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The Global Financial Markets: an Ultra-Large-Scale Systems perspective 

Abstract 

We argue here that, in recent years, the global financial markets have become a complex 
adaptive ultra-large-scale socio-technical system-of-systems, and that this has important 
consequences for how the financial markets should be engineered and managed in future. The 
very high degree of interconnectedness in the global markets means that entire trading systems, 
implemented and managed separately by independent organizations, can rightfully be 
considered as significant constituent entities in the larger global super-system: that is, the global 
markets are an instance of what is known in the engineering literature as a system-of-systems 
(SoS). The sheer number of human agents and computer systems connected within the global 
financial-markets SoS is so large that it is an instance of an ultra-large-scale system, and that 
largeness-of-scale has significant effects on the nature of the system. Overall system-level 
behaviour may be difficult to predict, for two reasons. First, the constituent (sub-) systems may 
change their responses over time, either because they involve human agents as key 
“components” within the system (that is, the system is actually socio-technical), or because they 
involve software systems that evolve over time and “learn from experience” (that is, the system 
is adaptive). Second, even when given perfect knowledge of the constituent systems that 
combine to make up the SoS, the overall system-level behaviour may be difficult or impossible to 
predict; that is, the SoS may exhibit emergent behaviour. For these reasons, the global financial 
markets SoS can also rightly be considered as a complex adaptive system. Major failures in the 
financial markets SoS can now occur at super-human speeds, as was witnessed in the “Flash 
Crash” of May 6th 2010. Events such as the Flash Crash may become more commonplace in 
future, unless lessons are learned from other fields where complex adaptive socio-technical 
systems of systems have to be engineered for high-integrity, safety-critical applications. In this 
document we review the literature on failures in risky technology and high-integrity approaches 
to safety-critical SoS engineering. We conclude with an argument that, in the specific case of the 
global financial markets, there is an urgent need to develop major national strategic modelling 
and predictive simulation capabilities, comparable to national-scale meteorological monitoring 
and modelling capabilities. The intent here is not to predict the price-movements of particular 
financial instruments or asset classes, but rather to provide test-rigs for principled evaluation of 
systemic risk, estimating probability density functions over spaces of possible outcomes, and 
thereby identifying potential “black swan” failure modes in the simulations, before they occur in 
real life, by which time it is typically too late. 
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The Global Financial Markets: an Ultra-Large-Scale Systems perspective 

1. Introduction 

For what events will the date of May 6th, 2010 be remembered? In Britain, there was a general 
election that day, which ousted the ruling Labour Party after 13 years and led to the formation of 
the UK’s first coalition government since 1945. Nevertheless, it seems likely that in financial 
circles at least, May 6th will instead long be remembered for dramatic and unprecedented events 
that took place on the other side of the Atlantic, in the US capital markets. May 6th is the date of 
what is now widely known as the “Flash Crash”. 

On that day, in a period lasting roughly 30 minutes from approximately 2:30pm to 3:00pm EST, 
the US equity markets underwent an extraordinary upheaval: a sudden catastrophic collapse 
followed by an equally unprecedented meteoric rise. In the space of only a few minutes, the Dow 
Jones Industrial Average dropped by over 600 points, its biggest ever intra-day loss of points, 
representing the disappearance of more than 850 billion dollars of market value. In the course of 
this sudden downturn, the share-prices of several blue-chip multinational companies went 
haywire, with shares in companies that had previously been trading at a few tens of dollars 
plummeting to $0.01 in some instances, and rocketing to values of $100,000 in others. Seeing 
prices quoted by some major exchanges suddenly going crazy, other major exchange-operators 
declared “self-help” (that is, they invoked a regulation allowing them to no longer treat the price-
feeds from the other exchanges as valid), thereby decoupling the trading on multiple venues that 
had previously been unified by the real-time exchange of reference price data. 

Then as suddenly as this downturn occurred, it reversed, and over the course of another few 
minutes most of the 600-point loss in the Dow was recovered, and share prices returned to 
levels within a few percentage points of the values they had held before the crash. That 
recovery, which took less than twenty minutes, was the largest one-day gain in the Dow’s 
history. 

Two weeks after the Flash Crash, the US Securities and Exchange Commission (SEC) and the 
US Commodity Futures Trading Commission (CFTC) jointly released an interim report into the 
events of May 6th (CFTC&SEC, 2010a) that established very little, other than dispelling rumours 
of the flash crash having been caused by a “fat-finger” error (where a trader mis-keys an order) 
or terrorist action. After that, for more than four months there was open speculation on the cause 
of the Flash Crash, and senior figures in the markets voiced their growing exasperation at the 
lack of a straightforward explanation. Identifying the cause of the crash was made difficult by the 
“fragmentation of liquidity” (trading taking place simultaneously on a number of independent but 
interconnected exchange-venues), and the widespread use of algorithmic trading systems: 
autonomous adaptive software systems that automate trading jobs previously performed by 
human traders, many operating at super-human speeds. Various theories were discussed in the 
five months that it took the SEC and CFTC to produce their joint final report on the events of 
May 6th. Many speculated on the role of high-frequency trading (HFT) by investment banks and 
hedge funds, where algorithmic traders buy and sell blocks of financial instruments on very short 
timescales, sometimes holding a position for only a few seconds or less. When the SEC/CFTC 
final report on the Flash Crash was eventually published on September 30th, nearly five months 
after the event, (CFTC&SEC, 2010b), it made no mention of a “bug” anywhere in the system 
being a causal factor. Instead, the story it told was that the trigger-event for the crash was a 
single block-sale of $4.1bn worth of futures contracts, executed with uncommon urgency on 
behalf of a traditional fund-management company. It was argued that the consequences of that 
trigger event interacting with HFT systems rippled out to cause the system-level failures just 
described. The SEC/CFTC report was met with very mixed responses. Many readers concluded 
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The Global Financial Markets: an Ultra-Large-Scale Systems perspective 

that it left more questions unanswered than resolved, and a subsequent much more detailed 
analysis of the time-series “tapes” of market event data conducted by Nanex Corp.1 offered an 
alternative story that many market practitioners found more plausible: see Meerman et al. (2010) 
and Easley et al. (2011) for further details of the extent to which the CFTC/SEC version of 
events is disputed. 

Ten months after the event, in February 2011, a specially convened panel of regulators and 
economists, the Joint CFTC-SEC Advisory Committee on Emerging Regulatory Issues, released 
a report (CFTC&SEC, 2011) urging a number of rule changes, some of them fundamental and 
potentially far-reaching. At the time of writing this Foresight review, the extent to which the 
report’s recommendations will be acted upon is unclear (see, e.g., Demos, 2011a, 2011b, 
2011c). 

Now the fact that there was such a rapid recovery immediately after the down-spike meant that, 
by the close of business on May 6th the overall inter-day price change on the previous day was 
nothing particularly dramatic. To someone focused only on daily market-close prices, this may 
look like just another day of a downward-trending market in a time of significant political and 
economic uncertainty: on that day, the Greek national debt crisis was threatening to destabilize 
the entire Euro-zone single-currency economic union; and the indeterminate outcome of the UK 
general election was a further distraction. For sure, the intra-day dynamics on May 6th were 
unlike anything ever seen before, but the market pulled back, so what is there to worry about? 

We contend that there are two significant reasons to be worried by the Flash Crash. The first 
worry is that at the micro-level there was a clear market failure: whether a trader was richer or 
poorer by the end of that day was in many cases not much more than a lottery. The second 
worry is the macro-level observation that, with only a very slight change in the sequence of 
events, the global financial markets could plausibly have gone into meltdown, with May 7th 2010 
(i.e, the next day) becoming the date of a global collapse that dwarfed any previous stock
market crash. We’ll expand on these two worries in the next two paragraphs. 

The first worry, on the micro-level, is that while some equity spot and derivatives trades that took 
place at the height of the mayhem were subsequently “busted” (declared to be invalid on the 
basis that they were clearly made on the basis of erroneous data) by the exchanges, the means 
by which trades were selected for busting was argued by many to be arbitrary, after-the-fact 
rule-making. Some traders who had lost large amounts of money did not have their trades 
busted; some who had made handsome profits found their gains taken away. The flash-crash 
chaos had rippled beyond the equity markets into the foreign exchange (FX) markets where 
certain currency exchange rates swung wildly on the afternoon of May 6th as the markets 
attempted to hedge the huge volatility and risk that they were suddenly seeing explode in 
equities. There is no provision to retrospectively bust trades in FX, and so those deals were left 
to stand. Sizeable fortunes were made, and sizeable fortunes were lost, by those caught in the 
storm; the issue of who lost and who gained was in too many cases almost random. 

The second worry is a much more significant concern: the Flash Crash could have occurred any 
time that day. Certainly the specific time-period during which the Flash Crash occurred, roughly 
2:30pm to 3:00pm, was not cited as a causal factor in the official CFTC/SEC report on the 
events of May 6th, nor in the much more detailed analysis performed by Nanex Corp. This is a 
point recently explored in public statements by Bart Chilton, head of the CFTC, who said the 

1 See www.nanex.net.
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following in a public lecture given in March 2011: “…Think about it. There are stocks and futures, 
which are arbitraged internationally. If the Flash Crash had taken place in the morning on May 
6th, when E.U. markets were open, it could have instigated a global economic event. Since it 
took place in the mid-afternoon, it was primarily limited to U.S. markets…” (Chilton, 2011). 
Although we respect Commissioner Chilton’s view, we think that in fact the much, much bigger 
worry is not what would have happened if the Flash Crash had occurred in the morning of May 
6th, but instead what would have happened if it had occurred a couple of hours or so later that 
day. Specifically, we think that the true nightmare scenario would have been if the crash’s 600
point down-spike, the trillion-dollar write-off, had occurred immediately before market close: that 
is, if the markets had closed just after the steep drop, before the equally fast recovery had a 
chance to start. Faced with New York showing its biggest ever one-day drop in the final 15 
minutes before close of business on May 6th, and in the absence of any plausible public-domain 
reason for that happening, combined with the growing nervousness that the Greek government 
would default on its sovereign debt and throw the entire Eurozone economic union into chaos, 
traders in Tokyo would have had only one rational reaction: sell. The likelihood is that Tokyo 
would have seen one of its biggest ever one-day losses. Following this, as the mainland 
European bourses and the London markets opened on the morning of May 7th, seeing the 
unprecedented sell-offs that had afflicted first New York and then Tokyo, European markets 
would have followed into precipitous freefall. None of this would have been particularly useful in 
strengthening confidence in the Greek debt crisis or the future of the Euro, either. And, as far as 
we can tell, the only reason that this sequence of events was not triggered was down to mere 
lucky timing. Put simply, on the afternoon of May 6th 2010, the world’s financial system dodged a 
bullet. 

We argue here that the Flash Crash is best understood as a “normal failure” in an ultra- large-
scale complex adaptive socio-technical system-of-systems. 

Unpacking that assertion requires some care, so in the following sections we’ll start first with a 
discussion of notable technology failures, then bring the conversation back to discussion of 
failures of the financial markets. 

Systems, such as the financial markets, that are themselves composed of constituent stand
alone systems that are each operationally and managerially independent, are very often the 
result of incremental, sporadic, organic growth and unplanned accretion rather than clean-sheet 
engineering design. They thereby involve or acquire significant degrees of variability in 
components and heterogeneity of constituent systems, and their make-up changes dynamically 
over multiple timescales. For this reason traditional engineering techniques, which are 
predicated on very different assumptions, cannot necessarily be trusted to deliver acceptable 
solutions. And, therefore, new approaches are required: new engineering tools and techniques, 
new management perspectives and practices. 

In the main text and the appendices of this review, we survey some recently developed 
approaches that look likely to grow into promising new engineering techniques in the coming 
decade and beyond, better suited to current and future systems than our traditional engineering 
practices, which owe more to the mid-twentieth-century than they can offer the early-twenty-first. 
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2. Background: Failures in Risky Technology 

The global financial markets are not the only area in which the application of new technologies 
has led to failures. Although operator error can be attributed to many failures, as technological 
systems grow in complexity the prospect of failure-modes being inadvertently designed-in also 
grows. Take, for example, bridge building. As an engineering activity this is something that dates 
at least as far back as ancient Rome (c.150BC) and so probably doesn’t figure as a risky 
technology for many people. Yet for decades, engineering students have been taught the story 
of the Tacoma Narrows suspension bridge, opened in July 1940, which collapsed four months 
later, where the designers did not anticipate the prospect of wind-flows over the bridge deck 
reinforcing the deck’s natural mode of vibrations, leading to the bridge shaking itself apart. 
Presumably, current and future students will also be taught the story of the London Millennium 
Bridge, which opened in June 2000 and two days later was closed for two years to remedy 
destabilizing swaying motions induced when groups of people walked over it. A significant 
difference between Tacoma Narrows and London Millennium is that in the latter case, it was the 
interaction of people, the users, with the engineered system that caused the problem. The 
Millennium Bridge on its own, as a piece of engineering, was a fine and stable structure; but 
when we consider the interaction dynamics of the larger system made up of the bridge and its 
many simultaneous users, there were serious unforeseen problems in those dynamics that only 
came to light when it was too late. 

As engineered systems become more complex, it becomes more reasonable to argue that no 
one person or group of users is responsible for failures, but rather that the failures are inherent, 
latent, in the system; this seems especially so in the case of socio-technical systems, i.e. 
systems (like the Millennium Bridge, when in use) whose dynamics and behaviour can only be 
properly understood by including human agents (such as operators and/or users) within the 
system boundary.2 

This is perhaps most clear in some of the more famous technology failures of the past 40 years. 
The oxygen-tank explosion that crippled the Apollo 13 Lunar Service Module as it was en route 
to the moon in 1970, and subsequent safe return of her crew, has been rightly popularized as a 
major triumph of bravery, skill, teamwork, and engineering ingenuity. Nevertheless, the fact 
remains that NASA very nearly suffered the loss of Apollo 13 and her crew, due to the 
compounding effect of several independent small failures of process rather than malign intent or 
major error from one or more individuals. The successful return of Apollo 13’s crew owed an 
awful lot to the availability of accurate simulation models, physical replicas on the ground of key 
components of the spacecraft, where recovery procedures could be rehearsed and refined 
before being relayed to the astronauts. The value of simulation models is something that we will 
return to in depth, later in this paper. 

While loss of a space vehicle is undoubtedly a tragedy for those concerned, the number of 
fatalities is small in comparison to the potential losses in other high-consequence systems, such 
as petrochemical plants and nuclear power stations. The release of toxic gas at the Union 
Carbide plant in Bhopal in December 1984 immediately killed over 2,000 people, with estimates 
of the subsequent delayed fatalities running at 6,000-8,000. The partial meltdown at the Three 
Mile Island nuclear plant in 1979 was successfully contained, but the reactor-core fire at 

2 For an early, but very insightful, discussion of the dynamics of socio-technical systems, see Bonen (1979).
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Chernobyl in 1986 was not, and estimates of the number of deaths resulting from that event 
range from many hundreds to several thousand. 

High-risk technology failures including Apollo 13 and Three Mile Island were the subject of 
serious scholarly analysis in Charles Perrow’s seminal work Normal Accidents (Perrow, 1984). 
Perrow argued that in tightly-coupled systems with sufficiently complex internal interactions, 
accidents and failures, including catastrophic disasters of high-risk systems with the potential to 
end or threaten many lives, are essentially inevitable – such accidents are, in that sense, to be 
expected as “normal”, regardless of whether they are common or rare. 

In Perrow’s terms, the losses of the NASA space shuttles Challenger in January 1986 and 
Columbia in February 2003 were also normal accidents. However, the sociologist Diane 
Vaughan argued for a more sophisticated analysis in her classic study The Challenger Launch 
Decision (1997), in which she presented a detailed analysis of transcripts, covering the hours 
immediately preceding Challenger’s launch, of interactions between NASA staff and the staff of 
Morton Thiokol, manufacturers of the shuttle’s solid-fuel rocket booster (SRB) that failed leading 
to loss of the vehicle and her crew. The transcripts had been released as part of the official 
Presidential Commission on the Space Shuttle Challenger Accident, led by William Rogers. A 
shocking finding of the Rogers investigation was that the specific failure-mode (burn-through of 
rubber O-ring seals in a critical joint on the SRB) had been known since 1977 and the 
consequent potential for catastrophic loss of the vehicle had been discussed at length by NASA 
and Thiokol, but the shuttle had not been grounded. Vaughan concluded that while the proximal 
cause of disaster was the SRB O-ring failure, the ultimate cause was a social process that 
Vaughan named normalization of deviance. Put simply, normalization of deviance occurs when 
the safe-operating envelope of a complex system is not completely known in advance, and 
where events that were a priori thought to be outside the envelope, but which do not then result 
in failures, are taken after the fact as evidence that the safe envelope should be extended to 
include those events. In this way, deviant events become normalized: the absence of a 
catastrophe thus far is taken as evidence that in future catastrophes are less likely than had 
previously been thought. The flaw in this line of reasoning is starkly revealed when a catastrophe 
then ensues. In Vaughan’s analysis, the loss of Challenger was not a purely technical issue but 
rather was an organizational failure in the socio-technical system comprised of the (technical) 
shuttle hardware systems and the (social) human individuals, teams, and organizations that had 
to interact appropriately to ensure safe launch and return of the shuttle. 

Vaughan’s analysis of the Challenger accident came more than a decade after the official inquiry 
into that 1986 event. In contrast, because of her work on Challenger, following the loss of 
Columbia in 2003 Vaughan was immediately invited onto the Columbia Accident Investigation 
Board (CAIB) and subsequently authored a chapter of the CAIB official report. It was argued that 
once again an organizational failure at NASA had resulted in loss of a vehicle, once again via a 
long-standing process of normalization of deviance. 

For Columbia, the proximal cause of disaster was a lump of insulating foam that broke away 
from the external fuel tank and struck the leading edge of the orbiter’s left wing, damaging its 
thermal insulation: on re-entry, this damage allowed atmospheric gases, compressed in the bow-
wave at the wing edge and hence heated to more than 1,500 degrees Celsius, to penetrate the 
wing; and the vehicle then broke up at high speed. But the ultimate cause was an organizational 
culture that had again engaged in normalization of deviance, despite the warnings from 
Vaughan’s analysis of the Challenger disaster. Prior to the loss of Columbia, sixty-four previous 
missions had suffered strikes from insulating material breaking away during launch and hitting 
the obiter, and yet each such strike was technically a violation of the shuttle’s design 
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requirements: the shuttle had simply not been designed to withstand impacts from breakaway 
insulating material. Most notably, in 1988 on mission STS-27, insulation broke away from an 
SRB during launch and damaged 700 of the heat-insulating tiles on shuttle Atlantis, and the crew 
on board believed they would very likely be killed on re-entry; nevertheless, they weren’t, and 
post-mission repairs to the shuttle’s damage from insulation strikes became increasingly seen as 
nothing more than a routine maintenance issue (Mullane, 2006). Vaughan discussed the 
similarities between the Challenger and Columbia losses in a book chapter (Vaughan, 2005) and 
has documented her experience on the CAIB and her subsequent interactions with NASA in a 
40-page journal article (Vaughan, 2006). The CAIB report is probably the first major US 
government accident investigation that explicitly states the cause of the disaster to be a socio
technical system failure. 

The approaches exemplified by the writings of Perrow and Vaughan are not the only ones. 
Studies of what are known technically as High-Reliability Organizations (such as emergency 
rooms in hospitals, firefighter teams, and the flight-deck operations crews on aircraft carriers) 
have revealed that there are social and organizational, as well as technical, solutions to creating 
resilient socio-technical systems: see, for example, Roberts (1990); Weick & Sutcliffe (2007); 
and Reason (2008). The results from these studies indicate that there is no traditional, “pure” 
engineering approach that is suitable for ultra-large-scale systems. Multi-disciplinary 
approaches, that integrate the social with the technical, need to be developed: so-called socio-
technical systems engineering. 

But what does this academic literature on the study of technology failures offer to teach us about 
the events of May 6th, 2010? 

Of course, the Flash Crash was by no means the first failure in a major financial market. As 
anyone reading this paper must surely be aware, in July 2007 the investment bank Bear Stearns 
was the first in what turned out to be a sequence of major financial institutions to signal that it 
had suffered significant losses on subprime hedge funds, triggering a sudden dramatic 
reassessment of counterparty risk in most major financial institutions around the world which led, 
inter alia, to the UK’s Northern Rock consumer bank being the first to suffer a full-scale public 
bank run in 150 years; and to the US government bailing out insurance giant AIG, mortgage 
providers Freddie Mac and Fannie Mae, and yet famously not extending a lifeline to Lehman 
Brothers, which turned out not to be too big to fail, and duly went bust. 

Taking a longer historical perspective, the crisis of 2007-08 was just one in a sequence that 
stretches back through the collapse of the LTCM hedge-fund in 1998; the “black Monday” crash 
of October 1987; the US savings-and-loan crisis of the mid-1980’s; the Wall Street Crash of 
October 1929; the South-Sea Bubble of the 1720s; and the Tulip Mania of the 1630s. 

This history of financial crises has been documented in a popular text by Kindleberger (2001), 
and with more academic rigour by Gorton (2010). The events of 2007-08 have been recounted 
from a number of journalistic perspectives, of which Lewis’s (2010) and Tett’s (2009) are notably 
thorough and well written. Tett’s perspective is particularly insightful: she is a senior journalist for 
the Financial Times but has a PhD in social anthropology, and this clearly influences her 
analysis. Tett was one of the few journalists to warn of the impending crisis before it came to 
pass, and notes various events that are clear instances of normalization of deviance. Lewis’s 
brilliant book tells the story of the few individuals who recognized that deviance, and bet on the 
markets failing. For more scholarly, academic, studies of the sociology of the financial markets, 
see the works of Edinburgh sociologist Donald MacKenzie and his colleagues (MacKenzie 
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2008a, 2008b; MacKenzie et al. 2008), although all of those pre-date the turmoil of the subprime 
crisis. 

One significant difference between previous financial crises and the Flash Crash is the speed at 
which they played out. In the past quarter of a century, financial-market trading has shifted from 
being a largely human, face-to-face activity, to being phone-and-screen-based rather than face
to-face, but still largely requiring a human at each end of the phone or screen. But within the 
past decade a fundamental technology-led shift has occurred. Increasingly, the counterparties at 
either end of the trade, at each end of the telecoms cable, are pieces of software rather than 
humans. Algorithmic trading systems are increasingly trusted to do trading jobs that were 
previously done by human traders, and to do jobs that would require super-human data-
integration abilities in a person.3 As was seen on May 6th, the system-wide interaction between 
multiple independently-engineered, independently operated, and independently managed 
automated trading systems had at least one unknown catastrophic failure mode. A major 
proportion of traders in the markets are still human, but to understand today’s markets it is 
necessary to study the interaction of these human traders with their automated counterparts; 
that is, we need to study the socio-technical system. 

The danger that normalization of deviance posed in high-frequency automated trading systems 
in the global financial markets, and the possibility of major catastrophe happening within very 
short time-scales, was discussed in a strategic briefing paper written by one of us for the UK 
Government’s Office of Science, first draft of which was submitted in January 2010 and the final 
version of which (Cliff, 2010) was submitted to the government nine days before the Flash 
Crash. Similarly, in the US at least one academic was repeatedly warning the SEC of the 
likelihood of a Flash Crash type of event in the year running up to May 6th 2010 (Angel, 2009a, 
2009b, 2009c; Angel et al., 2010; Angel 2010a, 2010b). 

We think it is reasonable to argue that the Flash Crash was, at least in part, a result of 
normalization of deviance. For many years, long before May 6th 2010, concerns about systemic 
effects of rapid increases in the price volatility of various instruments had led several exchanges 
to implement “circuit breaker” rules, requiring that trading in a security be suspended for some 
period of time if the price of that security moved by more than some percentage within a 
sufficiently short time-period. For instance, the London Stock Exchange first adopted circuit-
breakers, now known there as Automated Execution Suspension Periods (AESPs) and Price 
Monitoring Extensions (PMEs), shortly after the 1987 Black Monday crash; and Chi-X Europe 
enforces “order-entry controls” that prevent orders being entered that are more than 20% away 
from the current price (Flinders, 2007; Grant, 2010). In response to the Flash Crash, the USA’s 
SEC has now enforced similar mechanisms in the US markets with the aim of preventing such 
an event re-occuring. In fact the move toward introducing circuit-breakers in the US pre-dates 
the Flash Crash by more than two years: it had been proposed in an influential report on the 
sub-prime crisis from the Institute of International Finance (IIF, 2008) but seems to have been 
actively resisted until the events of May 2010. Thus, it seems plausible to argue that before the 
Flash Crash occurred there had been some significant degree of normalization of deviance: 
high-speed changes in the prices of equities had been observed, market participants were well 
aware that that could lead to a high speed crash, but these warning signals were ignored and 
the introduction of safety measures that could have prevented them was resisted. 

3 The history of the spread of technology innovations in the financial markets, and some likely future developments, 
are discussed in a recent review by Cliff, Brown, & Treleaven (2011).
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Moreover, it could plausibly be argued that normalization of deviance has continued to take 
place in the markets since the Flash Crash. The SEC’s introduction of circuit breakers seems to 
have been offered, and largely accepted, as the one necessary solution for preventing another 
similar event; and (so the story goes) all is now well. We are told that adding circuit breakers 
firmly shuts the stable door. Admittedly, this was done only after the Flash Crash horse had 
bolted, but at least the door is now shut. 

Now, for sure, the introduction of circuit breakers means that the US markets today are not the 
same markets as they were on May 6th 2010. With circuit breakers added, those markets, and 
the other markets around the world that they are coupled to (i.e., the entire global financial 
market system) should be in a new dynamic regime – that is, their market dynamics are different 
now. But the new dynamics are still not entirely known, and so the new regime is certainly not 
yet guaranteed to be safe. Despite the circuit breakers, the next Flash Crash could be lurking 
just around the corner. 

There are anecdotal stories that the speed of price fluctuations occurring within the limits of 
circuit breaker thresholds seems to be increasing in some markets (See, e.g., Blas, 2011); and 
there is evidence to suggest that another Flash Crash was “dodged” on September 1st 2010, in a 
similarly bizarre period when quote volumes exceeded even those seen at peak activity on May 
6th 2010 (Steiner, 2010), but no official investigation was commissioned to understand that latter 
event. 4 Furthermore, the circuit-breaker mechanisms in each of the world’s major trading hubs 
are not harmonized, exposing arbitrage opportunities for exploiting differences; computer and 
telecoms systems can still fail, or be taken down by enemies of the system, and the systemic 
effects of those failures may not have been fully thought through. 

Of course, the next Flash Crash won’t be exactly the same as the last one, the SEC’s circuit 
breakers will probably see to that. But there are no guarantees that another event, just as 
unprecedented, just as severe, and just as fast (or faster) than the Flash Crash cannot happen 
in future. Normalization of deviance can be a very deep-running, pernicious process. After 
Challenger, NASA addressed the issue with the SRB O-ring seals, and believed the Shuttle to 
be safe. That was no help to the crew of Columbia. 

Reassurances from regulators that all is now well are likely to sound somewhat hollow for as 
long as people can remember the near-total failure of the regulatory bodies to have anything 
useful to say about the subprime crisis until shortly after its severity was clear to even the most 
casual of observers. Light touch regulation and its consequence for financial markets in the UK 
were discussed in the 2009 Turner Review5, and the parallel systemic failure of the economics 
profession is discussed at length by Colander et al. (2009) and by Bootle (2009). The next 
market failure may well be a failure of risky technology that, like the Flash Crash, has no clear 
precedent. 

The global financial markets, considered as a single ultra-large-scale super-system, is made up 
of components, of constituent systems. These constituents include the human traders and their 
trading procedures; the various electronic exchanges; the automated trading systems operated 

4 Note added in proof: the final draft of this paper was submitted in April 2011, but the occurrence of anomalous 
market events (“deviance”) continued through the summer of 2011. E.g., on June 8th 2011, the highly liquid market 
for US Natural Gas underwent an astonishing upheaval where prices locked into a wave-like pattern with steadily 
increasing amplitude, and then crashed heavily. Nanex Corp. provide an analysis of this event, concluding that a 
rogue algorithm was at fault, at http://www.nanex.net/StrangeDays/06082011.html. 
5 http://www.fsa.gov.uk/pubs/other/turner_review.pdf.
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by the various investment banks and hedge funds; and their associated clearing, settlement and 
risk-management systems. All of these constituent systems have been developed, procured, 
operated and managed independently, although for some of them the development and 
procurement processes were informal, organic growth rather than pre-specified projects. That is, 
the current global financial markets are, from a technology perspective, systems of systems 
(SoS). We explore the definition of “system of systems” in some detail in Appendix A.2. 

A key issue with SoS is that the effects of failure in one or more of the constituents may be 
contained, or may ripple out in a domino-effect chain reaction, analogous to the crowd-
psychology of contagion. Furthermore, SoS are often used in unanticipated circumstances and 
by unanticipated users. In such situations, the response of the constituent systems may not 
result in local failure but rather the combined local responses can trigger a global failure: this 
seems to be what happened in the Flash Crash. In this very definite sense, the global financial 
markets have become high-consequence socio-technical systems of systems, and with that 
comes the risk of problems occurring that are simply not anticipated until they occur, by which 
time it is typically too late, and in which minor crises can escalate to become major catastrophes 
at timescales too fast for humans to be able to deal with them. The extent to which the 
SEC/CFTC report attributes cause to a single rushed block-sale as a $4.1bn hedge as the 
trigger-event in the Flash Crash seems comparable to the way in which the Challenger accident 
investigation report identified failed SRB O-rings: there is a wider socio-technical perspective 
that should not be ignored, and which was already being pointed to by some authors prior to the 
events of May 6th 2010 (Haldane, 2009; Cliff, 2010). 

That the global financial markets have become ultra-large-scale complex IT-centric socio
technical systems is perhaps no surprise, given the wider context that IT systems have moved 
from back-office support (for payroll processing, say) firmly onto the critical path for very many 
enterprises and organizations, to the point where failure of the IT system can incapacitate an 
organization. For example, ten years ago a failure of the IT servers in a hospital would not have 
a major negative effect; whereas in the near future, once all data is digitized at the point of 
capture and integrated with patient’s historical data before delivery in an appropriate form to a 
healthcare practitioner, then when a hospital’s servers go down it will cease to be a functioning 
hospital and instead be a big building full of sick people, with highly trained professionals 
frantically tapping the touch screens on their PDAs/tablet-computers, wondering where the data 
went. Similar stories can be told, or are already plausibly foreseeable, in very many private-
sector, public-sector, and defence organizations in most industrialized economies. 

Most notably, such issues have for some time been a growing, major concern in those areas of 
systems engineering where system failures can result in hundreds or thousands of fatalities or 
where, in the limit, system failures pose existential threats to entire nations: the engineering 
research literature in aerospace, nuclear, and defence systems may well be a source of 
experiences and new tools and techniques that could be applicable to the financial markets, 
although it is doubtful that any techniques yet exist that address the unique characteristics of 
ultra-large-scale systems. The manifestly dire consequences of failure in aerospace, nuclear, 
and defence systems, and also of course in automotive systems, has led to the development of 
engineering teaching and practices specific to the development and maintenance of safety-
critical, high-integrity systems: a field known as high-integrity systems engineering (HISE), which 
we briefly review in Appendix A.1 of this document. 

So, the concerns expressed here about modern computer-based trading in the global financial 
markets are really just a detailed instance of a more general story: it seems likely, or at least 
plausible, that major advanced economies are becoming increasingly reliant on large-scale 
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complex IT systems (LSCITS): the complexity of these LSCITS is increasing rapidly; their socio
economic criticality is also increasing rapidly; our ability to manage them, and to predict their 
failures before it is too late, may not be keeping up. That is, we may be becoming critically 
dependent on LSCITS that we simply do not understand and hence are simply not capable of 
managing. This is something that we illustrate, purely notionally, as a single three-line graph, 
shown in Figure 1. 

FIGURE 1: The Complexity Crossover Crisis. The complexity of information and communications technology 
(ICT) socio-technical systems of systems (SoS) has increased dramatically since ICT was first commercialized in 
the 1950s, and in recent years the socio-economic criticality of ICT SoS has also sharply increased, as very many 
enterprises and organizations in advanced economies have become dependent on the availability of ICT 
functionality as a key component on the critical paths of their operations. Over the same period, there is increasing 
concern (and growing evidence) that our ability to manage and predict the behaviour of these critical ICT SoS is not 
increasing at the same pace, and so at some point in time there is the potential for crisis, where major socio
economic systems are critically dependent on ICT SoS whose complexity is beyond that which we can manage. We 
are deliberately non-committal on the precise timing of this crossover point: for some companies or industrial 
sectors it could be a decade or more away, for others it could have happened already.

We, the authors of this review, each work for major national strategic initiatives intended to 
address these issues. In the UK, the National Research and Training Initiative in the Science 
and Engineering of LSCITS was started in 2007 as a strategic investment with the primary aim 
being to foster the formation of a new community of researchers and practitioners with the 
training and experience appropriate for dealing with future software-intensive systems 
engineering dominated by LSCITS issues (Cliff et al. 2006). At pretty much exactly the same 
time as the UK LSCITS Initiative was being planned and set up, entirely independently, in the 
USA the US Army commissioned a team of world-class researchers led by the Software 
Engineering Institute (SEI) at Carnegie Mellon University to conduct a study of ultra-large-scale 
systems software. The study resulted in a major report that argued the necessity for the USA to 
invest in ultra-large-scale systems engineering research, to safeguard its international 
dominance in information systems; this authoritative report marked the first major output from 
the SEI Ultra-Large-Scale (ULS) Systems Project (Northrop et al., 2006). For a brief overview of 
the ULS Systems project, the UK LSCITS Initiative, and other related projects, see Goth (2008). 
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3. Where Next for the Financial Markets? 

One criticism that is sometimes levelled at the academic study of technology failures is that there 
is perhaps a tendency to be wise after the event. That is, a large amount of the work is 
descriptive (saying what happened) but not sufficiently predictive (saying what could happen 
next) or prescriptive (saying what should be done differently in future, to predict or prevent such 
failures from re-occurring). 

One possible approach, which side-steps the need for specific predictions, is to accept that 
technology failures are simply to be expected every now and again as part of the Darwinian 
arms-race dynamics at the leading edge of technology-dependent institutions, comparable to 
natural “failures” such as the species-extinctions that occur relatively routinely in biological 
ecosystems, when viewed over evolutionary timescales, and which also seem to follow a power-
law distribution (small failures being common, big failures being rare: see e.g. Ormerod, 2006). 
Such a perspective may be well-aligned with the new schools of thought in economics and the 
study of technology innovation that are influenced by complexity science and autopoeisis (e.g. 
Ormerod, 1998; Blume & Durlaf, 2005; Beinhocker, 2007; Arthur, 2009), but taking a Darwinian, 
laissez-faire, “stuff happens” approach isn’t particularly helpful in the quest for new engineering 
practices, for predictive and preventative tools and techniques. Recently, there has been 
growing recognition within the engineering community that the engineering of systems in which 
failures are expected, and where the systems are resilient to those failures, may require a 
fundamental reassessment of established engineering teaching (see, e.g., Hollnagel et al. 2006). 
Similar views have also been expressed, earlier, in the business administration literature dealing 
with the management of large-scale technology-driven projects (Collingridge, 1992). It seems 
reasonable to suggest that changes are necessary both in engineering practices, and in the 
coordination, incentivisation, and management of projects, for all LSCITS including those 
underlying the global financial markets. But such changes are likely to take time, and while we 
wait for them to take effect it would be good to have a viable near-term strategy, one that would 
potentially offer major payoff within five to seven years (seven years is long enough to achieve 
quite a lot, given enough resources: the US Apollo programme took seven years, from John F. 
Kennedy’s famous speech to Neil Armstrong’s famous small step.) In the following pages, we 
outline one such strategy. It will require national-scale investment, to create a national-scale 
strategic resource (or, perhaps, international collaboration to create a shared multinational 
resource, rather like the CERN Large Hadron Collider or the European Space Agency’s Arianne 
space rocket). 

The proposed strategy is simple enough to state: build a predictive computer simulation of the 
global financial markets, as a national-scale or multinational-scale resource for assessing 
systemic risk. Use this simulation to explore the “operational envelope” of the current state of the 
markets, as a hypothesis generator, searching for scenarios and failure modes such as those 
witnessed in the Flash Crash, identifying the potential risks before they become reality. Such a 
simulator could also be used to address issues of regulation and certification. Doing this well will 
not be easy and will certainly not be cheap, but the significant expense involved can be a help to 
the project rather than a hindrance. 

Explaining and justifying all that was written in that last paragraph will take up the next four 
pages. 

For most engineering and scientific domains, in recent years it has become increasingly 
commonplace to rely on high-precision computer simulation as a means of studying real-world 
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systems. Such simulations offer the possibility of evaluating the performance of proposed 
systems that have not yet been physically constructed, and of exploring the response of existing 
real-world systems to different operating-environment conditions, and to alterations of the 
system itself, allowing “test-to-destruction” without actually destroying anything. Engineers 
interested in aerodynamic flows over aeroplanes and cars, or around buildings, or hydrodynamic 
flows around a ship’s hull, can routinely call upon highly accurate computational fluid dynamics 
(CFD) models to evaluate these flows in simulation, rather than building physical models to test 
in wind-tunnels or test-tanks. Almost all silicon chip designs are evaluated in microelectronics 
circuit-simulators such as SPICE (e.g. Tuinenga, 1988) before the chip-producers make the final 
(and most expensive) step of committing their design to fabrication. Fissile nuclear reactions can 
be simulated with sufficient accuracy that designs for nuclear power stations, and for nuclear 
weapons, can be evaluated in simulation without splitting a single atom. In most advanced 
economies, weather forecasts are produced by national agencies on the basis of detailed sensor 
readings, and advanced computer simulations, that allow for accurate short-term and medium-
term predictions of the future. Similar stories can be told in computational drug design, 
computational systems biology, and so on. Advocates of the use of predictive computer 
simulations in science and engineering have argued that this approach now represents a well-
established third paradigm within science, in addition to the two long-established paradigms of 
empirical observation and theoretical modelling/generalisation (see e.g. Gray, 2009, p.xviii).6 

It’s important to be clear about the nature of the predictive simulation models that we are 
advocating here. Meteorological simulations are predictive in the sense that they make weather-
forecasts, specific projections about the likely future state or states that the real-world weather 
system may find itself in; that is, they say what is about to happen, or what would be likely to 
happen under specific circumstances. This is the most familiar practical use of simulation 
modelling. But there is a second use to which simulation modelling can be put: simulating a 
model of some system allows the model itself to be explored; in this sense, the model is an 
embodiment, an implementation in computer-code, of a theory of how the thing being modelled 
works. This second type of simulation modelling often starts out as essentially exploratory, with 
the intention of delivering explanatory insights that would otherwise have been difficult or 
impossible to come by. One illustrative example of this kind of simulation-as-explanation is 
Schelling’s (1971) model of racial segregation, where a very simple iterative process (i.e., an 
algorithm) operating on black or white markers positioned on a grid of square cells arranged 
chessboard-like over a two-dimensional space (i.e., an abstract model of the real world) was 
used to explore and explain how groups of people expressing only very weak preferences for 
wanting to live near to neighbours of the same race could lead over time to total segregation with 
large spatial clusters all of one race or the other. That is, the Schelling model, when simulated, 
showed in its dynamics an emergent behaviour at the system-level that was unexpected and 
difficult to predict from mere inspection of the set of rules that the simulated people (the “agents” 
in the model) were specified to follow; Schelling was subsequently awarded the 2005 Nobel 
Memorial Prize in Economic Sciences. For a recent collection surveying such exploratory and 
explanatory simulation modelling in social sciences research, an approach now widely known as 
agent-based modelling, see Epstein (2007); and for a review of foundational work in agent-
based computational finance, see LeBaron (2000). 

Of course, computational simulations are also routinely used by financial institutions: Monte-
Carlo techniques are used to solve and explore options-pricing models, to evaluate value at risk, 
to back-test trading algorithms on historical data, and to perform stress-tests on individual 

6 The use of predictive simulations in engineering safety-critical complex systems-of-systems is discussed further in 
Appendix A.4.
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financial instruments or on portfolios of such instruments. But historically it has been much less 
commonplace to simulate entire markets at a fine-grained level to study issues in overall system 
behaviour in an exploratory fashion. 

In an excellent book, Darley & Outkin (1997) give a detailed description of how they used 
complex adaptive systems (CAS)7 agent-based simulation-modelling techniques to explore the 
consequences of the Nasdaq exchange’s move from quoting prices expressed as multiples of 
sixteenths of a dollar to fully decimalized prices, expressed as multiples of one hundredth of a 
dollar (i.e., as dollars and cents). In the language of the markets, this was exploring the effects of 
a reduction in the Nasdaq “tick size” from $0.0625 to $0.01. Nasdaq had previously changed its 
tick-size from $1/8th to $1/16th in 1997, and there was evidence to suggest that at the same time 
there had been a change of strategies among the market participants trading on Nasdaq. 
Nasdaq commissioned Darley & Outkin to construct a detailed simulation model to evaluate 
possible effects of changing the tick-size to $0.01, in advance of the actual decimalization which 
was completed in April 2001; that is, Darley & Outkin were dealing in predictions, not 
postdictions. Darley & Outkin’s book recounting this predictive-simulation CAS work was 
published several years later. In it, they state: 

“While building the simulated model of the market, we interacted extensively with many 
market participants: market-makers, brokers, traders, large investors, etc. We found this 
interaction invaluable – as a source of information in particular on often subtle details of 
market operations, as a venue for verifying our assumptions and simulations results, and 
at times as a source of constructive criticism. One conversation with a market maker still 
stays clear in our minds. He was supportive, but sceptical. The core of his scepticism lay 
in this question: how one can model the fear and greed often ruling the market 
behaviour? This is a valid point: while fear and greed affect markets immensely, as has 
been time and again demonstrated by numerous booms and busts, understanding of 
underlying individual and mass psychology is lacking. 

“In our approach we address this problem by explicitly modelling strategies of individual 
market participants, by allowing those strategies to evolve over time due to individual 
learning or evolutionary selection, and by allowing to [sic] investigate various what-if 
scenarios by using user-defined strategies.” (Darley & Outkin, 1997, pp.5-6) 

Darley & Outkin report that the results from their CAS simulations led them to make six 
substantive predictions before decimalization was enacted, and that events subsequent to the 
actual decimalization largely supported all of those predictions, except one (concerning the 
upper bound on the increase in trading volume, which had not yet been reached by the time that 
Darley & Outkin published their book). 

Darley & Outkin’s book describes a simulation model of one specific real-world exchange, and 
was the first to do so in such detail. For other studies of using CAS simulation-modelling 
techniques to explore how the collective behaviour of individual trader-agents can give rise to 
certain market-level phenomena, see e.g. Palmer et al., 1994; Cliff & Bruten, 1999; LeBaron, 
1999; Levy et al., 2000; and Tesfatsion & Judd, 2006. 

Given the success of Darley & Outkin’s work, which is now over a decade old, it seems entirely 
plausible to propose that a similar complex-adaptive-systems, evolutionary agent-based, 

7 The definition of a “complex adaptive system” is explored in more depth in Appendix A.3.
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predictive simulation model could be constructed to assess the dynamics and behaviour of 
individual financial markets, or indeed of the entire global financial market system. Obviously, it 
would be a major endeavour to create such a model, requiring national-scale levels of 
investment and ongoing funding to provide appropriate resources of human capital and 
computing power. 

Nevertheless, there is an obvious precedent in most advanced economies: very many countries 
fund, as a national utility, a meteorological agency such as the UK’s Met Office8. Combining real-
time sensor data from satellites and ground-based observation stations with historical data and 
advanced, highly compute-intensive, predictive simulation models, the Met Office is able to give 
accurate near-term weather forecasts with a high spatial precision. The famously chaotic nature 
of weather systems (Lorenz, 1963) means that accurate longer-term predictions remain more 
problematic, and the same is very likely to be true of long-term predictive models of the financial 
markets, but there is a well-established technique used in meteorological forecasting that should 
also be of use modelling the markets: so-called ensemble forecasting, where the same model is 
re-run many hundreds or thousands of times, with each fresh run having minor variations in the 
initial conditions, and/or a different sequence of random numbers generated in the modelling of 
stochastic factors (see, e.g., Smith, 1995, 2002). From a thousand runs (say) of a model aimed 
at predicting the weather 48 hours into the future, it may be that 243 of the simulations show 
snowfall on a particular area, 429 show rain, and the rest predict no precipitation; with these 
results, the forecast for two day’s time would be a 24% chance of snow, a 43% chance of rain, 
and a 33% chance of it staying dry. In this sense then, the forecast is a probability function over 
the space of possible outcomes. Here we have only three mutually exclusive outcomes; a more 
sophisticated model might give a probability density function (PDF) over the space of possible 
precipitation levels measured to the nearest millimetre per unit of area, and also a separate PDF 
over the space of possible ambient temperatures, measured to the nearest degree Celsius; 
taken together, the two PDFs would form a prediction of whether water would fall from the sky, 
and whether it would fall as rain or as snow. 

So, the chaotic nature of financial markets is not necessarily an impediment to the development 
of predictive simulation models, so long as sufficient computing resources are made available to 
allow for ensemble forecasting. In fact, it is likely that the real value of the ensemble forecasting 
work would be in running very many simulations (perhaps tens or hundreds of thousands or 
more) in the search for those extremely rare but devastatingly problematic combinations of 
circumstances that have become widely known as Black Swan events (Taleb, 2007). It seems 
reasonable to describe the May 6th Flash Crash as a Black Swan event, and maybe the 
likelihood of such an event could have been predicted in advance, if a suitably detailed 
simulation model had been available beforehand. Of course the simulation would not have 
predicted that the crash would occur on May 6th, and would probably not have identified the 
precise trigger event. But it does seem entirely reasonable to argue that an appropriate model 
may have identified in advance the existence of a nonzero probability that if a certain type of 
order is executed in sufficiently large volume with certain (lack of) constraints on its execution 
pattern, that order could interact with the existing population of traders (both human and 
machine) to cause a “hot-potato” dynamic leading to a sudden, largely irrational, mass sell-off, 
exposing stub-quote values as reference prices, and leading major exchange-operators to 
declare self-help against each other, which is the current official story (CFTC & SEC, 2010a,b). 
The possibility of such a sequence of events does not seem to have been much discussed prior 
to May 6th; perhaps if an appropriate national-level or international-level modelling facility had 

8 http://www.metoffice.gov.uk
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been operational, people would have been aware of the latent risk. Central government treasury 
departments in most economies have for many years (since before the advent of electronic 
computers) run large-scale macro-economic models for forecasting, but as far as we are aware 
there are no mature models used to understand and predict issues of systemic risk in the 
financial markets. 

Such a systemic-risk market simulator system could also be used for training market 
practitioners and regulators in dealing with rare but extreme situations, in much the same way as 
civil and combat aeroplane pilots are trained to deal with various rare but serious aircraft system 
failures by flying many hours of simulator practice, so that in the unlikely event of such a failure 
occurring on a real flight, the pilot can rely on her lessons learned and experience gained in the 
simulator. The rescue of Apollo 13 owed an awful lot to the availability of accurate simulation 
models (physical electro-mechanical ones rather than purely virtual computer simulations) at 
NASA Mission Control. The simulators had been developed to train the astronauts in dealing 
with various mid-mission failure situations, including using the Lunar Excursion Module as a 
“lifeboat”, as was necessary on Apollo 13; after the explosion on Apollo 13 the simulators also 
became the test-bed for evaluating novel procedures necessary to keep the crew safe and the 
crippled ship on its return course. 

The use of simulation in complex systems engineering was reviewed in Section 3, but the 
simulations discussed there are not intended for training humans within the socio-technical 
system being simulated; rather, any human agents within the real system are also simulated in 
the model of that system. Nevertheless, the use of simulation models as scientific evaluation and 
training tools for humans dealing with unusual complex situations has a long history: see, e.g., 
Sloan (1981) and Dorner (1990, 1997), yet there is currently very little in the way of comparable 
use of simulators in the financial markets. Trainee traders typically learn the ropes by running 
“dummy” accounts, keeping a record of trades that they would have made, but did not actually 
execute, so that any losses are merely on paper; this can be done using live market data, and 
trading strategies can also be back-tested on historical data. A notably more sophisticated 
simulator, integrating real-time price feeds, was developed in a collaboration between the 
University of Pennsylvania and Lehman Brothers, the Penn-Lehman Automated Trading project, 
described by Kearns & Ortiz (2003). While these techniques work well as training for situations 
where the trader’s activity has no immediate effect on the prices of the securities being traded, 
they cannot readily model market impact, where the mere act of revealing the intent to buy or 
sell a large quantity of a security means that other traders in that security (potential 
counterparties to the trade) alter their prices before the transaction occurs, in anticipation of the 
change in price that would otherwise result after the transaction has executed. Furthermore, 
simulators based on regurgitating historical data offer essentially nothing toward understanding 
the current or future overall system-level dynamics of the system: they can tell you what 
happened, but not what might happen next, nor what might have happened instead. Simulators 
for evaluating trading strategies on historical data are sometimes referred to as financial-market 
“wind-tunnels” (e.g. Galas et al., 2010). A financial-market wind-tunnel is certainly useful in 
refining the dynamics of an individual trading strategy, in much the same way as a traditional 
engineer’s wind tunnel is useful in refining the aerodynamics of a new aeroplane or car. But 
financial-market wind-tunnel simulators are of zero help in understanding systemic issues such 
as financial stability, for much the same reason that an aerodynamicist’s wind tunnel can tell you 
nothing about system-level phenomena such as traffic congestion in a city’s street, nor air safety 
in a nation’s skies. 

More fancifully, it may also be worth exploring the use of advanced simulation facilities to allow 
regulatory bodies to act as “certification authorities”, running new trading algorithms in the 
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system-simulator to assess their likely impact on overall systemic behaviour before allowing the 
owner/developer of the algorithm to run it “live” in the real-world markets. Certification by 
regulatory authorities is routine in certain industries, such as nuclear power or aeronautical 
engineering. We currently have certification processes for aircraft in an attempt to prevent air-
crashes, and for automobiles in an attempt to ensure that road-safety standards and air-pollution 
constraints are met, but we have no trading-technology certification processes aimed at 
preventing financial crashes. In the future, this may come to seem curious. 

We’re not arguing here that predictive simulation models are a “silver bullet”, an easily 
achievable panacea to the problem of assessing systemic risk and identifying black-swan failure 
modes: developing and maintaining such models would be difficult, and would require a major 
research investment. It seems very likely that quantitative analytical techniques such as 
probabilistic risk assessment (see e.g. Stamatelatos et al., 2002a, 2002b; Dezfuli et al., 2009; 
Hubbard, 2009) and probabilistic model-checking (e.g. Calinescu & Kwiatkowska, 2010; 
Calinescu, Kikuchi, & Kwiatkowska, 2010) would also need to be involved, in sufficiently 
extended forms, to help constrain the (otherwise impossibly vast) space of possible situations 
and interactions that would need to be explored by the simulations. 

While there is no shortage of challenges in simulating the technical entities in socio-technical 
systems, simulating the social entities is almost always even more problematic, and this is 
something that doesn’t have to be addressed by meteorological forecasting systems. Whether 
individual human agents, or groups of humans operating and interacting as teams or large 
organizations, the social entities in a socio-technical system are frequently present in virtue of 
the fact that they are needed to perform roles and discharge responsibilities with levels of 
flexibility, adaptability, and subtleness that are beyond the capability of automated systems. 
Modelling those kind of issues certainly presents a large number of deep technical challenges, 
and it is fair to say that the representations of social entities in many HISE models are often 
quite primitive: simple probabilistic models of humans switching from “safe” to “error” status are 
not uncommon. More sophisticated nondeterministic behavioural models such those based on 
Markov chains (e.g. Haccou & Meels, 1994; Benveniste et al., 2003), and computational 
implementations of models of behaviour and motivation from the ethology literature (such as 
Lorenz’s well-known hydraulic model explained in his 1966 book On Aggression) have all been 
explored in the research field that studies mechanisms for the generation or simulation of 
adaptive behaviour in animals (including humans) and synthetic agents, including those that are 
needed to model human ingenuity and adaptivity in predictive simulation models. One of the 
biggest drivers for this research is the need for creating believable synthetic agents in virtual 
environments such as computer games, yet the work presents deep challenges and is also 
directly relevant to simulations of real-world scenarios for training and evaluation purposes (so
called “serious games”)9: see, e.g., Blumberg, 1996; Ivanov, 2002; Tomlinson & Blumberg, 
2002; Horswill 2009. In some limited domains, for instance the modelling of emergency egress 
by crowds of humans from stricken structures (such as burning buildings or sinking ships), 
where there is reasonable data for how humans do behave in such circumstances, such models 

9 See, for example, the Serious Games Institute website at http://www.seriousgamesinstitute.co.uk, the Serious 
Games Initiative website at http://www.seriousgames.org/, and the various research outputs from FutureLab on 
Games and Learning, Serious Games in Education, Game-Based Experience in Learning, and Teaching with 
Games, available at http://www.futurelab.org.uk/projects/. A recent extensive report on the use of serious games 
in military education and training was produced by Caspian Learning for the UK Ministry of Defence:
http://www.caspianlearning.co.uk/MoD_Defence_Academy_Serious_games_Report_04.11.08.pdf. 
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have proven to be genuinely insightful (see, e.g., Johnson, 2005, 2006, 2008; Johnson & Nilsen-
Nygaard, 2008)10. 

The significant cost of constructing and operating such a simulation facility could possibly be met 
from the public purse via general taxation, or could perhaps be funded by direct contributions 
from the major financial corporations (banks, fund-management companies, exchange 
operators, insurers, etc.) operating in a particular country or group of countries. If funded as a 
public-sector project, it would of course be necessary to recognize that in addition to the 
significant technical challenges, the establishment of such a simulator facility also present 
significant budgetary challenges and the entire endeavour would need to stand up to a thorough 
cost-benefit analysis: this is an issue expanded upon by Bullock (2011). However, it is not the 
case that the only way of building or running such a simulation facility is via public-sector 
financing. It is possible that a group of financial institutions could collaborate on, and co-fund, the 
necessary capital expenditure at start-up and ongoing operational costs. A UK precedent for 
this, albeit in a different industry sector, is the independent non-profit company CFMS Ltd11 that 
is jointly owned and operated by founding partners Airbus, BAE Systems, Frazer-Nash 
Consultancy, MBDA UK, Rolls-Royce, and Williams Formula 1 Engineering. CFMS exists to 
advance the theory and practice of simulation-based design processes, and has invested in its 
own high-performance computing facilities available in its Advanced Simulation Research Centre 
(ASRC). Given the importance of aerodynamics to many of the founding partners, there is a 
focus on computational fluid dynamics modelling in CFMS/ASRC, which is of no direct relevance 
to the world of finance. Nevertheless, the success of CFMS and ASRC shows that independent 
companies can indeed come together to co-found and co-run shared facilities as an investment 
in pre-competitive research and development capability. 

If a major simulation facility was constructed, revenue could be generated from levying charges 
for anyone wanting access to it, and also possibly from using it as a training or certification 
facility. The potentially massive cost involved is not necessarily a disincentive: if the simulator 
was constructed on a minimal budget of (say) several hundred thousand pounds, it would be 
reasonably easy for financial corporations such as a hedge funds or investment banks to fund 
their own rival internal projects, probably much better-resourced, which would then detract from 
the public-good shared-utility nature of what is proposed here. However, if the national-level 
simulator was funded by tens or hundreds of millions of pounds (and assuming that these 
pounds were spent wisely) then it is plausible that it would be so well resourced, and hence so 
much more detailed and/or accurate, that no private corporation could reasonably hope to 
compete with it, then all private corporations reliant on its results would have an incentive to 
contribute to the running costs, and the intellectual content, of the simulator facility as a common 
good. The facility would then be a pre-competitive shared resource: all contributing corporations 
would have access to details of its design and construction, and all would have access to its 
facilities for running experiments. Corporations would nevertheless be free to compete on the 
basis of what questions they ask of the simulator (details of each corporation’s specific 
experiments could be kept confidential), and in how they then use the results from their 
experiments. 

Of course the counterargument to developing a single utility facility is that this would concentrate 
risk: if the one national simulator is wrong, and everyone is using results from that simulator, 
then everyone’s expectations or predictions are wrong at the same time. This is also manifestly 
true of national weather-system simulator facilities, and there is no shortage of examples of 

10 See also http://www.massivesoftware.com/real-‐world-‐simulation-‐gallery/.
11 See www.cfms.org.uk. 
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entire nations being taken by surprise when their state-funded monopoly weather-forecasting 
services got it wrong.12 One approach to mitigating this risk may be to enforce so-called “n-plex 
redundancy”, as is common in the design of controllers for aerospace and defence systems, 
where the same control-system functionality is implemented by n multiple parallel systems, each 
designed and implemented by different independent suppliers, often constrained to not use the 
same core technologies (such as particular processor chips, programming languages and 
compilers, third-party suppliers, etc). The rationale for such an approach is that, while each of 
the n redundant systems may have one or more failure modes, the likelihood of all n systems 
having the same (or overlapping) vulnerabilities is greatly reduced by the active prevention of 
them sharing common components and/or development paths. Thus, so the argument goes, 
while one or more of the individual systems may fail from time to time, the remaining parallel 
redundant systems will most probably remain operational, and thereby coherent control will be 
maintained. So, maybe the best approach is for a national agency to commission some small 
number n of competing predictive simulation models, adopting or guided by the principle of n
plex redundancy, in the hope that the collective indications from the suite of n independent 
simulations can be trusted more than the lone voice of a single model. 

A more thorny issue is the effect of the feedback loop from the model(s) back to the market 
systems being modelled. Results from a predictive simulation model of the weather do not 
actually alter the weather, but results from a market simulation may have a significant effect on 
the subsequent behaviour of agents within the real-world markets that the simulator is a model 
of. There is prior evidence of self-fulfilling prophecies driving market dynamics, such as the 
theory that market activity is somehow affected by the number of sunspots. There is no a priori 
causal mechanistic explanation for why sunspots might affect market activity, but someone once 
proposed that there was at least a correlation between sunspot numbers and markets rising or 
falling; all that was then required was for enough people to believe in the correlation and to allow 
that belief to alter their trading activity in the markets. This shared belief then became the causal 
link: if enough people are counting sunspots and using that to drive their market behaviour, then 
an increase in the number of sunspots will indeed affect the market in the manner that was 
“predicted” by their belief, thereby reinforcing the conviction of those who already hold the belief 
and helping to convert non-believers. The causal feedback loop from predictive simulations back 
to the real-world markets is something that will need to be handled well, but it is not necessarily 
a problem: the feedback could have a positive effect, dampening unwelcome dynamics. 

To conclude, we observe that there is an old saying: “if it ain’t broke, don’t fix it”. This is certainly 
wise guidance in very many situations. But it is important to remember that for some systems, 
when they do actually break, they go so catastrophically wrong so superhumanly fast that the 
safest option for such a system really is to fix it while it ain’t broke, because that is the only 
decent chance you’ll get. This is the case for many large-scale complex IT systems (LSCITS). 
Ensemble forecasting via n-plex redundant predictive simulation models is not cheap, is not 
easy, and is certainly far from perfect, but it may just be the best option currently available.13 

12 On October 15th, 1987, a UK Met Office forecaster reassured viewers on the BBC prime-time evening weather 
broadcast that there was not a hurricane coming, in an attempt to quell earlier speculation. Later that night the south 
of England was hit by the worst hurricane-force windstorm for over 250 years, with speeds gusting to 120mph for 
several hours, causing huge amounts of damage and unprecedented levels of disruption for days afterwards. Other 
nations’ meteorological forecasting services on mainland Europe, using different monitoring and prediction models, 
had given more accurate forecasts of the windy weather that night.
13 In the interests of balance, for recent counterarguments to the use of simulation models, see Turkle (2009).
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The novelty of this proposal can perhaps be judged by the fact that the most recent 
comprehensive UK industry-focused review examining mechanisms for achieving supervisory 
control of systemic risk (Bonisch & Di Giammarino, 2010) mentions predictive simulation 
modelling only in passing – but that same report also mentions the flash crash only once, in 
passing, too. Nevertheless, we are certainly not the only people to be making such proposals: 
see, e.g. (Farmer & Foley 2009; Economist, 2010; Harford, 2011; Salmon, 2011), and indeed 
this Foresight project has commissioned two excellent reviews that discuss aspects of the idea 
in more detail: see Bullock (2011) and Farmer & Skouras (2011). The UK already has significant 
investments in university research centres that could make valuable contributions to this 
approach.14 

In his April 2009 speech Rethinking the Financial Sector, Andy Haldane, Executive Director for 
Financial Stability at the Bank of England, argued that three steps were necessary to safeguard 
against another series of events like the 2007/08 subprime crisis: all three steps deal with the 
global network of interacting financial institutions. Haldane’s argument was that we should work 
first to map that network; then take steps to better manage and regulate the existing network; 
and then explore useful ways in which the network could be restructured or otherwise modified. 
We contend that all three of these steps (map, manage, & modify) could, and in fact should, be 
performed via an appropriate simulation-model-based engineering approach: creating and 
maintaining the model would be Haldane’s mapping exercise; once operational, the effects of 
different regulatory actions, and any potential restructuring of the financial network could be 
explored and evaluated in the model too. 

4. Summary 

The Flash Crash of May 6th 2010 was a sudden and dramatic failure in a ultra-large-scale 
software-intensive socio-technical system (the US financial markets) with prices running wild at a 
speed and magnitude of volatility that were without historical precedent. The fact that there was 
not major lasting damage to the global financial markets is perhaps more due to luck than 
judgement: if the down-spike in the Flash Crash had occurred five minutes before market close 
in New York, it’s plausible that could have triggered a contagious global sell-off that then went on 
to wrap around the world. 

Yet from a broader perspective it is clear that the Flash Crash was just one more in a sequence 
of failures of risky technology, and quite plausibly such an event was made more likely via a 
prior process of financial-market practitioners becoming increasingly tolerant of unexpected 
events, previously thought to be unacceptable, not resulting in disasters: that is, via a process of 
normalization of deviance. 

The problems posed by attempting to engineer and manage reliable ultra-large-scale complex 
adaptive socio-technical systems of systems are becoming ever more clear, but further research 
is needed to develop appropriate tools and techniques. System-of-systems issues of scaling, 
normal failure, heterogeneity via organic growth, and emergent behaviour all have to be 

14 Major UK academic research centres that could be involved include: the Bristol Centre for Complexity Science 
(http://bccs.bristol.ac.uk); the Bristol/Bath Systems Engineering Centre (www.bristol.ac.uk/eng-systems-centre/); the 
Southampton Institute for Complex Systems Simulation (www.icss.soton.ac.uk); the UCL PhD Centre for Financial 
Computing (http://fc.cs.ucl.ac.uk/phd-centre); the York Centre for Complex Systems Analysis (www.yccsa.org); and 
the UK Large-Scale Complex IT Systems Initiative (www.lscits.org).
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addressed. Parallel running of multiple redundant predictive simulation models is one approach 
that may now be applicable for assessing and controlling systemic risk in the financial markets. 

The engineering of LSCITS and ULS socio-technical ecosystem system-of-systems is in its 
infancy: it has significant differences from traditional engineering of smaller-scale systems, and 
developing rigorous trusted approaches may turn out to be a long haul. The UK’s LSCITS 
Initiative and the USA’s Ultra-Large-Scale (ULS) Systems Initiative are each articulations of 
national strategic concerns. Both represent a sizeable step toward developing a new community 
of practitioners and researchers who are conversant with all the necessary subfields that can 
contribute to addressing issues in the science and engineering of such systems, forming those 
communities of practice will take several years of sustained investment. Without doubt this is not 
merely responding to a national need but an international one. We, the authors of this report, 
welcome any researchers, practitioners, regulators, policy-makers or sponsors who would like to 
become involved in the LSCITS and/or the ULS Systems initiatives. The intellectual challenges 
are significant, but not insurmountable; the potential societal savings are massive, and the scale 
is truly global. 
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APPENDIX: 

High-Integrity Engineering of Large-Scale Complex Ecosystems 

In this Appendix we take a quick tour through the concepts and approaches from current 
systems engineering that are relevant to the discussion just presented, but for which going into 
detailed explanation or definition would have been a distracting diversion from the flow of our 
argument. In sequence, here we briefly review high-integrity approaches to systems engineering 
(Appendix A.1); the definitions of Systems-of-Systems (A.2) and Complex Adaptive Systems 
(A.3); and then selected current leading-edge approaches to the high-integrity engineering of 
complex adaptive systems-of-systems (A.4). 

A.1 High-Integrity Systems Engineering 

High-integrity engineering techniques for safety-critical systems have a long heritage, and it’s 
simply beyond the scope of this document to provide a comprehensive review of all the relevant 
background literature; for detailed surveys, see the review chapters in the recent PhD theses by 
Alexander (2007, pp.29-55), Despotou (2007, pp.41-76), and Hall-May (2007, pp.33-72). 

It is commonplace in real-world engineering situations to be dealing with systems that simply 
cannot be guaranteed to be absolutely safe because key components in the system are known 
not to be absolutely reliable. If one of the key components is known to be 99.99999% reliable, 
that is an admission that there is a 0.00001% chance of failure; if failure of that component 
compromises the safety of the overall system, then there is a risk (small, but nonzero) that the 
system will become unsafe. Safety engineering has developed techniques for estimating the 
causal chains of events leading to failure, the attendant risks of failure, the effects of failure, and 
for reducing those risks and limiting their effects; in this sense then, risk and reliability are two 
sides of the same coin. 

One of the earliest forms of risk and reliability assessment method, developed in the 1960’s US 
aerospace and missile programmes, is fault-tree analysis (FTA). FTA operates by the engineer 
first identifying “basic events” such as a fuse blowing or a relay-switch failing to open. Significant 
combinations of these basic events are then aggregated into a graph structure much like a 
family tree: compound events are formed via “gate” nodes that link basic events. It may be that 
basic events E1 and E2 and E3 all have to occur for a particular output fault F1 to occur: on the 
graph the event nodes E1, E2, and E3 would be shown as “daughters” of F1, with F1 denoted as 
an “and” gate. Other types of gate include: “or” (any one or more of the daughters triggers the 
compound fault);“combination” (the compound fault is triggered by any n or more of the 
daughters occurring, for n>1); “exclusive or” (exactly one daughter will act as the trigger); 
“priority and” (the daughter events have to all occur in a specific sequence); and “inhibit” (the 
daughter event occurs as the same time as some enabling condition). The daughter nodes of a 
compound event are not required to be basic events: they can be other compound events, and 
so it is possible to construct deep trees showing how basic events, combinations of basic 
events, and combinations of those combinations, can each combine to contribute to particular 
faults or failures in the system under analysis. Fault-tree analysis distinguishes between failure 
effects (such as a switch failing to make contact), failure modes (such as the switch’s contacts 
being broken, or the contacts having a very high resistance), and failure mechanisms by which 
those modes may come about (such as high resistance on the switch contacts being caused by 
corrosion of the contact surfaces, or by an insulating coating having been spilled onto them); this 
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well-known safety-critical engineering practice is known as Failure Modes and Effects Analysis 
(FMEA). For further details, see e.g. Stamatelatos et al. (2002b). 

FMEA and FTA, as just described, are essentially qualitative, deterministic, approaches. In 
recent years, there has been a concerted move toward developing quantitative approaches 
where numeric values represent measures of risk. An obvious, intuitive, risk metric is the 
probability of failure, and so the field is widely known as probabilistic risk assessment (PRA).15 

Over much the same period, the field of mathematical statistics has undergone something of a 
revolution in the rapid adoption of the so-called Bayesian approach as an alternative to the long-
established, traditional, frequentist approach, and this has been reflected in the PRA literature. 
For instance, in 2002 NASA published a 323-page guide to PRA procedures for its managers 
and practitioners (Stamatelatos et al., 2002a) based on traditional frequentist statistics, but then 
in 2009 it published a new 275-page guide to PRA using Bayesian methods (Dezfuli et al., 
2009). Some authors, most notably Hubbard (2009), have argued forcefully that PRA should be 
the only game in town, but PRA is not without its critics and detractors: see, for example: Parry 
(1996); Slovik (1999); and Apostolakis (2004). 

The opening page of NASA’s 2002 guide to PRA neatly summarises the history of its adoption in 
that organization: 

“Legend has it that early in the Apollo project the question was asked about the probability 
of successfully sending astronauts to the moon and returning them safely to Earth. A risk, 
or reliability, calculation of some sort was performed and the result was a very low 
success probability value. So disappointing was this result that NASA became 
discouraged from further performing quantitative analyses of risk or reliability until after 
the Challenger mishap in 1986. Instead, NASA decided to rely on the Failure Modes and 
Effects Analysis (FMEA) method for system safety assessments. To date, FMEA 
continues to be required by NASA in all its safety-related projects. 

“In the meantime, the nuclear industry picked up PRA to assess safety almost as a last 
resort in defense of its very existence. This analytical method was gradually improved and 
expanded by experts in the field and has gained momentum and credibility over the past 
two decades, not only in the nuclear industry, but also in other industries like 
petrochemical, offshore platforms, and defense. By the time the Challenger accident 
occurred, PRA had become a useful and respected tool for safety assessment. Because 
of its logical, systematic, and comprehensive approach, PRA has repeatedly proven 
capable of uncovering design and operation weaknesses that had escaped even some of 
the best deterministic safety and engineering experts. This methodology showed that it 
was very important to examine not only low-probability and high-consequence individual 
mishap events, but also high-consequence scenarios which can emerge as a result of 
occurrence of multiple high-probability and nearly benign events. Contrary to common 
perception, the latter is oftentimes more detrimental to safety than the former.“ 
(Stamatelatos et al., 2002a, p.1) 

NASA’s series of public-domain guides on FTA, frequentist PRA, and Bayesian PRA 
(Stamatelatos et al., 2002a; Stamatelatos et al., 2002b; Dezfuli et al., 2009, respectively) talk in 
terms of estimating and assuring system safety/reliability: they do not involve themselves in the 
distinction between systems, and systems-of-systems (SoS), which was informally introduced 

15 Some authors (e.g. Apostolakis, 2004) instead refer to Quantitative Risk Assessment, to cover the possibility that 
the numerical values being manipulated are not strictly interpretable as probabilities.
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earlier. However, for the discussion that follows, we need to take a brief diversion into a more 
precise definition of what precisely we mean here by “SoS”. 

A.2 Systems-of-Systems: Directed, Collaborative, Coalition, and Ecosystem. 

Probably the most-cited paper in the SoS literature is Maier’s “Architecting Principles for 
Systems of Systems” (1998), and we will use Maier’s careful definition of a SoS here. Maier 
proposed two primary characteristics that distinguish a SoS: a system that did not exhibit these 
two characteristics was, in his terms, not to be considered as a SoS “…regardless of the 
complexity or geographic distribution of its components.” (Maier 1998, p.271, original emphasis). 
Maier’s definition reads as follows: 

“A system-of-systems is an assemblage of components which individually may be 
regarded as systems, and which possess two additional properties: 

“Operational Independence of the Components: If the system-of-systems is 
disassembled into its component systems the component systems must be able to 
usefully operate independently. That is, the components fulfill customer-operator 
purposes on their own. 

“Managerial Independence of the Components: The component systems not only can 
operate independently, they do operate independently. The component systems 
are separately acquired and integrated but maintain a continuing operational 
existence independent of the system-of-systems.” 

(Maier, 1998, p.271, original emphasis) 

A strict interpretation of Maier’s definition of SoS would argue that the US Space Shuttle, even at 
one second before launch, is not a system of systems. The Orbiter, its external fuel tank, its left 
and right SRBs, and the launch-pad and support-tower that they all lift off from, do not have 
immediate operational independence: that is, they were all intimately designed to work with each 
other. It might perhaps be argued that with a little tinkering the SRBs could be re-engineered to 
usefully operate independently (as warhead-carrying long-range missiles, perhaps), but that 
would be clutching at straws: even if that were true, there is no real sense in which any of the 
Shuttle’s component systems exhibit Maier’s second property, of managerial independence, and 
on that basis the Shuttle at launch is simply not an SoS. At launch, each of the shuttle’s 
component systems is under the collective, coordinated, combined command of NASA (the 
precise nexus of that command is something that is constructed by the interaction of, and shifts 
dynamically between, Mission Control on the ground, and the astronauts onboard the Shuttle). 

Precisely because of Maier’s definition, earlier in Section 2 of this paper we were careful not to 
describe the Shuttle as a SoS. Nevertheless, it is clear that the global financial markets network, 
or even “just” the financial markets operational in one of the major global hubs such as London 
or New York, satisfy both the operational independence and managerial independence criteria. 
Maier goes on to note that SoS can be classified as Directed (built and managed to fulfill specific 
purposes), or Collaborative, or Virtual. His definition of collaborative SoS reads as follows: 

“Collaborative systems-of-systems are distinct from directed systems in that the central 
management organization does not have coercive power to run the system. The 
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component systems must, more or less, voluntarily collaborate to fulfill the agreed upon 
central purposes.” (Maier, 1998, p.278). 

In Maier’s terms, a virtual SoS is then a SoS that is neither directed nor collaborative, i.e. it is 
one for which there is no central management authority, and also no agreed upon central 
purposes. Maier is explicit that he considers national economies to be virtual SoS; and it seems 
obvious that in Maier’s terms the global financial markets are also virtual SoS. But classifying the 
markets as a virtual SoS simply because of their absence of central management and centrally 
agreed purpose glosses over some important richness in the network of interacting institutions 
within the financial markets. The markets involve varying numbers of various types of institution 
(e.g., investment banks, hedge funds, exchange operators, insurers, technology providers). The 
organizations that participate in the markets (and those that regulate them too) serve different 
purposes; some of them are in direct competition with other institutions (sometimes in zero-sum 
terms), others are in collaborative relationships with one or more other institutions; and such 
institutions come and go over time. Sommerville (2011) has recently coined the term “Coalition 
of Systems” to describe this class of SoS; before that, Valerdi et al. (2008) referred to “No Single 
Owner SoS”, and Northrop et al. (2006) coined the term socio-technical ecosystems, to capture 
the same notion that these SoS can be represented as a web of interacting constituents: in 
some cases the interactions are collaborative, in others they are competitive, all within the one 
SoS. It seems unarguable that the technology-enabled global financial markets of today, and in 
the future, are ecosystem-SoS. 

The development of techniques for maintaining and managing high-integrity large-scale 
ecosystem-SoS is a new and significantly under-researched field. Fewer than five years ago, 
eight authors from industry and academia co-authored a paper (De Laurentis et al., 2007) calling 
for an international consortium on SoS engineering to be established, to better understand the 
problems and solution strategies associated with SoS, yet their conception of a SoS was 
phrased in terms of “…heterogeneous independently operable systems to achieve a unique 
purpose” (p.68) – that is, they concentrated on a conception of SoS that is better suited to 
Maier’s directed/collaborative SoS than the ecosystem-SoS of Northrop et al. Books and 
research papers exploring how to engineer robustly scalable socio-technical systems are 
currently few and far between (but see Abbot & Fisher, 2009; Rooksby, Rouncefield, & 
Sommerville, 2009; Baxter & Sommerville 2010). 

The primary reason for that is because the development of reliable practices, and engineering 
teaching, for ensuring or assuring the integrity or safety of a SoS is a current research challenge; 
one that is being actively pursued by the world’s leading research groups in high-integrity 
systems engineering, and even those leading researchers would admit that it is not yet a solved 
problem. In contrast to traditional engineering teaching, with its emphasis on designing “from 
scratch”, starting (metaphorically at least) with a clean sheet of paper, most SoS instead arise 
from organic processes of aggregation and accretion, where pre-existing systems are integrated 
as constituents into the SoS. In almost all large-scale SoS, there is significant heterogeneity 
(which itself changes over time) because different constituents in the SoS were added at 
different stages in the development of the SoS and arrived via differing design and 
implementation paths. In their 2008 book Eating the IT Elephant: Moving from Greenfield 
Development to Brownfield, senior IBM staff Richard Hopkins and Kevin Jenkins made the 
analogy between the greenfield/brownfield distinction in civil engineering, and modern-day large-
scale complex IT projects. A greenfield engineering project is one in which construction takes 
place on a previously undeveloped site, allowing a “clean-sheet” approach at the design stage, 
with relatively little preparatory work required on-site before construction, and with relatively few 
constraints on the construction process. A brownfield project is one in which the site has 
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previously been built on and hence may require significant clearing operation before 
construction, with the possibility of the added complexity from the requirement that existing 
structures must be retained and their viability maintained during the construction phase (Hopkins 
& Jenkins, 2008). 

Even if a large-scale SoS was the product of a clean-sheet engineering design process and was 
initially constructed from homogeneous constituents, sheer largeness-of-scale implies that at 
any one time it is almost definite that some of those constituents will have failed and be needing 
replacement (so-called normal failure). Those replacement constituents may not be exactly 
identical to the originals, and so the SoS becomes a heterogeneous, brownfield engineering 
problem, 

The challenge of determining the safety of a SoS is neatly summarized by Alexander, Kazakov, 
& Kelly (2006): 

“In a conventional system, …the system boundary is well defined and the components 
within that boundary can be enumerated. When a safety analyst postulates some failure 
of a component, the effect of that failure can be propagated through the system to reveal 
whether or not the failure results in a hazard. This is not always easy, because of the 
complexity of possible interactions and variability of system state, hence the need for 
systematic analysis techniques, automated analysis tools and system designs that 
minimize possible interactions. To make the task more tractable, most existing hazard 
analysis techniques…. deal with only a single failure at a time; coincident failures are 
rarely considered. 

“In an SoS, this problem is considerably worse. The system boundary is not well defined, 
and the set of entities within that boundary can vary over time, either as part of normal 
operations… or as part of evolutionary development… Conventional tactics to minimize 
interactions may be ineffective, because the system consists of component entities that 
are individually mobile. In some cases… the entities may be designed to form ad-hoc 
groupings amongst themselves. Conventional techniques may be inadequate for 
determining whether or not some failure in some entity is hazardous in the context of the 
SoS as a whole.”

The prospect of component entities being “individually mobile” was relevant to Alexander et al. 
because their work concentrated on SoS in defence applications, where the constituent entities 
in the SoS are often individual battlefield units (e.g., troops, tanks, unmanned vehicles, etc). 
While there is no direct physical correlate of spatial mobility in the computerized global financial 
markets, there is a reasonable equivalent in the virtual space defined by the network of current 
interactions between agents in the markets: just as a tank might physically move from one 
location to another on a battlefield in order to engage with the enemy or withdraw to a position of 
safety, so a trading agent (human or machine) might establish a connection with a potential 
counterparty, or terminate an existing connection. In both the tank battle and the trading 
scenario, the key factor that is altered is the network of links from the node in question (the tank, 
the trader), to other nodes in the network (enemy units, other traders) with which that node might 
have meaningful interactions (exchange of fire, exchange of bids/offers). 

But this “mobility” issue of the network of meaningful interactions changing dynamically is not the 
only issue that confuses the task of understanding or managing an ecosystem SoS. Each of the 
nodes in the network, i.e. each of the constituent entities, is likely to be both nonlinear and 
adaptive. For the sake of the argument here, we’ll simply define “nonlinearity” as a meaning that 
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the entity’s “outputs” (i.e., its responses or behaviour) are not a simple linear function of its 
“inputs” (i.e., readings from its sensors, say); and we’ll adopt a similarly simple definition of 
“adaptive”: the entity is adaptive if its “outputs” may change over time, in consequence of the 
particular time-sequence of “inputs” that the entity is exposed to. Readers familiar with the 
mathematical economics literature will recognize this notion of adaptation as similar to “path
dependency”; colloquially we can think of the entity “learning from experience” or “evolving its 
response over time”. In recent decades, a new set of scientific tools and techniques has been 
developed to study systems composed of networks of interacting nonlinear adaptive entities. 
That field is known as Complexity Science, and the networked nonlinear adaptive systems are 
known as Complex Adaptive Systems. 

A.3 Complex Adaptive Systems 

In complexity science, complex systems are commonly defined as systems that are composed 
from large numbers of components, where each component interacts with some number of other 
components, and where there are nonlinearities in the nature of the component interactions 
and/or in the responses of the components themselves, which compound across the entire 
system in such a way that the overall system-level behaviour is difficult or perhaps impossible to 
predict accurately, even when one is given complete or near-complete information about the 
individual components and their interactions. The system-level behaviour is said to emerge from 
the network of interacting components and their constituent behaviours, forming a whole that is 
in some reasonable sense more than the sum of its parts. Substituting the word “constituent” for 
“component” in that description and it is clear that for very many SoS of practical importance, the 
SoS is manifestly a complex system. In addition to exhibiting emergent behaviour, many 
complex systems of significant interest are adaptive (in the sense informally introduced in the 
previous paragraph), and this also is surely true of many constituents in SoS, hence many SoS 
are instances of Complex Adaptive Systems (CAS). Since the late 1980’s a growing number of 
scientists have been attempting to understand the financial markets as CAS, and have been 
exploring the links between the financial markets and other CAS, both naturally-occurring and 
engineered artefacts. There is growing evidence that the emergent behaviour, phase changes, 
instabilities, and hysteresis seen in many other complex systems are also to be found in the 
financial markets: see, for example: Anderson, Arrow, & Pines (1989); Arthur, Morrison, et al. 
(1997); Johnson, Jefferies, & Hui (2003); Challet, Marsili, & Zhang (2004); and Blume & Durlaf 
(2005). 

A small but growing number of researchers in the (systems-of-) systems engineering community 
have, in recent years, turned their attention to whether tools and techniques from complexity 
science can help in the brownfield engineering of robust, scalable, large-scale, systems: that is, 
they are exploring the consequences of taking a CAS approach to the creation and management 
of such large-scale systems and SoS: see, for example, Bar-Yam (2005); Braha et al. (2006); 
Sheard, & Mostashari (2008); Polacek, & Verma, (2009); and Sillitto (2010). Thus far, only a 
small amount of this work has addressed issues directly relevant to the financial markets but 
some notable work has been produced; see, e.g.: Harman & Bar-Yam, 2008; and the Nasdaq 
study by Darley & Oatkin (1997), which is discussed in more detail in Section 4. Very often, such 
approaches involve exploring the system using so-called Multi-Agent Simulation (MAS) models, 
where a computer simultaneously models each of the constituents (or “agents”) in the network of 
interacting adaptive nonlinear entities, resolving the consequence of each entity’s interaction 
with its environment (which in most cases will include one or more other such entities), often 
using fine time-slicing or discrete-event simulation techniques. The agents in the simulation may 
adapt their responses over time either by implementing machine-learning techniques (for 
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learning “within the lifetime” of the agent) and/or by implementing a process inspired by 
Darwinian evolution, a so-called genetic algorithm (a simulated population of agents, adapting to 
its niche over successive generations via a process of random variation and “survival of the 
fittest” directed selection: each agent’s behaviour or performance at the task at hand being 
determined at least in part by “genes” that can be passed on to successor agents: see e.g. 
Goldberg, 1987). Very often, the reliance on computer simulation models is a consequence of 
the mathematical nonlinearities in the system being analytically intractable: that is, they are 
sufficiently complicated and complex that the tools for expressing them as a set of equations and 
then deriving formal proofs of certain statements about the system, via manipulation of the 
equations, is simply not possible. 

For introductions to the use of CAS/MAS models in understanding social, economic, and socio
technical systems, see the texts by Epstein & Axtell (1996) and Axelrod & Cohen (2000). For 
examples of early machine-learning adaptive trading agents, see Cliff (1997) & Gjerstad & 
Dickhaut (1998), for the story of how those agents beat human traders, see Das et al. (2001). 
With regard to the application of evolutionary approaches, there has been heavy use of 
“replicator dynamics” (a technique pioneered in the theoretical study of evolution in biological 
systems) for exploring the interactions between different types of trading strategies, and 
identifying stable equilibria in the interaction dynamics (e.g., Walsh et al., 2002; Vytelingum, Cliff, 
& Jennings 2008); and also various researchers have used genetic algorithms to create trading 
agents, and the market-mechanisms they operate in, co-adapted to each other by evolution 
(e.g., Phelps et al., 2002; Cliff, 2003; Byde, 2003; Cliff, 2009; Phelps et al., 2010). Evolutionary 
adaptation and co-adaptation in biological systems has served as a productive metaphor for 
economic dynamics at various levels for several decades (see, e.g., Nelson & Winter, 1982; 
Hodgson, 1993; Ormerod, 2006; Stephens & Waelbroeck, 2009); and there are other aspects of 
biological systems, such as the interconnected web of dependencies in natural ecosystems, that 
can offer fruitful insights into the functioning of financial systems (see, e.g., May et al., 2008; 
Haldane & May, 2011; also Johnson, 2011). Sources of inspiration are not limited to biological 
systems: studies of the complex dynamics and size-vs-frequency distributions of earthquakes 
also offer insights for students of markets crashes: see Sornette (2002). 

CAS and MAS approaches are not limited to the exploration of economic and financial systems: 
the approach is now pretty-much a standard item in the toolboxes of biologists, urban planners, 
military strategists, movie animators, safety architects, and practitioners of many more 
application areas in science and engineering. Several research teams have worked on 
developing general-purpose simulators (with associated visualization and analysis tools) for 
exploring CAS and MAS: for details of an example generic simulator and reviews of related work 
see Polack, Andrews, & Sampson (2009); and Polack et al. (2010). 

In the course of this section’s discussion thus far, we’ve briefly surveyed high integrity systems 
engineering, and the definitions of systems of systems (SoS) and of complex adaptive system. 
Now we draw those three strands together and explore the current state, and future prospects 
for, high-integrity safety-critical engineering of complex adaptive ecosystem SoS.16 

16 We recognize that this is a long and cumbersome phrase. A shorter alternative might be “wicked systems”, first 
coined as a technical term in information systems engineering by Metcalf (2005) in direct reference to Rittel & 
Webber’s (1973) notion of “wicked problems”. But, given the current widespread disaffection in the media and 
general public with the banking sector, it seems prudent to avoid the potential confusion between the technical 
sense of “wicked” and the morally judgemental one, confusion that might arise in talking about trying to develop new 
engineering approaches for dealing with the “wicked systems of the financial markets”.
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A.4 Engineering Approaches to High-Integrity Complex Adaptive Ecosystem SoS 

All approaches to risk assessment and safety-critical engineering involve the notion of a model. 
Rather than attempting to observe and manipulate the real physical system in its real operating 
environment, the model is instead an abstract representation of those aspects of the system that 
the engineers believe to be necessary and sufficient to reason about in order to achieve the task 
at hand. So, in this sense, a fault-tree diagram for some system is a model of that system. The 
fault-tree can be reasoned about, argued over, and altered to make it a better or worse 
representation of the real system, and the fault-tree can be manipulated to arrive at specific 
answers to specific questions, without having to touch the real system. The fault-tree is an 
explicit, diagrammatic, model of the system, suitable for risk assessment. But, as we have seen, 
the same system’s risk assessment could instead be approached via Bayesian PRA, in which 
case the model will be a set of coupled equations and the associated prior probabilities. 

In high integrity systems engineering, it is recognized that all models are developed iteratively, 
that they pass through a lifecycle: after an initial model is proposed, experience with the real 
system may reveal that the model needs refinement and improvement, the model is altered 
appropriately, but subsequent experience may again reveal the need for additional alterations. 
Eventually, it is hoped, the model will stabilize as more is known of the system. Of course, if the 
system itself is changing over time (as is almost definite in a socio-technical ecosystem SoS), 
the safety-engineer’s model is forever playing catch-up; there will always be a strong likelihood 
that there is some aspect of the SoS is not yet known, not yet captured in the safety model. 

Recognising this, in recent years many researchers and practitioners involved in the engineering 
of high-integrity systems of systems have turned to predictive computer simulation models as a 
way of exploring “what if” scenarios. Such simulations are typically highly compute-intensive, 
and it is only with the ongoing Moore’s-Law reductions in the real costs of computer power that 
such approaches have become practicable. In a predictive simulation, the model is expressed as 
interacting processes within the computer: such simulations may involve manipulating numeric 
values according to given equations (as in PRA); and they may also represent the model, or its 
outputs, via explicit diagrammatic visualizations (as in fault-tree analysis). Computer simulations 
offer the advantage of taking exhaustive “brute force” approaches to exploring system safety: for 
some systems, it is feasible to simulate the system in every possible combination of values for 
all variables of interest – the entire “state-space” of the system (that is, the space of all possible 
states it could ever find itself in) can be explored by the computer, given enough time. If the 
entire state-space is explored, and no unanticipated failures are discovered in the model, then 
(so long as the model is an accurate representation of the real system) the system’s reliability is 
known completely. This technique of brute-force simulation has been particularly successful in 
the microelectronics industry, where the responses of new designs for silicon chips are explored 
exhaustively in simulation before the chip is fabricated for real: mistakes discovered at the 
simulation stage are much cheaper to fix than if the error is discovered only after the chip has 
been manufactured. 

However, for many real-world systems, the state-space is sufficiently large that brute-force 
exhaustive searching is simply not possible. The combinatorics of state-spaces often involve 
exponentials-of-exponentials: equations of the form v=w-to-the-power-(x-to-the- power-(y-to-the
power-z))), and numbers such as v can grow astronomically huge, much larger than the number 
of atoms in the known universe, for only moderate values of w, x, y, and z. Attempting 
exhaustive search of such vast state-spaces is possible in theory, but the sun will burn out long 
before the search is over. So, for many real systems, sophisticated techniques are required to 
cleverly sample only selected points or areas in the system’s state-space. Developing such 
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techniques is a current research issue, even in microelectronics where the state-spaces of 
current chips have now grown to routinely be beyond the size where exhaustive search is 
practicable (see, e.g. Hsueh & Eder, 2006). 

Researchers concerned with risk assessment and safety assurance in SoS have developed 
increasingly sophisticated simulation modelling techniques (see, e.g., De Laurentis & Han, 2006; 
Parisi et al., 2008; Clymer, 2009; Kewley & Tolk, 2009), and researchers interested in 
developing generic simulation tools for the study of complex adaptive systems have learnt from 
the methods developed in high-integrity systems engineering (Polack, Andrews, & Sampson, 
2009). Some recent work has explored the possibility of feeding the outputs of simulation models 
directly into machine learning (ML) algorithms, so that the ML system can discover or learn rules 
and regularities that can neatly summarise the behaviour of the system (see, e.g., Eder, Flach, & 
Hsueh, 2006; Alexander, 2007). Nevertheless, researchers remain cautiously aware that the 
model is only that: only a model, an abstraction. The models are used to explore possible 
circumstances and situations that may be very rare, and/or disastrous, in the real system. 
Alexander et al. (2006) comment that this approach is one that Dewar et al. (1996) refer to as 
“weak prediction”: 

“[Dewar et al., 1996] note that “subjective judgement is unavoidable in assessing 
credibility” and that when such a simulation produces an unexpected result “it has created 
an interesting hypothesis that can (and must) be tested by other means”. In other words, 
when a simulation reveals a plausible system hazard, other, more conventional analyses 
must be carried out to determine whether it is credible in the real system. Therefore, the 
role of the simulation analysis is to narrow down a huge analysis space into one that is 
manually tractable.” 
(Alexander et al., 2006) 

One of the biggest challenges at present concerns modelling the social elements in socio
technical SoS: people and groups of people can be surprisingly sophisticated (and surprisingly 
stupid), and representing their relevant nonlinear, adaptive, nondeterministic behaviour in a 
simulation model is certainly not easy. 

Although it is undoubtedly difficult to capture human ingenuity and adaptivity, there are well-
developed techniques in the CAS literature that can serve as good proxies: most notable of 
these is the use of co-evolution as a process for driving stochastic search through a space of 
possible designs or strategies, giving rise to what can appear to be a form of “artificial creativity”. 
The seminal example of this approach was described in a paper by Hillis (1990): Hillis used 
simulated evolution, a genetic algorithm (GA), to automatically design algorithms for sorting lists 
of numbers into numeric order; each “individual” in his GA’s population was a particular 
algorithm, and the sequence of steps in each individual’s algorithm were specified by its “genes” 
(each step involved comparing a pair of numbers, and if necessary swapping their places in the 
list to make them be in the right numeric order); each individual’s probability of reproduction (i.e., 
its fitness) was determined by how many test-lists it sorted successfully. Initially, Hillis worked 
with a set-up where the test-lists were fixed in advance: when he did this, his GA could reliably 
evolve individual algorithms that did well at sorting the specific lists in the test set, but did poorly 
when presented with a novel list, one that was not in the test set. To counteract this, Hillis re
worked his system so that the test-lists were also an evolving population: the test-set was a 
population of lists, the particular numbers in each list were specified via its “genes” and the 
“fitness” of each list was determined by how “difficult” it was, i.e., by how many of the sorting 
algorithms failed to sort it. Thus the population of sorting algorithms, and the population of test-
lists, made up a competitive coevolutionary system, much like a predator-prey or parasite-host 
dynamic: the fitness of each sorter-algorithm depended on how many lists it could sort; the 
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fitness of each list depended on how many sorter-algorithms it could defeat; and the two 
populations co-evolved over time. The coevolutionary system was much more productive, and 
readily discovered sorting algorithms that rivalled the best-known human-designed ones. Since 
Hillis’ paper, several CAS researchers have demonstrated the power of coevolution as a force 
for generating novel solutions and designs (see, e.g. Sims, 1994; Funes & Pollack 1999; 
Cartlidge & Bullock, 2004; Cliff & Miller 2006; Stuermer et al. 2009), it seems entirely plausible 
that co-evolutionary processes could be used to approximate the effects of human ingenuity and 
creativity in socio-technical systems. Perhaps more importantly, coevolutionary processes could 
also be used to explore the state-space of simulated ecosystems SoS, in the search for 
conditions that reveal unanticipated failure modes, in much the same way as Hillis’s population 
of test-lists searched for methods of “failing” his population of sorting algorithms. This would 
allow semi-automated generation of hypotheses about how the real system might fail. 
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