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Summary 

The global financial markets have been aggressive early-adopters of new technologies for 
most of their history. In the past quarter of a century, since the instigation of the “Big Bang” 
switch to paperless electronic trading, the City of London has led the world in the adoption of 
new information and communications technology (ICT) for the provision of electronic trading 
facilities, and the associated distribution of data and news feeds. This hunger for new 
technologies looks unlikely to be diminished in future. 

As well as many opportunities, ICT development has additionally brought risks (some of which 
are non obvious and even counter-intuitive) for which there is an immediate requirement for 
careful and thorough evaluation. 

New technologies may come in the form of new hardware, new software (including algorithms), 
or (most likely) combinations of the two. As new technologies become available and more 
widely adopted, they may significantly alter what market actions and activities are possible, and 
in the longer term they may significantly alter the socio-economics of the financial markets, and 
hence also the necessary regulatory and political frameworks that financial institutions operate 
in. 

In this document we establish the historical context for technology adoption in the financial 
markets, review current technology trends, and then extrapolate them out by five to ten years, 
in an attempt to identify what the financial-markets technology landscape might reasonably 
look like in 2020 or 2022. By identifying current products and services that appear to meet the 
technical definition of disruptive technologies, we explore what likely ICT developments over 
the next ten years will become the most significant to the financial markets, and how those 
developments might change the industry and affect the employment distribution of human 
traders. We then briefly speculate on the consequent possible impacts on systemic financial 
stability. 

Our primary contention is, unsurprisingly, that without external regulation and intervention, the 
shift to trading that is dependent on high-speed high-bandwidth automated adaptive technology 
(a move that is already well underway) looks set to continue over the next decade. Whilst this 
in itself may not be undesirable, we should look at influencing the direction of travel. The 
“deverticalization” of financial trading institutions that was initiated in Europe by the initial 
MiFID1 legislation also looks set to continue. It is reasonable to expect that the net result of 
these trends will be a lowering of barriers to entry, and a significant reduction in the number of 
employees required by major financial institutions. This “depopulation of the trading floors” 
could lead to a situation where, by 2020, the long-established primacy of London as a major 
global trading hub is seriously threatened by clusters of automated trading systems operational 
elsewhere on the planet, in countries that have hitherto not been major centres for the financial 
markets. 

In addition to the threat of commerce migrating away from London is the threat of increased 
risk coming our way. Whilst the ecosystem of trading strategies may be relatively varied, the 
range of risk mitigation strategies is alarmingly more limited. A combination of institutional risk 
systems existing in lockstep has covertly led to an increased danger of national catastrophe in 
the event of financial shock. 

1 MiFID stands for Markets in	  Financial Instruments Directive. A glossary of acronyms	  used in this	  report is	  given in the	  appendix.
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Perhaps the greatest challenge facing the financial services industry, regulators and 
government is the quantification of ‘risk’ at all levels but especially in the new forms of 
derivatives, new algorithms deployed in automated trading, and the systemic phenomena of 
so-called “flash crashes”. New tools for quantifying risk are urgently required; the resources of 
the academic community should be harnessed, and a new risk management culture should be 
established in financial institutions. 

1. Overview 

This document, like all of Foresight’s Driver Reviews, is aimed at readers who are not 
necessarily experts in the field. For non-experts, we offer Section 2 as a rapid tour through the 
history of technology in the financial markets. Section 3 is where we summarize the current 
state of play, before moving onto our discussion of possible futures, out to the year 2020, in 
Section 4. Our discussion of future scenarios is motivated by an analysis of current likely 
disruptive technologies. Here, the word “disruptive” has a particular technical meaning. For 
readers unfamiliar with the notion of disruptive technologies, we present a brief summary at the 
end of Section 3. 

2. A Brief History of Technology in the Financial Markets. 

Let’s start by recapping the entire history of the technology of the financial markets, but let’s 
keep it really brief. The story spans all of the 18th, 19th, and 20th centuries, which we deal with 
over a couple of pages in Section 2.1, and then goes into more detail on 21st century 
developments in Section 3.2. 

2.1 The First Three Hundred Years: Paper, Horse, Pigeon, Wire, Computer 
The first joint-stock companies, issuing shares to finance major (and often seafaring) ventures, 
were formed in the late seventeenth century. The birth of the first shareholder economies in 
Europe in the early years of the eighteenth century is described by Neal (2000); that tale, and 
the story of the first major financial crisis, the South Sea Bubble, is entertainingly documented 
at length by Balen (2002). For over a century, London’s trading in commodities and shares was 
centered in coffee-shops around Lombard Street and Change Alley; legislation to regulate 
these informal equity markets was introduced after the South Sea Bubble crash and some 
subsequent insider trading scandals, but the London Stock Exchange was not formally founded 
until 1801. Throughout this period, for well over a century, there was one primary 
communications technology that the financial markets were dependent on. That was the horse. 

Messages concerning market-moving events such as wars, or the arrival or loss of ships, were 
relayed from the battlefield or the port back to the location of the markets and exchanges by 
teams of horse-riding messengers. Financiers owned and operated private networks of riders 
and horses: the traders with access to the best horses had the best, most current, information 
and could profit from exploiting it before the news they carried became known to others. 
Horses were fast, but pigeons were faster: the founders of the Reuters news service used 
carrier pigeons to relay messages over long distances with greater speed, and at less cost, 
than horse-borne news. Famously, the London-based trader Nathan Rothschild had carrier 
pigeons sent to the scene of the Battle of Waterloo; they were released immediately after 
Napoleon’s surprise defeat, and Rothschild learnt of the British victory long before anyone else 
in London (even the UK Government), which allowed him to buy large amounts British bonds 
shortly before they soared in value on the news that Britain was now the dominant nation in 
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Europe. 

So, money could be made from low-latency communication, because of the information 
advantages it offered. Furthermore, the lack of any reliable long-distance communications 
technology meant that major trading institutions, such as merchant and investment banks, 
needed to locate their offices physically close to the main markets and exchanges. This need 
for geographic proximity gave rise to the clusters of financial institutions in major cities such as 
those around Wall St in New York and London’s “Square Mile” centered on Lombard Street. 
These clusters are still evident today, but advances in financial-market information and 
communications technology (ICT) mean that their longevity is no longer guaranteed, a point 
that we return to in Section 4.6. 

But London was not the only British city in which shares were traded. In 1964, there were at 
least 22 legally separate stock exchanges in the UK: major cities such as Belfast, Birmingham, 
Bristol, Cardiff, Edinburgh, Glasgow, Leeds, Liverpool, Manchester, Newcastle and Swansea 
all had their own stock exchanges, mostly established in the early 1800’s, which prospered with 
high degrees of autonomy for as long as communication over long distances remained 
difficult.2 

Networks of messengers on horseback were rendered obsolete in the second half of the 19th
 

century by the arrival first of the telegraph, and then the telephone.3 In the UK, improved 

telecoms led to the gradual decline of the stock exchanges outside of London; in the north of 

England the various city exchanges merged to form the Northern Stock Exchange, but its 

operations drew to a close in the first half of the 1970’s.4
 

Telephone-based communication was the dominant enabling technology of the financial 

markets for the first 70 years of the twentieth century. That, and printed paper. 


Michael Bloomberg, in Chapter 7 of his autobiography (2001), describes how the information 
handling system at his then-employers Salomon Brothers in the early 1970’s was essentially 
the same paper-based system that had been operational at the firm’s foundation in 1911. 
Bloomberg pioneered Salomon’s introduction of an online computer-based information system, 
developing a lot of the technology in-house but also buying screen-based information systems 
such as Quotron terminals from external suppliers, linking them to the company’s existing IBM 
mainframes and to the then-new technology of minicomputers sold by competitors to IBM such 
as Digital Equipment Corporation (DEC). Famously, Bloomberg went on to found his own 
eponymous information technology (IT) company in 1981 and made a huge fortune selling 
advanced information terminals to pretty much every major trading institution around the world. 
Bloomberg was not alone: similar terminals were offered by Dow Jones and by Reuters, among 
others. 

As minicomputers were replaced by personal computers (PCs), and as the computing power 

and storage capacities of PCs increased while their real costs fell, by the late 1980s it was 


2 E.g., the Irish	  Statute Book	  of 196 recognized	  22 independent stock	  exchanges operational in the UK at that time: within decade,
onl the London Stock Exchange remained. http://www.irishstatutebook.ie/1964/en/si/0005.html
3 Stephenson (1996) entertainingly	  tells the story	  of the rush	  to	  lay transoceanic telecoms cables in the late 1800’s, and	  contrasts it
with	  the	  rush	  to	  wrap the world in optical fibre a century later.
4 Curiously, there	  have	  been recent moves to	  re-‐establish	  regional stock	  exchanges across the UK, to	  help	  provincial companies avoid	  
the costs of raising	  funds via	  listing	  in London. Investbx, the	  exchange	  founded	  in Birmingham in 2007, has not been huge	  success
(see Mundy, 2011), but this has not dampened	  enthusiasm for a Northern exchange in Leeds (see
www.yorkshirepost.co.uk/business/business-news/city_makes_pitch_for_northern_stock_exchange_1_2582429.)
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commonplace for traders to be interacting with the markets not only via phone to other traders, 
but also via a PC terminal for information, for risk management software, and for trade-
processing software. By then, the market’s reliance on ICT was already critical. Loss of the 
terminals, the PCs, or the phone system, could totally disable activities on the trading floor of 
any investment bank. 

During the mid 1980’s, the PCs that had found their way onto trading floors primarily as 
information-provisioning systems were put to other uses. The information that the PC was 
showing on its screen was readable not only by traders but also by any program running on the 
computer. It was straightforward to write a program that could monitor the price of a financial 
instrument and flash a warning on the screen to tell the trader to sell that instrument if the price 
rose above some threshold or “trigger” price; or to sell if the price fell below the trigger. Rather 
than have the trader’s computer terminal flash a warning that then prompted the trader to issue 
a buy or sell order to the market via that same computer terminal, it was manifestly more 
efficient to simply have the computer actually issue the electronic order direct to the market. 
While this was faster and cheaper, it carried some hidden systemic risks: now trading decisions 
were being taken by machines, armed with little more intelligence than the thermostat that 
controls a house’s heating system; when lots of these thermostatically-stupid automated 
trading systems, each owned and operated by different institutions or different traders, were 
allowed to interact in a major market, it turned out that their system-level interaction dynamics 
could be highly undesirable. After the event, the “Black Monday” stock-market crash of October 
1987 was widely attributed, at least in part, to dropping prices hitting the trigger-points of these 
simple automated trading systems, and thereby causing them to sell. As they sold, so their 
sales depressed prices further, thereby triggering yet other automated systems to sell, pushing 
the price even lower, triggering others to sell, and so prices spiralled rapidly downwards into 
freefall. This, and the broader widespread failure of 1970’s and 80’s academic research in 
Artificial Intelligence and “logic programming” to deliver convincingly intelligent solutions or 
technologies, meant that automated trading in the financial markets entered something of a 
dark-age period after 1987, a “nuclear winter” that endured for roughly a decade. 

Nevertheless, over the ensuing decade, as the real cost of computing continued to fall, 
management of investment funds became increasingly technical, increasingly dependent on 
computationally intensive mathematical models to reduce or offset portfolio risk, i.e. to “hedge” 
the risk in the fund’s holdings. So-called statistical arbitrage (commonly abbreviated to “stat 
arb”) strategies would identify long-term statistical relationships between different financial 
instruments, and trade on the assumption that any deviations from those long-term 
relationships are temporary aberrations, that the relationship would revert to its mean in due 
course. One of the simplest such “mean-reversion” strategies is pairs trading, where the 
statistical relationship that is used as a trading signal is the degree of correlation between just 
two securities. Identifying productive pair-wise correlations in the sea of financial-market data is 
a computationally demanding task, but as the price of computers fell, so it became possible to 
attempt ever more sophisticated stat arb strategies. 

Famously, in September 1998, the Long Term Capital Management (LTCM) hedge fund 
announced that its primary fund had generated truly devastating losses. LTCM’s fund was so 
big, and had contractual links to so many major Wall Street firms, that the Federal Reserve 
Bank of New York feared that LTCM’s failure could trigger a contagious sell-off on the New 
York markets, sharper than that seen in October ’87. The Federal Reserve organized an 
emergency bail-out by the major US investment banks: as Lowenstein (2000) artfully recounts, 
the rescue of LTCM was literally an eleventh-hour deal, with the agreement being stitched 
together on a Sunday night, hastened by the concern that a firm announcement was needed 
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before the markets opened on the Monday morning. Some commentators at the time criticized 
the Federal Reserve’s role in the bail-out of LTCM, arguing that it could encourage more risk-
taking by large financial institutions in future, giving them the impression that the Fed would 
intervene on their behalf if their risky strategies didn’t pay off; that they could be too big to fail. 
The Black Monday crash of October ’87 had dealt a severe blow to confidence in automated 
trading systems. And a decade later the failure of LTCM dented faith in mathematically 
sophisticated technical trading strategies. Despite this, in the first decade of the 21st Century, 
both approaches have undergone a remarkable renaissance that has been accelerating rapidly 
from 2003 onwards, and the two approaches have combined in the last five years to radically 
change the nature of the global financial markets. We will deal with that, in detail, in the next 
section. 

2.2 The Last Decade: Rise of the Robot 
Teasing out all the influences and contributory factors that led to and enabled the rapid 
changes of the past five years or more is not something that we can afford to spend much time 
on here, and anyway we are certainly not professional historians. Despite this, the birth of the 
World Wide Web, and the subsequent dot.com boom, can serve here as a convenient marker 
for the start of the renaissance of automated trading. The rise of the Web gave birth to a slew 
of start-ups offering online markets for a variety of business niches. Major success stories of 
the internet boom such as Ebay.com, Amazon.com, and Betfair.com (the latter an operator of 
gambling exchanges, for the buying and selling of bets) are all online markets, i.e. online 
exchanges. At the same time that these consumer-oriented companies were set up, people 
with experience in the financial markets started to establish new web-based marketplaces and 
exchanges for financial instruments. So-called Electronic Crossing Networks (ECNs), linking 
the computers of various trading houses without routing via the central national stock 
exchange, had long been in existence: the first, Instinet, was founded in 1969; and the US 
National Association of Securities Dealers Automated Quotation (NASDAQ) exchange was 
launched as “the world’s first electronic stock market” in 1971. Nevertheless, the advent of the 
Web significantly lowered the barriers to entry (that is, the cost of the necessary technology fell, 
the number of people with the necessary skills increased, and so on) and a number of 
technology-focused ECNs started to operate online exchanges for securities, currencies, and 
commodities. 

At much the same time, the ongoing exponential decline in the real costs of computer-power 
meant that it was possible to deploy automated trading systems that had considerably more 
intelligence than a thermostat. In most cases, this apparent intelligence was based not on the 
logical reasoning beloved of old-school Artificial Intelligence (AI) research, but instead on 
rigorous mathematical approaches that were firmly grounded in statistical modeling and 
probability theory. The new wave of automated systems concentrated on execution of a trade: 
that is, the computer did not make the decision to buy or to sell a particular block of shares or 
commodity, nor to convert a particular amount of one currency into another: those decisions 
were still taken by humans. But, once the trading decision had been made, the execution of 
that trade was handed over to an automated execution system (AES). Initially, the motivation 
for passing trades to an AES was that the human traders were then freed up for dealing with 
more complicated trades. As AES became more commonplace, and more trusted, various 
trading institutions started to experiment with more sophisticated approaches to automated 
execution: different methods, different algorithms, could be deployed to fit the constraints of 
different classes of transaction, under differing market circumstances; and hence the notion of 
algorithmic trading was born. 
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Perhaps inevitably, the word “algorithmic” was judged to be too polysyllabic, and very many 
people in the markets now talk instead of “algos”. Traders also refer to their algo systems as 
“robots”, despite the fact that they are purely virtual entities. We’ll use “robot” and “algo” as 
interchangeable terms. 

One of the primary motivations for developing AES was as a means of reducing market impact 
on large transactions. That phrase needs careful explanation. In brief: if you, as an individual, 
sell one share in a major stock, then the price you’ll get will most likely be whatever price you 
see on the market screens at the time you execute your trade: the act of you selling (or buying) 
a single share has no impact on the price of that stock, because your transaction is just a tiny 
drop in the vast ocean of liquidity for that equity. Now, instead imagine that you are a major 
fund manager, and that for some reason you have decided to sell one million shares of a 
particular equity. If you were to sell all million of them immediately, basic economic theory tells 
us that the sudden sharp increase in supply (more shares for sale) will depress the price: that 
is, your sale would have a negative impact on the price of the share that you’re selling. 
Unfortunately for you, that basic economic theory tells not only us, but also your potential 
counterparties, that the price will go down as a consequence of this big trade; and, to guard 
against this anticipated drop in price, they respond to your indication to sell en bloc by quoting 
you a lower price than the market had hitherto been showing. This, then, is market impact: 
merely revealing to the market that you are interested in selling (or buying) in large volume will 
mean that the price you’re given, i.e. the prices other traders quote per share to buy from (or 
sell to) you, is significantly lower (or higher) than the current market price you see on the 
screen. Put most simply, market impact is when the price moves against you before you can do 
your deal, simply because of the size of your deal. 

Many AES for reducing market impact are based on the observation that if you could divide 
your one big deal into a number of smaller slices, and then trickle-feed those slices into the 
market over some period of time, maybe the size of the individual slices would not be market-
moving (or would not move the market nearly so much) and so you’d get a better price per 
share, overall. 

Say, for the sake of example, that we give an AES the job of executing a sale of 999,999 
shares in the time-window between noon and 3pm. An extremely simple “salami slicer” 
algorithm might break that into three sell orders, each for 333,333 shares, and execute them at 
1pm, 2pm, and 3pm. One problem with this approach is that the order has been blindly split 
into three equal-sized slices, with no question of how large the size of those slices are in 
comparison to the rest of the market activity for this share at those trading times. Attempting to 
sell 333k shares may still trigger market impact effects if trading at a particular hour is thin: say 
that the volume for this share in the rest of the market is only 650k at the time that one of the 
slices is executed; trying to unload 333k will increase volume by over 50% and a market impact 
effect is likely. On the other hand, selling 333k shares during a period when the current volume 
is 7m represents less than 5% of the market -- in periods of such high trading volume the AES 
could probably get away with selling a much bigger slice without any impact effect. 

This trickle-feeding via volume-sensitive slicing is exactly what a volume participation algo 
does, using predictions of future volume from a statistical model of past trading activity in the 
instrument being traded. So, to continue the example, say that our statistical model for this 
equity, based on recent trading history data, predicts that the volume of transactions in this 
equity will be 3m shares from noon to 1pm, 4m from 1pm to 2pm, and 6m from 2pm to 3pm. 
This 3:4:6 ratio can be normalized to sum to one (i.e. divided through by 3+4+6=13) and 
rewritten as 23%:31%:46% – these percentages are the volume-weightings that the algo uses, 
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and hence it would attempt to execute the trade by selling 230k units in the first hour (23% of 
the 1m to be executed), 310k in the second, and then 460k in the last. The volume-weighting 
means that in the first period when trading is thin, the algo trickles in a proportionately smaller 
slice of the order, less than a quarter of the total to be executed; but in the final period when 
trading is predicted to be heavy it executes almost half of the total order. 

To see how well the algo has done, we can calculate the ratio of the total value of transactions 
in the time-window (i.e., the share-price of each transaction multiplied by the volume of shares 
in that transaction) to the total number of shares traded in that time-window, to compute the 
volume-weighted average price (VWAP) for that share over that time-window. Algorithms that 
aim to meet VWAP objectives (commonly known simply as “VWAP algos”) will typically use 
volume-participation methods to aim for (or even guarantee) that a block trade will be sliced 
and fed into the market in such a way that the average price per share for the overall block 
trade will match the VWAP in the instrument over a specified period, usually the same period 
as the window for the trade: see, e.g., Madhavan (2002), Bialkowski et al. (2008). In addition to 
VWAP algos, other algorithms have been developed and deployed that aim for percentage-of
volume objectives; that aim for combinations of volume- and time-weighted criteria; and 
combinations of many other objectives. In recent years a plethora of books on algorithmic 
trading have been released: for some examples, see Pole (2007), Narang (2009), and 
Gregoriou (2010). 

At the same time as AES systems were being developed to reduce market impact, other 
trading teams were perfecting advanced stat arb techniques for identifying trading opportunities 
based on complex statistical regularities that lay deep in the data: the price and volume data for 
hundreds or thousands of instruments might have to be considered simultaneously and cross-
correlated, in the search for opportunities similar to the pairs trading of the 1980’s, but typically 
involving correlation functions computed over many more than two instruments. These stat arb 
approaches were made possible by significant computational infrastructure for computing the 
statistical analyses that identified trading opportunities, and also by developments in IT-
enabled trading infrastructure, so-called Straight-Through Processing (STP: where the entire 
trading process, from initiation to payments and clearing, is one seamless electronic flow of 
transaction-processing steps with no human-operated intermediate stages), and Direct Market 
Access (DMA: where “buy side” investors and investment funds are given direct access to the 
electronic order-books of an exchange, rather than having to interact with the market via a “sell 
side” intermediary such as an investment bank or broker/dealer). In the past decade, DMA and 
STP have been joined by a third three-letter acronym: SOR, for Smart Order Routing, where 
orders to buy or sell are automatically routed to the exchange or ECN that offers the best price 
for that order. 

Advances such as STP and DMA could be capitalized upon because of the existence of 
agreed-upon standard electronic communications protocols for the exchange of financial 
messages. Two protocols, SWIFT (Society for Worldwide Interbank Financial 
Telecommunication), and FIX (Financial Information eXchange, a standard developed and 
operated by the non-profit UK company FIX Protocol Ltd) have been operational since the early 
1990’s, with FIX having been recognized by many market participants as the de facto industry 
standard over the past decade. In 2006, FIX Protocol Ltd released version 1.0 of a new 
protocol, FAST (FIX Adapted for STreaming), which involves less verbose messages than the 
original FIX, and is designed specifically for high-bandwidth, low-latency trading applications; 
FAST is now at version 1.2, first proposed in 2009. FIX and FAST are open specifications of 
protocols: each protocol can be implemented in various manners, and using a variety of 
programming languages. The software implementation of the protocol is known in the industry 
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as the “engine”: institutions may choose to build their own FIX engine and/or FAST engine, or 
they may buy a ready-developed engine from an third-party supplier such as RapidAddition5, 
the leading developer of FIX and FAST engines. For further discussion of FIX, see the FIX 
Protocol Ltd web-site.6 

To understand current algorithmic trading systems it is useful to understand how a trade is 
executed in an exchange, the different types of trading, and types of participants. 

Dealers generally execute their orders through a shared centralized order book that lists the 
buy and sell orders for a specific security ranked by price and order arrival time (generally, on a 
first-in-first-out basis). 

The trading process, illustrated in Figure 1, can be split into three major areas: 
§ Pre-trade analysis: this is the most common use of algorithms within a trading 

environment. It encompasses any system that utilizes financial data or news to analyze 
certain properties of an asset. 

§ Trading signal generation: the next step in automating the trading process is to 
generate an actual trading signal. This level of automation is often employed by 
systematic asset managers and trading institution. 

§ Trade order execution: finally, algorithmic trading can be delegated to execute trades 
and place orders in one more exchanges. 

Figure 1: Anatomy of the trading process. 

The pre-trade analysis comprises three main components: the alpha model, designed to 
predict the future behaviour of the financial instruments that the algorithmic system is intended 
to trade; the risk model, used to evaluate the levels of exposure/risk associated with the 
financial instruments being traded; and the transaction cost model, which calculates the 
(potential) costs associated with trading the financial instruments, as illustrated in Figure 2. 

5 http://www.rapidaddition.com.
6 http://www.fixprotocol.org/what-is-fix.shtml.
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Figure 2: Components of an Algorithmic Trading System 

At the Trading Signal stage the primary component of an algorithmic trading system is the 
Portfolio Construction Model, which takes as inputs the results of the Alpha Model, Risk Model 
and Transaction Cost Model and optimally selects the ‘best’ portfolio of financial instruments 
they wish to hold/trade. This involves attempting to maximize potential profits, while limiting risk 
and the costs associated with the trades. 

Finally at the Trade Execution stage, the Execution Model takes the required trades and 
various data such as the dynamics of the target markets, and executes the trades in as an 
efficient way as achievable. 

With the recent changes in the regulatory frameworks of the financial markets in Europe and in 
the USA (most notably, the MiFID regulations in the EU), the previously widespread heavily 
vertically integrated business model of investment banking acting as the “sell side”, selling their 
privileged access to market liquidity on centralized exchanges to “buy-side” fund managers, 
has clearly entered a disruptive de-verticalization phase. In consequence, a new business 
ecosystem of small and medium-sized enterprises (SMEs) has emerged to supply component 
technologies and new electronic alternatives to existing trading venues and structures. The 
component technologies are typically “middleware” such as market-data event aggregators, 
event-stream processors, alpha modeling systems, risk management systems, transaction cost 
analyzers, automated execution systems, trader’s graphical user interfaces, and so on. The 
new alternatives to existing trading venues include the “dark pools of liquidity” provided off-
exchange by so-called Alternative Trading Systems (ATSs) and Multilateral Trading Facilities 
(MTFs). The growth of some of these companies has been meteoric. For example, Chi-X is an 
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MTF established by Instinet in 2007, and now accounts for 26% of FTSE100 equity 
transactions in London, and 15% of all trading in European shares (Grant & Demos, 2011). 
Fund-management companies (and also independent individual traders) can now pick-and 
choose their technology components, and their trading venues, and replicate much – possibly 
all – of the functionality that they previously paid investment banks to provide. This 
deverticalization is one major threat to existing long-established business models, an issue 
explored at length in an influential report co-authored by IBM Business Consulting Services 
and The Economist Intelligence Unit, titled The Trader is Dead, Long Live The Trader! (IBM, 
2006). 

The convergence of statistically sophisticated and computationally intensive trading strategies, 
fast automated execution, and direct market access, means that in the last two or three years it 
has become commonplace for market participants to electronically seek counterparties to a 
transaction, identify a counterparty, and then execute the transaction, all within a small number 
of seconds. In consequence, a new style of trading has emerged, known as high-frequency 
trading (HFT), where automated systems buy and sell on electronic exchange venues, 
sometimes holding a particular position for only a few seconds or less. That is, an HFT system 
might “go long” by buying a quantity of shares (or some other financial instrument, such as a 
commodity or a currency) hold it for perhaps two or three seconds, and then sell it on to a 
buyer: if the price of the instrument rises in those three seconds, and so long as the transaction 
costs are small enough, then the HFT system has made a profit on the sale. The profit from 
holding a long position for three seconds is unlikely to be great, and it may only be a couple of 
pennies, but if the HFT system is entirely automated, then it is a machine that can create a 
steady stream of pennies per second, of dollars per hour, twenty four hours per day. A recent 
study by Kearns et al. (2011) indicates that the total amount of money extractable from the 
markets via HFT may be more modest than some might estimate or guess. Despite this, the 
low variation in positive returns (the “steady” in “steady stream of pennies”) from a well-tuned 
HFT system is an attractive feature, and one that means HFT is an area of intense interest in 
the current markets. 

HFT hedge-funds have become major players in most of the world’s electronically enabled 
markets. Common current estimates for major equity exchanges around the world are that 
more than 50% of trading volume is now generated by high-frequency algorithmic trading 
systems,7 and recent authoritative projections from the SEC and Boston Consulting Group 
estimate that this will rise to more than 70% in both the US and Europe by 2015 (SEC & BCG, 
2011, p.30). 

Finally, no history of the last decade of technology-enabled trading would be complete without 
mentioning the events of May 6th, 2010, now widely referred to as the “Flash Crash”, when the 
New York equity markets underwent an extraordinary upheaval, with the Dow Jones index 
losing more than 600 points in a few minutes (representing the disappearance of around one 
trillion dollars worth of market value) and then regaining much of that loss over the following ten 
or fifteen minutes. No market crash had ever occurred at such speed, and nor had any rally or 
recovery. The role of technology in the Flash Crash, and the wider implications of the fact that 
the global financial markets are now a single interconnected ultra-large-scale complex socio

7 A well-‐informed	  BBC	  Radio programme in	  the File o Four series, broadcast in	  November 2009, covered	  this in	  some depth	  and	  
included lengthy	  interviews with several senior figures involved in leading-‐edge	  high-‐frequency	  trading; the	  broadcast prompted	  
press coverage	  for the	  comments made	  on it by	  the	  then HM Treasury	  minister, Lord Myners. A complete	  transcript of the	  30-‐minute
File o Four broadcast is available as pdf from here: http://news.bbc.co.uk/1/shared/bsp/hi/pdfs/20_10_09_fo4_casino.pdf and	  the
BBC	  News story	  on Myners’ comments is here: http://news.bbc.co.uk/1/hi/business/8338045.stm.
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technical system, is discussed at length by Cliff & Northrop (2011). The official report into the 
causes of the flash crash, jointly published by the US Commodity Futures Trading Commission 
and the US Securities and Exchange Commission (CFTC & SEC, 2010) argues that it was in 
fact precipitated by a traditional fundamental trader placing a large $4b sell order. Thus whilst 
high-frequency algos did not directly initiate the Flash Crash, it seems that they did accelerate 
the drop, and yet also that they sped the subsequent recovery. An intricately detailed analysis 
of the precise sequence of trading events on the afternoon of the Flash Crash, which tells a 
somewhat different story to the official CFTC/SEC report, has been authoritatively published by 
Nanex Corp8: see Meerman et al. (2010) and Easley et al. (2011) for further details of the 
extent to which the CFTC/SEC version of events is disputed. 

The history story that we’ve told here is undoubtedly partial in both senses of the word: it’s 
incomplete, and it reflects our personal interests and biases. But this narrative has at least 
served to introduce the historical context and some core concepts.9 In many ways the 
replacement of humans by algos can be seen as the industrialization of trading, analogous to 
the introduction of robots in car factories to improve the quality of manufacturing. 

Now let’s turn to how things look today. As it happens, a significant proportion of today’s 

trading technology developments are being driven by exactly the same issue that motivated 

traders of two hundred years ago to pay for teams of horses and messengers: latency.
 

3. The Current State of Play 

3.1 Latency issues drive co-location 
To understand the recent occupation with latency, we need to recap some basic science, and 
then some basic numbers concerning modern CPU (central processor unit) computer chips. 

First, the science. 

Computers communicate by sending signals along transmission routes that are typically either 
electrical pulses along metal wire, or bursts of light along optical fibre, or radio waves 
transmitted through the ether. Either way, the speed of transmission is limited by the laws of 
physics, and in particular by the law that no form of electromagnetic radiation can travel faster 
than a constant c, the speed of light. We confidently predict that this law will hold true for the 
next decade at least. 

The speed of light is very fast (approx 300,000,000 metres per second), but in the world of 
current and future ultra-low-latency trading, it becomes a limiting factor. Trading technology in 
recent years operated on millisecond timescales, in terms of the time it takes to get a packet of 
price and volume data from an exchange to the trader’s desk, or to match a bid and offer and 
execute a transaction. Now, in one millisecond (1ms) a signal travelling at the speed of light 
travels 300km, which is certainly not a huge distance on a planetary scale. The distance from 
London to New York is roughly 5,500km, and hence the two cities are 18ms away at light
speed.10 

8 http://www.nanex.net
9 For an entertaining first-‐person account of the	  developments that we	  hav covered	  here, and	  for more details on current technology	  
innovations in the financial markets, see Leinweber (2009).
10 Remember that	  this is the lowest	  possible time; in reality	  there	  will be	  delays imposed by	  the	  transmitter and receiver hardware	  at
each	  end	  of the communications line, any	  amplification/regeneration steps needed	  along	  the way, and	  by	  the	  communication line	  
itself	  – the constant	  c is the	  speed	  of light in a vacuum, but in metal cables	  the	  speed is	  reduced by a “velocity factor”	  dependent on the	  

14
 

http://www.nanex.net	�
http:speed.10


  

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

                                                                                                                                                        

Technology Trends in the Markets: A 2020 Vision 

The age of millisecond-scale trading is passing. As we will see later in this review, current 
trading technology is quoted as operating on microsecond (µs) timescales; in 1µs a pulse of 
light travels only 300m, so a signal travelling from the London Stock Exchange’s HQ in 
Paternoster Square will take around 18µs to reach the docklands office blocks of Canary 
Wharf, roughly 5.5km away. And on the story goes: if the technology ever improves to operate 
on nanosecond timescales, then the fact that in one nanosecond a pulse of light travels no 
farther than 30cm may become a significant issue. 

One consequence of these observations is that in many cases the market data that a trader’s 
computer is currently receiving is already out of date, simply because of the spatial distance 
that the data has had to cross just to get to that computer. A London trader’s screen, showing 
real-time prices from a New York market, will be at least 18ms out of date in the best case. If 
the London trader is actually attempting to use the New York data as an input to trading 
decisions, generating orders that are then to be executed on the New York market, so the 
latency is doubled: New York data takes 18ms to reach London, and then the trading order 
from London takes another 18ms to cross the Atlantic back to New York. So, a trader in New 
York, sat next to the New York market’s servers, will have a 36ms latency advantage over the 
London trader, that’s 36ms more time to think and act than the Londoner. 

Now 36ms is less than a blink of an eye to a human, but to a run-of-the-mill desktop personal 
computer (PC) clocked at 3GHz, it is plenty long enough to do serious work. 

And so, to the CPU numbers. 

A 3GHz clock-speed is nothing special nowadays: PCs with CPU chips running at 3GHz are 
routinely available in high-street PC stores for less than a thousand pounds. Now, for the sake 
of this discussion, we’ll gloss over some details and just assert that a 3GHz processor 
executes three billion elementary instructions every second. So, in 36ms it can execute 110 
million instructions, 110 million steps of an algorithm. Admittedly, each of these steps is very 
very simple, but 110 million very very simple steps can nevertheless add up to some extremely 
sophisticated processing. 

If it so happens that 110 million steps is not enough, it may be possible to share the algorithmic 
processing over some number n of multiple independent CPUs, and then combine the results 
from the n CPUs, all within the 36ms time-window. PCs based on single silicon-chip processors 
with n multiple independent processors are also routinely available in high-street PC stores: 
they are more commonly referred to as “n-core” computers; dual-core PCs have been available 
for several years, and the latest generation of high-end Apple MacBook Pro laptop computers 
are all quad-core, albeit clocked at no more than 2.3GHz. In 36ms, a quad-core 2.3GHz 
MacBook can execute over 330 million elementary instructions. 

And that is a sufficiently large number to strike terror into the heart of the London trader. 
However clever she is, however fast her computers are or sophisticated her algorithms are, if 
she is trying to trade in New York from a desk in London then her data is guaranteed to be at 
least 18ms out of date when she (or her algo) first sees it, and her order will then take at least 

construction of the	  cable, and	  in optical fiber the	  refractive	  index	  of the	  fiber similarly	  reduces transmission speed	   Right now,	  some
of the best times for communications latency	  between New York and	  Chicago	  are 13.33ms-‐14.75ms, offered by	  the	  company	  Spread
Networks (www.spreadnetworks.com) who	  laid	  their own shortest-‐path fiber-‐optic	  cables	  between those	  two cities, digging	  through
mountains to do so (Steiner 2010). The distance	  between New York and	  Chicago	  is 1100km, so	  roughly	  one	  fifth	  of the	  distance	  
between New York and	  London. This implies that actual best-‐case	  one-‐way	  latency	  between those	  two	  cities would	  currently be
around	  70ms.
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18ms to reach its destination. The round-trip time of 36ms means that a competitor trader 
based on Wall St, armed only with a MacBook Pro, can run an algorithm executing a third of a 
billion simple instructions and still get his order to the exchange before her order has even 
made landfall in New York. When her order does arrive at the New York exchange, the 
competitor’s order may already have executed, thereby depriving her order of the chance to be 
executed. The guy in Wall St has eaten her lunch, not because he is cleverer but simply 
because he is closer. 

In this sense then, little has changed since the traders with faster horses in the 18th and early 
19th century used their lower latency of information transmission as a competitive advantage. 
But, for traders dependent on horse-borne messages, there was always the hope of buying or 
breeding a faster horse, or of developing a new technology that could allow long-distance 
transmission of messages at speeds much faster than horses could run. The problem 
presented by the speed of light is that there is currently no plausible route by which the 
situation can be improved to give superluminal transmission speeds. 

The industry’s response to this has been to co-locate the automated trading machinery with the 
server computers operated by the major exchanges: now the London trader’s computer can 
talk to a second computer, remotely operated by the London trader, but located in the New 
York exchange’s server building. This remote computer, often referred to as a proximity server 
if it is physically very close to the exchange’s servers, and as a co-lo server (from co-location) if 
it is in the same physical data-center, offers the London trader the same latency from the New 
York exchange’s server as the computers of any other traders wanting to connect to that 
exchange: the exchange that hosts the proximity server will usually do so under a contract that 
guarantees the same latency for all the co-located proximity servers; metaphorically (and 
sometimes literally) this is achieved by guaranteeing that each of the proximity servers will be 
attached to the main exchange server by cables of identical length. Under this kind of 
arrangement, traders in London and New York each communicate with the New York 
exchange via the proximity servers hosted at the exchange, and hence each has the same 
latency of communication to the exchange’s main server. Similarly, a London exchange can 
rent out space for hosting proximity or co-lo servers and thereby allow traders in New York to 
have low-latency access to the London market. The current arrangement described here is 
illustrated in Figure 3. 
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Figure 3: the trading institution’s local servers interact with a co-located (co-lo) server, hosted at the 
exchange; the co-lo server interacts with the central exchange server, minimising latency. 

Once everyone has essentially the same communication latency to an exchange server via 
hosted co-lo servers, the need for speed does not go away: you can be a hundred times 
cleverer than us, but if we are faster than you, if our order arrives at the market before yours, 
we still get the chance to steal the deal. With communications latency equalized, the focus 
shifts to other links in the chain. There are two major ways in which we can try to be faster than 
you: we can run our algos on hardware that is faster than yours, and we can write algos that 
are just plain quicker than yours. Faster hardware often involves spending more money, and 
faster algorithms often involve reducing the number of instructions that have to execute before 
an order can be issued: in this sense then, Wallis Simpson’s observation that you “…can never 
be too rich or too thin” applies to algos too. 

We’ll look at faster hardware in Section 3.2, and faster algorithms in Section 3.3. 

3.2 The need for speed drives a shift to custom hardware 
In the last section we used the capabilities of a current Apple MacBook Pro laptop to illustrate 
the kind of computing power that is routinely available at reasonable cost. Of course in reality a 
major investment bank or hedge fund is not going to be running an algo trading operation from 
a single consumer laptop. Current enterprise information technology (IT) instead often involves 
running algorithms on “blade servers”, a style of computer that is, in essence, a laptop with no 
screen and no keyboard: just the motherboard in a thin casing, maybe only an inch or so high, 
which is where the generic “blade” name comes from. The only openings in the casing of a 
blade server will typically be for a power socket and one or more network sockets: all 
communication with the blade is via remote network access. In a “rack” unit roughly the size of 
a wardrobe it is possible to mount fifty or more blades, and their associated power feeds, 
network cables, and air ducts for cooling. Typically several such racks will be arranged in a 
line, known as an aisle; and in a typical installation there would be one room housing several 
aisles of racks. The room with the aisles of racks of blades (and associated network 
switchgear, air cooling/conditioning, power supplies, etc) is the contemporary data-center. 
Superficially, it resembles a commercial mainframe computer installation from the 1960s, but 
there is an important distinction: those mainframes were single computers; in contrast, a 
modern data centre of unremarkable size might house several hundred blades, each of which 
is a motherboard containing at least one, but perhaps two or four, CPU chips; and each of 
those CPUs would most likely be quad-core at a minimum and may be as high as 16-core. 
That is, a single blade may be home to as many as 64 independent computer cores, so the 
typical data-center might be home to hundreds of thousands of independent cores, 
independent computers, all of them clocked at 2-3GHz, and all of them available to be called 
upon for automated trading purposes. For several years now, blade-servers have been mass-
produced by major manufacturers such as Dell, HP, and IBM. 

And there, in that mass-production, lies the rub. To yield the economies of scale that mass-
production offers, manufacturers of blade-servers have generally concentrated on offering a 
relatively small range of relatively general-purpose blade designs: some might have more 
space on the motherboard occupied by hard disk storage drives (or their solid-state 
equivalents) for customers who have large data-storage requirements; other blade models 
might have little or no disk storage but instead lots of RAM (random access memory) chips, for 
customers who need to manipulate large amounts of data in memory at any one time; yet other 
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blade models may sacrifice RAM and storage to make way for extra CPU chips, for 
computation-intensive applications. 

As banks, fund-management companies, and exchanges became ever more reliant on the 
capabilities of their data-centers, so the demand for blade-servers that were specialized to their 
needs increased, and in due course servers “customized” for financial applications started to 
appear on the market: some produced by the major manufacturers keen to keep their high-
value customers in the financial markets; others by small and medium-sized enterprises 
(SMEs) that recognized the business opportunity in providing technology solutions that the 
bigger hardware companies either could not or would not provide. 

While these custom servers each offer CPU, RAM, storage, and network communications 
capabilities and configurations that are argued to be better-suited to the demands of the 
financial institutions than the mass-market servers, they are still servers. That is, they are still 
fundamentally general-purpose stored-program computers: a programmer writes a program, 
uploads it to the server’s RAM, and the server’s CPU “runs the program” by reading the 
instructions from RAM and executing them in sequence. While the program is running on the 
server, that server becomes a specific instance of whatever type of mechanism, whatever type 
of “machine”, is specified by the program. Say that the program instructs the server to do 
nothing but calculate the value of π to a trillion decimal places, then the server has become a π
calculating machine, and remains so until the program terminates or the server is reset. After 
that, loading the server with a different program can turn it into a totally different type of 
machine: that’s the beauty of computers. The thing is, if you know in advance that really all you 
want is a π-calculating machine, and you really care about getting the result as fast as possible, 
then if you can afford it you may be much better off building a special-purpose computer, one 
that exists purely to compute π as fast as possible. Exactly that chain of reasoning has led a 
number of technology providers to switch to ever-more customized, more trading-specific, 
hardware. The most dramatic difference between the new custom hardware and even the most 
trading-specific blade servers is that the new hardware does not involve general-purpose 
computers, and in some cases may not even involve stored programs in the conventional 
sense. To keep things brief, we’ll take just two examples. 

The first example of custom hardware involves clever repurposing of existing mass-produced 
hardware that is already heavily customized to a wholly different application area: computer 
graphics. The sales and marketing material for desktop and laptop PCs often makes mention of 
the manufacturer of the graphics-board or chip-set inside the computer. Just as the CPU 
market is dominated by Intel and AMD, so the market for graphics processing unit (GPU) chips 
is dominated by two companies: Nvidia and AMD. Both companies produce GPUs and 
associated chips that are, in fact, n-core special-purpose computers with their own dedicated 
high-speed RAM. These are special-purpose massively parallel computer chips that have been 
designed to execute the computations necessary for 2D and 3D graphics with great efficiency, 
in parallel, and hence at very high speed. 

In the earlier discussion of n-core CPUs we spoke of dual-core and quad-core processors; the 
number of cores in current GPUs are huge in comparison. Because rendering graphics on a 
computer screen is a task that is readily parallelizable, the n in n-core GPUs is often much 
higher: hundreds of cores are simultaneously active in the single GPUs commonly installed in 
mid-range PCs available on the high street. To distinguish them from the ‘traditional’ 2-core or 
4-core CPU chips, processing units with many tens or hundreds of cores are commonly 
referred to as many-core devices. At the top end of the market, single GPUs with more than 
500 cores are routinely available, albeit at higher cost, but there is enough demand from 
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players of graphics-intensive computer games that even these are still mass-market, mass-
produced chips, and hence relatively cheap. If, for a few hundred pounds you can buy a 
graphics board that has 500 or more parallel computers on it, so then for a few thousand 
pounds you can buy a stack of such boards that give you tens of thousands of computers. 
Each of those computers is very simple, and can only run small programs that were intended to 
be aimed at painting pixels on a screen, but with some smart programming manoeuvres it is 
possible to get each of the simple computers in the GPU to do something that is useful in a 
financial-market context, and their combined effort can yield lightning-fast results that would 
otherwise require several racks full of blade servers in a data-centre to achieve. One of the 
world’s leading researchers for using GPUs in financial applications is Prof. Mike Giles at 
Oxford University’s Man Centre for Quantitative Finance.11 

Recognizing the demand for GPU-style cheap but massively parallel simple programmable 
computers, the GPU manufacturers have very recently started to offer products that support 
“general purpose computing on GPUs” (GPGPU), i.e. that are less specifically tailored to 
producing graphics and hence more amenable to deployment in the financial markets and 
other application areas. New programming frameworks for GPGPU, such as Nvidia’s 
proprietary CUDA (e.g. Sanders & Kandrot, 2010), and the emerging de facto industry standard 
OpenCL (e.g. Munshi et al., 2011), are the subject of ongoing development. For a recent 
readable review of the ongoing shift to GPGPU, see McIntosh-Smith (2011). 

The shift from complicated programs running on small numbers of complex CPUs to simple 
programs running in parallel on very large numbers of simple GPU processors can be 
considered as a first step away from the historically dominant reliance on general-purpose 
stored-program computers: the parallel processor cores in a GPU are not general-purpose, but 
they are still stored-program; they still read instructions from local RAM. The second example 
of custom hardware that we want to cover is not even stored-program in that sense. Rather 
than upload a simple program to the local RAM of a simple GPU processor and then run that 
program, it is possible to have the “program” be the specification of a dedicated processor, a 
specific electrical circuit of logic gates on a silicon chip. In this scheme, at the moment of 
execution, the program, the algorithm, does not exist as a sequence of instructions being 
fetched out of RAM and obeyed by a CPU. Instead, the algorithm is (automatically) converted 
into a circuit diagram of logic gates beforehand, and those logic gates are then wired together 
on a silicon chip. When the program is to be run (that is, when the algorithm is to be executed) 
the circuit on the chip is simply activated and it performs its job without any fetching or 
executing of instructions: the algorithm has been “cast in silicon”. In the early days of silicon 
chip production, to do this would require huge costs of designing and then tooling up to 
fabricate a new integrated circuit; costs that could only realistically be borne if the chip then 
went into mass-production. Fortunately, in the last 15 or 20 years, special mass-produced 
reconfigurable silicon chips have been developed that provide large arrays of logic gates and 
interconnecting “wires” that can be “programmed” to construct arbitrary circuit arrangements of 
the available gates, and that can subsequently be “reprogrammed” to configure the gates in 
different circuit arrangements. These reconfigurable chips are known as field-programmable 
gate arrays (FPGAs). 

At the time of writing, only very recently (in the past few months) have FPGA-based trading 

systems started to be make major inroads into the financial markets. As illustration, we’ll 

highlight two recent stories. 


11 http://people.maths.ox.ac.uk/gilesm/
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�	 FixNetix, a London-based SME established in 2006, announced in November 201012 their 
launch of an integrated FPGA-based automated-execution risk-management system called 
iX-ecute, which can enforce the pre-trade checks required by trading regulation “in single-
digit microseconds”, usefully faster than similar non-silicon-based solution from other 
vendors, which typically operate on timescales measured in tens or hundreds of 
microseconds. 

�	 In March 2011, Deutsche Bank announced an FPGA-based market access system with 2ms 
round-trip time: 1.25ms outbound (including risk-checking) and 0.8 ms return of the 
acknowledgement signal.13 In an article written by Ivy Schmerken for the Advanced Trading 
news website, Ralf Roth, global head of product development for Deutsche Bank’s global 
equity electronic trading business, made some illuminating comments: 

“We’re doing things at wire speed,” said Ralf Roth…. 

Whereas most low latency trading solutions are built in software, Deutsche Bank’s 
solution is based upon a field programmable gate array (FPGA), in which blocks of logic 
are programmed into a chip. 

“This is a bit of a revolution, since it’s breaking a barrier from previously doing a couple of 
hundreds of microseconds and then 80 microseconds which is the normal software-based 
Ultra products’ latency,” said Roth. “That is the market standard and now we’re getting 
into the low-single digit microseconds. That has never been done before,” he said. 

… “The trade comes into the card, the card does the protocol translation and risk checks” 
explained Roth. “We’re bypassing the PC and doing everything in hardware,”. 
(Schmerken, 2011)14 

The full impact of “bypassing the PC and doing everything in hardware” is likely to be a major 
driver of change over the next decade; a point that we return to in Section 4.3. 

3.3 New opportunities drive development of new software techniques 
Current developments in the software of the financial markets can be characterized as 
concentrating on the very fast, the very big, the very wide, and the very clever. We’ll deal with 
each of these briefly in turn. 

Very fast: the desire for low-latency solutions is, of course, not purely a hardware issue; in the 
software that runs on the hardware, algorithmic sophistication can trump mathematical 
sophistication. To illustrate this, say that Algorithm X and Algorithm Y use identical 
mathematics, but (as is often the case) there is more than one way to express the mathematics 
as a sequence of computer-instructions (i.e., as an algorithmic implemention of the 
mathematics): if X takes 50ms to execute, and Y takes 5ms, then Y wins, despite the fact that 
the two implementations are equally mathematically sophisticated: By the time X has 
concluded its computation, Y may already have traded seven or eight times, and the market 
could then have changed significantly from when X started its computation, so the end-result of 
X’s 50ms of computing is simply no longer relevant by the time it is finished. Similarly, if X 
involves PhD-level maths and takes 50ms to compute a trading decision that would make a 

12 See http://www.fixnetix.com/articles/display/76/ and	  http://www.fixnetix.com/services/innovation.html.
13 http://www.tradersmagazine.com/news/deutsche-bank-high-frequency-trading-microsecond-access-107292-1.html.
14 See http://www.advancedtrading.com/articles/229300997.
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50% profit on execution; but Y involves only high-school maths, and only makes a 5% profit, 
but only takes 5ms to compute a decision, Y is very likely to outperform X. 

In this sense then, a clever algorithm can be beaten by a less-clever one, if the less-clever one 
is faster. One way in which this desire for speed manifests itself is in the use of rapid accurately 
approximating (“quick and dirty”) stochastic machine-learning techniques as alternatives to 
statistically rigorous analytic methods; the analytic methods are exact but require the 
computationally expensive manipulation of vast matrices; the approximations are inexact, but 
computationally cheap and hence fast. Quick and dirty methods include artificial neural 
networks (see e.g. Oja, 1982; Bishop, 1995; & Haykin, 2008) and support vector machines 
(see e.g. Cristianini & Shawe-Taylor, 2000; Yu, et al., 2009); for an introduction to the broader 
notion of probably approximately correct (PAC) learning, see Valiant (1984); and for an ever 
wider perspective see Wolpert (1994). 

Very big: in searching for new trading strategies, new opportunities to exploit statistical 
regularities, it is possible in principle to search for correlations (possibly nonlinear ones) 
between the prices of any n financial instruments over some time-window. The sheer number 
of financial instruments, and the large range of time-windows over which such correlations may 
need to be searched for, means that truly vast amounts of data have to be computed over – 
terabytes or petabytes rather than megabytes or gigabytes. New software tools and techniques 
have been developed for dealing with such “big data” issues. In particular, the MapReduce 
approach at the heart of Google’s search engine (Brin & Page, 1998) has been popularized in 
open-source format as Hadoop (e.g. White, 2010), allowing the task of analyzing vast data-sets 
to be split across many hundreds or thousands of simultaneously active servers. If a financial 
institution can afford to fill a warehouse-sized building with compute servers, it can now use 
Hadoop and other open-source tools (see e.g. Janert, 2011) to analyse petabyte-scale financial 
data sets. If a financial institution, or individual trader, cannot afford a warehouse full of 
computers then that is not necessarily a problem because such warehouses can now be 
remotely accessed and cheap rental paid on a by-the-hour basis, an issue we return to in 
Section 4.2. The mathematics of such analyses has also been developing rapidly in recent 
years, with a shift away from traditional frequentist approaches which assume that the 
underlying statistical distributions are analytically convenient ones (such as the normal, log
normal, or Poisson distributions), toward so-called non-parametric approaches that make fewer 
(ideally no) assumptions about the underlying distributions (e.g., Siegel & Castellan 1988; Pett, 
1997; Gulati & Padgett, 2003; Ahamada & Flachaire, 2010); and which in the past few years 
have been firmly integrated with Bayesian, rather than frequentist, statistical approaches (e.g., 
Hjort, et al., 2010; Ghosh & Ramamoorthi, 2010). 

Very wide: here, the “width” is as in bandwidth. The number of significant events per unit time 
(e.g., orders per second arriving at an exchange server) in modern financial-market ICT 
systems has been growing very rapidly in recent years. Streams of digital events in trading ICT 
systems are typically now of such high bandwidth, and the individual events are often of such a 
simple “atomic” nature, that the only practicable approach to dealing with the event-streams is 
to monitor them in real-time and attempt to identify when particular “complex”, compound 
sequences of events have occurred. That is, there is no hope of running the data out to disk for 
storage and subsequent analysis “offline”, after the stream of data has ceased to flow (an 
approach that is common in other data-intensive areas such as particle physics, where a single 
experiment lasting a few minutes may generate petabytes of data for subsequent analysis), 
because in the financial markets the relevant data streams just never stop flowing for long 
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enough, if at all. In the past half a decade or so, companies such as Progress Apama15 and 
Streambase16 have become market-leaders in low-latency capital-markets applications of what 
is variously referred to as complex event processing (CEP), event-stream processing (ESP), 
and business event processing (BEP). For varying perspectives on CEP/ESP/BEP, see 
Luckham (2002); Taylor et al. (2009); Etzion & Niblett (2011); and Cugola & Magara (2011, 
forthcoming). 

Very clever: while we certainly don’t intend to imply that the fast, big, and wide software 
solutions that we have very briefly reviewed in the previous three paragraphs are not clever, 
but there are some interesting recent developments that do not easily fit into any of those three 
categories. In fact, of course there are very many more such developments than we can 
reasonably cover in the space available here. So, we’ll briefly mention just three exemplars that 
illustrate where future trading systems currently seem to be headed. 

�	 First, Pipeline Financial17 have in recent years risen to prominence in the provision of 
scientifically innovative developments of trading technology. In particular, their 
development of sophisticated “predictive analytics” (advanced statistical analysis tools), 
coupled with a truly innovative “algorithm switching engine” which reads the current 
situation in the market, predicts the near-term-future, and chooses one algorithm (from a 
large set) that is best-suited to the current and predicted future market conditions, 
represents a major advance. For further details of the science behind the Pipeline 
Switching Engine, see Stephens & Waelbroeck (2009). 

�	 Second, it is widely known within the markets that in recent years the major newswire 
providers have been exploring methods for enabling algorithmic trading systems to make 
their trading decisions based not only on the numeric data, such as price and volume, 
present (and readily computer-readable) in market newswire feeds, but also on the 
linguistic, semantic data that is not naturally expressed in terms of numeric values. Rather 
than attempt to understand the content and implications of single stories, recent research 
in this area has been concentrated on the “hive-mind” effects of aggregating over sizeable 
numbers of stories, preferably from independent sources such as different newswire 
services. In this kind of approach, there is no intent to “understand” the trading 
implications of individual newswire stories; rather, the intent is to gauge overall market 
sentiment from a collection of stories, over some period of time, concerning a particular 
financial instrument: for an up-to-date review of work in this area, see (Mitra, 2011). 

�	 Third, and probably most long-term, comes software research motivated by the common 
knowledge that correlation is not the same as causation. While great strides have been 
made in advancing the state of the art in techniques for machine processing of ultra-high
dimensional, multivariate nonlinear (and nonparametric) correlation analyses, driven 
largely by the needs of the StartArb community, current techniques for computerized 
establishment of causal links, and for reasoning about causation, are much less well 
developed. Statistical approaches to establishing causation (for a very specific definition 
of “causation”) in time-series data were developed by the Welsh economist Clive 
Granger, for which he was awarded the 2003 Nobel Memorial Prize in Economic 
Sciences. Details of Granger-Causality, and the related issue of cointegration, are 
described clearly by Alexander (2001). More fancifully, in 2001 Tim Berners-Lee et al. 

15 http://web.progress.com/en/apama/
16 http://www.streambase.com/
17 http://www.pipelinetrading.com/
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wrote a much-discussed article in Scientific American, laying out a future vision for “The 
Semantic Web”, where the computers moving data around the World Wide Web become 
able to detect and reason about the content, the semantics, of the data that they store, 
receive, or pass from place to place. The vision of developing a “Semantic Web” 
immediately fired many academics into action (see e.g. Fensel, et al., 2003). If ever they 
manage to develop such semantic reasoning technology, it could have a transformational 
effect on the automation of the financial markets. Despite the potential for delivering a 
lucrative Holy Grail, there are deep philosophical reasons for suspecting that the aims of 
the Semantic Web research community are simply unattainable (see e.g. Dreyfus, 1981; 
1992). A decade ago, it seemed plausible to proponents of the semantic web that their 
primary aims might be achieved within a decade; one decade later and nowadays it is no 
surprise to hear a semantic web researcher say that all they need is just ten more years. 
‘Twas ever thus. Let’s get back to the reality of the coming decade. 

3.4 Fresh opportunities, fresh risks 
Failure to quantify risk correctly is now seen to be at the heart of most economic crises (e.g. 
the subprime counterparty risk crisis of 2007/08) and failed trading firms (e.g. the LTCM 
collapse of 1998). 

In finance, risks are plentiful – complex financial instruments, panic selling, market emotion, 
and algorithmic trading that feeds on itself. The potential for massive risk is exacerbated by: 

§ Highly liquid & global markets – raise the trading volumes of equities, futures, 
derivatives, bonds, foreign exchange traded. 

§ HFT – automated trading systems interacting with exchanges and ECNs can issue very 
many more orders per unit time than were ever seen in the human-led markets. 

§ Complex derivatives and structured instruments – makes the evaluation of risk more 
complex; for example, new exchange traded funds (ETF) are multi-asset instruments 
which makes their trading more complex and hence a technical challenge for traders; 
exotic derivatives often require complex predictions as to future correlations and 
volatilities, and their hedging rules are highly model dependent. 

§ Automated trading – algorithmic trading is proliferating; in the U.S., high-frequency 
trading firms represent 2% of the approximately 20,000 firms operating today, but account 
for over 73% of all equity trading volume. 

§ New forms of trading – for example, so-called “Dark Pools” are a type of trading 
platform that allow large blocks of shares to be traded without the prices being revealed 
publicly (to other traders) until after trades are completed. 

§ New ways of sharing the spread – for example, in the past decade so-called “maker
taker pricing” has become commonplace in US equity markets. Under this scheme, an 
exchange will charge a fee to traders who are “liquidity-takers” (those who place orders at 
whatever the current market price is) and will pay a commission to “liquidity providers” 
(those who place “limit orders”, to buy or sell at a specific limit-price or better). It has been 
argued that maker-taker pricing distorts markets (Angel, Harris, & Spratt, 2010), such 
distortions offer additional sources of risk. 

Traditionally, risk models have focused on the risk associated with a target portfolio of financial 
instruments and attempted to quantify both the risk associated with individual instruments and 
with the portfolio as a whole. Only recently have systemic economic risk factors been modelled: 
this is the modelling of external risk factors such as regime change (reversal of an historic 
market trend); exogenous shock (major incidents external to the markets such as a war or 
terrorist incident); and endogenous risk (the market turmoil that occurs when market players 
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believe trouble is ahead and they take actions that bring about realized volatility). An additional 
and closely related form of identifiable external risk is contagion. Classical contagion involves 
an economic crisis in one market either actually spreading to other markets, or market 
participants merely fearing that this will happen and changing their behavior accordingly. 
Another form of contagion could be said to occur when very many traders (human or 
algorithmic) all implement the same trading strategy, thereby unintentionally reinforcing a trend; 
or indeed when they all rely on identical risk models, in which case any omissions in the risk 
model is amplified to become systemic factors. 

The risks associated with high-frequency algorithmic trading are poorly understood, and in turn 
quantifying the overall risk exposure of a single financial institution has become fiendishly 
difficult. Failure to model risk correctly is now seen to be at the heart of most economic crises 
and failed trading firms. Increasingly sophisticated risk models are now being incorporated into 
algorithmic systems. Portfolio risk can be controlled by setting size limits on the portfolio and on 
the component financial instruments, and also measuring the volatility associated with 
individual instruments or groups of instruments. A widely used risk-management technique 
involves calculating the “value at risk” (VaR) on the basis of past volatility of the instruments 
being held, but the sub-prime crisis revealed the usefulness of this approach to be highly 
questionable: an issue discussed at length by Nocera (2009). 

It is fair to say that, during the run-up to and unfolding of the subprime crisis, the local-vs-global 
issues were poorly understood not only by the market participants (the traders, their 
management, and the shareholders in their companies) but also by the market regulators and 
political authorities. The so-called “Persaud Paradox”, that the observation of safety creates 
risk (where large numbers of market participants take very similar risk-reducing “safe” positions 
and thereby, via the near-homogeneity of their positions, greatly increase the overall systemic 
risk) was spoken about as something of an idle curiosity when the phrase was first coined in a 
2005 Financial Times article,18 but within a couple of years events in the real world had 
conspired to make its downside effects a rather stark reality. 

As discussed, one of the greatest challenge facing the financial services industry, regulators 
and government is the quantification of risk. This urgently requires the resources of the 
academic community to be harnessed, and a new risk management culture to be established in 
financial institutions and regulators. 

3.5 Discussion 
We’ve looked at how latency is driving co-location, how co-located servers are being 
challenged by new specialized hardware that allows “bypassing the PC”, and how advances in 
software make that an entirely reasonable thing to do. This current situation, and the likely 
future, make the development of new, more appropriate risk-assessment tools and techniques 
an urgent priority. 

Ten or more years ago, these technology-driven issues of today may have been difficult to 

predict. Difficult, but certainly not impossible.
 

The future of technology is not entirely opaque: it really is plausible that a decade ago 
someone could have looked at trends in financial-market technology that had been established 
in the 1980’s and continued in the 1990’s, and extrapolated them out to the then-distant future 

18 Se e.g. http://www.ft.com/cms/s/1/c84064da-1661-11da-8081-00000e2511c8.html
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of 2010 or 2011. A key observation here is this: ten years ago, hardware technologies such as 
GPUs and FPGAs, and software systems for adaptive automated execution and advanced 
data-mining were already in existence. None of the things spoken about here have come into 
existence de novo in the past decade. The key technologies were there to be studied and 
reasoned about a decade ago. Someone looking hard, and armed with the right intellectual 
tools, could probably have made a fair stab of predicting exactly the current state of affairs, a 
decade before it occurred. 

There is a specific intellectual tool, the notion of Disruptive Technologies, which we want to use 
here. In the next section of this review, we make some specific predictions for how we think the 
technology-enabled global financial markets may look in 2020 or 2022, and we do that by 
identifying some current technologies that are not yet commonplace in the financial markets, 
but which look set to change the game within the next ten years: these are the technologies 
that we believe will be disruptive in the coming decade. The specific technical concept of 
Disruptive Technologies was introduced by Bower & Christensen in a 1995 Harvard Business 
Review article and then expanded upon in Christensen’s very successful book The Innovator’s 
Dilemma (1997). 

In brief, a disruptive technology is one that currently looks weak or incomplete, unable to affect 
the business of an established technology-producing company or group of companies, and 
hence is ignored by that company or companies until it suddenly threatens the established 
business. 

To illustrate this, say that established, incumbent companies serve technology of type T1 to 
some market M1 of customers whose current technology needs, and likely future needs, are 
well known and will always be well-met by T1. Companies serving M1 do the right thing, 
concentrating on giving their existing customers what they want based on their successful T1 
technology. When a new, currently-weak technology T2 first appears, it cannot serve the M1 
customers and hence is seen as of no threat to the status quo. However, if T2 serves some 
other market M2, of no interest to the companies serving M1, then other companies will most 
likely invest in developing T2 to serve the growing needs of customers in M2, and hence T2 will 
mature and improve over time. At some point, T2 may have improved to the point where it is 
fully capable of serving the needs of the original M1 market, but is smaller or lighter or cheaper 
or faster, and hence the M1 customers prefer T2 to T1, and the old incumbent companies 
suddenly find that there is little or no demand for their T1 products, and yet they have no 
experience or skills in working with T2, and hence possibly go out of business. In this example, 
T2 is the disruptive technology. 

Christensen’s original (1997) book and his subsequent publications have provided a wealth of 
real-world examples in which, with hindsight, disruptive technologies can be seen to have 
caused major problems for successful incumbent companies. For a critical survey of work on 
disruptive technologies since 1997, see Daneels (2004); for recent advice on how to handle 
disruptive technologies, see Markides & Oyon (2010). 

Disruptive technologies do not have to be able to improve beyond the capabilities of the 
currently dominant technology, they need only to be capable of improving to the point where 
they serve the needs of the mainstream market previously satisfied by that older, incumbent 
technology. In Section 4, we discuss a number of technologies that we think likely to prove 
disruptive to the technology-enabled financial markets in the coming decade. 
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4. A Decade Hence: the View to 2022 

4.1 Caveat Emptor 
Making predictions that involve setting precise future dates on specific future technology 
developments is great if you get it right but can be rather embarrassing when you get it wrong. 
It’s a game that we would rather avoid. Nevertheless, it seems reasonable to explore the 
consequences of taking business and technology trends that have firmly established 
themselves in the markets in recent years, and extrapolating them out by another decade or 
so, to explore the potential impact of disruptive technologies. So, while we firmly believe the 
story that we write here to be plausible, and indeed likely, we are deliberately imprecise about 
timing and dates. We paint a picture of a future scenario, and a path for getting there, that in 
our professional opinion is readily achievable within five years or so, in the absence of any 
major political or economic factors slowing down the development. Of course, in reality, we 
expect that political and economic factors will indeed play a retardant role. So the picture of the 
future that we paint here seems to us to be more likely up to a decade away. 

Economic factors can manifestly slow down the rate of new technology development and 
deployment: although many market-trading institutions preside over astronomical amounts of 
cash-flow, they are typically fiercely focused on internal efficiency and most technology 
investments are evaluated on the basis of a three-month profit-and-loss accounting mindset. 
Even in what appear to be hugely profitable companies, words to the effect of “we’d like to do 
that, but we don’t have the money” are surprisingly familiar. 

Moreover, when a technology is readily deployable and the funding is there, there can be 
social, political factors that significantly slow its uptake. These political factors can be both the 
“big P” politics of national or international government and regulation, or the “small p” politics 
internal to an organization. One issue that has perhaps slowed the uptake of FPGAs in trading 
technology is that the number or people who can program them is really very small, miniscule 
in comparison to the number of people who can write algorithms in established programming 
languages like C++, C#, Java, or Python. (Programming FPGAs is very different to writing 
traditional computer programs, and is notoriously difficult). Furthermore, internal organizational 
politics have already clearly been a significant factor in slowing the uptake of adaptive 
automated trading technology on trading floors: the manager of any trading floor could, in 
principle, have replaced many (but not all) of the traders with automated machinery pretty 
much overnight at any time in the last five years or so, but to do so would have been seen as a 
declaration of war by those remaining human traders who were not immediately replaceable by 
machines: they would most likely have sought other jobs, or sought the removal of the 
manager, or both. For this reason, much of the ingress of new technology onto the trading 
floors has been incremental, organic growth, sometimes almost by stealth, filling the gaps 
opened up by “natural wastage” as humans leave the company or move on to other roles. This 
institutional inertia has also been a factor in enabling new companies to disrupt the businesses 
of long-established major incumbents: in the past decade it was sometimes easier to quit 
working on the trading floor of a major investment bank, start up a HFT hedge fund, and 
compete directly against the investment bank, than it was to convince the investment bank to 
establish its own HFT unit: the bank’s reluctance to establish an internal HFT unit being fuelled 
by the desire not to “scare the horses”, not to alienate the human traders that might feel 
threatened by the introduction of automated trading technology that so clearly threatens their 
jobs. 

Caveats duly issued, here are some predictions. 
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4.2 High Performance Computing in the Cloud 
Over the past five years there has been an explosion of activity in the computer industry, 
focused on what is now widely known as “cloud computing”. Cloud computing is where the 
computing power and data-storage facilities of global networks of huge data-centers, each 
typically containing hundreds of thousands of blade servers in a dedicated warehouse-sized 
building, is accessed remotely via high-speed high-bandwidth network connections from 
standard “access devices” such as PCs, laptops, or mobile phones; and the user pays only a 
small “rental” fee, charged on a per-minute or per-hour basis, for using these remote facilities. 

The name “cloud computing” comes from the observation that for very many applications it no 
longer really matters how powerful your access device is, how fast its processor is or how big 
its memory is: so long as the access device has enough power and memory to communicate 
with the remote data-center, the servers in the data-center can do the processing and storage. 
And (so the story goes) it doesn’t really matter where on earth that data-center is located – it 
may as well be up in the sky, in the clouds. 

There are two key aspects that make cloud computing a major shift in computing, to rival the 
invention of the PC or the rise of the Internet. These two aspects are elasticity and economics. 

First, elasticity. The amount of computing power that is “rentable” by the user is smoothly 
scalable (the industry term for this is that there is “elastic supply”): if you need 10 servers in the 
morning, 250 servers from noon to 1pm, and then 1 server for the rest of the day, that’s fine; in 
principle the number of servers you can access can be increased or decreased pretty much 
like turning up or down the volume on a radio set. 

Second, the economics. Cloud-computing data-centers are so vast19 that truly major 
economies of scale come into force, and a user may only have to pay a few pennies per hour 
to access each server or each core. Hence, for only a few dollars per hour, a remote user can 
assemble what is, in effect, a supercomputer that would cost hundreds of thousands of dollars 
to construct if the user tried to build and operate one herself. From an accounting perspective, 
cloud computing moves the cost of IT provisioning from capital expenditure to operational 
expenditure. As Google (one of the major players in the provision of cloud computing services) 
remark in their marketing: if all you want is milk, why bother to own a cow? 

For an introductory overview of cloud computing, see Cliff (2010); for a historical perspective 
on the development of cloud computing, see Carr (2008); and for discussion of the challenges 
of building warehouse-sized cloud-computing facilities, see Barosso & Hölzle (2009). 

Of course, it’s not quite that simple. There are regulatory and legislative issues which mean 
that the IT managers in financial institutions care deeply about where their company’s data is 
held: for jurisdictional reasons, they may care deeply about the data being held only on servers 
in the UK/EU, and may very definitely not want their data to be held on computers in the USA. 
Cloud-computing service providers are well aware of such concerns, and can offer geographic 
guarantees in their service-level agreements and contracts. Furthermore, as we saw in Section 
3.1, the speed of light means that there will be latencies in the system: for very many 
applications, these may not matter, but for trading activities, the latencies inherent in 
communicating with remote data-centers can be prohibitive. Latency would certainly be a 

19 For example,	  Microsoft’s latest cloud-‐computing	  data-‐center in Chicago	  has floor-‐space of 700,000	  square feet, was built to a
budget of US$500m, and	  is estimated	  to	  be able to	  house 224,000	  blade-‐servers:
http://www.datacenterknowledge.com/archives/2009/09/30/microsoft-unveils-its-container-powered-cloud/.
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problem if an institution tried to run its automated HFT algorithms “in the cloud”, but it is 
important to remember that not all trading is HFT: there are other modes of trading, such as 
long-only macro trading, that are not so latency-sensitive. Nevertheless, we feel that the most 
likely impact of cloud computing on activities in the financial markets in the next ten years will 
not be in the provision of computing facilities that automate execution, but rather in the 
provision of cheap, elastically scalable, high-performance computing (HPC) which allows 
massively compute-intensive procedures to be deployed for the automated design and 
optimization of trading strategies and execution algorithms. Many major investment banks and 
hedge funds already own and operate their private data-centers, but they do this for business-
critical operations and only a fraction of the capacity of these corporate data-centers can be 
turned to HPC uses. The ability to either extend existing in-house computer power by adding 
on cloud-based resources (known as “cloudbursting”) or to simply outsource all of the HPC 
provisioning to a cloud provider, opens up new possibilities that are only just being explored. 

Automated design and optimization of trading systems seems extremely likely to grow 
significantly over the next decade, fuelled by the availability of very cheap HPC. The actual 
execution algorithms will, as today, run on proximity servers co-located with major exchanges 
or ECNs/ATSs/MTFs, but we predict that those algorithms will be running on custom silicon 
rather than standard blade servers, and they will be self-learning adaptive systems, 
automatically designed by computer. We explore custom silicon in Section 4.3, and automatic 
design of adaptive systems in Section 4.4. 

4.3 Proximity Servers Replaced by Proximity Silicon 
We saw in Section 3.2 that in recent months some leading-edge technology developers have 
started to announce single-digit microsecond trading technology based on FPGAs, that bypass 
the traditional model of a general-purpose PC running a specific program, and instead do 
everything in customized hardware. FPGAs are a well-established technology (they have been 
produced commercially since the mid-1980’s) and their capacities and capabilities look set to 
increase over coming years. Nevertheless, programming FPGAs can be a slow and laborious 
task: the “program” for an FPGA is most often a formal specification of the circuit to be 
assembled on the FPGA chip, expressed in a complex hardware description language. Hiring a 
“programmer” for FPGA applications really means hiring a silicon chip hardware designer, and 
the time taken to program an FPGA can be a lot longer than the time it takes to write an 
equivalent program in a conventional computer programming language. Once programmed, 
FPGAs still typically run at slower clock speeds than application-specific integrated circuits 
(ASICs), i.e. silicon chips that are custom-designed to be specific to an application, but not 
“field-programmable” after they have left the factory. Recent academic work (Jääskeläinen, et 
al. 2010) has shown how programs written in the OpenCL framework for GPGPU (introduced in 
Section 3.2) can be compiled into FPGA architectures, which is a promising approach to 
tackling the difficulty of FPGA programming. 

However, there is a newer approach to custom silicon production, currently not yet widely 
adopted, which seems a very strong candidate for addressing many of these problems with 
FPGAs, and hence seems a good candidate to be a disruptive technology in the coming 
decade. The new approach is known as software-defined silicon (SDS), a phrase coined by a 
UK company called XMOS, founded by Prof. David May FRS. In the early 1980s, May was co
designer of the Inmos Transputer, a radical microprocessor design, the first to be explicitly 
targeted at creating massively parallel multi-core processor systems (known then as 
“Transputer Surfaces”): multiple Transputer chips could be laid out in 2D matrix, each chip 
communicating with its neighbours to the north and south, east and west, on the matrix; a style 
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of computing architecture known as a systolic array: see e.g. Moore et al. (1987). A new 
programming language, called Occam, was invented to enable systolic Transputer surfaces to 
be programmed at a high level. 

Thirty years later, and XMOS are producing the next generation of field-programmable (and 
hence readily customizable) but fast silicon chips, known as XCore chips, that can be 
assembled into systolic arrays for massively parallel and ultra high-speed applications. The 
XCore chips are programmable in a high-level software language much like the C or C++ 
programming languages with extensions (known as XC) for controlling inter-core 
communication and the eight independent “threads” of programs running simultaneously on 
each core, so conventional programmers can write algorithms which are then “compiled down” 
onto the underlying XCore hardware, without the need to learn a specialized language like 
Occam. 

In a promotional video available from the XMOS web-site, May is filmed saying the following: 

“The benefit to the designer is that he doesn’t have to design a complex chip. The time 
and effort involved in designing almost any kind of chip in hardware is, well we measure it 
months or years, not days. The time we’ve observed even relatively inexperienced 
programmers and designers taking to program the XMOS technology, is often measured 
in days. And furthermore, of course, the ability to change the design quickly, to iterate it, 
to revise it, is all there because it is just recompiling software; it takes a minute. To simply 
change a facet of a hardware design, during the design process, still usually takes hours 
to re-run the tools to produce the revised design”. (May, 2011) 

Software defined silicon offers the opportunity to smoothly, and very quickly, go from a 
description of a trading algorithm in a high-level programming language, to having that 
algorithm running on a many-core massively parallel high-speed composed of customized 
processing elements, possibly arranged as a systolic array. We expect this approach to be in 
wide use by 2020 or 2022 as the style of hardware base for proximity servers. Next, we turn to 
the nature of the trading algorithms that will be running on them. 

4.4 Adaptive Algorithms Untouched by Human Hands 
The core of current algorithmic trading systems are, from a technical perspective surprisingly 
simple in comparison to what is already known to be possible in principle. In particular, most 
current algorithmic trading systems are quite tightly constrained, with very little adaptivity or 
“learning from experience”, other than the maintenance of statistical models, such as those 
used for predicting future trading volume in a VWAP algo. We expect that in the next decade 
there will be a concerted move to more sophisticated algorithms, ones that autonomously learn 
from their experiences (both positive and negative) in the markets. As the algorithms become 
more sophisticated, so the jobs of maintaining them and of fine-tuning them to current market 
conditions, will become more involved. This would be a problem if skilled humans are required 
to perform the fine-tuning, but the likelihood is that in future the design of new algorithms, and 
the tuning and optimization of existing ones, will also be an automated process, performed by 
computers. Rather than hiring programmers to write new algorithms, trading institutions will 
instead in future hire programmers to write the computer systems that design the new 
algorithms and then fine-tune their subsequent operation. Once again, we mention this 
technology not because it is currently able to meet the demands of major customers in the 
financial markets, but because it seems likely to play a disruptive role in the coming decade. 
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The heritage of this approach can be seen to stretch ten or fifteen years or more into the past. 

In a landmark study published in 2001, a team of researchers at IBM (Das, et al., 2001) 
presented results from laboratory tests of markets populated by mixtures of human traders and 
self-learning robot traders (i.e., autonomous adaptive automated execution algorithms), which 
showed that the human traders were consistently out-performed by two algorithmic systems, 
and that result was consistent across a variety of experiment designs. IBM’s experiment 
designs were directly inspired by the Nobel-Prize-winning work of Vernon Smith, who 
established the field now known as experimental economics (see, e.g., Smith, 1991; Kagel & 
Roth, 1997; Smith, 2000; Miller, 2001); IBM used the approach established by Smith to study 
the interaction of humans and robots in a form of electronic marketplace known in the 
economics literature as the continuous double auction (CDA), which is the auction mechanism 
at the heart of most of the world’s financial markets. The two algorithmic systems that beat 
humans in the CDA were IBM’s “MGD” algorithm (a Modified version of an algorithm first 
described by Gjerstad & Dickhaut in 1998) and an algorithm called “Zero Intelligence Plus” 
(ZIP) that had been developed at Hewlett-Packard Labs (Cliff 1997). Both MGD and ZIP “learn 
from experience”, using machine-learning techniques to adjust their behavior in the market to 
reflect what offers and bids they have seen made by other traders, and which were accepted 
and which rejected. For further discussion of experimental-economics-style studies of human 
traders interacting with robot traders, see: Grossklags & Schmidt (2006); Grossklags (2007); 
De Luca & Cliff (2011a, 2011b); and De Luca et al. (2011). 

The moment-to-moment trading behavior of algorithms such as MGD and ZIP, and also their 
longer-term learning behavior or adaptivity, are determined by a small number of “control 
parameters”, which we can think of metaphorically as knobs or sliders on a control panel, each 
of which runs through a range from 0.0 to 1.0; the operator of the algorithm needs to set each 
of these parameters, turn each of the knobs, to the right value to get the best behaviour out of 
the algorithm. But what number constitutes “the right value” may be dependent on the current 
market conditions. Say there are three control knobs, it may be that right now they should be 
set to (0.2, 0.8, 0.7), but in different market conditions perhaps the algorithm would perform 
better if the knobs were set to (0.3, 1.0, 0.2). Optimizing, or at least fine-tuning, the behaviour 
of an algo like MGD or ZIP requires someone, or something, to “twiddle the knobs” until they 
find the right value for the particular market conditions that the algo is operating in. 

Now, in principle, a human could be paid to twiddle the knobs, to search of good or optimal 
combinations of values of the control parameters, but humans are famously slow, expensive, 
and error-prone. As it happens, there are a variety of automated optimization techniques that 
allow a computer to “twiddle the knobs”, i.e. to search the space of possible combinations of 
parameter values, to find good settings. One very popular automated search and optimization 
technique, the primary appeal of which lies in its simplicity and its surprising effectiveness, is 
an inherently parallel method called a Genetic Algorithm (GA), a form of “evolutionary 
optimization”, directly inspired by Darwinian natural selection, random variation, and heritability 
in populations of organisms, (see, e.g. Goldberg, 1987). 

In the past decade a number of authors have explored the use of GAs to optimize trading 
strategies such as ZIP, with significant success. Encouraged by these successes, researchers 
observed that the number of control parameters could be greatly increased: while a human 
may find an algorithm with hundreds of control parameters an impossibly daunting task, for a 
computer optimization process such as a GA there can be little difference between twiddling 
ten control knobs and twiddling hundreds or thousands. So, more trading algorithms with many 
tens or hundreds of control parameters are now routinely optimized by automated systems 
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such as GAs or, increasingly commonly, more mathematically sophisticated and 
computationally efficient optimization methods such as “Estimation of Distribution Algorithms” 
(EDAs: see e.g. Larrañaga & Lozano, 2001; Lozano, et al., 2010). Researchers have used GA-
style or EDA-style optimization not only to fine-tune trading algorithms, but also to fine-tune the 
auction mechanism, exploring ways whether the CDA mechanism at the core of the world’s 
financial markets might be improved upon for situations where most or all of the traders in the 
market are algo systems instead of humans (see, e.g. Cliff, 1998; 2003; 2009; Phelps et al., 
2002; Byde, 2003; Phelps et al., 2009). GAs have even been shown to be able to successfully 
find new designs for FPGA circuits, albeit not in a trading context (Thompson, 1998); an 
approach known as “evolvable hardware”. 

The use of machine optimization methods, such as GAs or EDAs, to design and optimize 
autonomous adaptive trading algorithms, looks set to increase over the next decade and to act 
as a disruptive technology. This is a development that is enabled and accelerated by the step-
change drop in cost of high performance computing (HPC) offered by cloud computing service 
providers, as described in Section 4.2. The algorithms being optimized will, we expect, be 
uploaded to proximity servers based on software-defined-silicon technology for ultra-high
speed execution, as described in Section 4.3. And that is our vision of the technology-enabled 
trading systems of 2020 or so, a situation we illustrate in Figure 4 from the perspective of a 
trading institution, and in Figure 5 from the system-level view of the multiple institutions 
interacting with the exchanges. Of course, the likelihood is that in practice each institution will 
interact with multiple exchanges. 

Figure 4: A vision for 2020; the institution’s view. The trading institution’s servers routinely “burst” into 
the cloud when high-performance computing (HPC) needs exceed the institution’s local capacity. The 
HPC is used for compute-intensive data-mining and automated design and optimization of trading 
algorithms. The algorithms are transmitted to the institution’s co-located (co-lo) server, hosted at the 
Exchange. The co-lo server acts as an interface to the institution’s hosted cluster of software-defined
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silicon (SDS) arrays. The SDS cluster, operating at sub-microsecond speeds, interacts with the main 
exchange server. 

Figure 5: A vision for 2020; the systemic view: multiple institutions each have hosted co-lo servers and 
SDS arrays at the exchange; the SDS arrays run the processing algorithms, the proximity servers act as 
local front ends to the SDS arrays; each of the institutions also use cloud-computing services for HPC. 
Color-coding and iconography as for Figure 4. 

4.5 The Longer, Wider View 
The technologies we have discussed here are not the only research developments that are 
likely to alter trading technology in coming years. Academic and industrial research is making 
significant advances in a number of relevant areas. Some are significant improvements on 
existing technologies, such as higher-speed telecoms hardware (see, e.g.: Richardson, 2010); 
others offer the prospect of being truly revolutionary, such as quantum photonic computing 
(see, e.g. Ladd, et al., 2010), or harnessing living matter for computing in biological substrates 
such as natural or genetically-engineered micro-organisms (See e.g. Weiss, et al., 2003; 
Zauner 2005a, 2005b, 2005c). Research fields such as these offer the prospect of producing 
disruptive technologies, without doubt, but the specification for this review document required 
us to limit our view to the next decade. Our opinion is that the disruptive effects of these 
technologies are most likely to be more than a decade away, and so we have not discussed 
them in any detail here. 

Similarly, there may be coming major societal changes such as significant alterations to 
patterns of energy generation and usage (e.g., MacKay, 2008) or the re-thinking of global 
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monetary systems (e.g., Lietaer, 2002; Hallsmith & Lietaer, 2011) that alter the landscape 
significantly, but again we do not expect these factors to have a major disruptive effect on the 
technology of the financial markets within the next decade. 

4.6 End-game: Sunset on London and a sinking in the wharf 
If our predictions of future developments do pan out, then roughly a decade from now the 
industry will be at the point where the major trading venues are each serving data to and taking 
orders from algorithmic trading systems running on nearby co-lo or proximity servers, much as 
like today. Unlike today, the co-lo servers will not be CPU-based computers running programs, 
but rather will be based on massively multicore chips such as GPUs, custom silicon such as 
FPGA, and/or software-defined silicon such as XCore. The trading algorithms that are running 
on, or embodied in, these nonconventional computing architectures, will have been uploaded to 
each proximity server from the algorithm research & development (R&D) unit of the trading 
institution that is the owner of that server (or rentee of the hosting service). The R&D unit will 
have access to cloud-style elastically scalable large-scale high-performance-computing (HPC) 
facilities for automated design, evaluation, and refinement of trading algorithms, and for 
optimizing the trading algorithms to the custom silicon that is available on the proximity server. 
The R&D unit’s HPC provision may be in-house, from the institution’s own “private cloud” data-
centre, or it may be entirely outsourced to a cloud provider, or perhaps some mix of the two via 
“cloudbursting”. This seems entirely plausible to us. 

New approaches to finance are required that more realistically incorporate the institutional 
environment, regulations and trading behaviour to make economic models better at explaining 
systematic (non-idiosyncratic) as well as systematic investor/trader decisions, taking into 
consideration their emotions, the constraints they operate under and their cognitive 
mechanisms and how these influence decision making. New systems are being developed to 
analyze market behaviour and the attitudes of financial professionals. As this new approach to 
finance develops, it is intensifying its use of tools and techniques from quantitative finance, so 
that mathematical and statistical methodologies are being employed to understand the 
constraints, incentives and biases of decision makers (fund managers, traders, etc) and their 
impact on market valuations. 

From a UK national strategic perspective, this vision of the future holds some concerns. 
Consider this question: if this really is how the technology-enabled financial markets will look in 
10 years or so, why should any of it be happening in London? For sure, London is by many 
metrics the leading financial trading hub in Europe, and on the national scale London has been 
the only city to house a stock exchange since the closure of the last of the UK’s regional 
exchanges in the early 1970’s. Perhaps we can better explore the issue by recasting the 
question: why should any of this future vision not be happening in a different country? 

The current situation in Europe, and indeed much of the rest of the world, is that individual 
countries still have their own national stock exchanges, the existence of which has often been 
written into that country’s market-trading legislation. But the past five or so years has seen a 
wave of mergers and acquisitions (M&A) activity that has resulted in the current situation, 
where very many of these superficially independent national exchanges are in fact owned and 
operated by one of a small number of multinational conglomerate companies such as NYSE 
Euronext and Nasdaq OMX. At the time of writing there seems to be an additional wave of 
M&A as NYSE Euronext and Deutsche Börse have announced intentions to merge, as have 
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the London Stock Exchange Group and TMX, the operators of the Canadian Stock Exchange. 

The situation seems interestingly similar to that in mid-20th-century Britain, where long-
established and successful exchanges in many of the major cities outside London were 
subsequently rendered redundant by the establishment of strong telecoms links to London, and 
the regional exchanges were absorbed by the London Stock Exchange company. It seems 
plausible that within a few years, the number of independently operational exchanges in 
Europe could fall significantly. Some current exchanges, that historically have been wholly 
autonomous, could become mere “mirror sites” showing the trading data from a larger “hub” 
exchange elsewhere in the EU. It is perfectly possible that one of the larger hub exchanges will 
be based in London, but it is not impossible that London’s exchanges shrink to become the 
mirror sites. Such an adjustment of the balance of power among European exchanges is 
certainly not impossible. And there is yet another possibility, that a totally new player enters the 
market in a disruptive fashion. 

One potential driver for relocating major trading hubs is the consideration of where on the 
planet it makes most sense to site an exchange, taking into account speed-of-light propagation 
delays, an issue explored in some detail by Wissner-Gross & Freer (2010). 

For the sake of argument, let’s hypothesize the existence of a country somewhere else in the 
world, referred to here as Country C. Let’s say that Country C has built up significant capital 
reserves in recent years, and is prepared to spend those reserves to become a major player in 
the global financial markets: a new London or New York or Tokyo. The government of Country 
C invests in the rapid construction of a national network of cloud-style data-centres, ultra-high
speed fibre communications links between those data-centres and the city designated as the 
new financial hub, and leading-edge wireless networking across that city. Country C also 
becomes a major customer for software-defined silicon products, such as XMOS’s XCore. Let’s 
say that the costs of real-estate, and skilled human labour, are greatly less in Country C than 
those in the EU; and that Country C has invested in graduate and postgraduate education 
(either at home or abroad) to ensure that an appropriately educated workforce is readily 
available, and that these graduates have good skills in English, which a decade from now 
seems likely to still be the default language of international commerce. Let’s also say that 
Country C has a more lenient tax structure than is common in European countries, and that it 
has sufficiently well-developed regulatory and legal systems that governance and compliance 
are no more of a worry than in the EU. What then? What would stop Country C from destroying 
London’s concentration of financial-markets businesses? 

That last question is one that we are unsure of the answer to, and that we intentionally leave 
open here, for discussion. We’ll close this section with one more question, again rhetorical: just 
how many real-world countries are there that could, like our hypothetical Country C, rapidly rise 
to become a new major hub in the global financial markets within the next decade? We think 
there are at least two, and possibly more. 

One of them begins with C. 

4.7 Cyber-Security 
Finally, we close this review of future issues with a brief discussion of issues in cyber-security. 
Electronic attacks on the computer systems and communications networks of the global 
financial markets are attractive to two communities: profit-seeking criminals seeking to steal 
money or assets from the system, to enrich themselves; and damage-seeking “enemy agents” 
who aim to disrupt or destroy the system for reasons other than personal enrichment. The 

34
 



  

 

 

 
 

 
 

 
 

 

   
 

  
 

 
 

 

 

 
 

Technology Trends in the Markets: A 2020 Vision 

“enemy agents” might be individuals acting alone, terrorist organizations, or nation-states in 
times of warfare. These two groups, the criminal and the enemy, share some aims and 
methods but differ in others. Both groups seek to gain unauthorized access to IT systems, to 
“hack” the system, without triggering any alarms. Once “inside” the system, a criminal hacker 
would ideally like to operate undetected, stealing as much as possible for as long as possible, 
and ideally then also to exit the system (to “leave the scene of the crime”) without detection. In 
contrast, an enemy agent may be content to operate undetected only for as long as it took to 
initiate the desired damage or destruction of the system: after that, there may be much less 
desire for a clean exit. 

It is notable that whilst large-scale nation states may have a significant capacity to attack, they 
are so much integrated into the globally-connected financial network that any damage inflicted 
would be likely to reverberate back on them anyway. 

While institutions are often understandably secretive about how many cyber-attacks they 
encounter and the nature of any resultant security breaches, there is no shortage of news 
articles that indicate the serious nature of the problem. In 2006, the Russian Stock Exchange 
was closed by a computer virus infection (Sophos, 2006). More recently, in February 2011, the 
Nasdaq exchange was attacked by hackers injecting malicious programs (“malware”) into the 
system (Stafford et al., 2011; Demos, 2011a; Leyden, 2011a), and closer to later home in the 
same month the web-site of the London Stock Exchange (but not its main exchange servers) 
was hacked to serve malware hidden in adverts on the site (Leyden, 2011b). 

Cyber-security, in finance and any other context, involves an ongoing arms-race between 
attackers and defenders, predators and prey. Technically, the attackers and defenders are 
locked in a co-adaptive dynamic, in much the same way as co-evolving species are in 
biological systems. As Van Valen (1973) pointed out, co-evolving or co-adapting agents can 
show ‘Red Queen” dynamics where continuous adaptation is required purely for one population 
to maintain the same level of fitness or performance relative to the other populations that it is 
co-evolving with/against – a dynamic named after the Red Queen in Lewis Carroll’s Alice 
Through the Looking Glass, a character who is forever running forward, merely to stay in the 
same place, because the landscape on which she runs is itself rapidly moving backwards 
under her feet. 

It is beyond the scope of this document to provide a review of issues in financial-market cyber-
security and counter-terrorism. In November 2010 the UK think-tank Chatham House published 
a major review, albeit not specific to the financial markets (Cornish et al., 2010), to which we 
refer the interested reader. While it is of course essential to protect the ICT systems of the 
global financial markets from exogenous malicious attacks, we are concerned that such attacks 
seem to have been almost the sole focus of attention by the national security services, the 
regulatory authorities, and the institutions themselves. The ICT systems that drive the markets 
can plausibly be disrupted or destroyed by malign intent, and such malicious exogenous 
attacks should surely be guarded against, but there is also the very real prospect of large-scale 
systemic failures being caused by benign endogenous causes. The everyday participants in 
the marketplace are expert highly trained fighters involved in a zero sum war, and in many 
ways, it is the incentive structures and expertise of the endogenous community that is more 
likely to produce widespread damage and disruption than malicious activities of an exogenous 
terrorist band seeking to attack the system. 

The sort of systemic failures that terrorists might dream of instigating can in fact occur by 
straightforward combinations of routine component failures and/or unusual operator actions 
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triggering domino-effect chains of failure that ripple out over large chunks of the financial 
network, causing widespread disruption or highly dysfunctional market dynamics (such as the 
May 2010 Flash Crash) purely because of the ultra-large-scale, complex, socio-technical 
nature of the current state of the global financial markets, an issue explored at length by Cliff & 
Northrop (2011). 
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5. Summary 

In this review we’ve recapped the historical context for technology adoption in the financial 
markets, reviewed current technology trends, and then attempted to identify coming disruptive 
technologies on the assumption that current trends will continue over the coming decade.20,21 

Without external intervention, the shift to trading that is dependent on high-speed high-
bandwidth automated adaptive technology seems set to continue over the next decade. The 
“deverticalization” of financial trading institutions that was initiated in Europe by the initial MiFID 
legislation also looks set to continue. It is reasonable to expect that the net result of these 
trends will be a lowering of barriers to entry, and a significant reduction in the number of 
employees required by major financial institutions. This “depopulation of the trading floors” 
could lead to a situation where, by 2020 or 2022, the long-established primacy of London as a 
major global trading hub is seriously threatened by clusters of automated trading systems 
operational elsewhere on the planet, in countries that have hitherto not been major centers for 
the financial markets. In that very macro sense, the stability of the UK financial sector, and 
London’s prominence in the global financial markets, may be about to come under threat. The 
threat is not inescapable, but continued investment in leading-edge technology research, 
development, and deployment, and in the “skills base” of appropriately qualified and 
experienced workers, will be necessary to maintain the position that London has built up, and 
prospered from, over the past three hundred years. It will also be necessary to engage in 
programs of research that further develop our understanding of, and ability to quantify, 
endogenous systemic risk. 

Trading systems can today exist anywhere. A benign regulatory framework is required that 
both entices trading into the UK and provides a beneficial risk management environment. This 
is a global requirement that the UK should be leading the world on. 

There are several industries that the UK used to be globally dominant in, for which a 
combination of increased automation and globalization have combined to push the British 
sectors of those industries into decline or collapse. Britain can ill afford that to happen to its 
position in the global financial markets. 
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Appendix: Glossary of Acronyms 
This report has used a fair number of acronyms. Here we list them all for quick reference. Each 

of them was defined or explained the first time they occurred in the text of the report.
 

AES: Automated Execution System. 


AI: Artificial Intelligence.
 

ASIC: Application-Specific Integrated Circuit.
 

ATS: Alternative Trading System. 


BEP: Business Event Processing.
 

CDA: Continuous Double Auction.
 

CEP: Complex Event Processing.
 

CFTC: Commodity Futures Trading Commission.
 

CPU: Central Processing Unit. 


DMA: Direct Market Access. 


ECN: Electronic Crossing Network.
 

EDA: Estimation of Distribution Algorithm. 


ESP: Event Stream Processing.
 

ETF: Exchange Traded Funds
 

FAST: FIX Adapted for STreaming.
 

FIX: Financial Information eXchange.
 

FPGA: Field-Programmable Gate Array.
 

GA: Genetic Algorithm. 


GPGPU: General-Purpose computing on Graphical Processing Units. 


GPU: Graphical Processing Unit. 


HFT: High-Frequency Trading.
 

HPC: High Performance Computing.
 

IC: Integrated Circuit
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ICT: Information and Communications Technology
 

IT: Information Technology.
 

LTCM: Long Term Capital Management.
 

M&A: Mergers and Acquistions.
 

MGD: Modified Gjerstad-Dickhaut.
 

MiFID: Markets in Financial Instruments Directive.
 

MTF: Multilateral Trading Facility.
 

NASDAQ: National Association of Securities Dealers Automated Quotation.
 

PAC: Probably Approximately Correct.
 

PC: Personal Computer.
 

RAM: Random Access Memory.
 

R&D: Research and Development. 


SDS: Software-Defined Silicon.
 

SEC: Securities and Exchange Commission.
 

SME: Small/Medium-sized Enterprise 


STP: Straight-Through Processing. 


SWIFT: Society for Worldwide Interbank Financial Telecommunication. 


VWAP: Volume-Weighted Average Price.
 

ZIP: Zero Intelligence Plus.
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years we have worked closely with a number of Investment Banks helping them to develop their 
Algorithmic Trading systems. In addition, the Centre has developed a comprehensive and unique 
Algorithmic Trading platform, used to research and develop algorithms for trading. This platform has 
been recently used to run an algorithmic trading competition (sponsored by Microsoft) attracting 60 
entrants in 36 teams. It is currently being modified so that academics and industry professionals can 
conduct simulated and real evaluations of algorithmic trading and behavior finance risk. 
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