APPENDIX 6

STEP BY STEP GUIDE CALCULATION

STEP BY STEP GUIDE FOR CALCULATING ACTUAL LOADING CONDITIONS (KG).

1. Obtain calculated displacement (Δ_c) as follows :-

Weights	VCG	Vertical Moments	Free Surface
Tanks			
-			
-			
-			-
Stores			-
Crew & Effects			-
Passengers			-
Sub Total (1)		Mt(1)	
			C
			f_s
Cargo (Ontion 2 or any			
other chosen option)			
W _{c1}			
W _{C2}			-
Wc ₃			-
WC4			-
WC5			-
			-
Sub Total (2)	х	Mt(2)	-
Deadweight		Mts(1) + (2)	
Lightship		Mt(3)	
			${f}_{s}$
			-
Displacement (Δ_c)	У	Mts(1) + (2) + (3)	
			${f}_{s}$

2.(i). Obtain draughts (suitably corrected for S.W. specific gravity) from draught indicator system and calculate the mean of means draught (d_o) as follows:-

$$d_o = \frac{d_a + d_f + d_{mp} + d_{ms}}{4}$$

Where

d_a	= draught aft
d_{mp}	 draught midships (port)

 d_f = draught forward d_{ms} = draught midships (stbd)

2.(ii). Obtain trim from $d_f - d_a = t_o$

-ve by stern +ve by head

3. From the trimmed Hydrostatics, using $[d_o]$ and $[t_o]$ obtain the observed displacement $[\Delta_o]$.

4.(i). If $\Delta_o > \Delta_c + (* \text{ tonnes})$ obtain $\Delta_o - \Delta_c$ and calculate the actual KG(fluid) as follows :-

* equivalent to 2cm immersion

Δ_c		Mt(1) + (2) + (3)
Δ_o - Δ_c	Z	Mt(4)
Δ_o	KG solid	Mt(1) + (2) + (3) + (4)

where Z = KG of total cargo weight (x) or ship as a whole (y), whichever is greater.

actual KG(fluid) = KG(solid) +
$$\frac{f_s}{\Delta_o}$$

Obtain <u>maximum allowable KG(fluid)</u> from the curves at page by entering $[d_o]$ (mean of means) and by interpolating (if necessary) at the appropriate $[t_o]$

4.(ii). If $\Delta_o < \Delta_c$ - (* tonnes)

then * equivalent to 2cm immersion

actual KG(fluid) = y + $\frac{f_s}{\Delta_o}$

Obtain <u>maximum allowable KG(fluid)</u> from the curves at page by entering $[d_o]$ (mean of means) and by interpolating (if necessary) at the appropriate $[t_o]$

4.(iii). If $\Delta_o = \Delta_c$ or if the difference $\Delta_o - \Delta_c$ is less than (* tonnes)

then * equivalent to 2cm immersion

actual KG(fluid) = y + $\frac{f_s}{\Delta_c}$

Obtain $\underline{\text{maximum allowable KG(fluid)}}$ from the curves at page (as before)

In all cases 4(i), 4(ii) or 4(iii), for the vessel to comply with the required criteria, it must be shown that :-

actual KG(fluid) < maximum allowable KG(fluid)

STEP BY STEP GUIDE TO CALCULATING ACTUAL LOADING CONDITIONS (GM).

Weights	VC G	Vertical Moments	Free Surface
Tanks	0		
-			
-			
-			-
Stores			-
Crew & Effects			-
Passengers			-
Sub Total (1)		Mt(1)	fs
Cargo (Option 2 or any			
other chosen option)			
WC1			
WC ₂			-
WC ₃			-
WC4			-
WC5			-
			-
Sub Total (2)	х	Mt(2)	-
Deadweight		Mts(1) + (2)	fs
Lightship		Mt(3)	-
Displacement (Δ_c)	у	Mts(1) + (2) + (3)	fs

1. Obtain calculated displacement (Δ_c) as follows :-

2.(i). Obtain draughts (suitably corrected for S.W. specific gravity) from draught indicator system and calculate the mean of means draught (d_o) as follows:-

$$d_o = \frac{d_a + d_f + d_{mp} + d_{ms}}{4}$$

Where

da = draught aft
df = draught forward
dmp = draught midships (port)
dms = draught midships (stbd)

2.(ii). Obtain trim from d_{f} - $d_a = t_o$

-ve by stern +ve by head

3. From the trimmed Hydrostatics, using $[d_0]$ and $[t_0]$ obtain the observed displacement $[\Delta_o]$ and the transverse metacentre KM_t.

4.(i). If $\Delta_o > \Delta_c + (* \text{ tonnes})$ obtain $\Delta_o - \Delta_c$ and calculate the actual GM(fluid) as follows :-

*	equiva	lent to	2cm	immersion
---	--------	---------	-----	-----------

Δ_c		Mt(1) + (2) + (3)
Δ_o - Δ_c	Z	Mt(4)
Δ_o	KG solid	Mt(1) + (2) + (3) + (4)

where Z = KG of total cargo weight (x), or ship as a whole (y), whichever is greater.

actual GM(fluid) = KMt - KG(solid) - $\frac{f_s}{\Delta_o}$

Obtain minimum required GM(fluid) from the curves at page by entering $[d_o]$ (mean of means) and by interpolating (if necessary) at the appropriate $[t_o]$

4.(ii). If $\Delta_o < \Delta_c$ - (* tonnes)

then

* equivalent to 2cm immersion

actual GM(fluid) = KMt - y - $\frac{f_s}{\Delta_o}$

Obtain <u>minimum required GM(fluid)</u> from the curves at page by entering $[d_o]$ (mean of means) and by interpolating (if necessary) at the appropriate $[t_o]$

4.(iii). If $\Delta_o = \Delta_c$ or if the difference $\Delta_o - \Delta_c$ is less than (* tonnes)

then * equivalent to 2cm immersion

actual GM(fluid) = KMt - y - $\frac{f_s}{\Delta_c}$

Obtain $\underline{\text{minimum required GM(fluid)}}$ from the curves at page (as before)

In all cases 4(i), 4(ii) or 4(iii), for the vessel to comply with the required criteria, it must be shown that :-

actual GM(fluid) ≥ minimum required GM(fluid)