposed values used at Tier 2 of the assessment	9
Table 2.3	Summary of European concentrations for nickel in water	10
Table 2.4	Biological grades under the GQA system	12
Table 3.1	Summary of the number of samples 'failing' at each tier of	
	assessment for the 1995 dataset	13
Table 3.2	Summary of the level of compliance for nickel with time	15
Table 3.3	Data points with confounding factors removed for the 1995 dataset	17

List of figures

List of fige		
Figure 1.1	Proposed tiered assessment	4
Figure 2.1	Total nickel concentrations in EU surface waters	10
Figure 3.1	Dissolved nickel concentrations at Environment Agency sampling	
	sites for 1993–2004	14
Figure 3.2	Percentage of exceedances for nickel in rivers with time	15
Figure 3.3	Dissolved nickel versus ASPT ratios	18
Figure 3.4	Degree of potential compliance versus any given nickel EQS for	
	Environment Agency monitoring data (2000–2004)	20
Figure 3.5	Degree of potential compliance versus any given nickel EQS for	
	Environment Agency monitoring data (2004 only)	20

1 Introduction

The aquatic environment is sensitive to damage from a wide range of chemicals. The Environment Agency, therefore, uses a variety of standards and targets to protect and improve the quality of water resources in England and Wales. In particular, Environmental quality standards (EQSs) derived from toxicological data are used to assess and limit the levels of chemicals in the aquatic environment so that water bodies are protected from deterioration. For example, EQSs are used to calculate discharge consents for effluents discharged to surface waters. They also help the Environment Agency to check national progress in protecting water quality and to identify where urgent action may be necessary. Indeed, EQSs may drive considerable investment in water quality programmes and the development of new techniques and technologies to achieve quality targets.

Environmental quality standards are vital in:

- protecting the environment;
- controlling risks to domestic, industrial, and agricultural water supplies;
- ensuring people can enjoy water-based leisure activities in safety.

This report describes a preliminary assessment of a tiered approach to nickel compliance with EQSs in surface waters.

1.1 Derivation of quality standards

Given their unequivocal importance, the calculation, interpretation, and implementation of EQSs require careful consideration. For example, how is the toxicologically derived limit value that forms the basis of the EQS calculated? What is the technical feasibility of assessing compliance to an EQS and are there any cost implications?

Environmental quality standards are derived by assessing toxicity data for a range of organisms from a number of trophic levels within the aquatic system (typically fish, algae, and invertebrates). The most reliable and sensitive (i.e. lowest) value for a reported no observed effect concentration (NOEC) is then identified. Ideally, the NOECs are from chronic tests that include sub-lethal endpoints.

An assessment factor (AF) is then applied to the NOEC to create a predicted no-effect concentration (PNEC). The AF accounts for uncertainty in the data; results for reported species may not include the most-sensitive species present in the actual environment. The AF varies depending on the amount of data available, but is usually between a factor of 10 and 1,000 as recommended by the EU Technical Guidance Document (TGD) (EC 2002). A PNEC may also be derived using the TGD's probabilistic approach (species sensitivity distribution (SSD) approach) providing the minimum quantity of reliable, long-term toxicity data are available. Depending on the available information, an AF of 1 to 5 is applied to the 5th percentile of the SSD to derive the PNEC.

For synthetic organic compounds, the PNEC can be used as an EQS value designed to protect the vast majority of organisms present in surface waters. For risk assessment purposes (EC 2002), the PNEC is compared with the predicted environmental concentration (PEC). If the PEC/PNEC ratio, often described as the risk characterisation ratio (RCR), exceeds one, then an adverse impact may be occurring in the environment.

1.2 Consideration of background concentrations

Many metals, e.g. nickel, copper, and zinc, occur naturally in the environment. Even without the existence of humans and their industrial activity, significant concentrations of metals would occur in water because of the underlying natural geology. Yet nickel is also essential to life: it participates in key enzymatic and metabolic processes. Thus, aquatic organisms possess mechanisms to regulate nickel accumulation, absorbing the required quantity for metabolic functions and excreting the excess. In many cases where high concentrations of nickel occur naturally, indigenous species have adapted to tolerate elevated background levels.

For nickel and other metals, the simple translation of a PNEC based on laboratoryderived toxicity data into an EQS value could (and often does) lead to a gross overestimate of their potential toxicity in the aquatic environment. Laboratory toxicity experiments are generally carried out in waters with very low background concentrations of nickel, into which additions are made to determine the toxicity thresholds. Nickel concentrations in the test and culture water are normally minimised to ease data interpretation whereas elevated concentrations may occur naturally, especially in metalliferous regions.

Nickel speciation and ambient background concentrations ought to be taken into account when deriving the EQS. Existing legislation allows for these factors to some extent. Under the EU Dangerous Substances Directive, nickel PNECs have been classified into 'hardness bands' to translate laboratory-derived PNECs into working EQS values which may be used to assess regulatory compliance.

To accommodate natural variations in metal concentrations, the 'added risk' approach has been developed and used within the EU TGD methodology (EC 2002). This approach takes the laboratory-derived PNEC and allows the addition of a background concentration to derive an EQS. Therefore, the PNEC, described as the PNEC_{add}, is the value at which toxic effects occur ignoring contributions from background concentrations and applies only to the 'added' contribution over and above the background level. Although the added risk approach appears to be highly pragmatic, it leads to lengthy debates about what is an appropriate background value.

To keep calculations and comparisons simple and consistent, the use of a single background concentration value is preferred. The most conservative choice for a background concentration would be the observed concentrations in 'pristine' environments not influenced by human activity. However, in countries such as the UK, the presence of mineral-rich geology means that elevated metal concentrations are reported even in pristine areas. This wide natural variation in metal concentrations makes it difficult to agree on a single background concentration value – even before the debate over whether a mean, median, or percentile concentration is used

Furthermore, few UK rivers, even in upland areas, are unaffected by human activity. Metals enter the water from agriculture, atmospheric deposition, road run-off, industrial discharges, and effluents from sewage treatment works. It would, therefore, seem appropriate to apply local background concentrations to PNEC_{add} values to derive local EQS values for metals. In many cases, however, there are insufficient data on local nickel concentrations to derive these site-specific values, and a workable methodology has yet to be agreed at either a Member State or EU level. In addition, the link between nickel and other metal concentrations and ecological quality has yet to be fully elucidated. It is not yet possible to conclude accurately just how elevated concentrations can become before biodiversity and ecological quality are adversely affected.

Ongoing monitoring studies on the background concentrations of metals in UK waters (Environment Agency 2006) will provide more data to feed into this debate.

1.3 Nickel bioavailability

The influence of nickel speciation on bioavailability and subsequent metal toxicity is considerable and is controlled by ambient water quality, including:

- pH;
- calcium concentration;
- alkalinity;
- presence of dissolved organic ligands as estimated by dissolved organic carbon (DOC) measurements.

As a consequence, the monitoring of total nickel concentrations in water is a blunt and inaccurate metric by which to regulate discharges and implement environmental protection. Even dissolved measurements can lead to a significant overestimate of toxicity owing to interactions of the toxic free metal ion with other dissolved phase substances (e.g. major ions and organic metal-complexing agents).

Recent developments in the understanding of the mechanisms that affect metal bioavailability and toxicity in water has led to the development of biotic ligand models (BLMs) for copper and zinc (e.g. Heijerick et al. 2002, De Schamphelaere et al. 2005). A BLM is currently being developed for nickel. These models allow the prediction of the ecotoxicologically relevant metal concentration on a site-specific basis based on a combination of the physico-chemical properties of the water column and known ecotoxicological data.

The use of a tiered approach for the assessment of copper and zinc compliance in surface waters was investigated in a previous report (Environment Agency 2007). This extension project assesses the current situation for nickel. This report has been produced in advance of the release of the Ni-BLM and assesses the potential compliance of English and Welsh water bodies with the proposed EQS under the Water Framework Directive (WFD) 2000/60/EC using the first two tiers of the approach (see Section 1.4). Once the Ni-BLM has been made available, its outputs may be incorporated at a later date.

1.4 Options for a tiered approach to the assessment of regulatory compliance

At present, the key issues of metal background concentrations and bioavailability are not being widely considered in the standard-setting regimes in Europe. For example, recent projections using surface water data from England and Wales (n > 1,000) show water quality failures, i.e. concentrations above the potential PNEC, could be greater than 50 per cent in the case of zinc. However, there is little evidence to suggest that surface waters in England and Wales are significantly degraded in terms of ecological impacts by metal pollution. On the contrary, the tightening of consents for discharges to the aquatic environment together with the decline of the UK's manufacturing industry has reduced zinc inputs to surface waters over time.

This situation suggests that the standard-setting procedure (including the issue of implementation) has not been followed correctly and/or the standards do not adequately take account of metal background concentrations or speciation, i.e. actual risks are lower. This project focuses on these areas of uncertainty for nickel.

The Environment Agency is considering options for implementing metal EQSs under the WFD. It is looking to provide a practical methodology by which reported environmental

concentrations may be assessed using an approach that progressively becomes more site-specific. The proposed tiered approach filters data through three tiers of assessment in order to methodically evaluate compliance with the EQS:

Tier 1: observed concentrations are compared with the PNEC/EQS without any corrections.

Tier 2: observed concentrations are compared with the PNEC/EQS plus an accepted background concentration of the metal.

Tier 3: observed concentrations are compared with a site-specific standard that accounts for the local bioavailability of the metal, based on in situ water chemistry.

Figure 1.1 provides a schematic representation of the proposed methodology. This report provides data and an assessment of the first two of the possible three tiers of the approach. Tier 3 is not considered in this report, but may be on release of the Ni-BLM.

Figure 1.1 Proposed tiered assessment

1.5 Nickel-specific issues

Nickel is an essential element used in small quantities within enzyme processes. There are widely varying concentrations of nickel in UK waters owing to natural geology and anthropogenic inputs from diffuse and point sources. Historically, industrial discharges and mining contributed significantly to surface water concentrations of this element. Within the last five decades, the reduction in the UK's manufacturing industry and closure of the majority of the mines mean that the UK is left with only the legacy of these

polluting discharges (e.g. mine drainage water, run-off from contaminated land) concentrated in localised areas. However, there are numerous lower level point and diffuse sources of nickel to the aquatic environment as it is used in a wide range of common products, including metal-plated consumer products, batteries, alloys, and coins.

Nickel is currently regulated as a List 2 chemical under the Dangerous Substances Directive. The EQSs for nickel are set according to the hardness of the water body and range from 50 (in waters of hardness of <50 mg/l CaCO₃) to 200 µg/l (in waters of hardness of >250 mg/l CaCO₃) for salmonid and cyprinid fish. The EQSs recognise the enhanced bioavailability and hence toxicity of nickel in softer waters.

The progression through the tiers proposed in Figure 1.1 represents an increasingly sitespecific assessment of water quality, particularly if local background concentrations are applied, leading to site-specific bioavailability calculations.

This project is a practical attempt to test the tiered approach using the proposed EQS for nickel (Tier 1) combined with potential background concentrations (Tier 2) (see Figure 1.1).

1.5.1 Outputs from the nickel risk assessment report

The proposed WFD EQS for nickel is provisionally set at 20 μ g/l (EC 2006) pending the outcome of the risk assessment report (RAR) that is being finalised (EU RAR 2007).

The draft RAR reviews all available literature on the toxicity of nickel to aquatic organisms and all the accepted data are normalised using the appropriate species-specific BLMs. The NOEC (or EC10) values of the most-sensitive endpoints are then used to construct a species sensitivity distribution. The 5th percentile (HC5) at the 50 per cent confidence level is generally accepted as a value to use as a basis for the PNEC derivation.

The draft RAR proposes a regional approach to setting a PNEC covering a number of 'eco-regions' of defined hardness, pH, and DOC levels (Table 1.1).

Scenario	Туре	Physico-chemical characteristics ¹	HC5 at 50% confidence level (µg/l) using log- normal distribution
Ditch in the	Small (ditches with	pH 6.9	43.6 (23.7–68.6)
Nethenands	$\pm 1,000 \text{ m}^3/\text{day}$	DOC 12.0	
River Otter, UK	Medium (rivers with	pH 8.1	8.1 (4.1–13.4)
	flow rate of	hardness 165	
	±200,000 m³/day)	DOC 3.2	
River Teme, UK	Medium (rivers with	pH 7.6	19.0 (10.7–29.2)
	flow rate of	hardness 159	
	±200,000 m³/day)	DOC 8.0	
River Rhine, NL	Large (rivers with	pH 7.8	10.8 (5.6–17.7)
	flow rate of	hardness 217	
	±1,000,000 m³/day)	DOC 2.8	
River Ebro, Spain	Mediterranean river	pH 8.2	8.7 (4.4–14.5)
		hardness 273	
		DOC 3.7	
Lake Monate, Italy	Oligotrophic systems	pH 7.7	7.1 (4.0–11.0)
		hardness 48.3	
		DOC 2.5	
Acidic lake in	Neutral acidic system	pH 6.7	12.1 (6.9–18.4)
Sweden		hardness 27.8	
		DOC 3.8	

Table 1.1Summary of HC5s at the 50% confidence level using a log-normal fit for
the eco-regions in the draft nickel RAR

Notes: ¹ Hardness in mg/I CaCO₃ and DOC in mg/I.

The conclusion from the draft RAR is:

'Based on weight of evidence and related to also the overall assessment of the size of the extra assessment factor for other data-rich metals, it is proposed to use an AF of 2. This factor is proposed being used when estimating the site/water course/region specific PNECs based on the HC5derivation employing the log-normal fit function for SSD curve fitting and based on the full normalisation approach as described in this report'.

The HC5s that would be used as a basis for PNECs for those scenarios shown in Table 1.1 are generally less than the proposed WFD EQS value of 20 μ g/l without applying an extra AF of 2. However, to generate PNECs for other defined regions, data would first need to be normalised for bioavailability to each type of water body. At this point, therefore, it is not possible to estimate with any certainty the exact PNEC value that would be applied to each water body without fully evaluating the site- or regional-specific physico-chemical properties in combination with 'normalisation' for bioavailability.

Further guidance on these values is expected to be produced once the RAR is finalised.

1.6 Project objectives

The primary objective was to develop an approach for the regulation of metals including nickel by assessing compliance in ways that take into account background concentrations and speciation/bioavailability. Furthermore, the project assessed the extent of water bodies failing to meet the proposed nickel standards when backgrounds and speciation are not considered.

Specifically, the project was designed to provide a practical trial of a tiered approach to the assessment of compliance. It therefore:

- compared the EQS against measured concentrations as well as taking account of background concentrations;
- assessed the value of the tiered approach by comparing historical EQS failure data and paired biological data to determine prevalence of Type I errors (false positives);
- assessed the likely number of sites in England and Wales for which the tiered approach would be needed for nickel;
- provided a critique of the potential use of the tiered approach, formulating recommendations and targeting areas for further work.

This report provides data and an assessment of the first two of the possible three tiers of the assessment.

It is noteworthy that the proposed nickel EQS of 20 μ g/l under the WFD is a provisional value and subject to outcomes from the nickel RAR, which has yet to be completed (see Section 1.5.1).

2 Methodology

2.1 Datasets

This assessment follows on from that of copper and zinc, metals for which reliable BLMs were already available in combination with readily available aquatic monitoring data (Environment Agency 2007). A similar approach was applied to nickel.

Two types of data were selected for use in this project:

- Environment Agency monitoring data:
 - Water Information Management System (WIMS) physico-chemical data
 - biological General Quality Assessment (GQA) data;
- background concentrations derived as a part of another project (Environment Agency 2006).

Two specific Environment Agency datasets were used in this assessment:

- a full 1995 dataset of chemical and biological parameters;
- an Environment Agency chemical parameter dataset for 1993–2004 used to determine levels across the country and to assess trends in compliance (supplied by Staffordshire University).

The full 1995 dataset including matched chemical and biological monitoring data was used to assess compliance at the Tier 1 and Tier 2 levels.

A larger WIMS dataset supplied by Staffordshire University was used to determine levels of compliance at the first two tiers of the assessment covering the period 1993 to 2004, thus allowing an appraisal of trends over a 10-year period.

Annex A provides a summary table for the selected sites based on available 1995 chemical and biological monitoring data. Annex B provides a summary of the concentration trend data based on the 1993–2004 dataset.

2.2 Tiered assessment

2.2.1 Tier 1

The Tier 1 assessment compares reported data for dissolved nickel with the EQS without considering potential background concentrations and bioavailability.

The proposed WFD EQS of 20 μ g/l was generated at an EU level (EC 2006), but is subject to change pending the outcomes of the RAR for nickel (EU RAR 2007). This provisional EQS is lower than the current hardness-based EQSs set under the Dangerous Substances Directive (Table 2.1).

Table 2.1 Current EQSs for dissolved nickel derived under the Dangerous Substances Directive

Hardness	Current EQS ¹ (µg/l)	
0–50 mg/I CaCO ₃	50	
50–100 mg/l CaCO₃	100	
100–200 mg/l CaCO ₃	150	
>200 mg/I CaCO ₃	200	

Notes: ¹ Applies to both salmonid and cyprinid waters.

2.2.2 Tier 2

Where observed dissolved concentrations of nickel exceed the EQS, the next tier of assessment takes account of background concentrations of the metal. This is the level of nickel to which indigenous organisms would be expected to have 'acclimatised'; indeed this concentration would be responsible, in part, for the diversity of the organisms found there.

The value of metal background concentrations has been the subject of intense debate, not least because it can have a profound impact on any assessment of metal compliance. The Environment Agency has commissioned a project with the British Geological Survey to determine English and Welsh background concentrations for selected metals, including nickel. The current data are not comprehensive, but cover a large proportion of the east of England, the Midlands, and a few localised areas of the south west of England and Wales. Currently, only interim conclusions are available and so for illustrative purposes, and to be consistent with the approach used for copper and zinc, the median value for nickel of $3.6 \mu g/l$ has been used in this report for the background concentration (Table 2.2; Environment Agency 2006).

Table 2.2 Proposed values used at Tier 2 of the assessment

	Concentration (µg/I)
Provisional WFD EQS	20
Background concentration ¹	3.6 (4.9)
Tier 2 assessment value	23.6

Notes: ¹ A median value is used to derive the Tier 2 assessment value. The figure in brackets is the average background concentration (Environment Agency 2006).

Surface water nickel concentrations are available via the Geological Survey of Finland (<u>http://www.gtk.fi/publ/foregsatlas/</u>) and have been used as part of the nickel RAR (EU RAR 2007) (Table 2.3 and Figure 2.1).

Parameter	Nickel concentration (µg/l)
Minimum	0.03
Median	1.91
Mean	2.43
Standard deviation	2.49
90th percentile	4.72
Maximum	24.60

Table 2.3 Summary of European concentrations for nickel in water^{1,2}

Notes:

¹ From <u>http://www.gtk.fi/publ/foregsatlas/.</u> ² Number of samples = 807.

Figure 2.1 Total nickel concentrations in EU surface waters (source: <u>http://www.gtk.fi/publ/foregsatlas/</u>)

A comparison of the UK data with European figures suggests that, in general, UK concentrations are marginally higher than those on the continent, although not markedly so. The coverage of the Environment Agency background data is actually biased towards areas of the UK where nickel concentrations are elevated (e.g. the east of England), which may explain the slightly higher mean and median values. Across the UK as a whole, average surface water concentrations for nickel are probably in line with those reported for Europe. However, the approximate factor of 30 difference in nickel concentrations across the UK does suggest that the use of a single background concentration may not be appropriate for a Tier 2 assessment.

2.2.3 Tier 3

When observed dissolved nickel concentrations exceed the Tier 2 (EQS plus background) concentration, the final tier of assessment takes account of the bioavailable fraction of the metal present in the sample, based on its water chemistry.

This tier may be assessed at a later date once the Ni-BLM is available.

2.3 Comparison of tiered assessment data with biological monitoring data

The Environment Agency uses biological indices to determine the ecological status of a watercourse. Two commonly used systems are the Biological Monitoring Working Party (BMWP) system and the related average score per taxon (ASPT).

The BMWP system, developed in the 1970s, provides scores for around 80 different groups of invertebrates based on their perceived tolerance to organic pollution. The higher the BMWP score assigned, the less pollution tolerant is the group. A weakness with the BMWP system is its dependence on the sampling effort: the more vigorous the sampling, the greater the potential for collecting a larger range of organisms.

The ASPT is used to overcome this limitation and is calculated by dividing the BMWP score by the number of groups present. As different types of watercourse can support different ranges of animals, the River Invertebrate Prediction and Classification System (RIVPACS) was developed to predict the taxon richness and expected ASPT at different types of sites if those sites were unpolluted. The expected values for a particular site are its 'reference state'. The ratio of the observed/expected values can be used to judge the true biological condition of the site.

The ASPT ratios (also referred to as an ecological quality index, EQI) are used in the biological GQA by the Environment Agency to grade watercourses from very good to bad. Table 2.4 provides the grades according to the EQI for ASPT.

Grade	EQI for ASPT	Environmental quality
A	1.00	Very good
В	0.90	Good
С	0.77	Fairly good
D	0.65	Fair
E	0.50	Poor
F	<0.50	Bad

Table 2.4 Biological grades under the GQA system

The GQA methodology was developed to assess impacts from pollution derived from organic load, ammonia, and low dissolved oxygen. Although it was not developed to measure potential metal pollution, the methodology has produced the only cohesive dataset to attempt to match observed ecological quality in a river system with measured metal concentrations and predictions of bioavailability.

This project, therefore, analysed the matched biological and chemical data in detail to investigate whether the tiered approach to metal compliance in surface waters could predict good ecological quality in the water column.

2.4 Implications of a change in the EQS on compliance

The WFD EQS for nickel is provisional and may be revised, if necessary, depending on the outcomes of the nickel RAR (EU RAR 2007). To indicate the possible impacts of altering the value of the EQS on the rate of compliance for rivers, an assessment was performed to estimate compliance versus possible EQSs. Data from the WIMS database selected for all English and Welsh water body samples between 2000 and 2004 (ca. 4,600 data points) were used to plot the percentage exceedances for any given EQS down to the limit of detection of 5 μ g/l.

A similar approach to assessing levels of compliance could be applied to the outputs from the RAR provided the eco-regions are defined and the correct normalisation is applied to the reported NOECs. This information is not currently available, but comparison with defined region-specific EQSs could be incorporated at a later date.

3.1 Tiered assessment

Two datasets were used to evaluate a tiered approach to the assessment of metal compliance in surface waters:

- A 'complete' set of data from the Environment Agency's WIMS database for 1995 that included chemical and biological monitoring data with which to assess compliance. The absence of DOC values for this dataset meant that these data could be assessed only at the Tier 1 and Tier 2 levels (as described in this report).
- Another WIMS dataset held by Staffordshire University that contained chemical and biological monitoring data for the period 1993 to 2004. Data within this database were used to assess trends over the past decade for compliance at Tier 1 and Tier 2. This database could be used as the source of data for Tier 3 once the Ni-BLM is available and input parameters have been identified.

3.1.1 Tiers 1 and 2 assessment using the Environment Agency's 1995 dataset

The Environment Agency's 1995 dataset covers 7,230 samples, of which 620 values were reported for dissolved nickel. These values ranged from less than the limit of detection (varying between 1 and 5 μ g/l) to 150 μ g/l.

Table 3.1 summarises the number of 'failures' at Tiers 1 and 2 for nickel. A comparison of the data with the current hardness-based EQSs showed that there would only be a maximum of two failures (owing to a lack of hardness data for these two samples, it was assumed they could fall into the soft water category and, therefore, exceed the EQS).

Based on the provisional WFD EQS, 15 samples out of 620 were >20 μ g/l (2.4 per cent). On face value, there would seem to be only a small number of localised EQS exceedances associated with historic mining activity in the south west of England or highly urbanised streams, as found in London. Adding on the median UK background concentration (BG_{med}) for nickel removes three of the 'failures', reducing the number of exceedances to 12 out of 620 (1.9 per cent).

Description	Value	Number of data points ²
'Failure' of existing EQS	>EQS (50–200 µg/l)	<2
'Failure' at Tier 1	>EQS (20 µg/l)	15 (2.4%)
'Failure' at Tier 2	>EQS + BG _{med} (23.6 µg/l)	12 (1.9%)

Table 3.1Summary of the number of samples 'failing' at each tier of assessment
for the 1995 dataset1

Notes: ¹ The 1995 dataset comprised a total of 7,230 data points, of which 620 reported dissolved nickel concentrations. ² Values in brackets are percentage 'failures'.

Science Report - Tiered approach to the assessment of nickel compliance in surface waters

3.1.2 Tiers 1 and 2 assessment using wider Environment Agency datasets from 1993 to 2004

The datasets for nickel covering 1993 to 2004 were selected to enable further testing of the first two tiers of the assessment. Additional data for individual river sites are provided in Annex B. Detailed monitoring data for dissolved nickel from the WIMS database was provided by the Environment Agency via Staffordshire University for English and Welsh rivers from 1993 to 2004.

The data reveal a distinctly improving situation regarding concentrations of nickel in rivers over the identified period (Figure 3.1).

Figure 3.1 Dissolved nickel concentrations at Environment Agency sampling sites for 1993–2004

A summary of the data shows that, by 2001, less than 5 per cent of the sampled sites exceed 20 μ g/l dissolved nickel as an annual average. Even when taking maximum concentrations, less than 10 per cent of all rivers reported exceedances of 20 μ g/l at any given time (Table 3.2 and Figure 3.2). Differences between the Tier 1 and Tier 2 assessments are not particularly large owing to the relatively small background addition.

Voor	Number Exceedances in rivers based on maximum nickel concentrations			Exceedances in rivers based on mean nickel concentrations					
rear	rivere	Tie	r 1	Tier	2	Tier	1	Tier	2
	IIVEIS	Number	%	Number	%	Number	%	Number	%
1993	82	22	27	21	26	14	17	12	15
1994	113	26	23	23	20	14	12	13	12
1995	129	24	19	23	18	15	12	13	10
1996	77	20	26	19	25	13	17	13	17
1997	64	16	25	13	20	9	14	8	13
1998	55	11	20	11	20	6	11	5	9
1999	61	10	16	9	15	5	8	4	7
2000	55	12	22	10	18	2	4	1	2
2001	48	4	8	4	8	1	2	1	2
2002	48	2	4	2	4	2	4	2	4
2003	80	5	6	2	3	2	3	2	3
2004	79	3	4	3	4	1	1	1	1

 Table 3.2
 Summary of the level of compliance for nickel in rivers with time

Figure 3.2 Percentage of exceedances for nickel in rivers with time

The data reflect the fact that nickel discharges to urban rivers have declined significantly with time, potentially from a combination of:

- tighter control of trade discharges;
- phosphorus dosing of tap waters;
- improved wastewater treatment;
- a declining manufacturing industry.

To a lesser degree, the data also reflect the fact that fewer samples were taken in recent years, with some more-contaminated locations not appearing on the database.

3.2 Comparison of the tiered approach with biological monitoring data

There needs to be confidence that any 'relaxation' of quality standards using a tiered approach to the assessment of compliance will not lead to a degradation of ecological quality. Data derived from BLMs reflect observations made mostly in the laboratory under carefully controlled conditions. Behaviour of organisms in the environment can differ significantly. Consequently, a key objective of this project was the comparison of the tiered approach with available biological monitoring data.

In the UK, the ecological 'health' of a river is determined with periodic benthic sampling surveys. These surveys determine the presence and abundance of organisms (predominantly invertebrates) associated with different water quality in order to classify river reaches based on BMWP scores, number of taxa, and ASPT ratios (see Section 2.3).

These parameters tend to be more responsive to pollution from ammonia, elevated biochemical oxygen demand (BOD), and oxygen depletion, rather than metal pollution. A direct comparison between these biological indicators and metal levels cannot necessarily be drawn. However, elevated metal concentrations would probably have had some degree of impact on these types of biological communities. Metals partition into the solid phase, so high concentrations of metals measured in the water column during routine sampling would imply higher concentrations accumulating in nearby sediments. High levels of metals in sediments would affect the benthic invertebrates measured as part of a biological sampling process. In short, although GQA data may not provide a direct measure of potential metal toxicity, some inferences may be made.

3.2.1 Comparison of biological monitoring data with the Environment Agency's 1995 dataset

The ASPT ratios were calculated for all the 1995 biological data supplied by the Environment Agency and compared with the dissolved nickel concentrations in order to understand how nickel levels may have influenced the ecological quality of the sample sites.

Much of the reported dissolved nickel data are at, or near, the limit of detection (typically 5 μ g/l). Of the reported concentrations exceeding the WFD EQS, there is no correlation between nickel concentrations and biological quality.

Given that the BMWP score, and hence the ASPT ratio, is based on perceived tolerance to organic pollution, confounding factors such as high ammonia, high BOD, and high concentrations of other heavy metals need to be removed to assess whether or not there is any relationship between environmental quality and nickel concentration. The results of removing these factors are presented in Figure 3.3.

Little difference is observed in the data trends after removing samples with high BOD and total ammonia concentrations (Table 3.3 and Figure 3.3). However, the removal of samples where other metals exceed their respective EQSs (set under the Dangerous Substances Directive) reduces the number of nickel exceedances to only six when compared with the provisional EQS and three after adding the background concentration to the EQS at Tier 2. Of the remaining exceedances, there is still no correlation between nickel concentrations and biological quality. In fact, all the six samples where nickel exceeds 20 μ g/l have ASPT scores that suggest at least 'fair' ecological quality. However, there may be other factors influencing the ecological quality at a site, particularly as a full dataset of metal concentrations was not available for each site.

	All dissolved nickel		Removing ammonia >1.3 mg/l		Removing ammonia >1.3 mg/l; BOD >6 mg/l		Removing ammonia >1.3 mg/l; BOD >6 mg/l; metals >EQS	
	Number	%	Number	%	Number	%	Number	%
Data points	620		598		597		471	
Data points >EQS (20 μg/l)	15	2.4	15	2.5	15	2.5	6	1.3
Data points >EQS+BG _{med} (23.6 μg/l)	12	1.9	12	2.0	12	2.0	3	0.6
GQA – poor/bad quality (EQI <0.65)	40	6.5	39	6.5	39	6.5	29	6.2
GQA – fair or better (EQI >0.65)	580	93.5	559	93.5	558	93.5	442	93.8
Data points removed			22	3.7	1	0.2	126	27
Cumulative data points removed			22	3.7	23	3.7	149	24

Table 3.3 Data points with confounding factors removed for the 1995 dataset

Figure 3.3 Dissolved nickel versus ASPT ratios

3.3 Implications for compliance monitoring

The data for nickel show that, in general, exceedances of the provisional WFD EQS of 20 μ g/l are localised and associated with contaminated urban rivers or those receiving minewater drainage. Levels of compliance have improved over the past decade, with only around 1 per cent of rivers now exceeding the EQS (based on 2004 data). Improvements between Tier 1 and Tier 2 of the assessment are limited because of the relatively small (compared with the EQS) background addition at Tier 2.

Comparison with biological monitoring data shows that there is no correlation between nickel concentrations and ecological status. This reflects one of two reasons: either the metric is insensitive towards metal toxicity, which has been discussed previously (Environment Agency 2007), or the observed poor water quality is a result of another source of pollution. Cases where samples exceed the provisional EQS, but where ecological quality is considered 'good' or better may be as a result of the acclimatisation of indigenous biota to elevated concentrations of nickel; this has been demonstrated previously for copper (Bossuyt *et al.* 2000, Taylor *et al.* 2000) and zinc (Muyssen and Janssen 2000, 2001a, 2001b).

The WFD EQS for nickel is a provisional value. The relationship between the level of compliance and the number of samples exceeding any given EQS is, therefore, shown in Figure 3.4 for Environment Agency dissolved nickel monitoring data collected between 2000 and 2004, and in Figure 3.5 for the 2004 dataset alone.

A sharp rise in the level of exceedances may be expected if the EQS were to be significantly lowered, particularly if the value was below 10 μ g/l. Earlier proposed standards were less than 2 μ g/l, but the level of compliance relating to this value cannot be determined as the reported analytical limit of detection for dissolved nickel is 5 μ g/l. If the current provisional value were to be lowered significantly (to less than 5 μ g/l), there would be uncertainty about the number of sites in England and Wales that might be non-compliant without improved analytical performance.

The application of Tier 2 of the approach through the incorporation of a background concentration would improve the rate of compliance across the possible EQS range. After the finalisation of any region-specific EQSs based on the nickel RAR methodology, the compliance rate may be assessed once more, provided the WIMS sampling sites are assigned to the appropriate eco-region.

Figure 3.4 Degree of potential compliance versus any given nickel EQS for Environment Agency monitoring data (2000–2004)

Figure 3.5 Degree of potential compliance versus any given nickel EQS for Environment Agency monitoring data (2004 only)

4 Conclusions

The following conclusions can be drawn from this preliminary assessment of a tiered approach to nickel compliance in surface waters:

- Sufficient data were obtained from the Environment Agency to assess the proposed tiered approach using a combination of individual year data (1995), which allowed a comparison of compliance versus river ecological status, and a range of data (1993–2004) for determining trends in compliance. These were applied to Tier 1 and Tier 2 of the assessment. Tier 3 may be completed at a later date if the Ni-BLM is made available.
- Trends over the past decade show a significant decrease in dissolved nickel concentrations across England and Wales with a commensurate increase in levels of compliance to up to around 99 per cent in 2004, based on average river concentrations and a provisional EQS of 20 µg/l.
- The proposed nickel EQS is a provisional value. Any significant decrease in this value, particularly below 10 µg/l, would increase the level of noncompliance significantly.
- Differences between the first two tiers of the assessment in terms of levels of compliance are limited because of the relatively small background addition (3.6 µg/l) to the 20 µg/l EQS for nickel.
- Sites where the provisional EQS is exceeded are mainly in either heavily urbanised catchments receiving industrial wastewater or water bodies receiving contaminated minewater drainage.
- For certain sites (e.g. those in the south west of England), non-compliance at both tiers of assessment was observed, but the water was still classified as of at least fair quality based on ASPT and BMWP scores and the number of taxa present. This may be due to:
 - the adaptation of organisms to high metal background concentrations, in which case the use of a global (and quite conservative) background value for nickel may not be applicable in metalliferous areas;
 - the possibility that these biological indices are a poor measure of metal pollution.
- The uncertainty over the final EQS and the setting of appropriate background concentrations for nickel means that definitive assessments of the impact of their use at Tier 2 cannot be fully evaluated at this stage.

5 Recommendations

Based on the interim data provided, a number of recommendations can be made to improve and strengthen the conclusions provided in Section 4:

- The Tier 3 assessment should be completed once a validated Ni-BLM is received.
- The assessment should be revised in light of any changes in the provisional nickel EQS of 20 µg/l upon completion of the RAR, particularly via the identification of appropriate eco-regions in conjunction with 'normalisation' for bioavailability.
- The assessment should be revised in light of any changes in agreed background nickel concentrations for the UK, particularly if more localised values are introduced.

References

Bossuyt B T A, Escobar Y R and Janssen C R, 2000 Multigeneration acclimation of *Daphnia magna* Straus to different bioavailable copper concentrations. *Ecotoxicology and Environmental Safety*, 61(3), 327-336.

De Schamphelaere K A C, Lofts S and Janssen C R, 2005 Bioavailability models for predicting acute and chronic toxicity of zinc to algae in natural waters. *Environmental Toxicology and Chemistry*, 24, 1190-1197.

Environment Agency, 2006 Determination of metal background reference concentrations: feasibility study for application of the added risk approach. Science Project SC050063: Interim Report. Bristol: Environment Agency.

Environment Agency, 2007 *Tiered approach to the assessment of metal compliance in surface waters*. Science Report SC050054/SR1a. Bristol: Environment Agency.

EU RAR, 2007 European Union Risk Assessment Report: Nickel and nickel compounds. Aquatic effects assessment. Draft of November 2, 2007.

European Commission, 2003 Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances and Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II [online]. EUR 20418 EN/2. Luxembourg: Office for Official Publications of the European Communities. Available from: http://ecb.jrc.it/tgd [Accessed 20 December 2007].

European Commission, 2006 Proposal for a Directive of the European Parliament and of the Council on environmental quality standards in the field of water policy and amending Directive 2000/60/EC. COM(2006) 397 and 398 final. Brussels: Commission of the European Communities.

Heijerick D G, De Schamphelaere K A C and Janssen C R, 2002 Predicting acute toxicity of zinc to *Daphnia magna* as a function of key water chemistry characteristics: Development and characterisation of a biotic ligand model. *Environmental Toxicology and Chemistry*, 21, 1309-1315.

Muyssen B. and Janssen C R, 2000 Zinc deficiency and toxicity in multi-generation acclimation experiments with *Daphnia magna*: shifts in zinc tolerance. *Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology*, 126, 108.

Muyssen B T A and Janssen C R, 2001a Multi-generation zinc acclimation in *Daphnia magna*: implications for water quality guidelines and ecological risk assessment. *Environmental Toxicology and Chemistry*, 20, 2053-2060.

Muyssen B T A and Janssen C R, 2001b Zinc acclimation and its effect on the zinc tolerance of *Raphidocelis subcapitata* and *Chlorella vulgaris* in laboratory experiments. *Chemosphere*, 45, 507-514.

Taylor L N, McGeer J C, Wood C M and McDonald D G, 2000 Physiological effects of chronic copper exposure to rainbow trout (*Oncorhynchus mykiss*) in hard and soft water: evaluation of chronic indicators. *Environmental Toxicology and Chemistry*, 19, 2298-2308.

List of abbreviations

AF	assessment factor
ASPT	average score per taxon
BG_{med}	median background concentration
BLM	biotic ligand model
BMWP	Biological Monitoring Working Party
BOD	biochemical oxygen demand
DO	dissolved oxygen
DOC	dissolved organic carbon
EC10	concentration effective against 10 per cent of the organisms tested
EQI	ecological quality index
EQS	environmental quality standard
EU	European Union
GQA	General Quality Assessment
NOEC	no observed effect concentration
PEC	predicted environmental concentration
PNEC	predicted no-effect concentration
$PNEC_{add}$	predicted no-effect concentration to be added to background
RAR	risk assessment report
SSD	species sensitivity distribution
TGD	Technical Guidance Document
UK	United Kingdom
WIMS	Water Information Management System

Annex A Summary of selected sites and data available for the tiered assessment (1995 only)

			Cor	ncentratio	on (mg/l)	DO %						604	ASDT
RIVERS BROOK		date	BOD	NH_3	Hardness	sat	Cr	Cu	Ni	Pb	Zn	class	(obs/pred)
MARLEY GAP BK	OUSE, STOCKS BR STIVE	19951004	4.48	0.35		94.64	1	17.17	5.33	0.73	16.67	F	0.466997
STOUR (09)	STURMINSTER NEWTON (90**)	19950409	2.75	0.18	219.04	89.74	1.67	4.33	5.33	2	8.33	F	0.466997
RED (06) ROCK DRYERS	Rosecroggan Bridge BELOW ROCK DRIERS	19951020	2.77	1.28	901.68	96.67	1	96.67	36.67	2		F	0.516605
STREAM LYNHER	CP20/6 Notter Bridge	19951012 19950330	1.09 1.33	1.08 0.06	150.81 45.96	85.95 96.42	1 1	395 8.14	40 5	2 2	 21.43	F	0.516605
WATER	Trelyn Bridge	19950410	0.57	0.02	16.71	97.89		2.5	5			F	0.570191
GREAT STOUR GREAT STOUR	BRETTS VAUXHALL	19951016 19951016	2.1 2.36	0.1 0.05	265.64 266.67	98.8 109.36	9 1		77	2		E	0.574692
YEALM	BELOW YEALMPTON STW	19950921	1.67	0.1	67.08	96.47	1	2.53	5	2		F	0.582278
STREAM	HERODSFOOT BRIDGE	19950329	1.06	0.08	56.74	97.67		2.67	5			F	0.582278
WHITTING	WHITTINGTON MOOR	19951025	3.03	0.42	274	83.42	1.78	3.37	5.1	1	15.5	E	0.590219
TORRIDGE	100m d/s Rothern Br	19950914	2.56	0.04	54.46	111.17	1	2.39	5.14	2	5	E	0.590219
		19950320	1.49	0.05	294.76	95.8		2.5	- 5 -			E	0.59322
STREAM	ROAD BRIDGE	19950320	1.08	0.02	291.62	101.31		2.5	5			Е	0.59322
THE CUT	ABOVE THAMES	19951108	3.13	0.48	324	86.46	3.25	8.5	5.5	1.1	32.75	Ē	0.599026
SMITHY BROOK				o o .								-	
(10)		19950329	1.7	0.07	299.5	85.83	1	1.98	5.47	1	20	E	0.599026
STOUR	DURWESTON (95**)	19951127	2.38	0.08	249.8	106.5	1	4.67	10.01	2		E	0.603476
FROME	BROCKHAMTON (95**) U/S TURNERS PUDDLE	19950515	2.09	0.1	255.27	106.89		2.75	5			Е	0.612179
PIDDLE	(95**) MIDELNEY PUMPING	19950320	0.88	0.02	265.13	95.7		2.67	5			Е	0.612179
ISLE RIVER	STATION (U/S SLUICE)	19950425	1.72	0.09	226.96	79.5		4.5	5.5			E	0.616216
TORRIDGE	50m u/s Beaford Br	19950915	2.25	0.04	52.99	103.17	1	2.56	5.5	2	5.25	E	0.616216
BROOK		10050303	1.69	0.2	202 55	88.05	1	2.5	5	2	5	_	0.619677
LITTLE AVON	CHARFIELD	19950308	1.00	0.2	300	94 93		4	5			F	0.618677
TORRIDGE	100m u/s Beam Bridge	19950405	2.63	0.06	42.46	106.05	1	2.58	5	2	6.5	Ē	0.619765
MOLE (06)	Drive	19950911	1.8	0.05	46.7	100.86	1	3.38	5	2	5	Е	0.619765
BISS	D/S TROWBRIDGE STW 10M U/S BR, RODDEN	19950501	4.51	0.32	279.11	82.7	1.5	4	5.5	2	8.5	F	0.620567
RODDEN BROOK	MANOR	19950404	2.31	0.08	163.97	101.83		3	5.5			F	0.620567
WALLERS	SHEEPWASH GATES	19950523	1.34	0.17		59.31	1		5.5	1.25		E	0.628289
	25m d/s EE discharge	19950523	1.5 2.43	0.07	98.78	82.24	1	3 35	5.5	77.75		E	0.628289
PEAGHAM	Zoni u/STE discharge	13330311	2.40	0.14	43.5	100.2		0.00	_	2		-	0.000040
STREAM	40m u/s rd br B3220	19950919	1.55	0.13	66.28	96.92	1	2.5	5	2	5	E	0.633043
DERWENT (02)		19951122	2	0.07	233.75	105	1.12	2.95	5.2	1	11	E	0.634021
GWINDRA	WEST MILLS (90 ^{mb})	19950509	1.82	0.04	258.19	100.71	1.4	2.5	5.2	2.5	11.3	E	0.634021
STREAM	150m u/s Field Bridge	19951013	0.93	0.1	41.20	92.44	1	3.73	5	2		Е Г	0.030304
	NORTHOVER (30 M U/S	19950504	1.07	0.06	057.0	90.84	I	2.5		2		Е Г	0.030304
FIVEHEAD	FIVEHEAD BRIDGE (43M	19950313	2.1	0.1	207.3	92.40		3 25	_ 0 _			Е Г	0.037838
	WEST MILLS (90**)	19950424	1.99	0.07	220.03	02.75 100.71	4.5	3.5	5.83	2	0 33		0.637838
NENT	ALSTON	19951010	1.02	0.04	252.33	97	1	2.5	5.00	19.33	3.55	D	0.645045
LEE (07)	AT WATERHALL	19951130	1.15	0.12	304.33	95.08	2.33	5.1	7	1.53	17.67	D	0.656772
BEULT	CROSS AT HAND COWHAM HANHAM	19950418	2.75	0.09		82.44	1		7	1.3		D	0.656772
BRISTOL AVON	GREEN 1	19950420	2.69	0.17	286.27	93.8	1.4	2.92	5.4	2	7.8	D	0.665557
OTTER	50m u/s ft br Dotton Mill 100M U/S BRIDGE,	19951003	1.83	0.05	166.42	105.75	1	2.5	5.4	3.4	9.2	D	0.665557
AXE	NEAR LOXTON 10M U/S BOW BRIDGE,	19950424	1.99	0.12	321.83	86		2.5	5			D	0.667939
CHEDDAR YEO AIRE	CROSS D/S HICKSON & WELCH	19950411 19950411	1.34 5.52	0.06 0.89	263.52 162	103.57 68.5	 7.89	2.5 4.12	5 5.29	 1.06	 26	D D	0.667939 0.671053
	2	19950514	1.65	0.24	296	96.51	1	4.97	5.33	0.7	9	D	0.671053
		19950308	2.05	0.32	290.9	87.71	1	2.5	5	2	5	D	0.672131
BROOK	TROUT FARM WESTOVER BRIDGE	19950904	1.68	0.2	312.88	88.95	1.75	1.3	5	2		D	0.672131
	(5M U/S TRIB.												
PARRETT RIVER	CONFLUENCE)	19951012	2.52	0.1	287.22	91.8	2	3.33	7	2.67	9.33	D	0.672185
		19950321	1.42	0.07	335.15	93.2		2.5	7			ם	0.672185
	DIGHOF STIULL (D/S	19900000	2.12	0.07	102.97	30.11		2.10	5			U	0.070137

Science Report - Tiered approach to the assessment of nickel compliance in surface waters

			Cor	ncentratio	on (mg/l)	DO 9/						CO A	ASDT
RIVERS BROOK	TYTHERLEIGH HOUSE	date	BOD	NH ₃	Hardness	sat	Cr	Cu	Ni	Pb	Zn	class	(obs/pred)
HALSEWATER	TONE VALE (35M D/S ROAD BRIDGE)	19950329	1.62	0.07	162.46	92.08		2.5	5			D	0.676157
WATER FELBRIDGE	WOODCOCK BRIDGE	19950413	2.27	0.4		67.55	1		24	1		D	0.6768
WATER THE CUT	WOODCOCK BRIDGE ABOVE THAMES YEOVIL (15 M LI/S A30	19951023 19950330	2.27 3.13	0.4 0.48	 305.67	67.55 86.46	31 1	4.93	24.67 5.67	2 1	 12.9	D D	0.6768 0.677228
YEO (09) HAMPSHIRE	BRIDGE) U/S RINGWOOD STW	19950313	2.12	0.11	263.04	95.22		2.7	5.6			D	0.677228
AVON DITCHEND	(95**)	19950530	1.71	0.05	241.52	101.32	3	2.5	5	2	5	D	0.680751
BROOK CAUNDLE	REDBROOK (95**) CORNFORD BRIDGE	19950419	1.8	0.04	31.52	95.55		2.5	5			D	0.680751
BROOK SHERFORD	(95**) SHERFORD BRIDGE	19950322	2.64	0.13	188.9	88.66		3.5	5.33			D	0.681373
RIVER	(95**) KEYNSHAM D/S WIER	19950403	1.96	0.07	172.7	88.47		3	5.33			D	0.681373
BRSITOL AVON ST. CATHERINES	U/S ROAD BRIDGE 1 A4 U/S OF CONFLUENCE WITH	19950502	3.01	0.39	288.6	89.06	1	3	5	2	6	D	0.681518
BROOK	AVON AT NORTHCOTE ROAD,	19950309	2.09	0.04	299.76	93.5		2.5	5			D	0.681518
CRANE (07)	ISLEWORTH	19950918	4.03	0.26	311	90.25	1	8.4	5.5	2.2	21.5	D	0.682261
ADUR EAST	WORTLEFORD BRIDGE	19950330	2.30	0.05	279.33	83.71	1		5.5 6	0.5		D	0.683241
EASTERN YAR STANBRIDGE	BRADING 50M D/S PETERSFIELD	19950512	1.55	0.13	157	88.08	1		6	0.5		D	0.683241
STREAM GREAT STOUR	STW WYE	19950512 19950330	2.94 2.31	1.02 0.17	 261.33	82.99 89.05	1 1		5.33 5.33	1.5 1.23		D D	0.686924
THAMES	AT TEDDINGTON WEIR	19951122	1.65	0.24	264.33	96.51	2	5.27	5	1.13	16	E	0.688433
COLNE (07) HONEYBALL		19950911	2.44	0.09	343	92.18	1	35.65	5	4.6	39	E	0.688433
CARNON	Devoran Bridge	19950405 19950322	2.6 1.49	1.1 0.43	 169.24	77.39 89.72	1 6.25	3.8 525.79	150 81.05	2 12.8	120	D	0.691011
PIX BROOK	LETCHWORTH	19950904	3.63	0.22		119.95	1	6.4	22	3.2	36	D	0.705491
BANWELL	40M U/S BRIDGE, WAYWICK	19950425	2.02	0.27	265.48	81.83		2.5	5			D	0.707269
CONGRESBURY YEO	25M U/S BEAM BRIDGE, WRINGTON	19950314	1.76	0.14	301.17	91.46		2.5	5			D	0.707269
DERWENT (10) DERWENT (02) BODILLY	EDDYS BR	19951108 19951109	1.53 1.4	0.15 0.05	231 58.56	90.73 95	1 1	1.25 1.21	1.37	1 1.54	5 15.2	D	0.709163
STREAM INNY	Bodilly Mill St Clether Bridge D/S GILLINGHAM STW	19950313 19950410	0.55 0.94	0.04 0.02	43.33 56.18	95.88 99.35		2.75 2.5	5 5			D D	0.713128 0.713128
STOUR	(92**) U/S GILLINGHAM STW	19950330	2.2	0.14	253.33	97.09	1	2.75	5	2	5	D	0.715753
STOUR	(95**) Daaman Daidaa	19950330	2.52	0.05	216.65	100.5	1	2.5	5	2	7.5	D	0.715753
FOWEY	Respryn Bridge Respryn Bridge	19950324 19950906	1.07	0.02	27.81	98.89	1	2.58	5	2	9.33	D	0.715867
KIRKBY BROOK	PTC RIVER ALT	19951004	4.1	0.26	191	81.68	2.09	8.59	8.17	1.6		D	0.716561
CALDER (10)	D/S HEBDEN BRIDGE	19950515	2.08	0.22	53.78	95.32	1.71	6.03	8.35	1.09	20	D	0.716561
CARNON	Bissoe Bridge	19951017	2.04	0.43	126.39	92.58	5 5	329.5 500	66.67	10.5	2800	D	0.717728
ANCHOLME	NEW RIVER ANCHOLME HORKSTOW BRIDGE	19950925	3.1	0.14	439	122.43	1	3.1	6	0.5	2	D	0.719368
NEW BEDFORD / HUNDRED FT R	EARITH BR 1	19950522	2.79	0.08	383.88	107.32	1	4.63	6	1.03	6	D	0.719368
STREAM WEST LOOE	Trevillis Wood Churchbridge	19950329 19950324	0.99 1.01	0.06 0.03	55.51 64.39	96.45 98.58		3.33 2.5	5 5			D D	0.719858 0.719858
MERE	150m u/s Farm Br Greatwood	19950922	2.11	0.1	80.2	89.64	1	2.83	5	5	6.67	Е	0.723327
MARAZION	Truthwell Mill Bridge BATHFORD D/S ROAD	19950302	0.94	0.02	84.25	94.69		5	5			E	0.723327
LITTLE AVON	WICKWAR D/S STW	19950303	1.87	0.19	288.63 289.32	93.46 85.07		3.7 4	5			D	0.727955
BERRYFIELD		19950301	2.93	0.17	201.90	74 15		4	6			D	0.732943
TORRIDGE	125m d/s Newbridge	19950915	2.56	0.05	59.98	102.53	1	7.38	6	2	7.5	D	0.737769
STREAM	Ponsmere Bridge WESTOVER BRIDGE	19950315	0.66	0.04	98.77	86.31		4	6			D	0.737769
PARRETT RIVER SUTTON	(5M U/S TRIB. CONFLUENCE)	19950424	2.52	0.1	267.43	91.8	1.25	3.92	5	2	6	D	0.738596
STREAM (EAST) DIVELISH	FARMERS END U/S ROLLS MILL (95**)	19950426 19950327	1.63 2.28	0.03 0.12	242.22 212.56	97.77 96.05		2.5 3.17	5 5.33			D D	0.738596 0.740402
BROOK	D/S FONTMELL PARVA (95**)	19950327	1.29	0.05	249.4	94		2.67	5.33			D	0.740402
TRIBUTARY	FARNBOROUGH	19951120	2.21	0.4	244	80.69	1.33	17.4	6	0.53	44.33	Е	0.740812
NENE BYDEMILL	BRIDGE 1 D/SCORSHAM STW/	19950411	2.64	0.09	355.43	100.35	1	2.5	6	2	5	Е	0.740812
BROOK BRISTOL AVON	THINGLEY STW BITTON	19950412 19950504	1.73 2.74	0.41 0.14	333.14 262.18	93.07 96.72	1.5 1	3.5 3	8 8	2 2	9.5 7	D D	0.743842 0.743842
BRUE	150M U/S BASON BRIDGE 200M U/S BRIDGE,	19950308	2.89	0.19	309.16	84.69		3.5	5.5			D	0.745421
HUNTSPILL	SLOWAY LANE, HUNTSPILL	19950308	3.91	0.14	346.95	102.75		3.5	5.5			D	0.745421

Science Report - Tiered approach to the assessment of nickel compliance in surface waters

			Cor	ncentratio	on (mg/l)	DO #/							ACRT
RIVERS BROOK	U/S LACKHAM	date	BOD	$\rm NH_3$	Hardness	sat	Cr	Cu	Ni	Pb	Zn	class	(obs/pred)
BRISTOL AVON	COLLEGE STW D/S CHIPPENHAM STW MELKSHAM ABOVE	19950412	2.36	0.15	270.2	91.48	1	3.25	6	2	9	D	0.752918
BRISTOL AVON	ROAD BRIDGE	19950419	2.9	0.14	279.27	94.56		3	6			D	0.752918
BLACKBURN BROOK (10)	AT A6109 25M U/S BRIDGE	19951005	2.34	0.37	251.5	78.26	1.5	4.25	11.84	1.01	15	D	0.755627
AXE	LOWER WEARE	19951115	2.46	0.11	380.02	89.43	1.33	2.2	10.83	2		D	0.755627
WHITTING	WHITTINGTON MOOR	19950523 19950308	3.03	0.42	244.5	83.42 93 38	1.71 1.5	2.23	5.28 5.25	1.36	21 16	D	0.756318
BRISTOL AVON	CHIPPENHAM	19950412	2.13	0.12	273.06	93.86	1	3	6	2.5	6	D	0.757282
CHARLTON	CHARLTON/MILBOURNE	19950327	1.62	0.06	263 63	101 54		25	6			П	0 757282
01112.111	Cottarson,50m d/s Weir,100m d/s farm	10000021		0.00	200.00	101101		2.0	Ů			2	0.101202
OTTER	house Cottarson,50m d/s Weir 100m d/s farm	19950424	2.17	0.08	117.56	99.92	1	2.5	5	2		D	0.757679
OTTER	house	19951009	2.17	0.08	139.71	99.92	3.5	2.9	5	2		D	0.757679
TAVY	Denham Bridge Denham Bridge	19950406	1.42	0.02	31.75	99.01 99.01	1	4.14	5	2	8.71	D	0.758123
CARBIS STREAM	prior to Par River	19951113	1.04	0.06	33.42	94.39	1	4.83	5	2		D	0.758993
CAMEL	Polbrock	19950327	1.24	0.03	45.02	95.37	1	2.92	5	2	9.17	D	0.758993
MERE	u/s Pylons 150m u/s Farm Br	19950922	1.46	0.12	66.2	88.52	1	2.25	5.75	2		D	0.759328
MERE	Greatwood	19950329	2.11	0.1	58.87	89.64	1	2.5	5.75	2	7.5	D	0.759328
CRANE (07)	AT NORTHCOTE ROAD, ISLEWORTH AT MOREDON BRIDGE	19950427	4.03	0.26	322.5	90.25	1.5	9.35	6	3	19.5	D	0.760649
RAY SEMINGTON	SWINDON	19951115	2.47	0.17	350	77.7	1	7.5	6	2.6	35	D	0.760649
BROOK	WHISTLEY BRIDGE BELOW WENFORD	19950306	3.91	0.61	258.76	81.63	1	8.5	7	3	20	D	0.763203
CAMEL	DRIES Kernick Bridge	19951011 19951016	3.61 0.99	0.04	146.38 56.38	90.57 96.07	1	4.83	7 8	2		D	0.763203
HAYLE	Godolphin Bridge	19950303	0.93	0.04	84.55	98.91		85	8			č	0.765372
BRISTOL AVON SEMINGTON	D/S AVONCLIFF WEIR	19950502	3.48	0.19	255.54	95.92	1	3	6	2	5	c	0.768939
FAL	Tregoney Gauging Station	19950310	1.28	0.04	51.55	93 96.54	1	2.5 3.83	5	2	31.67	c	0.768939
GWINDRA STREAM	Gwindra Bridge	19950320	0.87	0.07	37.67	98.36		3.33	5			С	0.772727
BROOK	PTC RIVER HYNDBURN	19951011	2.47	0.4	167.25	90.44	1.31	5.09	5	0.91	104.85	С	0.775348
WYRE (03) WASHFORD	BRIDGE KENTS FORD FARM	19951012	3.35	0.18	137.13	94.66	1	2.49	5	0.69	6.52	С	0.775348
RIVER DONIFORD	(60M U/S WEIR) STOGUMBER STATION	19950419	1.58	0.1	146	97.55		2.5	5			С	0.779886
STREAM	(25M U/S) Trepear Bridge	19950421 19950313	1.36 0.84	0.06	156.45 33.76	95.69 95.85		3 10	5			C C	0.779886
KENNAL	Tregolls Bridge	19950314	0.93	0.01	31.93	95.22		6	5			č	0.786164
BRUE	200M D/S BRIDGE, ALFORD 150M U/S BRIDGE,	19950323	1.77	0.14	290.4	94.46		2.5	5			С	0.786618
	GANTS MILL (U/S								_				
BRUE SOUTH TYNE	BRUTON STW) HALTWHISTLE	19950320 19950411	1.69 1.4	0.12	263.76	96 102	1.03	2.5	5 3 77	 5 1	125.5	C C	0.786618
MURK ESK	GROSMONT	19950504	1.4	0.04	45.93	96.84	1	1	4		30	Ċ	0.788955
WEST LOOE	Scawn Mill Bridge Notter Bridge	19950329 19950906	1.44	0.12	74.53 46.33	97.17 96.42		2.5 8.17	5	2	30	C C	0.791594
SOUTH TYNE	WARDEN	19950411	1.8	0.05	90.23	106	1.07	1.42	2.12	4.7	92.67	D	0.792079
WEAR TREGESEAL	WOLSINGHAM	19950410	1.4	0.04	77.07	102	1	1.78	2.1	6.98	43	D	0.792079
MARAZION	Nancledra	19950302	0.97	0.02	33.14	95.53		3.5	5			c	0.793165
HAMPSHIRE AVON	D/S AMESBURY (95**)	19950503	1.48	0.05	261.95	104.71		2.5	5			С	0.8
AVON	AVON BRIDGE (90**) D/S MILVERTON S.T.W.	19950503	1.53	0.03	266.44	111.43		2.5	5			С	0.8
HILLFARRANCE BROOK	(15M D/S TRACK BRIDGE)	19950329	1.55	0.12	194.43	91.46		2.83	5			С	0.801471
HILLFARRANCE BROOK	U/S MILVERTON S.T.W. (5M U/S BRIDGE)	19950329	1.28	0.03	192.47	91.15		3	5			С	0.801471
SEMINGTON BROOK	SEMINGTON U/S ROAD BRIDGE	19950310	2.19	0.07	304.25	97.15		3	6			Е	0.801688
AVON	GALLOWS HILL (95**)	19950503	1.43	0.04	278.7	113.71		3.67	6			Е	0.801688
DOVE (10) MARDEN	DARFIELD STANLEY	19950315 19950412	3.55 2.46	1.24 0.1	329.85 308.7	79.96 94.06	1 2	2.69 5.75	7.44 7.25	1 2	20 8.5	C C	0.804233 0.804233
BEVERLEY BROOK	AT MOTSPUR PARK	19950510	7.06	1.4	278.5	63.12	1	6.45	5	1.6	49.5	С	0.807477
BROOK	AT WATEREND	19950911	3.07	0.09	282.5	98.6	1.5	8.05	5	1.4	22	С	0.807477
BROOK	SODAMILL CROMHALL 50 M D/S DISUSED	19950303	1.87	0.23	267.93	85.53		4	5.5			С	0.807985
WELLOW BROOK	BRIDGE, WRITHLINGTON	19950511	2.79	0.15	308.3	86.5	1.5	3	5.5	2	9.5	С	0.807985
MEDWAY	HARTLAKE BRIDGE	19950420	3.24	0.19	111	95.8	1		5	2		Č	0.814
MEDWAY SHELL BROOK	WHILLE I'S BRIDGE ARDINGLY TREATMENT	19951017	2.21	0.17	129	82.83	1.5		5	2		С	0.814
(05) SHELL BROOK	WORKS ARDINGLY TREATMENT	19950516	1.77	0.1	75.26	93.56	1		5	2		С	0.81854
(05)	WORKS	19951017	1.77	0.1	87.71	93.56	1		5	2		C	0.81854
STOUR	ECCLIFFE (95**)	19950330 19950405	2.1 1.73	0.11	242.81 258.07	96 92 55		2.83	5.33			C C	0.822097
07				5.00	200.07	52.00		0	5.00			Ũ	0.022001

Science Report – Tiered approach to the assessment of nickel compliance in surface waters

			Cor	ncentratio	on (mg/l)								
RIVERS BROOK		date	BOD	\mathbf{NH}_3	Hardness	DO % sat	Cr	Cu	Ni	Pb	Zn	GQA class	ASPT (obs/pred)
STREAM HAYLE	Trenwheal Binner Bridge	19950303 19950303	1.09 1.19	0.05	65.34 68.07	94.29 94.56		10 10	5			C C	0.823214
POSS	LOFTSOME BRIDGE	19951031	2.33	0.1	357.07	128.5	1.06	0.76	_ ' _	1	F 11.07	c	0.825
SEMINGTON BROOK	LITTLETON PANELL BROOK HOUSE D/S	19950307	1.48	0.1	301.93	94 92.4	1	2.5	5	2.5	7.5	с	0.826958
BISS	WEST WILTS TRADING ESTATE	19950424	1.74	0.06	300.99	101.5		2.5	5			С	0.826958
STREAM DERWENT (02)	JENNY MILL LINTZFORD	19950306 19950523	2.69 1.9	0.53 0.05	309.34 205.67	85.83 92	1 1	4.25 2.39	5.75 5.77	2.25 1.06	12.5 21.67	C C	0.827715
	RODBOURNE PUMPING STATION	19950330	1.87	0.13	285.54	84.61		2.75	5.5			С	0.829545
BROOK	PINKNEY FARM	19950310	1.66	0.07	329.54	93.39		3	5.5			С	0.829545
AXE (SOUTH)	BLEADNEY 25M D/S GATE ON TRACK LI/S OF PIPE	19950411	1.86	0.13	285.85	103.71		2.5	5			С	0.830357
AXE WISKE	CLEWER YAFFORTH	19950411 19950915	1.32 2.09	0.05 0.12	276.95 394.67	98.14 76.4	 1	2.5 3.08	5 1.57	 1	 16.25	с с	0.830357 0.830935
DERWENT (10)	LOFTSOME BRIDGE	19950516	1.51	0.07	263	94	1	1.79	1.46	1	20	С	0.830935
BINGHAM STREAM (WEST) SUTTON	NETHERSTOKE	19950426	2.11	0.15	232.38	86.35		2.5	5			С	0.830986
BINGHAM STREAM (EAST)	HALSTOCK (U/S BRIDGE & OUTFALL) D/S A31 ROADBRIDGE	19950426	2.79	0.12	229.8	96.92		3.5	5			С	0.830986
MOORS CRANE	(95**) ROMFORD (95**)	19950531 19950508	1.88 1.93	0.03 0.03	202.89 243.31	87.27 101.36		2.5 2.5	5			C C	0.832061
SOUTH TYNE COMBE BECK	WARDEN AT NY224253	19950926 19950306	1.8 1.13	0.05 0.02	193.33 12	106 98.81	1.09 0.5	1 0.5	1.02 1.04	1.06 1.56	12.87 13.4	C C	0.841121 0.841121
COWAGE BROOK	LOWBRIDGE	19950412	1.96	0.22	272.33	85.15		3.25	5			С	0.842478
BRISTOL AVON	WEIR ROADBRIDGE (D/S	19950330	1.5	0.08	307.34	91.25		2.5	5			С	0.842478
WASHFORD RIVER	ROADWATER FISH FARM) ROADBRIDGE (D/S	19950419	1.43	0.04	114.63	93.82	1	2.5	5	2		С	0.843396
WASHFORD RIVER	ROADWATER FISH FARM)	19951009	1.43	0.04	148.45	93.82	3.67	1.7	5	2.67		С	0.843396
STREAM	Gwedna	19950314	1.13	0.05	85.04	95.78		65	6			С	0.844055
STREAM	Trelaske	19950315	0.82	0.02	122.81	93.98		3	6			С	0.844055
AVON	DOWNTON (90**)	19950522	2.58	0.12	260.14	90.73	2.67	2.5	5	2	5.67	С	0.844444
BROOK GREAT STOUR	WARR BRIDGE (90**) LONGPORT BRIDGE U/S ALLINGTON	19950322 19950330	1.82 2.18	0.11 0.2	186.81 	81.32 93.24	 1.33	3.17 	5 6	 1.27		C C	0.844444 0.845173
MEDWAY FROSTWATER	SLUICES BROOK GREEN (35M	19950420	2.96	0.1	146.93	97.51	2.9		6	3		С	0.845173
(CADBROOK)	U/S ROAD BRIDGE) 150m u/s Field Bridge	19950406	1.82	0.08	151.61	86.92		3.67	5.33			С	0.846918
CREEDY TORY BROOK	Westacott Cott. Portworthy Bridge	19951006 19950406	1.87 0.96	0.06 0.05	187.17 25.7	96.84 97.09	1	1.77 3	5.33 5	2		C C	0.846918 0.847122
CAMEL TINKER BROOK	Polbrock PTC WHITE ASH BROOK	19950914 19950321	1.24 2.21	0.03 0.3	54.9 101.52	95.37 97.01	1 1.41	2.83 20.78	5 5.6	2 2.36	9.17	C D	0.847122
DART	10m d/s Dart Bridge Buckfastleigh	19951030	1.46	0.01	29.28	99.33	1	1.8	5.6	5.8		D	0.848197
CHERWELL	AT MARSTON ROAD, OXFORD AT WATER INTAKE	19951023	2.49	0.2	305.75	92.5	1.25	5.4	5	0.65	6.75	С	0.848263
THAMES PAR BROOK	BUSCOT PARBROOK BRIDGE	19951114 19950505	2.04 4.53	0.1 0.43	316 	95.35 68.64	17.67 1.33	4.6	5 5	0.8 1.6	14.67	C C	0.848263 0.851638
TEST	BROADLANDS (LONGBRIDGE) 70M U/S BRIDGE,WT	19950421	1.98	0.07		105.22	1		5	1.5		С	0.851638
NEW BLIND YEO TETBURY AVON EAST LOOF	STATION (D/S OF CLEVEDON) BACK BRIDGE Trussel Bridge	19950419 19950327 19950329	2.57 1.53 2.33	0.11 0.04 0.07	342.58 292.05 92.48	100.5 92.6 97.28		2.5 2.5 2.67	5			C C C	0.85283 0.85283 0.855754
BOKIDDICK	Lowertown Farm	19950323	0.79	0.07	37.46	86.22		2.5	5			c	0.855754
CEFNI CALDER (10)	U/S CEINT D/S HEBDEN BRIDGE STAVERTON U/S OF	19950419 19950928	5.13 2.08	0.29 0.22	116.4 93.18	95.9 95.32	1.25 8.7	3.37 5.7	18.67 18.73	 1.78	4 39.85	C C	0.857143 0.857143
BRISTOL AVON	WEIR AT NESTLES FACTORY	19950501	2.68	0.11	289.07	98.2		3.5	5			С	0.858779
BROOK	LAMBRIDGE	19950309	1.56	0.03	292.27	96.57		2.5	5			С	0.858779
LYDDEN WONSTON	(95**) D/S WONSTON (95**)	19950322 19950322	3.12 2.38	0.48 0.14	201.4 173.94	87.49 87.94		3 3	5 5			C C	0.858801 0.858801
BINGHAM	U/S RAILWAY BRIDGE,											_	
STREAM CAM	STOFORD BRIDGEHAMPTON 200M U.S. RAILWAY BRIDGE NEAR	19950426 19950313	2.31 1.55	0.14 0.07	225.58 349.59	87.08 88.39		2.5 2.5	5 5			C C	0.859287 0.859287
CALDER (03)	SELLAFIELD 10M D.S. WOODEND	19951011	0.95	0.29		103.48	1	0.95	5	0.5	5	С	0.860963
MARRON	BRIDGE	19950314	1.63	0.06		98.82	0.51	0.84	5	0.5	5	С	0.860963

Science Report – Tiered approach to the assessment of nickel compliance in surface waters

Concentration (mg/l)													
RIVERS BROOK WINDRUSH WINDRUSH	AT GS, NEWBRIDGE AT GS, NEWBRIDGE D/S DIMMER TIP (8M	date 19950517 19951002	BOD 1.95 1.95	NH₃ 0.07 0.07	Hardness 299 286	DO % sat 100.73 100.73	Cr 15.33 1	Cu 2 2.9	Ni 5 5	Pb 0.5 0.5	Zn 2.67 7	GQA class C C	ASPT (obs/pred) 0.861446 0.861446
BACK BROOK	U/S ROAD BRIDGE,LOVINGTON)	19950404	4.13	0.56	407.88	81	2.75	4.75	6.5	2	5	С	0.862715
DROVE STREAM PIDDLE PIDDLE FAL	GASTON GREEN TRIGON (95**) HYDE (95**) Retew Bridge	19950310 19950509 19950509 19951016	3.61 1.65 1.28 1.14	0.2 0.06 0.04 0.12	290.3 268.16 269.43 39.42	83.15 94.78 104.13 92.76	 1.75 1	3.5 2.5 2.5 2.83	6.5 5 5 5	2 2	8 	С С С С	0.862715 0.863014 0.863014 0.868376
CARBIS STREAM TORY BROOK	d/s Wheal Prosper Mica Dam Marsh Mills Bridge	19951013 19950405	1.08 1.09	0.03 0.04	23.78 52.42	94.85 99.8	1	2.8 5.33	5 5	2		C C	0.868376 0.870796
TAMERTON FOLIOT STREAM AIRE FAL	Tamerton Foliot (d/s Trib) CALVERLEY BRIDGE Tregoney Gauging Station DENVER SUJUCE	19950406 19950920 19951016	1.24 4.97 1.28	0.03 0.29 0.19	92.45 189.75 63.18	95.99 76.13 96.54	 7.41 1	2.5 8.06 5.71	5 8.81 8.71	 1.18 2	 23.33 45.71	C C C	0.870796 0.87108 0.87108
TEN MILE GAUNLESS	2 US R WEAR	19951127 19950503	2.74 1.8	0.16 0.08	328.4	99.3 99	0.66 1.27	4.89 7.28	4.47 4.5	0.54 1.62	23.17 20	C C	0.874755 0.874755
FROME BISS	FRESHFORD NORTH BRADLEY	19950515 19950424 19950418	2.32 1.62 2.69	0.1 0.1	231.73 268.37 34.98	98.55 97.31	2	4 4 2.88	5 5	2		C C C	0.875472
CAREY SOUTH BROOK	Boldford Bridge MELKSHAM D/S STW	19950418 19950411 19950419	1.52 8.21	0.03 0.04 4.1	34.90 34.76 310.09	91.28 68.54	3	2.5 4	5	 2	 7	c c	0.877224 0.877863
BRISTOL AVON CRIMPLE BECK DERWENT (02)	SCOTLAND ROAD BLACKSTONES RUFFSIDE BEREMILLS FARM (13M	19950419 19951025 19950511	2.83 4.44 1.1	0.12 2.25 0.05	279.07 174.5 26.97	94.53 77 97	 1 1	3 6.18 1.06	5 2.65 2.67	 1.09 12.95	 54.65 87.5	C C C	0.877863 0.877953 0.877953
ISLE RIVER	U/S FIELD BRIDGE) BRADON BRIDGE (100M	19950406	3.36	0.45		90.94	1	4.6	5	2	6.8	С	0.878229
ISLE RIVER BRISTOL AVON	U/S BRIDGE) MALFORD CHURCH D/S SUTTON BENGER STW	19950424 19950404	2.3 1.71	0.14 0.16	182.89 304	87.77 91.86		3 2.67	5			с с	0.878229
BRISTOL AVON	MALMESBURY D/S BRIDGE QUMERFORD U/S	19950327	1.75	0.04	292.88	93.55		2.5	5			С	0.883721
RIVERS BROOK ARUN	CONFLUENCE WITH MARDEN WELLCROSS BRIDGE	19950405 19950503	2.14 3.88	0.29 0.25	390.53 	92 78.43	1 2.67	2.5 	9.67 10	2 1.5	10	C C	0.88535 0.88535
TORRIDGE ST ERTH	300m d/s town Mills Torrington	19950914	2.29	0.05	53.22	103.08	1	2.5	5	2	21.25	С	0.886538
STREAM WEAR DON (10)	Treloweth SHINCLIFFE DUNFORD BRIDGE	19950302 19950410 19950322	0.86 2.1 1.45	0.04 0.24 0.07	99.58 143.87 34.07	94.18 86 91.88	2.15 1	5.5 2.06 1.47	5 2.85 2.91	 3 1.42	31.67 20	с с с	0.886538 0.889094 0.889094
PILL RIVER	U/S BRIDGE) FRACKFORD BRIDGE	19950419	1.79	0.07	276.48	96.31		2.5	5			С	0.889098
AVILL EAGLEY BROOK EAGLEY BROOK SOWE ASKER	(30M U/S) U/S CHARLES TURNER U/S CHARLES TURNER BAGINTON MILL CONEYGAR (91**)	19950418 19950524 19951129 19950911 19950301	1.21 2.22 2.22 1.82 1.76	0.02 0.12 0.12 0.11 0.04	101.8 28.63 58.73 222.86	96.57 86.78 86.78 88 102.22	90.03 215.33 3.15 	3.17 3.27 4.01 4.02 3.25	5 5 5.53 5.5	1.09 1.51 2.59 	14.78 19.43 10.52 	0000	0.889098 0.889908 0.889908 0.890838 0.890838
BRISTOL FROME	FRAMPTON COTTERELL WILLSBRIDGE D/S OF	19950310	2.36	0.12	248.31	96.08		4	5.33			С	0.893788
SISTON BROOK KIRKBY BROOK	BRIDGE PTC RIVER ALT AT DORCHESTER	19950313 19950526	2.13 4.1	0.08 0.26	292.22 200.5	97.77 81.68	1.08	4.67 7.12	5.33 5.55	 1.48		C C	0.893788 0.894636
THAME PIDDLE FROME AIRE BARLOW BROOK TINKER BROOK	BRIDGE TRIGON (95**) EAST BURTON (95**) U/S CONONLEY BECK SHEEPBRIDGE PTC WHITE ASH BROOK	19950918 19950927 19950524 19950926 19951025 19951011	1.83 1.65 1.94 1.86 2.33 2.21	0.07 0.06 0.04 0.16 0.14 0.3	330.8 231.69 234.35 177 163.5 205.33	88.02 94.78 107.64 80.32 83.67 97.01	9.2 1.5 1 1 1	5.02 0.85 2.58 2.27 1 29.85	5.6 5.5 5.5 1.46 1.42 5.71	0.52 2 1 4.29 1.84	12.4 15 9.8 1038	C C B B C	0.894636 0.894636 0.894636 0.896078 0.896078 0.896078 0.898785
MIDFORD BROOK NEWLYN MYLOR CREEK YEALM	MIDFORD BROOK M Skimmel Bridge Mylor Bridge Popple's Bridge	19950501 19950302 19950314 19950405	1.78 0.78 0.93 1.32	0.07 0.03 0.02 0.04	315.75 40.6 78.27 41.89	94.08 98.55 96.39 96.1	2.14 	4.14 2.5 2.5 2.5	5.71 5 5 5	2.14 	6.71 	C B B B	0.898785 0.9 0.9 0.902574
YEALM HEMBAL BROOK	u/s Fardel Moor Weir d/s Lake BELOW BLACKPOOL	19950405 19951017	0.76 0.97	0.02 0.54	20.29 190.27	97.35 94.67	 1	2.5 70	5 40	 2		B B	0.902574
BRENT	AT UXBRIDGE ROAD HANWELL 30M U/S BRIDGE. CHEW	19950405	5.05	0.4		70.71		1010	58	0.12		в	0.904192
CHEW LADDEN BROOK MONKSILVER	MAGNA COGMILL FARM WILLITON (40M U/S A39	19950426 19950310	2.51 1.95	0.15 0.09	260.09	89.07 87.15	1.5 	2.75 3.33	5 5	2	9.5 	B B	0.90595 0.90595
DONIFORD STREAM	ROAD BRIDGE) SWILL BRIDGE (85M D/S)	19950419	1.22	0.02	157.26 201 39	97.92		2.5	5			B	0.907251
BOVEY	u/s Arm Of Meander Twinyeo Farm	19950516	2	0.02	31.31	95.58	1	2.5	5	2		В	0.908411
BOVEY	u/s Arm Of Meander Twinyeo Farm	19951023	2	0.13	37.74	95.58	1	1.97	5	2		в	0.908411
HOOKE	U/S MAIDEN NEWTON (95**) BRADFORD PEVERELL	19950308	1.54	0.07	216.91	102.22		2.5	5			В	0.910543
FROME GREAT STOUR VINEHALL	STW (95**) BRETTS U/S EWWC	19950501 19950330	1.79 2.1	0.05 0.1	236.93 270.69	97.64 98.8	 1	2.67	5 6			B B	0.910543 0.911111
STREAM HAYLE HAYLE SAIL BECK HAWKCOMBE	ABSTRACTION B3303 Bridge Crowan Drym Farm AT NY175170 PORLOCK (12M U/S	19950421 19950303 19950303 19950314 19950418	1.5 1.13 1.04 1.15 1.05	0.04 0.03 0.02 0.02 0.01	86.25 36.69 57.18 35.41	81.02 95.87 97.83 99.05 96.27	1 0.5 	3.75 3.5 0.51 3.33	6 5 5 5 5	1 0.5 	 5	B B C C	0.911111 0.911392 0.911392 0.914729 0.914729

Science Report - Tiered approach to the assessment of nickel compliance in surface waters

	Concentration (mg/l) D0 % GQA ASPT												
RIVERS BROOK		date	BOD	NH_3	Hardness	DO % sat	Cr	Cu	Ni	Pb	Zn	GQA class	ASPT (obs/pred)
STREAM TARSET BURN	BUNGALOW BRIDGE) REDMIRE	19950921	1.4	0.06	133.75	97	1	1	1	1	16.25	В	0.914934
TYNE (02) WHARFE	CHOLLERFORD RYTHER 1	19950920 19950424	1.5 2.05	0.02 0.1	57.1 276.33	92 91.54	1 1.23	1 1.35	1	1 1.14	16.25 20	B B	0.914934 0.915285
URE SUTTON	BRIDGE 1	19950928	1.98	0.08	288.33	103.6	1	2.19	1	1.08	8.77	В	0.915285
STREAM SUTTON	U/S SUPPLY STW	19950426	2.03	0.17	188.11	94.08	1.33	2.5	5	2	5	В	0.915921
BINGHAM STREAM	U/S SUPPLY STW	19950906	2.03	0.17	182.77	94.08	1	1.98	5	2		В	0.915921
HORNER WATER	GREEN BRIDGE) WEST LYNCH BRIDGE	19950418	0.99	0.01	27.13	97		2.5	5			В	0.918544
	(5M U/S)	19950418	1.59	0.01	146.41	100.64		2.67	5			B	0.918544
ADUR WEST	BINES BRIDGE	19951102	2.20	0.08	191.6	78.05	1		8	2		В	0.919521
WHARFE TEST	RYTHER 1 GREATBRIDGE	19951019 19950413	2.05 1.73	0.1 0.05	249 271.43	91.54 97.9	1 1	2.14	1.78	1.47 0.5	16 	B	0.920755
NORTON SUB HAMDON	D/S ODCOMBE TIP (D/S FOOTBRIDGE,BAGNELL	10050014	1.64	0.10	276 75	02.59	1 67	4.00	10	2		P	0.021002
TREGILLOWE	FARM)	19950914	0.79	0.19	152.36	92.30	1.07	4.23	10	2		B	0.921902
MEDE	300m u/s A386 Br 50m	10050/13	1.46	0.07	54.69	99.52		25	5	2		C	0.921902
WOOLEIGH	25m d/s B2220 rd br	10050010	1.40	0.12	69.71	05.02	1	2.5	5	2	5	c	0.922939
	25M U/S BRIDGE,	19950503	2.46	0.00	3/2 17	89.43	133	2.57	5	2 67	35	в	0.022000
	10M U/S FOOTBRIDGE,	19950425	1 69	0.06	255 /3	115 36	1.00	2.07	5	10	55	B	0.023221
CRIMPLE BECK	BLACKSTONES	19950316	4.44	2.25	172.4	77	1	3.84	3.3	1	20	В	0.925134
WEAR PARK BECK (03) WARNSCALE	LAMBTON AT NY144205	19950928 19950314	3 1.41	1.46 0.02	342.5	93 97.43	1.59 0.5	3.47 0.88	3.26 5	1.27 0.5	20.4 5	B B	0.925134
BECK	AT NY189148 NYNEHEAD (120M D/S	19950314	0.87	0.01		92.59	0.5	1.08	5	0.5	15.6	В	0.925664
TONE RIVER	HORNSHAY BRIDGE) GREENHAM (60M U/S	19950330	1.73	0.08	77.25	90.23	1	2.83	5	2	6	В	0.925996
TONE RIVER	BRIDGE)	19950323	1.63	0.07	84.46	91.27	1.26	2.5	5			B	0.925996
TARSET BURN	REDMIRE	19950502	1.4	0.06	44	97	1	1.15	1.74	1	20	В	0.927856
BENTLEY	WEST LILLING	19950502	2.33	0.1	382	128.5	3.23	2.09	1.67	1	20	в	0.929348
BROOK (10)	BLACKWATER	19951026	1.64	0.08	310.73	90.75	1	1.16	1.67	1	7.5	в	0.929348
ASHFORD	D/S FORDINGBRIDGE	19950516	3.11	0.06	243.26	100.75		2.5	5			в	0.930048
	(95 ^m) Stowford Bridge	19951106	1.23	0.04	253.59	96.55	1	2.5	_ 5 _	2		в	0.930048
CAREY	Ashmill Bridge	19950411	1.38	0.06	30.44 37	92.33 92.45		2.5 2.5	5			c	0.933198
ALLEN	(95**) D/S WITCHAMPTON	19950421	1.58	0.02	273.8	86.58		2.5	5			С	0.933468
ALLEN	BRIDGE (95**) D/S BODMIN	19950424	1.49	0.02	267.64	100.1		2.5	5			С	0.933468
CAMEL TREGESFAL BLACKWATER	(NANSTALLON) STW TREGESEAL BRIDGE	19950914 19950301	1.19 0.98	0.08 0.05	80.64 44.25	95.62 99.38	1	2.4 5	5 5	2 		C C	0.934046 0.934046
(01) BLACKWATER	B1090 RD BDG	19950501	1.55	0.09	386.5	104.06	1	2.7	5	0.5	3	В	0.934615
(01) BLACKBURN	B1090 RD BDG	19951127	1.55	0.09	356	104.06	1	2.8	5	0.5	8	В	0.934615
BROOK (10)	AT A6109	19950516	2.34	0.37	294.2	78.26	1.12	4.2	19.7	1	44.33	В	0.936455
ERME	500m u/s Seguer's Bridge	19951101 19951108	2.75 4.3	0.09	 59.13	82.44 99.28	1.2 1	2.58	19.4 5	2	7.67	B	0.936455
TORRIDGE	100m d/s Rothern Br	19950405	2.56	0.04	40.39	111.17	1	2.5	5	2		В	0.938433
AIRE BENNY STREAM	APPERLEY BRIDGE	19950920 19950315	5.75 0.92	0.3	93.63	83.07 95.08	1.73	7.87 3.67	8.96	1.16	24	C	0.938856
CAM	QUEEN CAMEL	19950313	1.75	0.09	331.08	95.23		2.5	5			В	0.940217
YEO (09)	BICKNELL'S BRIDGE	19950426 19951127	1.66 1.63	0.08	283.25 264 39	81.21 93 38	15	3.17	5	25		B	0.940217
MARDEN	BUCK HILL	19950405	1.86	0.09	313.83	95.11	1.5	2.5	7.5	2	5	В	0.94148
TOM RUDD	40M U.S. LORTON	19950306	2.06	0.09		95 97	0.5	0.6	5	0.5	5 95	в	0 942593
KENSEY	Newport	19950410	1.02	0.03	52.55	96.61		2.67	5			В	0.942593
CHAR	Charmouth (95**)	19950301	2.76	0.25	146.04 197.53	94.42		4	5			B	0.943802
FROME	WOOL BRIDGE (91**) U/S PUDDLETOWN	19950524	1.75	0.05	234.83	91.6		2.5	6			č	0.94453
ARUN	WELLCROSS BRIDGE	19951102	3.88	0.02	204.29	78.43	1.67	2.0	17.67	2		В	0.94453
PIX BROOK TORRIDGE	CHURCH END ARLESEY 100m u/s Beam Bridge TIMBERSCOMBE (D/S	19950904 19950914	2.69 2.63	0.12 0.06	 56.21	106 106.05	1.33 1	44.57 2.6	17.33 5.2	2.17 2	47.33 7	B C	0.945902 0.946886
AVILL TRIBUTARY	GREAT HOUSE FISH	19951101	1.43	0.04	151.21	97.69	1	1.75	5.25	2		С	0,946886
AIRE COLNE (07)	APPERLEY BRIDGE	19950502 19950316	5.75 2.44	0.3	174.78 270.67	83.07 92.18	2.03 1.33	4.49	4.32	1.1 1.67	37 15	B B	0.947573
COBB'S CROSS	BELOW MILLWOOD FISH FARM.					-					-		
STREAM	ANDERSFIELD BELOW MILLWOOD	19950321	2.37	0.08	208.02	92.1	1	2.5	5	2	5	В	0.949275
STREAM BEVERI EV	ANDERSFIELD	19950906	2.37	0.08	219.29	92.1	1.67	1.63	5	2		В	0.949275
BROOK	AT MOTSPUR PARK	19950927	7.06	1.4	244.5	63.12	1	4.5	5	1.45	35	В	0.949799

Science Report – Tiered approach to the assessment of nickel compliance in surface waters

			Co	ncentratio	on (mg/l)								
RIVERS BROOK	WHILLETS BRIDGE	date 19950503	BOD 2.21	NH₃ 0.17	Hardness 96.25	DO % sat 82.83	Cr 1	Cu 	Ni 5	Pb 4.1	Zn 	GQA class B	ASPT (obs/pred) 0.949799
BROOK	WOTTON STW	19950308	2.23	0.36	304.08	95	1	2.5	5	2	5	В	0.950311
BROOK	D/S NIND FISH FARM 200M U.S. RAILWAY BRIDGE NEAR	19950904	2.05	0.32	321.95	87.71	2	1.4	5	2		В	0.950311
CALDER (03)	SELLAFIELD 500M U.S. CALDER	19950307	0.95	0.29		103.48	1	0.9	5	0.75	5.72	В	0.95057
CALDER (03)	BRIDGE	19951011	0.8	0.02	61.43 282.41	100.39	1.98	0.5	5	0.5	 6 5	B	0.95057
STOUR	DURWESTON (95**) STOLFORD BRIDGE (5M	19950531	2.38	0.08	261.29	106.5	1	2.88	5	2		В	0.951557
BROOK	BRIDGE) CANNINGTON (67M D/S	19950315	2.26	0.11	220.88	93.17	1	6	5	2	10	В	0.95171
BROOK EEA	A39 BRIDGE) AT CARTMEL D/S RUSLAND POOL	19950315 19950307	2.4 1.62	0.1 0.09	165.12 135.33	91.29 88.23	 1	3 1.84	5 5	 0.5	5	B C	0.95171 0.956439
RUSLAND POOL	BRIDGE	19950406	1.33	0.02	38.9	95.45	1	1.08	5	0.5	5	С	0.956439
NENT	ALSTON	19950420	3 1.6	0.03	76.97	93 97	1.32	3.39 2.55	3.63	32.53	32.53 989	В	0.956685
MIDFORD BROOK	MIDFORD BROOK M	19950907	1.78	0.07	306	94.08	2.33	5.33	5	2	9.83	в	0.957529
MELLS RIVER	10M U/S BRIDGE, VOBSTER	19950412	1.56	0.06	250.79	99.5		2.5	5			в	0.957529
	D/S CLATWORTHY RES. (50M D/S GARDENER'S								_			_	
TONE RIVER	BR.) WASHBATTLE BRIDGE	19950921	1.62	0.09	40.44	91.8	1	1.88	5	2		В	0.958781
TONE RIVER NINE MILE	(65M D/S)	19950323	1.45	0.03	42.83	91.73		2.63	5			В	0.958781
RIVER TILL (09)	BULFORD (90**) STAPLEFORD (90**)	19950503 19950517	1.23 1.15	0.02	227.69 264.06	99.36 110.48		2.5 2.5	5			В В	0.959032
COLNE (07)	ABOVE THAMES	19950510	2.95	0.15	301.5	87.87	1	10.1	4.45	1.65	17.5	В	0.959381
BY BROOK	BLACKWALL BRIDGE	19950531 19950320	2.84 1.51	0.11 0.05	120 294.55	99.55 98.23	1	2.5	4.45 5	1.25		В В	0.959381
BROADMEAD												_	
BROOK	NETTLETON SHRUB	19950320 19950306	1.66 1.87	0.02	299.68 266.82	103.92 99.81		2.5 3.25	5 28			B	0.959381
LITTLE DON	DEEPCAR	19951004	2.04	0.08	90.79	89.83	2.57	10.14	30.4	5.92	40.67	В	0.959416
MONKSILVER STREAM	MONKSILVER (13M U/S ROAD BRIDGE)	19950410	1.13	0.04	75.1	95.75	1	2.5	5	2	5	в	0.960526
MONKSILVER STREAM	MONKSILVER (13M U/S ROAD BRIDGE)	19951009	1.13	0.04	108.63	95.75	1	1.05	5	2		в	0.960526
ALHAM	U/S ALFORD HOUSE BRIDGE	19950504	1.65	0.15	321.63	81.08		3	7			в	0.962199
YEO (09)	THORNFORD (15 M D/S FOOTBRIDGE)	19950321	1.94	0.12	329.54	94.15		2.5	7			в	0.962199
NIDD	SKIP BRIDGE	19950511	2.13	0.09	140	94.12	1	2.44	1.64	2.11	21	В	0.962825
AIRE	SNAITH 1	19951129	2.3 3.9	1.03	224	95 70.54	2.49	3.68 18.6	16.05	1.27	32	В	0.962825
CEFNI	A5 ROAD BRIDGE	19950419	3.15	0.19	143.6	102.3	1	5.57	15.33	2	4.33	В	0.964164
DERWENT (02) TYNE (02)		19951109 19950503	1.1 1.5	0.05	81.05 65.3	97 92	1	1.02	1.19	3.84 1	96.6 20	B	0.964727
HORSE EYE	D/S HAILSHAM SOUTH	19950926	2 17	2 24		63 38	1.5		7 25	3		В	0.964981
DITTON BROOK	CART BRIDGE LANE	19951123	8.61	1.94	168.14	60.7	1.04	18.83	7.06	1.98	29.85	В	0.964981
YEO (BARNSTAPLE)	50m u/s Riversmead Bridge	19950313	1.45	0.04	53.09	100.14	1	2.5	5	2	6.25	В	0.965451
TAW	Chapelton 200m u/s ft br	19950905	2.31	0.03	63.61	104.67	1	2.58	5	2	5.17	В	0.965451
CALDER (10) BRISTOL FROME	MIRFIELD OLDBURY COURT	19950906 19950310	8.6 1.79	2.14 0.07	204 288.97	88.45 95.08	10.12	7.46 3.33	6.29 6.33	1.93	30.5 	B B	0.965732
STANBRIDGE STREAM	50M D/S PETERSFIELD STW	19951107	2.94	1.02		82.99	1.33		7.67	2		в	0.965753
PAR BROOK	PARBROOK BRIDGE ACASTER MALBIS	19951026	4.53	0.43		68.64	1.5		7.75	3		В	0.965753
OUSE (10)	1 AT NV216210	19951010	2.29	0.5	286.46	86.93	1	2.37	1.16	1.51	11.79	B	0.966252
AIRE	CASTLEFORD	19950411	5.02	1.49	161.67	77.28	3.53	3.97	4.64	1.07	27.33	B	0.966601
CEFNI	A5 ROAD BRIDGE CHISELBOROUGH HOUSE (10M D/S BYME	19950913	3.15	0.19	148.25	102.3	1.07	10.08	4.67	2	12	В	0.966601
PARRETT RIVER	BRIDGE) THORNEY (15M U/S ROAD BRIDGE, 150M	19950509	2.49	0.14	306.24	87.87		2.5	5			В	0.968284
PARRETT RIVER	D/S WEIR) THORNTON BRIDGE	19950505	1.98	0.08	313.98	101.54		2.5	5			В	0.968284
SWALE	1 THORNTON BRIDGE	19950531	1.93	0.1	251.5	99.17	1	2.08	1	2.11	20	В	0.968379
SWALE	1	19950915	1.93	0.1	304.25	99.17	1	2.25	1	2.06	16.5	В	0.968379
DERWENT (02)	ALLENFORD	19950912	1.96	0.16	108.67 69.8	98.55 98	1	1.94	1.31	1.63	16.67	B	0.974122
WELLAND	CROWLAND BRIDGE	19951004	1.95	0.11	348.83	116.64	1	3.1	5	0.5	11	В	0.974359
HICK'S MILL	D/S HORSTEAD MILL	19950515	1.19	0.04	338.8	98.51	1	1.6	5	0.5	2	в	0.974359
STREAM	Hick's Mill	19951019	1.26	0.27	59.97	96.13		132.5	9.54	2		В	0.977456
WISKE	I welveneads YAFFORTH	19950322 19950302	0.95	0.03	72.32	95.51 76.4	1.23	160.71 4.04	9.64	2	923. 20	В	0.977456
DON (10)	DUNFORD BRIDGE	19951013	1.45	0.07	32.87	91.88	1	1.36	2.79	1	15.33	B	0.9783
BROOK	(90**)	19950418	1.72	0.14	30.54	88.88		2.5	5			в	0.979817
HAMPSHIRE AVON	AVON CAUSEWAY (90**) 1	19950530	1.94	0.04	245.7	97.48	2	2.5	5	2	5	в	0,979817
AXE (06)	300m u/s Whitford Bridge	19950420	1.82	0.08	151.9	104.49	1.14	2.93	5	2	5.43	B	0.983019
DEER	50m u/s tt br Dotton Mill Rydon Bridge	19950424 19950418	1.83 3.13	0.05 0.3	136.5 48.49	105.75 92.28	1.17	2.83 3.38	5 5	2	5.83	B B	0.983019
SMALL BROOK	Headon Bridge	19950418	2.12	0.12	43.5	87.91		2.5	5			B	0.983051
	U/S BAGBER BRIDGE	19950327	2.04	0.22	204.93	80.72		3	5			В	0.984772

Science Report - Tiered approach to the assessment of nickel compliance in surface waters

			Cor	ncentratio	on (mg/l)								
RIVERS BROOK	(95**)	date	BOD	\mathbf{NH}_3	Hardness	DO % sat	Cr	Cu	Ni	Pb	Zn	GQA class	ASPT (obs/pred)
LYDDEN AIRE	D/S TWOFORDS BRIDGE (95**) SNAITH 1 BITTON LI/S ROAD	19950327 19950404	2.71 3.9	0.07 1.03	198.29 	89.57 70.54	 3.48	3.25 6.24	5 5.69	 1.04	 28	B B	0.984772 0.985685
BOYD ROTHER AIRE	BRIDGE CANKLOW D/S HICKSON & WELCH	19950313 19950516 19951127	1.7 4.47 5.52	0.08 2.41 0.89	297.05 308.08 216.33	95.39 77.96 68.5	 1.39 7.24	2.67 5.48 7.1	5.67 10.79 10.43	 1.03 1.98	 21.17 39	B B B	0.985685 0.986667 0.986667
FAL EASTLOOE	BELOW MELBUR PLANT LEAT CP31 BELOW MOORSWATER	19951016 19951010	0.91 2.62	0.09 0.04	57.74 302.27	97.35 92.83	1 1	6.73 2.3	8.67 8.67	2 2		B B	0.991468 0.991468
TREVERBYN STREAM GWINDRA	BELOW INNIS MOOR MICA DAM	19951012	0.93	0.08	38.78	86.64	1	1.05	5	2		В	0.992236
STREAM ADUR EAST NEW BEDFORD /	BELOW CURRIAN CP WORTLEFORD BRIDGE	19951013 19950526	0.5 2.74	0.05 0.15	32.38	89.24 83.71	1 1.33	1.73 	5 4.33	2 1.5		B A	0.992236 0.996205
HUNDRED FT R LOW MOOR	EARITH BR 1	19951115	2.79	0.08	331.2	107.32	1.14	5.79	4.43	0.46	10.17	A	0.996205
CERNEY WICK BROOK	AT SPINE ROAD, SOUTH CERNEY	19950316	3.46	2.03	304	79.73	2.59	5.49 2.9	8	4.7	57 26	A	0.996587
01105 (10)	ACASTER MALBIS							. =0	4.07				
SOUTH TYNE ERME	1 ALSTON 500m u/s Seauer's Bridge	19950531 19951010 19950523	2.29 1.5 4.3	0.5 0.02 0.05	205 131.7 60.91	98 98 99.28	1.02 1.04 1	1.76 1.34 2.5	1.07 1.08 5	2.04 3.95 2.2	20 49 5.8	A A A	1 1 1.00365
AVON (06)	150m u/s Hatch Bridge 500m d/s New Bridge	19951102	1.34	0.02	74.8	100.03	1	2.5	5	2	7.2	А	1.00365
BROOK	D/S WELLOW STW	19950501	2 75	0 14	321 64	94 58		4	5			А	1 003883
CAM BROOK GREAT STOUR	U/S VIADUCT LONGPORT BRIDGE	19950501 19951016	1.91 2.18	0.11 0.2	325.25	95.15 93.24	 1.67	2.75	5 21.67	2		A B	1.003883 1.00624
REDRUTH STREAM IVEL	MINERALS A600 RB LANGFORD	19951020 19950321	0.71 2.33	0.02 0.18	70.5	98.58 107	1 1.5	66.67 8.05	20	2 0.55	 12.5	B A	1.00624
WELLAND	CROWLAND BRIDGE D/S CLATWORTHY RES. (50M D/S GARDENER'S	19950404	1.95	0.11	364.86	116.64	1	2.5	7	2	5	A	1.00625
TONE RIVER	BR.) RECTORY BRIDGE (25M	19950323	1.62	0.09	35.88	91.8 93 31	1	2.5	5	2	5.25	A A	1.006838
INGREBOURNE	A13 ROAD BRIDGE LONGSTOCK	19951121 19951019	1.51 1.74	0.42	318 259.5	79.58 102.99	1 1.5	10	9.33 9.5	1.93 2	37.67	A A	1.007886
ANCHOLME PIX BROOK	NEW RIVER ANCHOLME HORKSTOW BRIDGE CHURCH END ARLESEY KEIGHLEY GARFORTH	19950320 19950323	3.1 2.69	0.14 0.12	527.43 	122.43 106	2	2.6 23.7	18 18	 1.7	 32.5	A A	1.009231 1.009231
WORTH COSTA BECK TAW	ROAD KIRBY MISPERTON	19950919 19950405 19950413	2.47 1.56 2.31	0.2 0.09 0.03	81.9 252.73 49.72	86.88 99.5 104.67	1.61 1 1	2.96 1.35 2.5	1.25 1.29	1.34 1 2	16.67 20	A A	1.012681
NORTH RADWORTHY	25m d/s Barham Bridge	19950911	0.72	0.03	38.64	104.07	1	2.5	5	2	5	A	1.013035
WYLYE	HENSFORD MARSH (93**) D/S OLIDHAMPTON	19950510	1.7	0.24	285.29	105	1	2.5	5	2	5	А	1.014975
WYLYE CERNEY WICK	(95**) AT SPINE ROAD,	19950514	1.37	0.02	263.02	110.57		2.5	5			А	1.014975
BROOK DERWENT (02)	SOUTH CERNEY CLKBN DRF U/S ALLINGTON	19950530 19950523	3.46 2	2.03 0.07	303.33 222	75.18 105	1 1.25	2.53 2.69	6.67 6.64	1.77 1.18	15.33 21	A A	1.018519 1.018519
MEDWAY EDEN (05) LEE (07)	SLUICES DELAWARE FARM AT WATERHALL	19951103 19951106 19950329	2.96 2.52 1.15	0.1 0.09 0.12	204.12 295	97.51 91.18 95.08	1 1.14 3.03	 5.45	13 12.71 6.13	2 2 0.67	 17.73	A A A	1.021417 1.021417 1.02144
TADNOLL BROOK	MOIGNE COMBE (95**)	19950410	1.62	0.1	234.38	96.52		2.5	6			А	1.02144
AVON HAMPSHIRE	PETERSFINGER (95**)	19950522	1.99	0.03	268.83	104	1.5	2.5	5	2	5	А	1.021773
AVON WOTTER BROOK	D/S SALISBURY (95**) BELOW CP38/6	19950517 19950925	2.24 0.97	0.03 0.06	274.59 36.96	97.74 102.33		2.5 4.4	5 6.33	2		A	1.021773 1.022654
PIDDLE FOSS OUSE BURN	PIDDLEHINTON (91**) STRENSALL	19950320 19951031 19950522	1.59 2.22 2 3	0.03 0.3 0.05	284.02 328.33 379	99.65 73.09 95	 1 1	2.5 3.94 3.44	6.33 1.59 1.61	 1 1	 11.67 20	A A A	1.022654 1.024779
AVON	HALEPARK	19950522	2.4	0.00	266.11	90.94	2.5	2.5	5	2	5	A	1.025765
HAMPSHIRE	LONGFORD CASTLE	10050522	1.96	0.02	259.2	07.46		25	F			۸	1 025765
DIBB	(95) HARTLINGTON BRIDGE	19950314	1.33	0.03	79.43	102.7	1	1.03	1.06	4.17	20	Â	1.026217
SOUTH TYNE	ALSTON	19950412	1.5	0.02	55.65	98	1.84	1.87	1.07	8.22	44	A	1.026217
AIRE WEAR PORTHTOWAN	SHINCLIFFE	19950502 19950928	4.97 2.1	0.29 0.24	169 356.67	76.13 86	1.89 1	4.56 2.6	3.72	1.68 1.02	23.25 15	A A	1.02669
STREAM	Porthtowan Bridge	19950306	1.01	0.55	103.69	85.79		195	20		1350	А	1.027113
ALLEN (06) LEW	Knightsmill Bridge Combebow Bridge	19950331 19950413	1.37 1.5	0.02 0.05	77.17 45.78	94.85 95.32		2.5 2.5	20 5			A B	1.027113 1.027132
CALDER (03) HAMPSHIRE	BRIDGE	19950307	0.8	0.02	17.67	100.39	1	0.62	5	0.5		В	1.027132
AVON STANNON	RINGWOOD (95**) BELOW STANNON	19950531	1.63	0.05	245.54	97.15		2.5	5			A	1.028169
	CHINA CLAY 25M U/S CONFLUENCE	19950915	1.14 4 24	0.03	19.01	98.98	1 2 F	1.57	5	2		A	1.028169
BRUE	50M U/S COW BRIDGE	19950324	4.21 2.17	0.33	∠95.4 277.99	03.0∠ 94.08	3.5	° 2.83	5	2 	90	A	1.02907
LYD QUITHER BROOK	Greenlanes Bridge	19950411	1.17	0.06	45.35	97.03		2.67	5			A	1.029091
TONE RIVER	BATHPOOL (20M U/S TRACK BRIDGE)	19950331	2.29	0.02	ວບ.ວວ 198.45	90.48		∠.5 2.83	5			A	1.029091
BACK STREAM	FITZROY (25M U/S	19950329	1.53	0.07	204.12	93.58		2.63	5			A	1.029644

Science Report – Tiered approach to the assessment of nickel compliance in surface waters

			Cor	ncentratio	on (mg/l)	DO %						GQA	ASPT
RIVERS BROOK		date	BOD	\mathbf{NH}_3	Hardness	sat	Cr	Cu	Ni	Pb	Zn	class	(obs/pred)
CEFNI	U/S CEINT	19950913 19950413	5.13 1 74	0.29	133.67 281	95.9 102 99	0.93 1	9.88	4	2	13	A	1.031008
CALDER (10) HYNDBURN	MIRFIELD	19950428	8.6	2.14	97.18	88.45	7.85	4.88	5.05	1.32	24.5	A	1.031189
BROOK	PTC RIVER HYNDBURN	19950324	2.47	0.4	130.5	90.44	1.8	10.48	5.09	1.29	345.25	A	1.031189
KENNET (07)	ABOVE THAMES	19950426 19950915	2.64 2.64	0.09	274	92.75 92.75	1 2 3 3	3.1 5.8	5	1.3	10.67 23.33	A A	1.031189
YEO (09) BRADLEY	OVERCOMPTON MILL	19950426	3.55	0.27	260.22	88.75	2.75	2.88	6.75	2	6.5	A	1.03125
BROOK HORSE EYE	PYE CORNER D/S HAILSHAM SOUTH	19950310	2.22	0.07	330.9	90.08		3.33	6.67			A	1.03125
SEWER OUSE (05)	NEW STW BARCOMBE MILLS DENSHURST	19950516 19950505	2.17 2.28	2.24 0.1	110.78	63.38 90	1 1		5	2.13		A A	1.034615
EDEN (05) TEISE	CLAPPERS SLUICE SMALLBRIDGE TRAPHOLE TROUT	19950407 19950510	3.12 1.63	0.1 0.06	140 88.03	87.43 98.48	1 1		5 5	0.5 2		A A	1.035785 1.035785
TRAPHOLE STREAM	PONDS (15M U/S ROAD BRIDGE) TRAPHOLE TROUT	19950419	1.32	0.02	117.93	94	1	2.5	5	2		А	1.036364
STREAM STREAM	PONDS (15M U/S ROAD BRIDGE) 100m d/s br Thorverton	19951009 19951013	1.32 1.7	0.02	132.18 64 57	94 100.38	3.33 1	1.23	5	3.33		A	1.036364
BATHERM	500m u/s rd br Bowbier Hill Under Pylons	19950501	1.41	0.03	88.84	97.67	1	2.5	5	2	5	A	1.037879
DITTON BROOK	CART BRIDGE LANE HALEWOOD GREEN	19950404	8.61	1.94	235.5	60.7	1.31	12.45	6.35	0.65	21.83	А	1.038156
PIX BROOK	LETCHWORTH	19950323	3.63	0.22		119.95	2.6	6.2	6.5	3.05	38.5	А	1.038156
HAVEN VINEHALL	BOREHAM BRIDGE U/S EWWC	19951115	1.5	0.07	87.37	82.24	1		5	2		А	1.038229
STREAM	ABSTRACTION	19951031	1.5	0.04	74.15	81.02	1		5	2		A	1.038229
PLYM	Cadover Bridge	19950410	0.86	0.04	46.88 7.3	94.45 100.29	1	3 1.47	5	2		A	1.038938
BROOK (10) TEST	D/S FLOCKTON GREATBRIDGE IMMEDIATELY D/S NEW	19950427 19951019	1.64 1.73	0.08 0.05	374 258.5	90.75 97.9	1 1	3.64 	14.18 14	1 2	20.25	A A	1.04 1.04
SOMERSET	BRIDGE, SPRING	10050404	3.01	0.26	161 79	07.36	1	3	5	2	75	٨	1 042146
NUNNEY BROOK	50M U/S BR, VALLIS	19950404	1.98	0.20	265.66	93.92		2.83	5			Â	1.042146
BRUNSOW BECK	AT NY072406	19950403	2.45	0.96	129.67	86.69	2	1.62	1.16	2.5	5	A	1.042254
WEAR	U/S WEST ORCHARD	19951023	1.4	0.04	160.33	102	I	1.0	1.10	1.01	19.53	A	1.042204
KEY BROOK SEMINGTON		19950329	3.22	1.01	205.47	50.47		5.25	6.25			A	1.043077
CONGRESBURY	U/S A370 ROAD BRIDGE,	19950915	1.40	0.1	306.35	92.4	2	2.3	0.25	2		A	1.043077
YEO	CONGRESBURY 25M U/S BRIDGE,	19950503	1.72	0.15	343.8	95.69		2.5	5			A	1.044316
	STONE-EDGE-BATCH AT MARSTON ROAD,	19950419	1.91	0.05	357.4	113.46		2.5	5			A	1.044316
GWINDRA		19950425	2.49	0.2	312.5	92.5	1	3.65	5	1.25	5	A	1.045455
THAME	AT DORCHESTER BRIDGE	19950524	1.83	0.1	360.75	88.02	1 25	4.2	4.83	2 0.68	7 25	Δ	1.045455
DUBBERS STREAM	BELOW DUBBERS 11/4	19951013	0.5	0.03	39.15	96.93	1	2.03	5	2		A	1.045455
BLUMER BECK NEWLANDS BECK	PTC R. DERWENT D.S. COLEDALE B.	19950310	2	0.03	59.87 8 81	104.53 98.15	0.65	0.86	0.5	0.5 5.17	6.78 59.7	A	1.046939
STOUR (09) HAMPSHIRE	LONGHAM (90**)	19950529	2.77	0.03	274.19	92.82		3	5			Â	1.048356
AVON	FORDINGBRIDGE (90**) LANGRICK BRIDGE	19950522	2.2	0.07	270.69	89.84		3.13	5			А	1.048356
LOWER WITHAM YEO	1 50m u/s Riversmead	19950912	3.53	0.16	456.6	135.57	1	2.9	5	0.5	2	A	1.04878
(BARNSTAPLE) COBB'S CROSS	Bridge GOATHURST (25M D/S GABLES BRIDGE)	19950906	1.45	0.04	76.61	100.14 72.7	1	2.5	5	2	6.25 5	A	1.04878
COBB'S CROSS STREAM	GABLES BRIDGE) GOATHURST (25M D/S GABLES BRIDGE)	19950906	2.3	0.32	209.36	72.7	1.33	1.83	5	2		A	1.049632
DERWENT (10)	LOW HUTTON	19950516	1.53	0.15	265.5	90.73	1.01	1	1	1	20	A	1.05029
COSTA BECK	KIRBY MISPERTON 100M D/S OF BRIDGE,	19951026	1.56	0.09	257.33	99.5	1	1	_ 1 _	1	8.33	A	1.05029
CHEW WINFORD	PUBLOW 60M D/S BRIDGE, CHEW	19950428	2.11	0.08	291.48	93.58		2.5	5			A	1.050388
	U/S SCALES BRIDGE	19950426	1.84	0.05	275.65	99.58		2.75	5			A	1.050388
BOURNE	(95) LAVERSTOCK (95**) IMMED D/S RED FT BR, U/S RD BR, LOWER	19950425	1.27	0.02	256.13	107.45		2.5 2.5	5			A	1.051071
SHEPPEY	GODNEY IMMEDIATELY U/S	19950322	2.14	0.17	312.53	83.64		2.83	5			А	1.052738
AXE MOLE (07) DERWENT (02)	BRIDGE, HENLEY ABOVE THAMES	19950411 19950502 19951122	1.39 2.35	0.1 0.4	270.25 212.33	100.86 96.68 92	2	2.5 3.87 2.95	5	 0.73	 13.67 16.25	A A	1.052738
LEVY (DRAGLEY) BECK	U/S LOW MILL BRIDGE	19950407	1.9	0.09	93.67	92.5	1	2.00	5	0.5	5	A	1.056673
POAKA BECK SOMERSET	U/S WTP DISCHARGE	19950426	2.6	0.06	64.63	85.82	5.55	1.09	5	2.26	7.7	А	1.056673
FROME	20M U/S BULL'S BRIDGE 100M U/S BR, MURDER COMBE (D/S WHATLEY	19950405	2.73	0.26	118.53	86.18		3	5			A	1.057034
BROOK	QUARRY	19950412	0.97	0.02	249.53	100.36		3.67	5			A	1.057034
55	Scien	ce Report	- nere	u appro	ach to the	assessm	ient of n	ICKEI COL	npilance	e in sur	iace wat	ยเร	

			Co	ncentratio	on (mg/l)	DO #/						CO A	ACOT
RIVERS BROOK IVEL CARNON DOCKENS	A600 RB LANGFORD Twelveheads	date 19950918 19951019	BOD 2.33 0.95	NH₃ 0.18 0.03	Hardness 70.53	sat 107 95.51	Cr 2.33 	Cu 10.3 50.63	Ni 13 13.85	Pb 0.77 2	Zn 14.33 689.23	GQA class A A	(obs/pred) 1.057239 1.057239
WATER	BLASHFORD (90**)	19950418	0.93	0.08	67.72	89.6		2.5	6.67			А	1.061824
BATHERM	Hill Under Pylons 350m d/s br d/s Silverton	19951010	1.41	0.03	149.29	97.67	1	2.5	6.67	2	7.67	А	1.061824
CULM AXE (06) ROTHER	Mill 300m u/s Whitford Bridge CANKLOW D/S DIMMER TIP (8M U/S ROAD	19951017 19951003 19950908	2.38 1.82 4.47	0.11 0.08 2.41	165.51 216.19 348.9	94.92 104.49 77.96	1 1 1.58	3.5 2.58 6.58	6.5 6.5 14.6	2 2 1.04	9 6.33 22.81	A A A	1.062264 1.062264 1.06229
BACK BROOK	BRIDGE,LOVINGTON) WANSFORD OLD ROAD	19951128	4.13	0.56	429.06	81	1.5	5.05	15	2		А	1.06229
NENE BOLINGEY	BRIDGE 1	19950908	2.64	0.09	394.83	100.35	1	8.4	10	0.5	68	A	1.062712
STREAM HICK'S MILL	Perranwell	19950315	0.73	0.02	92.11	94.72		13	10			A	1.062712
STREAM BODELLA	Hick's Mill	19950314	1.26	0.27	60.5	96.13		115	5	2	507	A	1.063241
BROOK MOLE (07) ROOKHOPE YEALM	carsella ABOVE THAMES EASTGATE Hele Cross 350m d/s br d/s Silverton	19951013 19950925 19951023 19950406	6.71 2.35 1.2 0.92	0.05 0.4 0.02 0.17	40.12 237.67 191 5.78	85.33 96.68 98 97.96	1 1.33 1 	4 3.73 5.36 2.5	5 8.67 8.53 5	2 0.97 6.46 	15.67 205.67 	A A A	1.063241 1.064407 1.064407 1.066914
CULM BURE	Mill D/S HORSTEAD MILL	19950502 19951113	2.38 1.19	0.11 0.04	142 305.67	94.92 98.51	1 1	2.75 1.3	5 5	2 0.5	9	A A	1.066914
EXE	100m d/s br Thorverton WARBURTON MILL	19950502	1.7	0.04	53.42	100.38	2	2.5	5	2	5.2	A	1.070896
DEEP MEADOWS		19950322	2.90	0.01	285 33	94 47	3.05	1 11	5	0.67	5	Δ	1.072993
DERWENT (02) SOUTH TYNE MEDWAY	EDDYS BR HALTWHISTLE HARTLAKE BRIDGE	19950511 19950926 19951106	1.4 1.4 3.24	0.05 0.05 0.19	30.07 206.5 145.71	95 102 95.8	1.03 1 1	1.05 1.05 	2.27 2.44 8.5	2.13 1 2	27.33 38.2 	C C A	1.073022 1.073022 1.073211
TEST COLNE (10) COLNE (10)	(LONGBRIDGE) COLNEBRIDGE COLNEBRIDGE	19951023 19950428 19950906	1.98 5.06 5.06	0.07 0.41 0.41	 83.44 107.33	105.22 94.55 94.55	1 5.54 7.71	 3.54 5.04	8.5 3.05 3.09	2 1.52 1.6	 20 15	A A A	1.073211 1.073413 1.073413
NOONHOWE SIKE	AT NY548245	19950322	2	0.12	111.33	83.39	1.16	0.82	5	0.5	5	А	1.074906
WENNING NORTON SUB HAMDON	D/S DRIDGE AT HIGH BENTHAM D/S ODCOMBE TIP (D/S FOOTBRIDGE,BAGNELL	19950412	1.73	0.03	118.67	103.99	1	1	5	0.5	5	A	1.074906
STREAM TREVELLAS	FARM)	19950425	1.64	0.19	367.43	92.58	1	2.5	7	2		A	1.076412
STREAM	u/s Trevalnance Cove KEYNSHAM D/S WIER	19950315	0.66	0.01	98.52	98.6		20	7			A	1.076412
BRSITOL AVON	U/S ROAD BRIDGE 1 U/S COMBE ST. NICHOLAS S.T.W (7M	19950906	3.01	0.39	282.57	89.06	1.5	4.42	6.17	4.67	46	A	1.07772
ISLE RIVER IWERNE RIVER SYDLING BROOK	U/S BRIDGE) STOURPAINE (90**) GRIMSTONE (90**) KEIGHLEY GARFORTH	19950920 19950313 19950501	0.85 1.87 1.24	0.02 0.03 0.02	280.17 306.5 246.41	98.39 104.27 109.58	1.75 	1.73 4.75 2.5	6.25 5 5	2 	 	A A A	1.07772 1.07804 1.07804
WORTH DERWENT (02) COLNE (07)	ROAD ALLENFORD ABOVE THAMES	19950510 19950523 19950921	2.47 1.3 2.95	0.2 0.05 0.15	76.25 43.27 321	86.88 98 87.87	1 1 3.67	2.18 1 15.63	1.66 1.67 5	1.26 1.94 2.47	20 20.67 25.33	A A A	1.084656 1.084656 1.085603
BROOK DART	AT WATEREND 25m u/s Totnes Weir	19950306 19950517	3.07 1.35	0.09 0.03	172.5 35.89	98.6 96.27	2 1	25.45 2.5	5 5	2.35 2	18.5 5.83	A A	1.085603
DART	10m d/s Dart Bridge Buckfastleigh DAMERY/	19950516	1.46	0.01	23.35	99.33	1	2.5	5	5.5	9.5	А	1.089249
LITTLE AVON LITTLE AVON ADUR WEST	HOTEL MIDDLE MILL FARM BINES BRIDGE	19950308 19950308 19950518	1.73 1.64 2.1	0.17 0.06 0.08	302.14 317.56 201.5	90.53 92.67 78.05	1 1	2.75 2.5 	5 5 5	2 1.25	5 	A A A	1.09002 1.09002 1.1
ARUN	PALLINGHAM FOOTBRIDGE	19950505	2.64	0.08	106.5	85.51	1		5	2		А	1.1
FROME	FRESHFORD 90M D/S CONFL	19950915	2.32	0.1	256.13	98.55	1.67	2.67	5	2		А	1.101145
MELLS RIVER INGREBOURNE BRISTOL AVON AIRE	BROOKOVER FARM A13 ROAD BRIDGE SALTFORD U/S CONONLEY BECK	19950404 19950307 19950420 19950512	1.77 1.51 2.5 1.86	0.09 0.42 0.12 0.16	250.77 355.67 288.19 190	101.53 79.58 96.14 80.32	 1 1 1	2.5 7.23 3.5 1.9	5 6.67 6.67 1.1	 0.53 2 1	 15.97 5 20	A A A	1.101145 1.103715 1.103715 1.103715 1.104762
URE	ALDWARK TOLL BRIDGE 1	19950512	1.98	0.08	185.67	103.6	1	1.3	1.1	2.45	20	А	1.104762
TRIBUTARY	FARNBOROUGH LANGRICK BRIDGE	19950522	2.21	0.4	187	80.69	2	8.9	8	1.1	44	А	1.105882
LOWER WITHAM KENT ROTHER	1 BLACKWALL BRIDGE	19950413 19951026	3.53 2.84	0.16 0.11	464.5 156.5	135.57 99.55	1 1	2.8	8	0.5 2	5 	A A	1.105882 1.111293
CUCKMERE FROME (09) NADDER RIVER	SHERMAN BRIDGE DORCHESTER (90**) WILTON (90**) DENVER SLUICE	19951108 19950515 19950503	2.73 1.58 1.74	0.08 0.04 0.04	121.36 254.99 248.24	86.23 105.91 103.07	1 1 	2.5 2.88	7 5 5	2 2 	 5 	A A A	1.111293 1.112811 1.112811
TEN MILE LITTLE DON EBBLE ASHFORD	2 DEEPCAR BROAD CHALKE (95**) D/S FORDINGBRIDGE	19950321 19950420 19950521	2.74 2.04 1.1	0.16 0.08 0.05	575.33 77.98 269.31	99.3 89.83 97.64	4.33 1.47 	6.93 6.65 2.5	12 12.66 5	0.83 3.38 	14.67 26.33 	A A A	1.114478 1.114478 1.117541
WATER DART	(95**) 25m u/s Totnes Weir 150m u/s Hatch Bridge	19950419 19951031	1.23 1.35	0.04 0.03	251.32 36.41	96.55 96.27	 1	2.5 2.6	5 5	 2	 13.8	A A	1.117541 1.121265
AVON (06) NIDD COLEDALE	500m d/s New Bridge KNARESBOROUGH OPPOSITE CHAPEL	19950518 19950511	1.34 1.96	0.02 0.16	67.9 72.13	100.03 98.55	1 1	2.5 1.43	5 1.61	2 2.54	5 26.33	A A	1.121265 1.132827
BECK	WEST OF BRAITHWAITE	19950306	0.96	0.03	7.53	98.9	0.5	0.85	1.63	3.32	137	А	1.132827

Science Report – Tiered approach to the assessment of nickel compliance in surface waters

		on (mg/l)											
						DO %						GQA	ASPT
RIVERS BROOK		date	BOD	NH ₃	Hardness	sat	Cr	Cu	Ni	Pb	Zn	class	(obs/pred)
HALL BECK	AT NY531464 30M U.S. ROAD BRIDGE	19950306	2.2	0.09	85.6	93.5	1	1.08	5	0.5	5	A	1.136784
KING WATER	AT WALTON	19950320	1.77	0.04	76.2	102.45	1	1.06	5	0.75	23.4	А	1.136784
CAM BROOK	GOOSARD BRIDGE 15M D/S FOOTBRIDGE,	19950511	2.43	0.16	248.42	90.13	2.5	3.25	5	2	7.5	A	1.148649
CHEW	KEYNSHAM OUSE, STOCKS BR	19950428	1.98	0.06	285.25	93.58		2.5	5			A	1.148649
MARLEY GAP BK	STIVE 50m d/s North Molton	19950504	4.48	0.35		94.64	1	16.9	5	1.53	21	A	1.15343
MOLE (06)	Bridge AT TEMPLE SOWERBY	19950911	2.07	0.19	39.62	93.71	1	3.38	5	2	5	A	1.15343
EDEN (03)	15M U.S. A66 BRIDGE 20M U.S. NEW BRIDGE	19950906	1.49	0.05	202.5	96.66	1.27	0.99	5	0.77	5	А	1.166667
BELAH	NEAR KABER	19950323	1.43	0.01	111.33	107.07	1.16	0.82	5	0.5	5	А	1.166667

Annex B Summary of dissolved nickel concentrations with time (1993–2004)

	2004	2003	2002	2001	2000	1999	1998	1997	1996	1995	1994	1993
ALFRETON BROOK AT ALFRETON CHESTERFIELD												
ROAD	12.2	7.1	7.5	6.2	7.3	6.7	5.8	6.0	7.2			
ALFRETON BROOK AT TOADHOLE FURNANCE	7.8	7.8	6.7	5.7	6.6	6.9	6.2	6.4	16.6	5.9	8.4	10.3
ARROW RIVER CASTLE RD STUDLEY							5.4	5.0	7.5	5.5	3.1	
ARROW RIVER LOWER SPERNAL FARM								11.6	17.5	13.0	16.3	
ARROW RIVER SALFORD PRIORS							6.6	8.7	8.5	7.4	3.9	
AVON LOWER EVESHAM		5.7	5.5	5.8	6.3	7.2	12.5	14.4	13.7	9.7	8.5	
BOTTESFORD BECK AT SNAKE PLANTATION					5.1	5.3	6.4	6.6	6.2	6.2	6.2	4.2
EREWASH CANAL AT SHIPLEY GATE	5.0	6.6	5.7	6.3	5.7	6.7	7.5	11.8	7.8	6.2		
HOTON BROOK AT COTES		5.0	5.3	5.0	5.0	4.9	5.0	5.0	5.0			
HUNDRED FOOT RIVER EARITH RD.BR.	5.5	5.0	5.0	5.3	7.3	5.0	6.0	6.5	5.0	5.3	3.3	4.1
KEADBY PUMPING STATION					15.8	17.4	20.9	19.9	15.1	12.6	21.7	22.4
MIDDLE LEVEL MD MULLICOURT PRIORY SLUICE	6.4	5.5	5.0	6.0	15.8	8.5	12.0	5.0	11.0	12.5	10.1	16.3
MOTHER DRAIN AT BALBY CARR					22.1	22.2	20.3	23.7	33.7	24.9	44.3	95.9
MOTHER DRAIN AT ROSSINGTON BRIDGE					11.4	12.4	12.3	16.7	22.1	15.5	25.8	61.5
NON-TIDAL RIVER TRENT - HANFORD	5.0	5.0	5.0	5.6	5.3	5.1	6.0	5.1	5.2	6.5	3.7	3.6
NON-TIDAL RIVER TRENT - TITTENSOR	5.5	5.2	5.1	5.2	5.0	5.1	6.2	5.3	6.2	7.2	5.4	4.5
NON-TIDAL RIVER TRENT - WHIELDON ROAD S-O-T	5.0	5.0	5.0	5.2	5.0	5.0	5.2	5.1	5.1	5.3	3.8	3.7
NON-TIDAL RIVER TRENT WALTON ON TRENT						33.3	39.9	51.9	57.1	41.2	37.7	46.6
NON-TIDAL RIVER TRENT AT GUNTHORPE	11.0	13.2	9.5	10.5	16.2	15.2	19.2	34.9	28.3	24.6	18.9	
NON-TIDAL RIVER TRENT AT NOTTINGHAM TRENT												
BRIDGE	11.0	12.1	9.7	12.2	14.5	14.3	21.3	27.7	33.2	27.1	18.1	20.9
NON-TIDAL RIVER TRENT YOXALL BRIDGE	5.0	5.5	5.0	5.0	5.0	5.0	5.1	4.9	5.2	6.2	3.8	4.1
NUT BROOK AT CONFLUENCE	5.0	5.0	5.0	5.0	5.0	5.0						

	2004	2003	2002	2001	2000	1999	1998	1997	1996	1995	1994	1993
QUENIBOROUGH BROOK AT CONFLUENCE WITH RIVER WREAKE					5.0	5.0	5.0	5.3	6.7	6.6	7.4	
R BOWYDD, TYN Y CEFN BRIDGE 65/1/RS45					8.0	8.2			8.6	8.0		
R SEVERN (LOWER) HAW BRIDGE		5.0	5.0	5.0	5.0	5.0	5.1	5.6	5.4	5.1	3.0	
R.ANCHOLME HORKSTOW BOTTOM	6.6	5.0	5.0	12.9	11.5	10.0	13.5	11.0	12.0	8.5	11.6	21.5
R.BLACKWATER LANGFORD INTAKE	5.0	5.0	5.0	5.0	5.0	5.8	5.5	5.0	5.0	5.0	2.5	4.0
R.BURE HORSTEAD MILL	5.0	6.1	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	3.0	3.9
R.CHELMER LANGFORD INTAKE	5.0	5.0	5.0	5.0	5.0	5.5	5.8	5.0	5.0	5.0	2.3	4.2
R.COLNE EAST MILLS INTAKE	5.0	5.0	5.0	5.8	5.0	5.0	5.0	5.0	5.0	5.7	3.1	4.9
R.MEESE AT GREAT BOLAS						5.0	5.0	5.2	5.0	5.0	2.4	
R.NENE WANSFORD OLD RD.BR.	5.0	5.0	5.0	5.5	5.3	5.0	5.5	5.0	6.7	6.8	1.8	5.4
R.SEVERN AT ATCHAM							5.0	5.0	5.0	5.0	1.7	
R.SEVERN SHELTON INTAKE		5.0	5.0	5.0	5.0	5.0	5.0	5.4	5.7	5.0		
R.STOUR AT STOURPORT		6.9	7.2	6.2	5.5	6.7	8.7	8.9	9.7	8.2	8.8	
R.STOUR LANGHAM INTAKE	5.0	5.0	5.0	5.0	6.3	5.0	5.5	5.0	5.0	5.0	3.7	3.7
R.STOUR WIXOE WQMS INTAKE PIER	5.0	5.0	5.0	5.1	7.3	5.0	6.3	5.0	5.0	5.3	3.1	3.9
R.STRINE AT CRUDGINGTON						8.3	7.6	7.0	6.2	7.8	6.6	
R.TEIGL, PONT RHYD Y SARN. 65/1/RS47					6.0	3.0			3.0	3.0	0.8	
R.TEME AT POWICK		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	1.3	
R.TERN AT ALLSCOTT							5.1	5.2	5.1	5.4	2.7	
R.TERN AT ATCHAM		5.0	5.0	5.0	5.1	5.2	5.0	5.3	5.1	5.3	3.2	
R.TERN AT LONGDON ON TERN							5.0	5.2	5.0	5.2	2.6	
R.TERN AT WATER UPTON							5.0	5.1	5.0	5.3	2.0	
R.WELLAND CROWLAND BR.	5.0	5.0	5.0	5.5	5.0	5.0	5.0	5.0	5.3	5.5	2.3	3.1
R.WELLAND TINWELL PUMPING STATION	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.3	5.0	1.8	3.2
R.WENSUM SWEET BRIAR ROAD BRIDGE	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		1.7	5.3
R.WITHAM LANGRICK BOTTOM	5.0	5.0	5.0	6.3	6.8	5.3	6.3	5.0	5.3	4.5	2.7	8.5
RHEIDOL: PENYBONT BRIDGE			3.0	3.0	3.0	3.0				7.0		
RIVER AMBER AT AMBERGATE	5.3	6.7	6.7				6.1	6.9	9.5		6.4	6.8
RIVER AMBER AT BULLBRIDGE	5.1	6.5	6.3	5.5	5.7	5.4	5.7	5.7	8.3	5.3	6.7	6.9
RIVER AMBER AT SOUTH WINGFIELD	6.7	5.9	5.5	5.4	5.8	5.6	5.9	5.8	11.9	5.7		
RIVER CHURNET - CHEDDLETON STATION	5.3	5.5	5.2	5.2	5.4	5.6	6.3	5.7	6.9	5.3	3.8	4.9

Science Report – Tiered approach to the assessment of nickel compliance in surface waters 37

	2004	2003	2002	2001	2000	1999	1998	1997	1996	1995	1994	1993
RIVER CHURNET - CONSALL	5.1	5.5	5.2	5.2	5.6	5.6	6.1	5.7	6.6			5.0
RIVER CHURNET - ROCESTER	5.0	5.5	5.1	5.0	5.2	5.1	5.3	5.3	6.2	5.7	3.7	4.7
RIVER CHURNET - WALL BRIDGE LEEK	5.2	5.5	5.3	5.2	5.5	5.7	6.2	5.5				
RIVER DERWENT AT WHATSTANDWELL						5.1	5.0	5.0	5.0	5.0	2.4	2.1
RIVER DERWENT AT WILNE	5.5	5.2	5.0	5.0	6.9	5.1	5.1	5.0	5.3	5.1	3.3	
RIVER DOVE, MONK'S BRIDGE	5.1	5.0	5.0		5.0	5.1	5.3	5.0	5.6	5.0	3.3	2.7
RIVER EREWASH AT JACKSDALE	8.8	8.8	7.7	9.0	10.5	9.3	10.2	10.1	9.7	10.9	8.6	8.0
RIVER EREWASH AT NEW INLET TO ATTENBOROUGH												
GRAVEL PITS	6.5	7.8	7.7	6.6	9.5	13.5	14.0	22.8	30.2	24.5	21.3	41.2
RIVER EREWASH AT PYEBRIDGE	8.2	8.7	6.9	6.9	10.4	10.6						
RIVER EREWASH AT SHIPLEY GATE	7.4	9.6	7.7	7.8	9.8	19.3	33.9	33.3	63.5	46.0	48.1	30.7
RIVER EREWASH AT TROWELL							27.7	39.9	54.6	37.5	34.1	28.9
RIVER IDLE (MAUN) - AT BAWTRY	5.0	5.0	5.0	5.0	5.1	5.3	5.2	5.0	5.0	5.4	6.3	7.0
RIVER IDLE (MAUN) - AT MISTERTON					5.7	5.9	5.7	6.5	5.4	5.6	8.8	6.9
RIVER IDLE (MAUN) - AT RETFORD			5.0	5.2	5.7	5.3	6.4	4.9	5.1	5.1	4.1	3.9
RIVER IDLE (MAUN) - AT WHINNEY HILL	5.0	5.5	6.3	6.2	9.0	10.6	11.6	5.2	5.2	5.4	2.5	2.9
RIVER SENCE (SOAR) AT CONFLUENCE WITH RIVER												
SOAR	5.0	7.7	5.5	14.0	6.7	7.8	7.4	17.1	28.9	14.1	12.0	3.5
RIVER SENCE (SOAR) AT WIGSTON				8.4	9.5	8.0	9.4	26.0	47.6		23.4	
RIVER SOAR AT RED HILL LOCK	5.4	5.2	5.0	5.4	5.2	5.2	5.5	5.7	7.8	5.1		
RIVER SOW - MILFORD	5.0	5.0	5.0	5.0	5.0	5.0	5.1	5.1	5.2	3.3		3.2
RIVER TAME - (OLDBURY) DOWNSTREAM UNION RD												
OLDBURY	5.7	5.2	5.1	5.6	6.0	8.8	7.5	7.1	10.0	21.3		29.5
RIVER TAME - CHETWYND BRIDGE	36.8	42.5	31.1	32.1	52.1	55.8	77.2	95.9	93.1	74.6	73.8	78.6
RIVER TAME - TWO GATES FAZELEY			13.2							81.7	80.8	101.1
RIVER TAME - COTON LANE NETHER WHITACRE										89.8	90.2	108.2
RIVER TAME - ELFORD										73.7	64.8	73.1
RIVER TEAN - CHECKLEY			5.0	5.0	5.0	5.0	5.0	5.4	6.5			1.7
RIVER TEAN - FOLE 'A'			6.2	5.8	6.3	6.3	6.5	7.6	12.5	9.0	5.8	5.7
RIVER TORNE AT AUCKLEY					5.0	6.3	6.5	7.3	9.5	6.4	8.3	12.5
RIVER TORNE AT ROSSINGTON BRIDGE					5.0	6.6	5.7	6.8	7.6	5.9	3.8	4.5
RIVER TRENT (TIDAL) AT KEADBY (EBB TIDE)						16.0	12.6	13.2	14.9	11.7	10.9	13.9

	2004	2003	2002	2001	2000	1999	1998	1997	1996	1995	1994	1993
RIVER WREAKE (EYE) - AT KIRBY BELLARS	5.0	5.0	5.0	5.0	5.3	5.3	5.1	4.8	5.0	5.0	2.1	1.9
RIVER WREAKE (EYE) - UPSTREAM OF MELTON												
SEWAGE TREATMENT WORKS	5.0	5.0	5.0	5.0	5.0	5.0			5.0	5.0	1.8	
ROLLESTON BROOK (ALDER BROOK) - D/S ROLLESTON	STW		5.0	5.0	5.0	5.2	5.6	5.1	9.0	5.2		
SAREDON/WYRLEY/WASH BROOK - A449 ROAD												
BRIDGE, D/S HMIP (SYNTHETIC CHEMICALS)	5.5	6.8	5.4	6.5	10.3	7.3	7.4	6.8	9.9	9.2	8.2	9.0
SOWE RIVER A45 ROAD BRIDGE							5.0	5.1	5.3	5.3	2.4	
SOWE RIVER BAGINTON MILL							8.1	15.9	7.7	5.5	3.5	
TAME VALLEY CANAL HOLLOWAY BANK	16.5	13.0	13.4	18.8			13.8	25.2	48.8			
TEN MILE R. DENVER SLUICE	5.1	5.0	5.0	5.3	7.8	5.0	5.8	5.0	5.5	7.8	3.8	5.7
THAMES AT CAVERSHAM WEIR	5.0	5.0		5.0	5.0	5.0		5.0				
TIDAL TRENT - RIVER TRENT AT DUNHAM	9.3	12.9	10.2	10.2	14.0	15.7	18.2	22.6	25.0	23.2	16.6	18.3
WYRLEY ESSINGTON CANAL SLACKEY LANE												
GOSCOTE	11.6	13.5	13.6	17.6	15.4	24.2	29.9	16.0	26.0	27.4	29.8	

We are The Environment Agency. It's our job to look after your environment and make it **a better place** – for you, and for future generations.

Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are making your environment cleaner and healthier.

The Environment Agency. Out there, making your environment a better place.

Published by:

Environment Agency Rio House Waterside Drive, Aztec West Almondsbury, Bristol BS32 4UD Tel: 0870 8506506 Email: enquiries@environment-agency.gov.uk www.environment-agency.gov.uk

© Environment Agency

All rights reserved. This document may be reproduced with prior permission of the Environment Agency.