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Science at the  
Environment Agency 
Science underpins the work of the Environment Agency. It provides an up-to-date 
understanding of the world about us and helps us to develop monitoring tools and 
techniques to manage our environment as efficiently and effectively as possible. 

The work of the Environment Agency’s Science Department is a key ingredient in the 
partnership between research, policy and operations that enables the Environment 
Agency to protect and restore our environment. 

The science programme focuses on five main areas of activity: 

• Setting the agenda, by identifying where strategic science can inform our 
evidence-based policies, advisory and regulatory roles; 

• Funding science, by supporting programmes, projects and people in 
response to long-term strategic needs, medium-term policy priorities and 
shorter-term operational requirements; 

• Managing science, by ensuring that our programmes and projects are fit 
for purpose and executed according to international scientific standards; 

• Carrying out science, by undertaking research – either by contracting it 
out to research organisations and consultancies or by doing it ourselves; 

• Delivering information, advice, tools and techniques, by making 
appropriate products available to our policy and operations staff. 

 

Steve Killeen 

Head of Science 
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Executive summary 
Robust forecasts are vital in providing a comprehensive flood warning service to people 
and businesses at risk from flooding. For fluvial flood forecasting, rainfall–runoff, flow 
routing and hydraulic models are often combined into model cascades and are run 
automatically in the Environment Agency’s National Flood Forecasting System (NFFS). 

However, it is widely known that the accuracy of flood forecasts can be influenced by a 
number of factors, such as the accuracy of input data, and the model structure, 
parameters and state (initial conditions). Having a sound understanding of these 
modelling uncertainties is vital to assess and improve the flood forecasting service that 
the Environment Agency provides. 

This report describes the findings from Phase 1 of the project ‘Risk-Based Probabilistic 
Fluvial Flood Forecasting for Integrated Catchment Models’, whose main aim is to 
develop and test practical probabilistic methods to quantify and, where possible, 
reduce uncertainties around fluvial flood forecasts from sources other than predicted 
rainfall. The project started in November 2008 and will complete in late 2010. The main 
objectives of Phase 1 were to perform the following tasks in order to better define the 
methods and case studies to be investigated during Phase 2 of the project: 

• Task 1.1 – To review current Environment Agency (regional and national) 
and international experience in addressing uncertainties associated with 
fluvial flood forecasting and consult key stakeholders to refine user 
requirements. 

• Task 1.2 – To review and investigate which additional sources of 
uncertainty should be considered to gain a fuller (quantified) understanding 
of uncertainties in the flood forecasting process and to define in which 
situations/scales this may be beneficial. Particular focus should be placed 
on the aspects other than rainfall uncertainty, such as uncertainty 
associated with rainfall–runoff, routing and hydraulic components. 

• Task 1.3 – To recommend and test suitable techniques for the probabilistic 
treatment of the most important sources of uncertainty and combine them 
into a high-level unified, scalable framework for integrated catchment 
models. 

• Task 1.4 – To investigate the requirements, possibilities and benefits of 
real-time/state updating of probabilistic hydraulic/hydrological models and 
the value of different types of data (historical and real-time) in constraining 
uncertainties. 

The consultations took place during December 2008 and January 2009 and involved 
more than 25 regional and national staff. More than 20 catchments were suggested as 
potential case studies for the project, and the discussions suggested that the key 
sources of uncertainty which it would be useful to consider include catchment 
averaging of raingauge data, the validity of rating curves, and the calibration of rainfall–
runoff models. Much useful background material was also obtained on recent 
experience with integrated catchment models, and ongoing regional and national 
studies into model uncertainty. 

Based on the review and consultations, and a workshop held on 16 March 2009, this 
report sets out the key proposals for Phase 2 of the project, including the proposed 
uncertainty framework, and the methods to be developed and tested on the case 
studies. The high-level version of the framework, which is described in this report, uses 
the following seven items as key decision points in selection of an appropriate 
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uncertainty estimation technique: level of risk, lead time requirement (linked to 
catchment response time), types of models, sources of uncertainty, data assimilation, 
operational requirements, and model run times. The detailed version of the framework, 
to be developed during Phase 2, will consist of flowcharts, decision trees and other 
formats. 

The project also has the scope to investigate up to four case studies, consisting of two 
integrated catchment models, and two simpler models which form the basic building 
blocks of more complicated models. The following four catchments have been selected 
for study during Phase 2: 

• Upper Calder (rapid response catchment) 

• Lower Eden (flow routing reach) 

• Ravensbourne (integrated catchment model) 

• Upper Severn (integrated catchment model). 

The test configurations for these catchments will be trialled on the Environment 
Agency’s NFFS, using the following uncertainty estimation techniques: 

• Forward Uncertainty Propagation – specification of a range, or ensemble, 
of values. 

• Data Assimilation – Kalman Filter/Data Based Mechanistic, Ensemble 
Kalman Filter. 

• Conditioning – post-processing of outputs using quantile regression and 
Bayesian Model Averaging. 

The following four approaches to reducing model run times were also reviewed (and 
will be investigated further during Phase 2): increased computing power, hydrodynamic 
model reconfiguration, statistical sampling and model emulators. The Lower Eden case 
study will be used as a test bed for some of these studies, and will also be used for a 
short investigation into probabilistic inundation mapping using the existing mapping 
functionality in NFFS. 
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1. Introduction 
1.1 Background 
Robust forecasts are vital in providing a comprehensive flood warning service to 
people and businesses at risk from flooding. For fluvial flood forecasting, rainfall–
runoff, flow routing and hydraulic models are often combined into model cascades 
and are run automatically in the Environment Agency’s National Flood Forecasting 
System (NFFS). 

The outputs from these models are currently deterministic with one model run 
delivering the flood forecast which is assumed to be the best representation, 
although Forecasting Duty Officers assess and advise on the uncertainty in forecasts 
based on experience and judgement. However, it is widely known that the accuracy 
of flood forecasts can be influenced by a number of factors, such as the accuracy of 
input data, and the model structure, parameters and state (initial conditions). Having 
a sound understanding of these modelling uncertainties is vital to assess and 
improve the flood forecasting service that the Environment Agency provides. 

This R&D project will develop and test practical probabilistic methods to quantify and, 
where possible, reduce uncertainties around fluvial flood forecasts from sources 
other than predicted rainfall (which is already being addressed within the 
‘Hydrological Modelling with Convective Scale Rainfall’ EA R&D project). This will 
provide an overarching framework for assessing uncertainties in fluvial forecasting in 
a risk-based manner which, for completeness, will also provide the possibility to 
include rainfall forecasting uncertainty. Some of the specific project objectives are: 

• to review current experience and consult key stakeholders to refine user 
needs; 

• to recommend and test suitable techniques for the probabilistic treatment 
of the most important sources of uncertainty and combine them into an 
overarching uncertainty framework; 

• to assess the possibilities and benefits of real-time/adaptive updating for 
probabilistic hydraulic/hydrological models; 

• to demonstrate and validate the suggested techniques for linked 
forecasting models through case studies in NFFS; 

• to recommend and investigate alternative ways of reducing run times for 
probabilistic flood forecasts; 

• to provide updated guidance on probabilistic fluvial flood forecasting and 
develop an implementation plan. 

The main output from this project will be up-to-date practical guidance on how to use 
probabilistic techniques in fluvial flood forecasting in order to interpret possible 
uncertainties around flood forecasts and ultimately allow for improved management 
of flood events. This will be supplemented by a number of practical case studies 
which will demonstrate how certain uncertainty techniques can add value to the 
forecasting process. The main focus of this project is to demonstrate the practicality 
and benefits of applying probabilistic techniques to fluvial flood forecasting models 
which are sufficiently robust to be considered for use in an operational environment. 
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1.2 Scope of report 
The project started in December 2008 and will complete in late 2010, and includes 
the following three main phases: 

Phase 1 – review, consultation and scoping (4–5 months) 

Phase 2 – development of suitable uncertainty framework and application to case 
studies (11–12 months) 

Phase 3 – best practice guidance (7–8 months). 

The research contractors for the project are Atkins (lead), Deltares, Lancaster 
University, CEH Wallingford and Edenvale Young. This report summarises the work 
performed during Phase 1 of the project, and includes recommendations for the case 
studies and techniques to be considered during Phase 2. The main tasks within 
Phase 1 are shown in Table 1.1. 

Table 1.1 Summary of tasks within Phase 1 of the project. 

Task Description 
1.1 To review current Environment Agency (regional and national) and 

international experience in addressing uncertainties associated with fluvial 
flood forecasting and consult key stakeholders to refine user requirements 

1.2 To review and investigate which additional sources of uncertainty should be 
considered to gain a fuller (quantified) understanding of uncertainties in the 
flood forecasting process and to define in which situations/scales this may 
be beneficial. Particular focus should be placed on the aspects other than 
rainfall uncertainty, such as uncertainty associated with hydrologic, routing 
and hydraulic components 

1.3 To recommend and test suitable techniques for the probabilistic treatment of 
the most important sources of uncertainty and combine them into a high-
level unified, scalable framework for integrated catchment models 

1.4 To investigate the requirements, possibilities and benefits of real-time/state 
updating of probabilistic hydraulic/hydrological models and the value of 
different types of data (historical and real-time) in constraining uncertainties 

 

The report is based upon work performed during the first 4 months of this 2-year 
project, and includes the findings from the consultation exercise on the main sources 
of uncertainty in integrated catchment models, a description of the high-level version 
of the uncertainty framework which has been developed during Phase 1 of the 
project, and detailed plans for the case studies and Phase 2 of the project. The report 
also provides updates to reviews of probabilistic flood forecasting techniques from 
previous Defra/Environment Agency studies, and some additional studies since the 
time of those reviews, and provides more detail on data assimilation techniques, 
model run-time issues, and the propagation of uncertainty in integrated catchment 
models. 
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1.3 Layout of report 
The remainder of this report is presented as follows: 

• Section 2 – Review and consultations – describes international and 
Environment Agency research into probabilistic forecasting, and 
summarises the main findings from the consultation exercise, which 
involved 25 regional and 2 area staff and was performed over the period 
18 December 2008 to 16 January 2009. 

• Section 3 – Sources of uncertainty – describes the main sources of 
uncertainty in integrated catchment models, model-specific 
considerations, and some possible criteria for risk-based selection of 
modelling approaches. 

• Section 4 – Uncertainty framework – describes the main techniques 
and issues which will need to be considered in the uncertainty framework 
to be developed during Task 2.1 of the project, and which were 
considered as possibilities to include in the case studies during Phase 2. 
A high-level (conceptual) version of the framework is also presented. 

• Section 5 – Phase 2 Recommendations – presents recommendations 
for the techniques and case studies to be considered in Phase 2 of the 
project, and for further development of the uncertainty framework. 

In particular, the following tables provide a summary of the case studies and methods 
to be considered during Phase 2 of this project: 

• Table 4.6 – summarises the methods which have been reviewed in this 
report. 

• Table 5.10 – groups the methods in Table 4.6 by type, and summarises 
the methods which will be considered in Phase 2 of this project. 

• Table 5.11 – summarises the sources of uncertainty to be considered 
during Phase 2 of this project. 

The final figure in Section 5 (Figure 5.2) also summarises the case studies which will 
be considered, and the methods which will be applied to those case studies. 
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2. Review and consultations 
This section describes the main findings under Task 1.1 of the project, whose main 
aims were: 

To review current Environment Agency (regional and national) and 
international experience in addressing uncertainties associated with 
fluvial flood forecasting and consult key stakeholders to refine user 
requirements 

Section 2.1 describes experience from recent international research projects and pre-
operational testing of probabilistic flood forecasting systems, and includes a brief 
summary of research into uncertainty estimation within the FRMRC, FREE and 
FLOODsite research programmes, which have all benefited from Environment 
Agency funding, and the international HEPEX, COST731, MAP D-PHASE and EFFS 
projects. Section 2.2 then discusses recent and ongoing Defra/Environment Agency 
projects and summarises the main findings from the consultation exercise. 

2.1 International experience 

2.1.1 International research programmes 

FRMRC – Probabilistic Flood Forecasting 
The first phase of the Flood Risk Management Research Consortium (FRMRC1) ran 
from 2004 to 2008 and the research programme was divided into nine research 
priority areas. 

The main area which considered real-time flood forecasting was Research Priority 
Area 3 ‘Real-Time Flood Forecasting’, led by Professor Ian Cluckie. The topics that 
were considered included weather radar, catchment modelling, artificial intelligence 
techniques for flood forecasting, and data assimilation and probabilistic flood 
forecasting. 

The data assimilation and probabilistic flood forecasting work was carried out mainly 
at Lancaster University by Professor Peter Young and Dr Renata Romanowicz, 
leading to User Report 5 (Young et al. 2006) that is available from the FRMRC 
website (http://www.floodrisk.org.uk/). The main application area for the work was a 
cascade of adaptive Data Based Mechanistic (DBM) flood forecasting models for the 
River Severn as reported in a number of scientific publications (Romanowicz et al. 
2006b, 2008; Beven 2009). 

Probabilistic flood inundation modelling was also studied in FRMRC1 under 
Research Priority Area 9 ‘Risk and Uncertainty’. Following earlier work carried out in 
the European Flood Forecasting System (EFFS) project, which is described later (De 
Roo et al. 2003; Pappenberger et al. 2005a), this work made use of the GLUE 
methodology (see Section 4.4) in the sensitivity analysis and calibration of flood 
inundation models against historical inundation information (e.g. Pappenberger et al. 
2005a,b, 2006b, 2007a, 2007b, 2008). 

The work in this research priority area also led to more general assessments of 
modelling uncertainties (Pappenberger and Beven 2006) and a decision tree for 
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choosing uncertainty estimation methods (Pappenberger et al. 2006a, 
http://www.floodrisknet.org/methods). Professor Jim Hall at Newcastle University, 
partly funded by FRMRC1, also led the development of a general software package 
(Reframe) for formulating uncertainty estimation problems. This was demonstrated 
for a small part of the Thames Estuary 2100 project. 

Some work related to probabilistic flood forecasting is also ongoing under the next 
phase of FRMRC (FRMRC2), which started in 2008. Super Work Package 1, led by 
Professor Garry Pender at Heriot-Watt University, is investigating ways of making 
hydraulic model calculations more efficient so that they can be used more easily in 
forecasting and dynamic flooding calculations. As part of this work, dynamic model 
emulation techniques (Young and Ratto 2008) are being developed using the DBM 
methodology developed at Lancaster University (see Beven et al. 2008b; Young et 
al. 2009). The Lancaster DBM flood forecasting methodology is also being applied to 
the River Eden in North West England, including an investigation of small, low-cost, 
intelligent GPRS (General Packet Radio Service) linked level sensors, with a view to 
constraining the uncertainty in flood forecasts (see Leedal et al. 2008). 

In other parts of FRMRC2, a wide range of flood risk management systems is being 
considered, including catchment, coastal and urban systems for evaluation of flood 
risk and coupled atmospheric and flood forecasting for flood warning. Further 
information about FRMRC activities and products can be found at 
http://www.floodrisk.org.uk/ 

FRMRC – Good Practice Guidelines 
An additional component of work in FRMRC2 (Work Package 1.7), which is being 
carried out in collaboration between Lancaster University, Middlesex University and 
the Environment Agency, is the development of Good Practice Guidelines for the 
incorporation of risk and uncertainty into flood risk management. Some topics that 
are being considered include issues about what different types of uncertainty 
estimation mean; the value of different types of data in constraining uncertainties; 
and how uncertainty estimates should be interpreted by policy and decision makers. 
The guidelines will provide a structured process to guide the interaction between 
scientists and stakeholders in flood risk management as a way of addressing these 
problems (the translationary discourse of Faulkner et al. 2007). 

During the first phase of FRMRC, the major application areas for risk and uncertainty 
estimation were in flood forecasting and flood inundation prediction, including the use 
of uncertain data for model calibration and updating predictions during flood events 
(e.g. Beven et al. 2005; Pappenberger et al. 2006b, 2007a, 2007b; Romanowicz et 
al. 2006a, 2008). There are, of course, many other interesting areas of flood risk 
management for which uncertainty and risk are important, including: 

• flood risk mapping (probabilities and consequences); 

• real-time flood forecasting; 

• flood frequency estimation; 

• infrastructure design and assessment; 

• predictions of impacts of land use change; 

• coastal hazard assessment; 

• joint tidal and river hazard assessment in estuaries; 

• joint fluvial and pluvial assessments in urban areas. 
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These different types of applications might require different types of uncertainty and 
risk assessments. The aim in this part of FRMRC2, however, is to develop a general 
framework for the development of guidelines for good practice that might be applied 
in any of these areas of flood risk management. 

The overall aim of Work Package 1.7 is therefore to develop a methodology or route 
map for the process of developing Guidelines for Good Practice, with a 
demonstration in one or more application areas. The priority area agreed with the 
Environment Agency is flood inundation modelling, with a case study on the River 
Eden at Carlisle (see also Hall and Solomatine 2008). This application has been 
chosen to complement the work to be performed within the present project under 
Tasks 2.1 and 3.1 (uncertainty framework and guidelines for probabilistic fluvial flood 
forecasting). 

It has also been agreed that there will be an exchange of ideas between the two 
projects regarding development of the guidelines. The present programme for 
FRMRC2 is to develop a first draft of the guidelines for April 2010 and – following a 
period of consultation and review – to publish the guidelines in June 2011. Task 2.1 
of the present project (uncertainty framework) should therefore be completed before 
publication of the draft FRMRC2 guidelines, which should in turn be available in time 
to consider when developing the guidelines under Task 3.1, which starts in April 
2010. 

Work Package 1.7 will also build upon ideas developed during FRMRC1, which 
included an assessment of the different techniques available for uncertainty 
estimation for different types of flood risk management (e.g. Pappenberger et al. 
2006a). A technical report is available on the FRMRC website and a decision tree 
and Wiki site was developed as a guide for users coming to the subject for the first 
time (http://www.floodrisknet.org.uk/methods), including initial development of a 
decision tree for selection of appropriate methods (Figure 2.1). 
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Figure 2.1 FRMRC Research Priority Area 9 method selection example 
(Pappenberger et al. 2006a). 

Consideration was also given to the communication of uncertainties between 
scientists and practitioners (Faulkner et al. 2007; McCarthy et al. 2007). 

Work Package 1.7 will also explore ways of visualising and presenting uncertainties 
to users. The process of developing a translationary discourse will require a means 
of interaction between researchers within FRMRC, in other related research projects 
(e.g. FRACAS within the NERC FREE programme) and with end users from Defra, 
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Environment Agency, SNIFFER and consultancies. Two fundamental research 
components informing the development of Guidelines for Good Practice will be: 

i. a deeper analysis of the degrees and types of uncertainty that the users 
find most difficult to grasp; and 

ii. an exploration of the ways in which that information is conveyed or 
visualised to users involved in decision making. 

FRMRC2 will trial the format of a translational discourse between science, 
forecasters and relevant decision makers. Research will be undertaken in the form of 
translational discourse workshops (piloted at the Exeter co-location workshop, March 
2006) with observation, interviews and post-workshop questionnaires. Two 
workshops will be held – an initial workshop in May 2009, and a final workshop in 
November 2010 – and each will comprise approximately 20 participants consisting of 
key UK researchers and users. Existing tools will be used to develop a more 
sophisticated understanding of how ‘uncertainty’ currently informs flood warning 
professionals’ activities and choices. This will allow a deeper understanding of the 
role of language and visualisation in assisting the understanding of uncertainty and 
the relative roles of new methods of communicating uncertainty in flood risk 
management analysis. 

The development of the route map will build upon the experience of implementing 
uncertainty assessments in the activities of the Netherlands Environmental 
Assessment Agency (MNP: see, for example, Janssen et al. 2003, 2005; van der 
Sluijs et al. 2003, 2005). For example, uncertainty assessments for applications 
within MNP involve a six-stage checklist as follows: 

i. Problem framing 

ii. Involvement of stakeholders 

iii. Selection of indicators 

iv. Appraisal of knowledge base 

v. Mapping and assessment of relevant uncertainties 

vi. Reporting of uncertainty information 

This appears to provide a useful framework for the Guidelines for Good Practice that 
is consistent with the discourse for conveying uncertainty information to users 
discussed in Faulkner et al. (2007) and McCarthy et al. (2007). It is one part of the 
more general framework discussed by Hall and Solomatine (2008). 

Flood Risk from Extreme Events (FREE) 

The Flood Risk from Extreme Events (FREE) programme is a 3-year research 
programme from 2006 to 2009 which seeks to address three central environmental 
problems associated with flood risk: 

• Estimation of the probability, and associated risks, of extreme events 
leading to flooding occurring in the period from minutes to weeks ahead. 
Research will be carried out to increase scientific knowledge of: 
ensemble prediction methods; down/up scaling; aggregation/ 
disaggregation and propagation of uncertainty through flood forecasting; 
other statistical methods; warning systems. 
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• Changes in the intensity and frequency of flooding, and associated 
weather regimes, resulting from natural and anthropogenic climate 
change over the next century. Factors dictating our ability to predict the 
risk of flooding on timescales from seasons to decades will be 
determined. 

• Integrated ‘Clouds-to-Catchment-to-Coast’ (CCC) flood simulation; 
involving meteorological, hydrological, and ocean models linked to user 
products. A coastal zone involves river catchments, an urban 
conurbation, mixed land use areas, an estuary and adjacent coastal shelf 
ocean. This modelling framework will be developed and used for holistic 
flooding scenarios such as arising from combined storm surges and 
contemporaneous heavy rainfall. CCC is a major output of FREE 
requiring full integration of the research to be carried out. 

The FREE project ‘Exploitation of new data sources, data assimilation and ensemble 
techniques for storm and flood forecasting’ is a collaborative project between 
meteorologists at Reading (the university and the Met Office Joint Centre for 
Mesoscale Meteorology) and hydrological modellers at CEH Wallingford with support 
from the Environment Agency. The project has three main themes: 

i. data assimilation of new radar measures of the atmosphere into weather 
models; 

ii. construction of physically based ensembles of weather model rainfall 
forecasts; 

iii. probabilistic flood forecasting using improved high-resolution weather 
model rainfalls in deterministic and ensemble form. 

Weather forecast models currently have difficulty capturing the rapid evolution of 
convective storms leading to flash floods. Assimilating new radar information (using 
the Met Office variational assimilation system) on the evolving humidity fields (using 
radar refractivity) and air motions in the boundary layer (using Doppler winds from 
insects) is being investigated with the prospect of weather models being able to track 
developing convection before precipitation appears. The analysis fields will be used 
as initial conditions for ensembles of short-range, high-resolution weather forecasts. 
This is expected to yield forecasts with improved locations (in space–time) for rainfall 
events. 

Initial condition errors are not the only cause of inaccuracies in high-resolution (1–
4 km) weather prediction models. Errors in the lateral boundary conditions and 
modelling errors also contribute, while the nonlinear nature of convective dynamics 
also places a limit on deterministic predictability. It becomes important to recognise 
and determine the uncertainties in the forecast precipitation. A structured approach to 
ensemble construction is being pursued, accounting for initial condition, lateral 
boundary and model uncertainties. Perturbations are being designed on the basis of 
physical insight into convective forcing mechanisms such that the convective-scale 
ensembles reflect the most significant contributions to forecast uncertainty. 

The use of ensemble rainfall forecasts as a means of obtaining probabilistic flood 
forecasts is being investigated as the third theme of the project. Ensemble rainfall 
forecasts will be interfaced to hydrological models and probabilistic outputs created. 
Different scales of application will be investigated, ranging from localised flash 
flooding of small catchments through to indicative first-alert forecasting with 
countrywide coverage, including forecasts of discharges to the sea for use in shelf–
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sea models. It also aims to assess the impacts of improvements in the Numerical 
Weather Prediction (NWP) model resolution on flood forecast performance. 

The third theme on probabilistic flood forecasting is of most relevance here and 
progress to date is summarised in the following. A case study of the Carlisle flood 
using high-resolution NWP model rainfalls in the PDM rainfall–runoff model has 
demonstrated the improved accuracy of the rainfall forecasts and their potential value 
for issuing earlier flood warnings (Roberts et al. 2009). Use of the CEH Grid-to-Grid 
(G2G) model for area-wide flood forecasting has involved developing new model 
initialisation schemes based on steady-state assumptions and novel data 
assimilation methods (based on empirical state correction) for this distributed grid-
based model. The relevance of using a distributed model in conjunction with 
ensemble rainfall forecasts for convective storms, where storm position uncertainty 
can dominate, has been illustrated using high-resolution NWP rainfall pseudo-
ensembles for the Boscastle storm. Risk maps of flood threshold exceedance that 
indicate the space–time evolution of flood risk during the event have been developed 
to support visualisation of the probabilistic flood forecasts (Cole et al. 2009). 

Another project within FREE is being led by Lancaster University (Professor Keith 
Beven, Professor Gordon Blair, Dr Paul Smith, Dr Danny Hughes), and is 
investigating the use of networked sensors to constrain uncertainties in flood 
forecasts and the calibration of hydraulic models. The work is being carried out in 
collaboration with the Environment Agency (Steve Mayall, Bangor), Bristol University 
(Professor Paul Bates) and the Proudman Oceanographic Laboratory (Dr Kevin 
Horsburgh). The case study for this project is the lower part of the River Dee, 
including the tidally affected section. The Proudman Oceanographic Laboratory is 
providing forecasts of surge affected tidal levels and Bristol University is running 2D 
hydraulic models for part of the river close to the junction with the Alun, where a 
wireless network of GridStix level sensors has been installed (Smith et al. 2008a). 
Coupled to each of the sensors, a small computer can run the Lancaster DBM flood 
forecasting software to provide adaptive local forecasts with probabilistic uncertainty 
estimates. 

FLOODsite 

FLOODsite is a major research programme within the Global Change and 
Ecosystems priority of the Sixth Framework of the European Commission. The 
programme runs from 2004 to 2009 and includes contributions from 37 universities 
and research institutions. 

Research in FLOODsite is being performed across more than 20 tasks, including the 
following tasks which are of relevance to the present project: 

• Task 16 – Real-time guidance for flash flood risk management, which is 
considering a range of techniques for improving the forecasting of flash 
floods (led by the University of Padova). 

• Task 20 – Development of framework for the influence and impact of 
uncertainty, which is considering techniques for both flood risk 
assessment and flood forecasting and warning (led by the University of 
Newcastle and the UNESCO–IHE Institute of Water Education). 

For example, within Task 16, a Bayesian uncertainty extension has been developed 
based upon the Flash Flood Guidance concept developed by the National Weather 
Service in the USA. This task has also considered the use of vulnerability indicators 
(e.g. vehicles damaged) as a guide to flash flood potential (University of Padova). 
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Within Task 20, perhaps the main area relevant to the present project has been work 
on the propagation of uncertainty through integrated flood forecasting models, and 
development of a modelling framework called UNcertainty Estimation based on local 
Errors and Clustering (UNEEC). A range of computational intelligence and related 
techniques have been implemented, including artificial neural networks, locally 
weighted regression, and M5 model trees (Shrestha and Solamatine 2006) based on 
the following general principles: 

• no assumptions about parameter distributions 

• model bias is not assumed zero 

• localised (i.e. separate) models are built for different input combinations 

• model independent 

Further details can be found at the programme website http://www.floodsite.net/ 

HEPEX 

The Hydrologic Ensemble Prediction EXperiment (HEPEX) is an international effort 
that brings together hydrological and meteorological communities from around the 
globe to build a research project focused on advancing probabilistic hydrological 
forecasting techniques. The initiative provides a framework for the exchange of ideas 
and developments by the participating research groups and organisations, although 
does not directly fund the development of new techniques itself. 

The HEPEX mission is to demonstrate how to produce reliable hydrological 
ensemble predictions that can be used with confidence by the emergency 
management and water resources sectors to make decisions that have important 
consequences for economy, public health and safety. The key science issue for 
HEPEX is reliable quantification of hydrologic forecast uncertainty. HEPEX is 
addressing the following key questions: 

• What are the adaptations required for meteorological ensemble systems 
to be coupled with hydrological ensemble systems? 

• How should the existing hydrological ensemble prediction systems be 
modified to account for all sources of uncertainty within a forecast? 

• What is the best way for the user community to take advantage of 
ensemble forecasts? 

These scientific questions are being treated in separate working groups and test 
beds. Test beds can be a single basin (and its sub-basins), a region containing 
multiple basins, or possibly a global collection of basins that facilitate experiments 
addressing questions over a range of scales and climates. The test-bed projects are 
exploring a wide range of forward uncertainty propagation, post-processing and data 
assimilation techniques for a range of timescales (short-term through to seasonal), 
and several examples are provided elsewhere in this report (e.g. for the US National 
Weather Service, and the Netherlands). 

Regardless of geographical domain, test beds focus on one or more clearly defined 
HEPEX science questions, have the potential to develop data resources needed for 
community experiments to address the questions, and are expected to include active 
user participation. Special workshops are held to exchange ideas between scientists 
and end users. These have been held in the UK (2004), USA (2005), Italy (2007) and 
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the Netherlands (2008). The next workshop on downscaling of atmospheric forecasts 
for hydrologic prediction is due to be held from 15 to 19 June 2009 in Toulouse. 

Further information on HEPEX can be found at: http://hydis8.eng.uci.edu/hepex/ 

COST731 

The European Science Foundation COST731 project is concerned with ‘Propagation 
of Uncertainty in Advanced Meteo-Hydrological Forecasting Systems’. It is the 
successor to the COST717 project on the ‘Use of Radar in Hydrological and 
Numerical Weather Prediction (NWP) Models’. The UK representatives on the 
Management Committee are Dr Sue Ballard (Met Office) and Professor Keith Beven 
(Lancaster University). COST731 meetings are an opportunity to exchange 
information and experience of different methods in meteorological nowcasting and 
data assimilation for precipitation prediction, radar calibration methodologies, 
hydrological forecasting and the communication of uncertain forecasts to users and 
stakeholders. 

There are three main working groups in COST731: 

• WG-1: Propagation of uncertainty from observing systems (radars) into 
NWP. 

• WG-2: Propagation of uncertainty from observing systems and NWP into 
hydrological models. 

• WG-3: Use of uncertainty in warnings and decision making. 

The main aims of the project are: 

• to provide reports (or peer-reviewed publications) on the key research 
topics of the working groups; 

• to act as a test bed for demonstrating the value and incentives of 
advanced hydro-meteorological modelling for flood forecasting in Europe; 

• to provide a set of well-established and realistic examples (possibly in the 
form of training software) demonstrating the value and possibilities of 
probabilistic hydro-meteorological forecasts to potential end users. 

As with HEPEX (see above), the COST731 initiative provides a framework for the 
exchange of ideas and developments by the participating research groups and 
organisations, although it does not directly fund the development of new techniques 
itself. 

Further information on the COST731 project may be found at: 
http://cost731.bafg.de/servlet/is/Entry.9691.Display/ 

MAP D-PHASE 

The D-PHASE project (Demonstration of Probabilistic Hydrological and Atmospheric 
Simulation of flood Events in the Alpine region) is a Forecast Demonstration Project 
of the WWRP (World Weather Research Programme of WMO). It aims to 
demonstrating some of the many achievements of the Mesoscale Alpine Programme 
(MAP), in particular the ability to forecast heavy precipitation and related flooding 
events in the Alpine region. 
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The project is addressing the entire forecasting chain ranging from limited-area 
ensemble forecasting, high-resolution atmospheric modelling (km-scale), hydrological 
modelling and nowcasting, to decision making by end users. For example, the 
Hydrology division of the Swiss Federal Office for the Environment (FOEN) is 
involved in the project as an end user and, for more than two decades, has been 
running an operational hydrological forecasting service for the High Rhine basin. 
Initially forecasts were only issued for the most downstream gauging station at 
Rhein-Rheinfelden, with additional forecasts for the main tributaries having been set 
up more recently. At present, forecasts for 11 gauging stations are issued to regional 
authorities and private customers. 

In the present operational forecasting system at FOEN a rainfall-runoff model (HBV) 
is coupled with the COSMO7 meteorological forecast from MeteoSwiss, with the 
deterministic ECMWF forecast being used as a backup. Hourly data from 
SwissMetNet as well as from the discharge gauging network of FOEN are used for 
data assimilation. The integration of all components is realised in the Flood Early 
Warning System (FEWS). 

The increased frequency of flood events in recent years in Switzerland and in 
neighbouring countries has increased awareness with the public as well as the media 
and has led to higher expectations of the hydrological forecasting service. In 
particular, a major flood event in August 2005 and the resulting post-event analysis 
showed the need for improvements in various respects. In particular, some key 
factors which were identified were the consideration of uncertainty as well as more 
frequently updated high-resolution forecasts as input in the hydrological model. The 
MAP D-PHASE project provided FOEN with an excellent opportunity to benefit from 
the latest developments in the field of numerical weather prediction and to test new 
products. 

To allow these to be tested during the MAP D-PHASE Operational Period (DOP) 
(2007–2008), a second forecasting system was set up at FOEN in parallel to the 
operational forecasting system. The main focus during the DOP was to gain 
experience with probabilistic and high-resolution models as input for flood forecasting 
models. For that reason, outputs from COSMO2 were used (which is a refined 
version of COSMO7), together with COSMO-LEPS and SRNWP-PEPS outputs.  
These were coupled with HBV in addition to COSMO7 and ECMWF outputs which 
had already been used in operational flood forecasting. The flood event of 8 and 9 
August 2007 was a useful practical test for FEWS MAP D-PHASE. 

The additional forecasts have been useful for the dissemination of warnings and – in 
collaboration with MeteoSwiss and the Swiss Federal Institute for Forest, Snow and 
Landscape Research (WSL) – it is planned to make a full evaluation of the MAP D-
PHASE forecasts and to incorporate the results into the operational service. 

A second minor focus was testing the use of additional data assimilation techniques; 
for example, an alternative approach to updating of HBV, and use of radar-derived 
catchment rainfall at an hourly resolution provided by MeteoSwiss Locarno instead of 
the spatially interpolated ground-based measurements. 

More information on MAP D-PHASE can be found at: 
http://www.map.meteoswiss.ch/map-doc/dphase/dphase_info.htm 

European Flood Forecasting System (EFFS) 

The EFFS was sponsored by the 5th Framework Programme of the European 
Commission. The project started in 1999 and was completed in 2003 after a 6-month 
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extension period. The project consortium was initially formed by 11 partner institutes. 
During the third year the consortium was extended via a special amendment to 
include eight additional institutes from seven Newly Associated States of the 
European Union. 

The goal of the project was the set-up and semi-operational testing of a continental-
scale flood forecasting system for major river basins in Europe. The purpose of the 
forecasting system is to function as a pre-warning system for national and regional 
forecasting offices across Europe. 

The principal research aim was to explore if it is possible to extend the lead time of 
the warning process up to 10 days into the future. This was to be achieved with the 
use of numerical weather forecasts. Various deterministic and ensemble forecasts 
delivered by national and international meteorological services were used within the 
system to drive a sequence of rainfall–runoff models and hydraulic models for the 
principal river systems, in particular the rivers Rhine and Po. The weather forecasts 
were downscaled from a global circulation model to a high-resolution local model. 
Various semi-operational tests led to the conclusion that – at that time – 10-day 
forecasting periods were considered non-reliable for most situations due to the high 
uncertainty in the meteorological forecasts beyond a duration of about 6 days. 

An important aspect within the EFFS project was the uncertainty inherent to the 
forecasting process. The principal sources of uncertainty include the internal model 
parameter uncertainty and the input uncertainty. Another relevant part of the project 
was the communication of the forecast results to the forecast end users, including 
rescue services and expert forecasters. The principal responsibility of the forecaster 
is to interpret a particular warning issued by a forecasting system and give 
instructions for an eventual evacuation or other operational response. Forecasters 
thus need to foresee the consequences of eventual false alarms or of a situation for 
which an evacuation would have been warranted. In this particular part of the project 
the various needs and feedback from the end-user community were explored and 
addressed explicitly. 

Figure 2.2 shows the principal working packages of the EFFS project (structured into 
10 blocks) and the institutes that led the individual work packages. 
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Figure 2.2 EFFS project organogram. 

 

The EFFS project ended in 2003. More information can be found at the following link: 
http://cordis.europa.eu/data/PROJ_FP5/ACTIONeqDndSESSIONeq112362005919n
dDOCeq129ndTBLeqEN_PROJ.htm 

EU IMPRINTS project 

The EU Framework 7 project IMPRINTS is concerned with flash flood and debris flow 
risk assessment as well as real-time forecasting and is led by Professor Daniel 
Sempere-Torres of CRAHI, UPC, Barcelona. One of the project partners is Lancaster 
University (Professor Keith Beven). Others include the EU Joint Research Centre, 
Ispra, Italy; MeteoSwiss and WSL from Switzerland; and the French Flood 
Forecasting Institute, SCHAPI. 

The project started on 15 January 2009. There will be a number of case study 
catchments used in the project in Spain, Switzerland, France and Italy. Stakeholders 
from these catchments are involved in planning the project. Probabilistic forecasting 
will be used in both the assessment of risk and in real-time forecasting, making use 
of ensemble rainfall predictions from ECMWF and COSMO-LEPS, radar projections, 
raingauge and water level data. 

The progress of the project can be followed on the IMPRINTS website: 
http://www.imprints-fp7.eu/ 
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2.1.2 Pre-operational and operational experience 

This section describes the current status, and technical approaches used, within the 
following systems which are currently undergoing pre-operational testing, or are 
already in operational use. 

National Weather Service 

The National Weather Service (NWS) of the USA is currently migrating the current 
NWSRFS flood forecasting system to the Community Hydrological Prediction System 
(CHPS), which will incorporate the functionality of the current Advanced Hydrologic 
Prediction Service (AHPS). AHPS is a critical delivery mechanism for NWS’s 
integrated water services, and provides a web-based suite of information-rich 
forecast products. This includes the display of uncertainty-quantified forecast 
information for occurrence of floods and droughts from hours to days and months in 
advance. These graphical products provide useful information for use as planning 
tools by water resources and emergency managers. It is noted that ‘these new 
products will enable government agencies, private institutions, and individuals to 
make more informed decisions about risk-based policies and actions to mitigate the 
dangers posed by floods and droughts’. 
(http://www.weather.gov/ahps/about/about.php). 

In support of AHPS, the experimental ensemble forecasting system XEFS is being 
developed for implementation in CHPS. The idea is to develop an integrated short, 
medium and long-range ensemble streamflow forecasting system that can be 
developed and implemented at the River Forecasting Centres (RFCs) over the next 
few years. 

A modular approach is being taken to the development of XEFS which consists of 
several parts that treat uncertainty explicitly: 

• Ensemble Pre-Processor (EPP) to deliver unbiased and skilful weather 
and climate ensembles. EPP is a method to account for temporal-scale-
dependent relationships in both forecast errors and precipitation and 
temperature variability over the entire forecast period (Schaake et al. 
2007). 

• Ensemble Streamflow Prediction system (ESP). The ESP procedure was 
proposed by Day (1985). In this procedure an empirical ensemble of 
precipitation and temperature inputs is sampled from the validated long-
term time series of catchment average temperature and precipitation. A 
sample is drawn from each available year in the historical series using 
the current day as the starting point. The ensemble thus created is a 
representation of the climatology of catchment temperature and 
precipitation, and can be run through the forecast model cascade, 
resulting in a climatology-based seasonal forecast, conditional on the 
states of the system at the time of forecast. These forecasts are used for 
water resource planning in the USA. 

• Hydrological ensemble post-processors such as HMOS (Hydrological 
Model Output Statistics). This is a method for providing uncertainty 
information about hydrological forecasts, specifically short-term forecasts. 
HMOS should, in theory, cover both meteorological and hydrological 
uncertainties. With HMOS, a deterministic forecast is transformed into an 
ensemble based on past performance. See Seo et al. (2006) for more 
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information. To develop HMOS a long-term archive of both forecasts and 
observations is needed. HMOS is currently being tested for operational 
use by several regional forecast centres in the USA. 

• EnsPost (ensemble post-processor). EnsPost is used to post-process 
ESP forecasts to remove bias and correct the mean forecast. 

• Ensemble Verification System (EVS). 

• Ensemble Product Generator (EPG) to generate the ensemble products. 

These components are being implemented in the CHPS (FEWS) system. Under 
Phase 1 (2007–2009) of the XEFS programme, the focus is on use of ensemble 
rainfall and temperature forecasts, while Phase 2 will consider explicit accounting for 
other sources, including model structure, parameters and states as well as flow 
regulation. The candidates for potential approaches include, but are not limited to: 

• ensemble data assimilation to reduce uncertainty in the initial conditions 
and to keep track of growth (due to accumulation of errors in time and/or 
through the forecast system) and reduction (due to newly available 
observations) of uncertainty; 

• a parametric uncertainty processor to reduce and to explicitly account for 
uncertainty associated with model calibration; 

• multi-model ensembles to reduce the effects of and to account for 
structural errors in models; 

• new techniques for modelling of flow regulations and accounting of 
uncertainties associated with them. 

More information can be found at: 
http://www.nws.noaa.gov/oh/hrl/chps/XEFS_proj.html 

European Flood Alert System 

The European Flood Alert System (EFAS) is currently under development at the EU 
Joint Research Centre, and followed on from the EFFS project, which was described 
earlier. 

The aim of the system is to provide medium to long-term flood forecasts (3–10 days) 
based on ensemble rainfall inputs (Thielen et al. 2004). The system is intended to 
complement the flood forecasting services operated by national authorities and to 
assist in disaster prevention, preparedness and damage assessment. The project 
started with a research phase from 2003 to 2006, during which pilot studies were 
performed for the Danube and Elbe basins, and has now been extended to a number 
of other countries and river basins across Europe, including the Rhine and the Po. 
The project is funded by the European Union and the models are developed and 
operated at the Joint Research Centre in Italy. 

The EFAS models operate on a gridded basis, and use the 51 member ensemble 
rainfall and temperature forecasts from the European Centre for Medium-range 
Weather Forecasts (ECMWF) in the UK. Deterministic forecasts from the German 
Weather Service (DWD) are also included. Raingauge data are also used as a model 
input. 



18  Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models  

The hydrological component of the system uses a LISFLOOD rainfall–runoff and flow 
routing modelling approach on a 5 km grid, coupled to ECMWF ensemble forecasts 
(rainfall, temperature etc). A higher resolution version (1 km grid), which will become 
the standard, has been developed for the Danube and Elbe catchments and was 
used successfully to provide advance warning of flooding during the 2005 and 2006 
flood events in those catchments. Other developments are also in progress, and 
include hydraulic modelling and state updating functionality. The system includes 
many novel ideas for the assessment of probabilistic forecasts and for the display 
and interpretation of probabilistic flood forecasts. 

Dutch Centre for Water Management (Rhine and Meuse) 

The Dutch Centre for Water Management (WMCN) is responsible for flood warning 
and daily forecasts for shipping for the rivers Rhine and Meuse that enter the 
Netherlands from Germany and Belgium respectively. Since 1999, a flood forecasting 
system called FEWS-NL Rhine & Meuse has been under development. It became 
operational in December 2008. 

Within FEWS-NL, interpolated temperature and rainfall fields, derived from synoptic 
meteorological measurement stations, are used as inputs to hydrological models of 
the rivers Rhine and Meuse. Subsequently, discharges calculated by the hydrological 
model are input into a hydrodynamic model of the Rhine and Meuse. 

To improve the forecasts made with the FEWS-NL system, technological 
improvements are introduced when they become available. The Rhine component is 
also one of the test beds for the HEPEX project, which was described earlier. For 
example, to constrain uncertainty in the operational forecasting system, error 
correction and other data assimilation techniques are used. The effect of error 
correction on improvement of the root mean square errors (RMSE) in forecasts has 
been investigated as a function of lead time for both the Meuse and Rhine (Broersen 
and Weerts 2005; Weerts 2007; Werner et al. 2009). 

Also, in the operational forecasting system for the River Rhine, an Ensemble Kalman 
Filter (EnKF) using 48 ensemble members has been implemented for the hydraulic 
SOBEK-RE model of the Rhine using the generic data assimilation module DATools 
(Weerts 2007, 2008; Werner et al. 2009). An example of the results at Lobith is given 
in Figure 2.3 and at Olst (downstream of Lobith) in Figure 2.4. 
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(a) Root mean squared error of the water level forecast at the gauge of Lobith on the Rhine with EnKF 
and without assimilation as a function of lead time determined over a 2-year hindcast (2006 and 2007). 
(b) Observed water level together with the mean of the EnKF water level forecast and the water level 
forecast without assimilation at Lobith for an event in January 2007. The HBV-96 – SOBEK-RE model 
cascade is forced using HIRLAM NWP. 

Figure 2.3 Example of Ensemble Kalman Filter outputs for Lobith. 
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(a) Root mean squared error of the water level forecast at the gauge of Olst on the Rhine with EnKF and 
without assimilation as a function of lead time determined over a 2-year hindcast (2006 and 2007). (b) 
Observed water level together with the mean of the EnKF water level forecast and the water level 
forecast without assimilation at Olst for an event in January 2007. The HBV-96 – SOBEK-RE model 
cascade is forced using HIRLAM NWP. 

Figure 2.4 Example of Ensemble Kalman Filter outputs for Olst. 

In addition to this work, EnKF and particle filtering approaches for state updating of 
conceptual hydrological models have been investigated (Weerts and El Serafy 2006; 
Weerts et al. 2008a, 2009). In 2008, Bayesian Model Averaging (BMA) was also 
investigated for deriving a probabilistic forecast for the Rhine (Beckers et al. 2008). 

A new rainfall interpolation scheme has also recently been introduced, which tries to 
emulate high-quality areal rainfall estimates as much as possible during operational 
forecasting. The new approach was compared with estimates derived with the 
current interpolation method used in the operational system and it was found that the 
areal rainfall estimates derived with the new interpolation procedure emulate the 
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high-quality precipitation data better for most catchments of the Rhine basin, 
especially in those catchments where orographic influences play a role, such as the 
Black Forest and the Vosges mountains (Weerts et al. 2008b). 

Within the FEWS-NL Rhine & Meuse systems, several deterministic and ensemble 
forecasts (HIRLAM, DWD-LM, DWD-GME, ECMWF-DET, ECMWF-EPS and 
COSMO-LEPS) are also used to gain insight into the uncertainty caused by 
meteorological conditions as far as 10–15 days ahead. Post-processing of these 
forecasts is necessary to remove hydrological and meteorological biases that exist 
within these forecasts (Regianni and Weerts 2008a, 2008b; Reggiani et al. 2009). 

Lake Como Decision Support System 

Lake Como is in northern Italy and is regulated for irrigation and energy production. 
However, the small available free storage has resulted in several major flooding 
incidents downstream following high inflows. A real-time forecasting system has been 
developed to assist with gate operations at the lake, with assessment of uncertainty, 
and with forecasts provided for 0–24 hours and 1 to 10 days ahead (Todini 2004). 
The forecasts and associated uncertainty are then used as part of a stochastic 
optimisation algorithm to preserve the expected benefits from irrigation and 
hydropower, while minimising the expected damages from flooding in the town of 
Como. The system has been operational since October 1997 and has been used 
successfully during several flood events. 

FLOODRELIEF 

As part of the EU-funded FLOODRELIEF project, a general stochastic framework 
was developed based on the Ensemble Kalman Filter with case studies using 
MIKE11 hydraulic models for the Blue River basin (USA) and the Welland and Glen 
catchment (UK). The influence of uncertainty was examined by assuming typical 
magnitudes and distributions of errors in the inputs (Butts et al. 2005). 

GeoGUI 

GeoGUI is a simple, small footprint, flood forecasting system that is based on a 
combination of the PRTF rainfall–runoff method and the ISIS forecasting model 
although it will accept inputs from any rainfall–runoff forecasting module. It was 
originally configured for the River Eden in North West Region, and is believed to 
have been one of the first operational real-time ISIS hydrodynamic models in the UK. 
For the time being it is still operational in Thames Region, where it has been 
combined successfully with their CASCADE forecasting system which gathers data 
from the Regional Telemetry System and the regional implementation of the RFFS 
(River Flow Forecasting System) developed originally by CEH Wallingford. It was 
also used operationally in South West Region, where it was successfully combined 
with the WRIP (Weather Radar Information Processing) system developed by Plan B 
UK. A typical database size is less than 10MB, which compares with several hundred 
megabytes for an NFFS datastore, but it should be remembered that GeoGUI has 
limited functionality when compared with the full NFFS. 
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River Nith Forecasting System 

The Lancaster University DBM approach to probabilistic flood forecasting was first 
implemented in an application to the River Nith in Scotland carried out for the Solway 
River Purification Board and later adopted by SEPA (see Lees et al. 1994; Beven 
2001). 

Building on the nonlinear DBM work of Young and Beven (1991), the Nith model 
consists of a cascade of rainfall–flow and flow routing elements with a two-input tidal 
model to forecast the tidal reach of the Nith at Dumfries. The Nith model provides 
uncertainty estimates for discharge forecasts with lead times of up to 6 hours for all 
the gauging sites in the catchment and is adaptive when real-time river flow levels 
are available. 

Since that work, further applications, using a more sophisticated method for 
modelling the effective rainfall nonlinearity, have been made to the River Hodder 
(Young 2002) and, as part of FRMRC, to the River Severn (Romanowicz et al. 
2006b, 2008) and River Eden (Leedal et al. 2008). More detail on the background to 
the methods may be found in Young (2002, 2009), Young et al. (2006), Romanowicz 
et al. (2006a,b, 2008) and Section 3.3.3 below. 

CI-FLOW 

The Coastal and Inland Flooding Observation and Warning Project (CI-FLOW) is a 5-
year programme of research which began in 2008 and aims to evaluate and test new 
forecasting techniques for river and coastal floods, using the Tar-Pamlico and Neuse 
river basins in North Carolina as a test bed. The project is being led by the NOAA 
National Severe Storms Laboratory. The outcome will be a prototype coupled model 
system adaptable to any coastal river system to help in freshwater forecasting of 
floods and flash floods, water management, determination of land use and 
ecosystem impacts, and coastal storm surge forecasts. The modelling system will 
consist of ensembles of inland river models and coastal ocean/estuary models, each 
using inputs from high-resolution numerical weather forecast models and multi-
sensor precipitation estimates. Existing models which will form part of the ensemble 
system include 1D and 2D hydrodynamic models, a distributed rainfall–runoff model, 
a coastal forecasting model, and a conceptual rainfall–runoff model (Figure 2.5). 
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Figure 2.5 The three CI-FLOW project elements (inland, coastal ocean/estuary, 
and ocean) that are being connected to provide an integrated accounting of 
water quantity and quality from the sky to the summit to the sea (from the CI-
FLOW Project Plan 2008). 

Further information can be found on the CI-FLOW website: 
http://www.nssl.noaa.gov/projects/ciflow 

 

2.2 Environment Agency experience 

2.2.1 General guidance 

This section provides a brief review of existing guidance and information on 
assessment of uncertainty provided within current Environment Agency documents 
which are relevant to this project. 

Real-Time Modelling Guidelines 

The Real-Time Modelling Guidelines were prepared during 2001–2002 under the 
guidance of a Project Board which included representatives from most of the regional 
flood forecasting teams, the (then) National Flood Warning Centre, and the Met 
Office. The research contractors were Atkins, Edenvale Young and JB Chatterton & 
Associates. The main outputs from the project were a technical report, the guideline 
document, and a range of worksheets and templates to assist with using the 
guidelines. 

Based on guidance from the Project Board, the guidelines aimed to offer a structured 
decision-making framework for selection of appropriate models for fluvial flood 
forecasting applications, but without being prescriptive, requiring users to apply some 
judgement supported by local knowledge. It was also recommended that, wherever 
possible, locally applicable costs, targets and other factors should be used in place of 
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the default values supplied. The approach should be tailored according to the level of 
detail required, and how much analysis had already been performed for the 
catchment/Flood Warning Area in previous studies. 

The guidelines covered the choice of possible modelling approaches for a given 
Flood Warning Area, accounting for: 

• Environment Agency targets for flood warning systems; 

• different physical types of catchment and river, including floodplains and 
control structures; 

• the varying levels of data availability and quality; 

• the levels of risk and the consequences of error; 

• the cost and time of developing or improving a system. 

Table 2.1 shows the types of models which were considered in the guidelines. 

Table 2.1 Summary of model types considered in the Real-Time Modelling 
Guidelines (Environment Agency 2002). 

General type Category Example 
Empirical Correlation models Level-level or flow-flow correlation, time-

of-travel maps, flood warning contingency 
table 

Black-box models Transfer function (linear, nonlinear), unit 
hydrograph 

Rainfall–runoff 

Conceptual models Lumped or distributed rainfall–runoff 
models, snowmelt models 

Hydrological 
routing 

Muskingum, Muskingum-Cunge and 
variable parameter versions, some black-
box models 

Routing 

Kinematic routing Fixed and variable parameter versions 
Hydrodynamic 1D, 2D or 3D 

model 
Section 105 or other model converted to 
real-time use 

 

The issue of lead time requirements was a key consideration in the model selection 
process, based primarily around Environment Agency targets for a minimum 2-hour 
lead time for flood warnings (1 hour in Wales). An allowance was also included for 
decision-making time, dissemination time (e.g. by phone) and other factors. Risk was 
interpreted using a cost-benefit analysis, in which the benefits derive from the 
reduction in flood damages which can arise from an accurate, reliable and timely 
flood warning, taking account of social factors such as the ability to respond to 
warnings, and awareness of the meaning of flood warnings. 

Data availability and quality was also a key consideration, with a discussion of the 
types of data required for real-time modelling and model calibration, the quality of 
data, record lengths, rating curves and other factors. The type of information required 
by operational staff and professional partners was also discussed throughout the 
document; for example, if just the peak flow is required, a simple correlation might be 
suitable in some situations whereas, if real-time inundation maps are required, then a 
hydrodynamic model might be selected. 

The guidelines presented information in a wide range of formats, including 
flowcharts, risk matrices, case studies, and tables of strengths and limitations. 
Guidance was also provided on issues such as model calibration, the likely times 
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required for model development, key risks and assumptions, and topics such as high 
flow ratings. 

Since being issued, the guidelines have been used on a range of model development 
projects, and aspects of the guidelines have appeared in work instructions and other 
internal Environment Agency documents. At a similar time to preparation of these 
guidelines, national guidelines were also prepared on Rainfall Measurement and 
Forecasting techniques, Estuary Flood Forecasting techniques, and Coastal Flood 
Forecasting techniques. 

Flood Warning Level of Service 

The Flood Warning Level of Service is the required performance of the flood warning 
service in support of the Flood Warning Investment Strategy. The principles are 
described in AMS Work Instruction 137_05 (Environment Agency 2009), which 
explains what the Environment Agency defines as the appropriate Level of Service 
for each Flood Risk Area and hence Flood Warning Area in the following general 
categories: 

• Identifying areas of risk (Flood Risk Areas) 

• Establishing Flood Watch and Flood Warning Areas 

• General procedures and organisation 

• Detection and observation of flooding 

• Forecasting and warning message preparation 

• Disseminating the warning message 

• Raising awareness of risk, flood warning service and response with the 
public 

• Post-event data collection, reporting and archiving 

• Improving service effectiveness after post-flood event review. 

In the area of risk assessment, the work instruction includes an updated version of 
the well-known risk assessment matrix for subdivision of Flood Warning Areas by 
level of risk, and Figure 2.6 shows the version for fluvial flooding (there is a separate 
matrix for tidal flooding). Note that, in this figure, the probability reflects the standard 
of protection for the Flood Warning Area, and is inversely related to the return period 
values which are shown at the top of the figure (e.g. 1:100 years). 
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Figure 2.6 Risk matrix for fluvial risk locations (from Environment Agency 
2009). 

The risk categories (LHL etc) are used to define the required level of service for 
Detection & Forecasting, Warning Dissemination, and Communicating Flood Risk. 
For example, the Detection & Forecasting requirements include guidelines for the 
density of raingauge and river level gauge networks, and applicability of weather 
radar rainfall estimates in flood forecasting, and also introduce the requirement to 
estimate flood forecast performance in terms of crossing of threshold levels, using a 
simple contingency table approach (Table 2.2). 

Table 2.2 Contingency table from AMS 137_05 for assessing flood forecast 
performance (Environment Agency 2006). 

 
The performance measures which are defined are False Alarm Rate FAR = b / (a + 
b) and Probability of Detection POD = a / (a + b). The assessment of performance is 
based upon the forecast of a threshold being crossed, and whether this was 
observed through telemetry data, not whether or not flooding actually occurred. This 
ensures that the forecasting method is not penalised for incorrect setting of threshold 
levels. The minimum requirements for POD and FAR, and for instrumentation 
network densities, are shown in Table 2.3. 
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Table 2.3 Detection and forecasting requirements (Environment Agency 2009). 

Level of service Requirement type 
Minimum Intermediate Maximum 

Water level detection requirements (maximum distance from boundary of community) 
Steep rivers, > 1 in 200 1 km downstream 

1 km upstream 
1 km downstream 
1 km upstream 

1 km downstream 
1 km upstream 

Medium steepness, < 1 
in 200 and > 1 in 1000  

1 km downstream 
10 km upstream 

1 km downstream 
5 km upstream 

1 km downstream 
1 km upstream 

Low steepness, < 1 in 
1000 and estuarine 

2 km downstream 
20 km upstream 

2 km downstream 
10 km upstream 

2 km downstream 
2 km upstream 

Class of radar data 3A 2A 2A 
Raingauge density 1 gauge per 150 km2 1 gauge per 100 km2 3 gauges per 100 km2 
False Alarm Rate < 50% < 40% < 30% 
Probability of Detection > 50% > 60% > 70% 
 

At present the same criteria are applied to each threshold, but the work instruction 
notes that, when more data are available, this will be reviewed such that higher 
thresholds (e.g. Severe Flood Warning) may have more stringent criteria, and lower 
thresholds have less stringent criteria. 

Other measures, in addition to these, are currently being considered by the ongoing 
Environment Agency Performance Measures, or Skill Score, project, which is due to 
complete later in 2009. A new performance monitoring module in the NFFS will 
facilitate the calculation of these measures. 

Flood Risk Management Modelling Strategy 

As part of this review, an update was obtained on the current version of the 
Environment Agency’s Flood Risk Management Modelling Strategy (FRMMS) to 
establish whether probabilistic methods in flood forecasting form part of the medium 
to long-term vision. 

The custodian of this document is the Flood Risk Management Policy Team and the 
status of the document is that it has been subject to external consultation but not yet 
finally signed off by the Environment Agency. It is understood (personal 
communication) that the final version of the strategy will contain messages on the 
move to probabilistic forecasting as a key strategic aim. However, it should be noted 
that the role of the FRMMS is not to specify modelling techniques in terms of 
uncertainty estimation or probabilistic modelling. 

Performance Measures for Flood Forecasting 

An Environment Agency research report, Performance Measures for Flood 
Forecasting (Environment Agency 2005) was written in 2005 by HR Wallingford Ltd 
and Edenvale Modelling Services. 

The primary performance measures used at present by the Environment Agency 
relate to threshold crossings. There are two of these measures, referred to as the 
Probability of Detection (POD) and the False Alarm Rate (FAR). 

These measures are only meaningful when associated with a predetermined lead 
time and the NFFS includes a means to automatically calculate them once a 
threshold has been crossed. It is dependent to some extent on when the forecast 
was made, relative to when the threshold was crossed, as generally it cannot be 
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guaranteed that a forecast would have been made at exactly the right moment. The 
current version of the NFFS does not calculate the POD and FAR values exactly 
according to Environment Agency requirements but it is expected that this issue will 
be remedied in the next version. 

It is important to note that this measure relates to a single forecast and as such is 
entirely deterministic. 

While these measures represent the current position, it is expected that future 
measures will pertain to the prediction of peak levels and their timing. 

An extensive review of rainfall forecast performance measures was also carried out 
by CEH Wallingford for the Environment Agency and the Met Office in 2003, under a 
project called ‘Development of Rainfall Forecast Performance Monitoring Criteria. 
Phase 1: Development of Methodology and Algorithms’. The Main Report (Jones et 
al. 2003) was complemented by a User Guide to the assessment tool software that 
included simple examples of the use of each performance measure (Jones et al. 
2004). While this focused on the assessment of rainfall forecast products in use by 
the Environment Agency, the methodology and algorithms reviewed are also very 
relevant to the problem of assessing the performance of flood forecasts. 

The study distinguished between assessment measures in continuous variable form, 
in categorical form based on Skill Scores, and those in probability form. It also 
considered the practical relevance of the form of the error (additive or proportional) 
and the role of transformations, such as logarithms. The advantages and 
disadvantages of each measure were carefully reviewed in a practical context. The 
great variety of measures reflected the need to judge different attributes of a forecast 
(e.g. bias, typical error size, exceedance of a threshold) and to cope with different 
forms of forecast (e.g. value, probability). The choice of measure thus depends on 
the form of the forecast and the users’ main interests in relation to their practical 
application in support of flood warning. While all measures have some value, the 
report selected a small number as being most important. 

While these performance measures have generic application, and are as relevant to 
assessing flood forecasts as to rainfall forecasts, there are additional ones that are 
especially relevant to flood forecasts. These focus on assessing how well a forecast 
reproduces the form of the flood hydrograph and encompass such characteristics as 
the magnitude and timing of the flood peak and the start to rise. As indicated above, 
the categorical Skill Scores would typically be defined in terms of crossing critical 
thresholds, such as those relating to flood warning alarm levels. 

 

2.2.2 Defra/Environment Agency R&D studies 

PFFW 

A national Flood Incident Management project is currently determining approaches 
and business change required to embed probabilistic flood forecasting and warning 
(PFFW) into current Environment Agency practices. The present project is closely 
aligned with this project and will provide some of the required scientific evidence and 
methods. 
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Probabilistic Flood Forecasting Scoping Study 

The aim of the Probabilistic Flood Forecasting Scoping Study was to assess the 
current state of knowledge and direction of developments in probabilistic flood 
forecasting in consultation with external researchers, and to discuss requirements 
with end users in order to scope a long-term development programme for the 
introduction of probabilistic forecasting into operational use. 

The project was performed during 2006 and 2007 and ran in parallel with the 
following two related Environment Agency research studies, which started at a similar 
time: 

• Use of Probability Forecasts – Met Office 

• Hydrological Modelling with Convective Scale Rainfall – WL/Delft 
Hydraulics and CEH Wallingford 

The project considered both fluvial and coastal forecasting, and related areas such 
as pluvial forecasting in urban areas, including some of the main operational 
implications in terms of training, decision support systems, presentation of 
information etc, with a key aim being to identify research needs and other follow-on 
projects. The project also considered experience gained by other organisations which 
are considering including probabilistic information in operational forecasts. Wide-
ranging consultations were also held with flood warning, flood forecasting, policy and 
other staff on questions such as: 

• What is a realistic rate of implementation for probabilistic forecasting 
techniques, and what are the main priorities? 

• What opportunities are there for learning from work already under way 
internationally? 

• What research, system, process and policy developments may be 
required? 

• How widely should probabilistic forecasts be disseminated? 

• What are the likely public awareness campaign and training 
requirements? 

The initial findings from these consultations were presented at a project workshop on 
13 February 2007, which was attended by flood forecasting staff from all 
Environment Agency regions, and flood warning staff from several area teams. The 
Technical Report for the project was published later in 2007. The report covers 
sources of uncertainty in the flood forecasting process, current approaches within the 
Environment Agency to assessing uncertainty in flood forecasts, international 
research on ensemble flood forecasting techniques, possible applications of 
decision-support systems, and risk-based forecasting techniques in other (non-water) 
sectors. 

The outputs from this project will help to inform Defra and the Environment Agency in 
developing a plan for bringing this important development into operational use over 
the next few years. 
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Hydrological Modelling with Convective Scale Rainfall 

This research project was initiated in order to investigate and benefit from 
developments in numerical weather prediction being carried out by the UK Met 
Office. In 2009, a high-resolution nowcasting system called STEPS will become 
operational at a 2 km resolution. For longer-term numerical weather prediction, a new 
system has been developed called MOGREPS, which uses a coarser model 
resolution of 24 km. Both systems will be run in ensemble mode. 

Part of the requirement of the project was to develop operational research into the 
practicalities of integrating a probabilistic approach into the current NFFS system. 
The project focuses on ensembles of rainfall inputs and does not address additional 
areas of uncertainty. Practical implementation guidance is given on how ensembles 
of rainfall inputs can be relatively easily incorporated into the NFFS system. 

A live demonstration system was set up in Delft for North East and Thames regions 
of the Environment Agency as a proof-of-concept (although it excluded ensembles of 
hydrodynamic model runs in order to reduce computational burden on the test 
system). In addition to this, methods for visualisation of probabilistic information such 
as spaghetti plots, probability plots and persistence tables were developed for the 
two example regions. 

The project also noted some useful preliminary examples of where probabilistic 
forecasting based on ensemble rainfall forecasts can add value, where drawbacks 
may exist, and where forecasting based on rainfall ensembles is potentially 
misleading. The main conclusions were that, for larger, well-calibrated catchments, 
probabilistic forecasting can be useful in increasing forecast confidence. In small 
catchments with a chance of high-intensity storms, probabilistic forecasting could 
lead to a significant increase in the number of false alarms but also an increase in 
detection rates. In poorly calibrated or ungauged catchments, probabilistic 
forecasting can give a false sense of the range of possible outcomes and can 
therefore be misleading. However, in the first half of 2009 the project will run 
MOGREPS products in hindcast mode to better understand the potential increase in 
skill derived from the use of probabilistic information. 

Within the project, CEH Wallingford is working with the Joint Centre for Mesoscale 
Meteorology (Met Office) to trial high-resolution NWP model rainfall outputs, using 
models at 1, 4 and 12 km resolution. A case study of the Boscastle storm has 
demonstrated the value of the finer resolution model rainfall product for this 
convective event. Pseudo-ensemble forecast products have been created from the 
deterministic NWP rainfall forecasts by randomly displacing the rainfall fields in space 
over a spatial domain of a size reflecting the positional uncertainty. These rainfall 
forecast ensembles have been used as input to lumped (PDM) and distributed (G2G) 
hydrological models to produce ensemble flood forecasts. The distributed model 
outputs have been further processed to produce risk maps of flood exceedance over 
a forecast horizon of interest, as an illustration of one form of probability forecast 
product. This work serves to prepare the Environment Agency for using high-
resolution NWP rainfall ensembles for probability flood forecasting, when these 
become operationally available from the Met Office. 

The final phase of the project is using the summer 2007 convective storms over the 
Midlands (focusing on the upper Avon and Tame catchments) as a further case study 
for investigating the potential value of high-resolution NWP rainfall and ensemble 
forms of them for probabilistic flood forecasting and warning. It will also provide an 
opportunity to trial the new STEPS ensemble rainfall product. This regional case 
study is being complemented by a national (England and Wales) case study which 
aims to demonstrate and assess the G2G model for area-wide flood forecasting, 
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operating within a test NFFS operational environment. Earlier phases of the project 
have led to NFFS module adapters for the G2G model and for the HYRAD 
procedures that derive gridded estimates of rainfall (from radar and/or raingauge 
data) used as model input. It is planned that the England and Wales implementation 
of the G2G model will be used by the new Flood Forecasting Centre, providing an 
indicative country-wide picture of future flood risk complementing the more detailed 
regional NFFS forecasts. 

Use of Probability Forecasts Project 

The ‘Use of Probability Forecasts’ joint Environment Agency–Met Office funded 
project is managed by the Met Office within the Joint Centre for Hydrometeorological 
Research (JCHMR) and aims to prepare a suite of uncertainty-based (rainfall) 
forecast products for use by the Environment Agency in operational fluvial flood 
forecasting and warning. The project started in May 2006. 

The types of product to be produced were based on an initial user requirement for 
uncertainty-based forecast products. This was developed based on feedback from 
potential users from a questionnaire and workshop. The requirement included an 
implementation plan for any products identified, including a consideration of training 
and IT requirements, possible quick wins, and recommendations for follow-on 
projects to support the further integration of forecast uncertainty into fluvial flood 
forecasting and warning procedures. 

The main phase of the project started in 2007 with the aim to develop a strategy for 
interfacing probabilistic rainfall forecasts with operational hydrological forecast 
models and flood warning procedures, drawing upon information from the user 
requirement study, and the recommendations from related projects. The objectives of 
this stage included development of a joint Met Office–Environment Agency proposal 
on the interfacing of probabilistic rainfall forecasts to operational hydrological 
forecasting models and flood warning procedures. 

In 2007/08, a second phase of the project implemented a web-based operational trial 
of probabilistic precipitation forecasts for the Environment Agency. This trial included 
the provision of MOGREPS NAE (North Atlantic and European configuration of the 
Met Office Global and Regional Ensemble Prediction System) based probability of 
exceedance maps and stacked probability charts for predefined areas and rain 
accumulation thresholds. Following completion of the trial in December 2007, a 
workshop was held to review feedback and clarify aspects of the user requirement. A 
third phase of the project, started in October 2008, will deliver an operational, web-
based service from the end of April 2009, providing a range of MOGREPS NAE and 
STEPS based probabilistic precipitation products (stacked probability charts) similar 
to those trialled in 2007. 

The project is envisaged as the first of a series of developmental steps towards the 
integration of rainfall forecasting uncertainty into fluvial forecasting models and flood 
warning procedures. 

Probabilistic Coastal Flood Forecasting: Forecast Demonstration and 
Evaluation 

This project was a major study, led by HR Wallingford, and including the Met Office 
and Proudman Oceanographic Laboratory. The project started in March 2006 and 
finished in January 2009. The main aims were to review and develop existing 
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methods for coastal flood forecasting, including offshore and nearshore modelling, 
and considering ensemble forecasting. The project included several modelling 
elements which were grouped under four headings, any or all of which could be 
developed further: 

• Surge ensemble modelling for all of the UK, run in near operational 
mode. 

• Temporary wave ensemble modelling specific to the South East Irish 
Sea, for demonstration use. 

• Wave transformation and overtopping models specific to the South East 
Irish Sea, for demonstration use. 

• Generic handling of a large number of uncertainties associated with 
nearshore waves and overtopping. 

A real-time demonstration of the system provided distributions of surge, sea level, 
offshore waves, nearshore waves and overtopping rate at 15-minute intervals, 
updated 12 hourly. 

The project included a pilot study for the area from Fleetwood to the Dee in North 
West England, consideration of forecast evaluation, and a scoping study for 
integration into NFFS for which the main tasks included: 

• development of nearshore and coastline models for the chosen area, 
following the recommendations from the model evaluation; 

• linking and incorporation of the new models into a pilot forecasting 
system; 

• demonstration of the system at the trial sites. 

FD2114: Review of the effects of land use on flood runoff generation 

The FD2114 project, led by Professor Enda O’Connell of Newcastle University, 
provided a comprehensive review of the information available about the effects of 
land use on flood runoff generation (O’Connell et al. 2005). The conclusions of the 
review were that, while there was evidence of land use and land management effects 
at small plot scales, taking this information to larger scales involved significant 
uncertainties such that it was difficult to distinguish effects at larger catchment 
scales. 

The FD2120 project ‘Analysis of historical data sets to look for impacts of land use 
and management change on flood generation’ was a direct result of research 
recommendations made in FD2114 and attempted to identify changes in rural 
catchment responses using modern data analysis and modelling methods. A group of 
10 catchments were identified that had good hydrological data and where soil and 
agricultural information suggested that they had been subject to change in land use 
and management and should be susceptible to change. From the analyses carried 
out, it was suggested that there may well be effects of rural land management on 
flood runoff generation but that any effects were obscured by the uncertainties in the 
catchment input and discharge measurements and the long-term variability in climate 
drivers. 
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2.2.3 Findings from consultations 

Introduction 

During the period 18 December 2008 to 16 January 2009, the consultation meetings 
and telephone conferences listed in Table 2.4 were held as part of this project. 

Table 2.4 Summary of consultation meetings and telephone conferences. 

Consultees Date Location/method 
Southern Region 18 December 2008 Telephone conference 
Midlands Region 19 December 2008 Solihull 
North East Region 22 December 2008 Leeds 
Anglian Region 6 January 2009 Telephone conference 
Thames Region 8 January 2009 Telephone conference 
Thames Barrier 13 January 2009 Telephone conference 
EA Wales 13 January 2009 Telephone conference 
South West Region 14 January 2009 Telephone conference 
North West Region 16 January 2009 Warrington 
 

The consultations were undertaken by Atkins in collaboration with representatives of 
the Project Board, and built upon information already gathered during 2006 and 2007 
from the consultations and workshops on the ‘Probabilistic Flood Forecasting 
Scoping Study’, and during 2008 on the ‘Hydrological Modelling with Convective 
Rainfall’ project. 

The majority of meetings lasted for 2–3 hours, with the shortest lasting just under 2 
hours, and the longest lasting about 4 hours. Between 2 and 4 Environment Agency 
staff participated in each meeting. A detailed agenda was issued in advance of each 
meeting, for which the main topics for discussions were as follows: 

• Sources of uncertainty – views on the relative importance of different 
sources of uncertainty in different forecasting situations, and for different 
types of models and forecast lead-time requirements. 

• Case studies – the selection criteria for case studies during Phase 2 of 
the project. 

• Relevant studies – ongoing regional studies (if available) on sources of 
uncertainty in fluvial flood forecasting models. 

• Integrated catchment models – experience with the performance of 
integrated catchment models combining rainfall–runoff, flow routing 
and/or hydrodynamic components. 

• User requirements – for the Real-Time Modelling Guidelines and other 
project outputs. 

This section summarises the main findings from these consultations, while a more 
detailed summary is provided in Appendix A of this report. 
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Sources of uncertainty 

An early suggestion from the Project Board was that the project could investigate the 
practicability and benefits of applying probabilistic techniques for the following 
sources of uncertainty: 

• Catchment averaging of raingauge data 

• Validity of rating curves 

• Model calibration (hydrodynamic models) 

• Model calibration (rainfall–runoff models) 

• Representation of floodplain storage 

• Representation of antecedent conditions 

• Representation of ungauged inflows 

• Influence of structure operations. 

Table 2.5 summarises the main findings regarding each of these sources of 
uncertainty. 

Table 2.5 Summary of key issues raised on sources of uncertainty. 

Item Key issues raised 
Catchment 
averaging of 
raingauge data 

Range of approaches used with varying sources of uncertainty (Thiessen, 
Thiessen modified, weights, region-wide); radar rainfall data not widely used 
quantitatively at present; NWP/nowcast outputs required for some fast response 
catchments 

Validity of rating 
curves 

Uncertainty over accuracy of high flow end of ratings for natural sections (and 
some structures); seasonal influences on ratings (3 regions); mobile river beds (2 
regions) 

Model 
calibration 
(hydrodynamic 
models) 

Determining appropriate roughness coefficients; representing seasonal changes in 
roughness; tidal influences on calibration (2 regions); datum issues (1 region); 
wave-speed estimates in flow routing models (2 regions); understanding/improving 
the performance of ‘monolithic’ models; deciding where/how/whether to implement 
real-time updating; representation of abstractions/discharges (if relevant); problems 
at model boundaries 

Model 
calibration 
(rainfall–runoff 
models) 

Model structural/conceptualisation/catchment size issues; performance measures 
used (linking to type of rainfall event); usually a limited number of parameters 
important for flood flows; performance outside range of calibration; most 
appropriate performance measures to use 

Representation 
of floodplain 
storage 

Uncertainties in roughness coefficients, flow paths and survey data (however, 
mainly for the lower reaches of some large catchments); performance for multiple 
events 

Representation 
of antecedent 
conditions 

Drift in models over time, particularly in the transition from summer to winter 
months; representation for smaller/moderate events; representation of evaporation 
(1 region), snowmelt component (2 regions), groundwater component (3 regions) 

Representation 
of ungauged 
inflows 

Role of choice of approach (scaling, parameter transfer etc); catchment 
conceptualisation/magnitude relative to main channel flows 

Influences of 
structure 
operations 

Parameterisation of control rules; departure of rules from design/published values; 
lack of real-time telemetry data on structure settings; representation of off-line 
storage (2 regions); representation/influence of reservoirs (where no model is 
included); operational problems (gate failures, blockages, flood defence breaches 
etc) 
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Following the general discussions on sources of uncertainty, each region was asked, 
if possible, to rank these sources in order of importance. Table 2.6 summarises the 
replies which were given, with a score of 1 being the highest, and 8 the lowest. 

Table 2.6 Most important sources of uncertainty (1 = highest, 8 = lowest, c = 
depends on the catchment, forecasting issues, locations of forecasting points, 
lead-time requirements etc, shading shows higher 3-4 entries). 

Source of uncertainty 
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Catchment averaging of raingauge data 1 1 6 1 2 c 3 1 
Validity of rating curves 4 4c 7 3 c 2 2 2 
Model calibration (hydrodynamic models) 2/3 5c 5 5 c c c 2/3 
Model calibration (rainfall–runoff models) 2/3 2 1 4 1 3 1 2/3 
Representation of floodplain storage c 3 4 c c c c c 
Representation of antecedent conditions c 8c 3 c c 1 c 4 
Representation of ungauged inflows 5 6c 2 2 3 c c c 
Influence of structure operations c 7c 8 c c c c c 

 

The tentative conclusion from these discussions was that the following three sources 
of uncertainty were considered particularly significant: 

• Catchment averaging of raingauge data 

• Validity of rating curves 

• Model calibration (rainfall–runoff models). 

However, consultees were also keen to emphasise how uncertainties associated with 
hydraulic factors are still an issue in the lower reaches of a catchment, and that there 
can be specific forecasting situations which are exceptions to the order shown in the 
table (e.g. the Thames Barrier). 

Another general comment was that the choice of an appropriate model structure and 
catchment conceptualisation can significantly reduce uncertainty. The interplay 
between model performance, and data assimilation, was also noted, with some 
assimilation techniques also causing erroneous outputs in some situations. 

Case studies 

The project includes scope for four case studies and the following general types of 
case study were discussed at each meeting: 

• Two complex linked integrated catchment models, combining rainfall–
runoff, flow routing and/or hydrodynamic models (e.g. based on 
PDM/KW/ISIS, MRCM/DODO/ISIS). 

• Two simpler examples to illustrate key concepts: for example a rapid 
response catchment with rainfall and other sources of uncertainty, and a 
well-defined river reach including structures, rating curve uncertainty and 
other factors. 
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The intention would be that at least one of these case studies should use a data 
assimilation technique. The general consensus from the consultations seemed to be 
that the choice of types of case study seemed sensible, and would provide examples 
which will be of interest and relevance to all regions. There was also a general view 
that the case studies should be chosen on technical grounds (i.e. specific types of 
models and forecasting situations), rather than other criteria such as risk, or current 
model performance regarding level of service. The only additional suggestion for a 
type of case study was for a confluence flooding problem. 

Each region was also asked for suggestions on specific case studies to consider, and 
these are summarised in Figure 2.7, while Table 3.1 in Appendix A of this report 
provides more details. 
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Figure 2.7 Regional suggestions for possible case studies. 
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Relevant studies 

Table 2.7 summarises the main studies which were noted during the consultations. 

Table 2.7 Summary of main studies noted during the consultations. 

Item Study 
Time Lagged Ensembles 
Peak Level Forecast Range Plots 

Recent operational 
studies (past 1–2 
years) ‘Poor Man’s Ensembles’ 

Rainfall–Runoff Model Sensitivity Tests  
Rainfall Actual Sensitivity Tests  
Performance Measures/Level of Service studies 

Regional Studies 

Reservoir Influences 
FEWS User Day 16–17 October 2008  
Error Correction Workshop  
Communication and Dissemination of Uncertainty  
Fast Response Catchments study 
Data Assimilation R&D studies 
Coastal Flood Forecasting project 

National Studies 

Skill Scores project  
 

Copies of reports and samples of outputs were provided as appropriate and have 
helped to inform the preparation of this report. 

Experience with Integrated Catchment Models 

All regions reported experience with developing and using integrated catchment 
models. Table 2.8 summarises the types of models which were described as being 
currently in use or being tested with a view to implementation operationally (the 
numbers indicate the number of regions reporting use of each type of model in at 
least part of the region). 

Table 2.8 Indicative summary of current uses of integrated catchment models 
for catchments where models are available. 

Method All 
catchments 

Many/several 
catchments 

Some 
catchments 

PDM/ISIS 1 2  
PDM/KW/ISIS   2 
PDM/KW  1 1 
MCRM/DODO  1  
MCRM/DODO/ISIS   1 
NAM/MIKE11  1  
PRTF/ISIS  1 1 
PRTF/VPMC/ISIS   1 
TCM/ISIS 1   
 

Several regions also described the use of rainfall–runoff models alone for fast 
response catchments and/or lower risk catchments, and the use of level to level 
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correlations. The types of rainfall–runoff model currently in use included PDM, 
HYADES, MCRM, TCM, NAM and PRTF models. 

The current approaches to real-time updating in each region were also discussed, 
and Table 2.9 summarises the methods that were reported. 

Table 2.9 Indicative summary of current uses of approaches to data 
assimilation for catchments where integrated catchment models are available. 

Method All 
catchments 

Most/several 
catchments 

Some/a few 
catchments 

FEWS ARMA, CEH 
ARMA, MCRM AR 

1 4 6 

PDM state updating  2 1 
Manual – snow   1 
Manual – groundwater   1 
Manual – soil moisture 
deficit 

 1  

Manual – gate settings   1 
ISIS GAUGE   1 
MIKE11 error correction    
MIKE11 state updating   1 
PRTF updating  2  

User requirements 

The discussions showed a wide range of views on the requirements from the 
guidelines and uncertainty framework. Some general conclusions were that: 

• The guideline document should set out a national approach to how the 
selected probabilistic techniques should be implemented, with a general 
feeling (with one exception) that it should not be too prescriptive. 

• The document should be linked to, or supplemented by, the NFFS case 
studies, so that a practical implementation can be viewed, and that this 
should be combined with generic ‘lessons learned’. 

• A balance needs to be kept between providing long lists of choices and 
options, and providing only a small number of approaches (or a single 
approach) which is not generally applicable to other catchments or 
regions. 

• It was generally agreed that the various options and choices should be 
guided by the scale of the flood risk they are designed to mitigate, with a 
risk matrix approach generally favoured (linking into Flood Warning 
Levels of Service), but with other possibilities including the number of 
properties at risk, or the presence of a Severe Flood Warning. 

• Ideally, regional differences should be considered; for example between 
regions with an extensive coverage of integrated catchment models, 
where the current focus is on improving the performance of existing 
models, and regions with only a few models, where the focus is on 
extending the coverage of models. 
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2.3 Summary of chapter 
Some key points from this chapter include: 

• There is considerable research under way internationally on developing 
techniques for estimating uncertainty in fluvial flood forecasting models 
(although the emphasis is often on uncertainty in rainfall forecasts). 

• Methods which have been used or trialled operationally in fluvial flood 
forecasting models include quantile regression (USA), various forms of 
Kalman filtering (including extended and ensemble approaches), 
Bayesian Model Averaging (Netherlands), Monte Carlo approaches 
(Netherlands, Italy), and DBM approaches (Scotland). 

• There are several Environment Agency guidelines and work instructions 
which are relevant to this project, including the Real-Time Modelling 
Guidelines, the Flood Warning Levels of Service work instruction, and 
studies on performance measures (although the focus is usually on 
deterministic forecasting). 

• It will also be useful to consider the outputs from other Environment 
Agency R&D projects on probabilistic forecasting methods (covering 
rainfall forecasting and coastal flood forecasting). The Flood Risk 
Management Research Consortium (FRMRC2) Good Practice Guidelines 
should also provide useful ideas to assist in development of the 
uncertainty framework. 

• The consultation exercise suggested more than 20 potential catchments 
for use in the case studies, and that the most important sources of 
uncertainty to consider include catchment averaging of raingauge data, 
the validity of rating curves, and model calibration (for rainfall–runoff 
models). Real-time updating is also important to consider. 
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3. Sources of uncertainty 

3.1 Introduction 
This section describes the main findings under Task 1.2 of the project, which is 
defined as follows: 

To review and investigate which additional sources of uncertainty should 
be considered to gain a fuller (quantified) understanding of uncertainties 
in the flood forecasting process and to define in which situations/scales 
this may be beneficial. Particular focus should be placed on the aspects 
other than rainfall uncertainty, such as uncertainty associated with 
hydrologic, routing and hydraulic components. 

Section 3.2 considers findings from previous studies on the main sources of 
uncertainty in fluvial flood forecasting models. Section 3.3 then considers the most 
common types of fluvial flood forecasting models which are used operationally by the 
Environment Agency, and the sensitivity of model outputs to model parameters and 
other factors (e.g. antecedent conditions). 

Initial findings are also presented of the practical aspects of implementing model 
parameter sampling schemes within NFFS, together with considerations of model run 
times and other possibilities, such as model emulators. 

3.2 Review of previous studies 
This section considers findings from a range of previous research and operational 
studies into the uncertainty in fluvial flood forecasts. Table 3.1 shows the main 
sources of uncertainty which were identified from discussions during the Probabilistic 
Flood Forecasting Scoping Study (Environment Agency 2007). However, only some 
of these factors are amenable to analysis and, following discussions with the Project 
Board, it was agreed that the following main sources of uncertainty would be 
considered in this review: 

Rainfall–runoff models 

• Rainfall forecasts 

• Catchment averaging of raingauge data 

• Representation of antecedent conditions 

• Representation of ungauged inflows 

• Model calibration (rainfall–runoff models) 

General 

• Validity of rating curves 

Flow routing and hydrodynamic models 
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• Model calibration (flow routing and hydrodynamic models) 

• Representation of floodplain storage 

• Influence of structure operations 

Table 3.1 Sources of uncertainty identified during the Probabilistic Flood 
Forecasting Scoping Study (2006–2007). 

Component Typical sources of uncertainty 
Catchment 
averaging 
procedures 
(raingauge 
inputs) 

• Representation of physical processes (topography, elevation 
etc) 

• Type of rainfall event (convective, frontal, orographic etc) 
• Raingauge density and distribution 
• Instrumental problems at one or more of the rain gauges 

used 
Choice of 
model type 
and structure 

• Lumped, semi-distributed, distributed rainfall inputs 
• Representation of catchment runoff processes 
• River channel and floodplain representation 
• Under/over parameterisation (parsimony) 
• Flood defence loading/fragility (if represented) 
• Gate operations 
• Representation of ungauged inflows 
• Representation of abstractions/discharges 
• Representation of groundwater influences 

Model 
calibration 

• Effectiveness of optimisation routines 
• Choice of optimisation criteria 
• Availability of sufficient high flow events for calibration 
• Skill of person calibrating the model 

Operational • Changes in catchment/channel characteristics since model 
was calibrated 

• Use of different input data streams from those used in the 
original model calibration (e.g. radar rainfall or forecasts 
instead of raingauges) 

• Events outside the range of the model calibration 
• Model stability problems 
• Representation of initial/antecedent conditions 
• Representation of snowmelt (if applicable) 
• Instrument/telemetry downtime problems (rainfall) 

Real-time 
updating 
procedures 

• Appropriateness for the type of model used 
• Sophistication of calibration software 
• Quality of the high flow data used both for calibration and in 

real time 
• Event-specific problems (backwater, bypassing, debris etc) 
• Instrument/telemetry downtime problems (flows) 

 

Note that rainfall forecasts are included since the uncertainty framework will also 
consider ensemble rainfall forecasts, although the technical aspects of generating 
ensemble flood forecasts from these inputs are being considered separately in the 
‘Hydrological Modelling with Convective Scale Rainfall’ project, and will not be 
considered on this project. Real-time updating (data assimilation) is also an important 
consideration, but is discussed later. 
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3.2.1 Rainfall–runoff models 

Rainfall forecasts 

Rainfall forecasts are used in rainfall–runoff models to extend the lead time of flood 
forecasts beyond the time at which measured rainfall has an effect on the modelled 
flood response, and can be a dominant source of uncertainty in flood forecasts at 
higher lead times. Particularly at longer lead times, rainfall forecasts can have 
significant magnitude and spatial location errors associated with them and these will 
be different for the main storm types: convective, orographic and frontal. 

At lead times greater than the response time from observed rainfall, uncertainties in 
the prediction of rainfall and temperature will dominate the uncertainties in the 
response, increasing in importance as the lead time of the forecast increases. It is 
clear that how important each of these sources of uncertainty is will depend on the 
relation between the desired warning lead time and the response times of each of the 
contributions (e.g. Lettenmaier and Wood 1993). 

For the forecaster to usefully use forecast values at longer lead times, it is important 
that the influence of the uncertainty in the inputs is quantified. A logical approach to 
this quantification is to explore the sensitivity of the forecast values to variable inputs. 
There are several operational approaches used, ranging from ad hoc application of 
differing input scenarios to ensemble forecasting, and these are described later in 
this report. 

Environment Agency 

The rainfall forecast products currently used with rainfall–runoff models by the 
Environment Agency are STEPS, NWP and MOGREPS. STEPS is a radar 
extrapolated forecast of rainfall that is blended with NWP rainfall, the latter gaining 
greater weight with increasing lead time. It is a 2 km product out to a lead time of 6 
hours. An ensemble form of STEPS is planned to be released in 2009. 

NWP rainfall is now produced using a 4 km resolution weather model and the 
Environment Agency receives this out to 1½ days as 15-minute rain accumulations 
(and rain-rates); there are four NWP model runs a day. 

MOGREPS is a rainfall ensemble product produced operationally by the Met Office. It 
is being trialled operationally for use in probabilistic flood forecasting within the 
‘Hydrological Modelling with Convective Scale Rainfall’ project. A drawback is its 
coarse resolution (24 km) but it allows the Environment Agency to prepare for future 
higher resolution ensemble rainfall products and their use for probability flood 
forecasting. 

The operational availability of high-resolution NWP model outputs has been a 
significant advance in recent years, moving from 12 to 4 km and with 1.5 km planned. 
This has been accompanied by studies demonstrating the improvements in accuracy 
and how these might benefit flood forecasting and warning in the future: for example 
see the case study of the Carlisle flood reported by Roberts et al. (2009). 

The ‘Hydrological Modelling with Convective Scale Rainfall’ project (see Section 2) is 
assessing the 1.5 km product for the 2007 summer floods using lumped and 
distributed rainfall–runoff models for catchments across the Avon and Tame in the 
Midlands Region. Pseudo-ensembles are being generated to emulate (at least at a 
functional level) the future availability of ensembles at this resolution, so that 
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experience can be gained in probabilistic flood forecasting via an ensemble 
approach. 

International experience 

There have also been many other studies of the use of ensemble rainfall forecasts 
with hydrological models. For example (see Section 2), one of the first such studies 
(EFFS) considered an ensemble of 52 forecasts up to 10 days ahead, with the 
ensembles treated as having equal probability when used to drive hydrological 
models (such as LISFLOOD in the EFAS system). Some attempts have also been 
made to make use of ensemble inputs in updating for probabilistic flood forecasting 
by constraining the outputs of hydrological models by real-time flow information 
within the GLUE methodology (e.g. Pappenberger et al. 2005a). However, it is 
difficult to constrain individual rainfall ensemble members based on rainfall or radar 
observations because the resulting weights cannot be carried over to a new set of 
members when the ensemble is rerun at the next forecast interval. 

Table 3.2 summarises a range of approaches used internationally for considering 
input (rainfall forecast) uncertainties in operational flood forecasting systems. All the 
approaches are constructed as part of the process of making a forecast. Where a 
standardised set of scenarios is combined in an empirical ensemble, this is generally 
sampled in one of the first steps of the data processing cascade, with the following 
steps being configured to simply loop over the available samples. 
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Table 3.2 Examples of empirical methods for considering input uncertainties 
applied in operational forecasting systems. 

Approach  Forecasting 
system 

Description 

What-if 
scenarios 

Several Support of what-if scenarios is provided in almost all 
operational forecasting systems to investigate the 
influence of uncertain (usually meteorological) inputs. 
Scenarios are implemented during the forecast 
process and typically apply multipliers to the forecast 
rainfall, or allow the forecaster to input a user-defined 
forecast rainfall profile based on expert judgement 

Standardised 
multipliers on 
meteorological 
and 
hydrological 
inputs 

FEWS-Rhine 
 
Federal Office for 
the Environment, 
Switzerland 
(FOEN) 
 

In the current operational forecasting system used for 
the Rhine basin in Switzerland ( Bürgi 2002), a 
standardised what-if scenario is applied. The normal 
forecast derives temperature and precipitation inputs 
from the MeteoSwiss 7 km NWP model for the 
shorter lead times, falling back to the ECMWF 
deterministic forecast for the longer lead times. A mini 
ensemble is created by setting user-defined 
multipliers on forecast precipitation and temperature. 
An additional multiplier is set for post-processing the 
hydrograph to allow for an indication of increasing 
error with lead time when there is neither snow nor 
precipitation. Figure 3.1 gives an example of the 
results of this three member ensemble 

Combinations 
of 
meteorological 
input products 

National Flood 
Forecasting 
System (NFFS) 
 
Environment 
Agency, UK 

In NFFS two deterministic rainfall forecast products 
are available: a radar-based nowcast product and a 
NWP forecast product. Under normal forecasting 
conditions these time series are merged, with the 
radar-based estimates having priority out to the 
maximum lead time available, then falling back to the 
NWP forecast and finally to a zero rainfall profile. To 
explore the influence of each of these inputs, a set of 
standard what-if scenarios has been defined, using 
different combinations of input products. The 
combinations explored include the default merged 
rain profile, a radar-only forecast, an NWP-only 
forecast, as well as a forecast using zero future 
rainfall (Figure 3.2)  

Re-sampling 
best guess and 
5% and 95% 
confidence 
interval 
precipitation 
forecast 

HPC QPF 
Sampling 

 
NCRFC, National 
Weather Service, 
USA 

The Hydro-meteorological Prediction Centre (HPC) in 
the USA produces both best guess quantitative 
precipitation forecasts and also 5% and 95% 
confidence interval forecasts. These are sampled 
using the first 24, first 48 and first 72 (60 in the case 
of Confidence Interval (CI) forecasts) hours of 
precipitation data to obtain a nine-member empirical 
ensemble precipitation input. This is used in the 
operational forecast as an input to a nine-member 
hydrological ensemble forecast (Halquist 2006) 
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Figure 3.1 Forecast for the Emme at Emmenmat in Switzerland, showing the 
default forecast, as well as upper and lower scenarios using user-defined 
multipliers on flow, precipitation and temperature. 
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Figure 3.2 Standard set of scenarios used by the Environment Agency. The 
different forecast inputs are shown in the top figure. These include observed 
catchment rainfall, radar actuals, radar forecasts (lead time 6 hours), the NWP 
forecast (lead time 36 hours) and a zero rainfall profile. The middle figure 
shows four scenarios created using differing combinations of these inputs. 
The lower figure shows the response to these scenarios at the gauge of 
Gargrave on the River Aire for a forecast on 7 January 2005 at 23:00. 

 
While the use of numerical weather prediction model outputs for deriving boundary 
conditions in the forecast has been a significant development in extending the lead 
time of hydrological forecasts, it is recognised that there are also considerable 
uncertainties in these weather predictions. To address these, ensemble prediction 
systems have been established, with the first of these systems becoming operational 
in the early 1990s. Examples are the ECMWF-EPS system operated by the 
European Centre for Medium-range Weather Forecasts (Molteni et al. 1996) and the 
GEFS system operated by the US National Centre for Environmental Protection 
(Tracton and Kalnay 1993). These are global ensemble prediction systems, 
predicting the evolution of the weather with an emphasis on medium-term predictions 
(5–15 days lead time). Ensemble forecasts are generated by perturbing the initial 
conditions, assumed a priori to be equally likely, and computing the evolution of the 
meteorology due to these perturbed initial conditions. 

Table 3.3 provides some examples of ensemble prediction systems used in driving 
the hydrological ensemble forecast from selected operational forecasting systems 
utilising the Delft FEWS framework. This shows that, in several cases, multiple 
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ensembles are considered. The first two of these EPS are relatively straightforward, 
with all ensemble members being uniform in length, and with uniform spatial and 
temporal resolution. The SRNWP-PEPS ensemble is an exception to this. This is in 
effect a multi-model ensemble, with differing spatial and temporal resolutions, as well 
as differing domains for each ensemble member. This variability is quite challenging 
to run, with the run properties for each member being adapted dynamically by Delft 
FEWS depending on the properties of that provided. The variability in lead time also 
creates difficulties in interpreting the results using standard statistical parameter-
isations as the number of ensemble members to consider will differ with lead time. 

Table 3.3 Overview of meteorological ensemble applied in operational 
forecasting systems using the Delft FEWS framework. 

Ensemble 
system 

Forecasting system  Description 

ECMWF-
EPS 

FEWS-NL 
Rhine & Meuse Catchments, 
Institute for Inland Water 
Management and Waste Water 
Treatment, the Netherlands 

Global Ensemble Prediction System (EPS). The current EPS 
has a horizontal resolution of about 40 km, and has 51 
members, of which the first member is the control run. The 
lead time of the re-sampled EPS used here is 240 hours at a 
resolution of 12 hours 

COSMO-
LEPS 

FEWS-NL Rhine & Meuse 
See above 
BfG, Rhine Catchments, 
Federal Institute of Hydrology, 
Germany 
Po, ARPA-SIM, Bologna, Italy 
FOEN (experimental), Federal 
Office for the Environment, 
Switzerland 

Limited-area Ensemble Prediction System. This 16-member 
EPS is obtained by running a non-hydrostatic limited area 
model, nested on the members of the ECMWF-EPS 
ensemble. The ECMWF-EPS ensembles used in providing 
the 16-member forecast are obtained through a cluster 
analysis of the full 51 EPS members for three ensuing 
forecasts. The resulting 10 km resolution ensemble is much 
better suited to resolving severe weather at small scales 
(Marsigli et al. 2005) 

SRNWP-
PEPS 

FEWS-Rhine (experimental) 
See above 

This ensemble of short-range NWP products is actually a 
multi-model, or poor man’s ensemble (Quiby and Denhard 
2003). The ensemble is constructed using the deterministic 
high-resolution NWP models from participating 
Meteorological agencies across Europe, with up to 21 
ensemble members being available at any one time 
(depending on how many contributing deterministic forecasts 
are available). The lead time of each member varies, as well 
as the resolution and the spatial domain 

MOGREPS NFFS 
(T46, experimental) 

The Met Office Global and Regional Ensemble Prediction 
System (MOGREPS) is an ensemble system that produces 
uncertainty information for short-range forecasts, up to 2 
days ahead. It focuses on aiding the forecasting of rapid 
storm development, wind, rain, snow and fog 

 

Figure 3.3 provides an example of outputs from both the ECMWF-EPS ensemble 
and the COSMO-LEPS ensemble for the Rhine at Maxau for the same forecast base 
time. In the upper two plots the raw ensemble outputs are shown, that is 16 members 
for the COSMO-LEPS ensemble and 50 members + control run for the ECMWF-EPS 
ensemble. The lower plots show the parameterised ensemble results, showing the 
minimum and maximum of all members, the median and the interquartile range. The 
ensemble results can be seen to be quite different for these two NWP ensembles. 
These differences are attributed to scale effects, as this gauge is towards the upper 
end of the catchment. For gauges further down in the catchment these differences 
are less pronounced. There is for both also an under-representation of spread at the 
shorter lead times. This is an obvious consequence of considering only the 
meteorological uncertainties, as described through the meteorological ensemble 
forecast. 



 

 Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models 47 

 

0 50 100 150 200 250
1000

1500

2000

2500

3000

3500

4000

forecast lead time (hours)

di
sc

ha
rg

e 
(m

3 /s
)

(a)

 

 
cosmo-leps

0 50 100 150 200 250
1000

1500

2000

2500

3000

3500

4000

forecast lead time (hours)

di
sc

ha
rg

e 
(m

3 /s
)

(a)

 

 
ecmw f-eps

ecmw f-control

forecast lead time (hours)

di
sc

ha
rg

e 
(m

3 /s
)

(c)

0 50 100 150 200 250
1000

1500

2000

2500

3000

3500

4000

forecast lead time (hours)

di
sc

ha
rg

e 
(m

3 /s
)

(d)

 

 

0 50 100 150 200 250
1000

1500

2000

2500

3000

3500

4000
median
interquartile range
min/max
control run

 

Figure 3.3 Example of two NWP ensemble forecasts for the River Rhine at 
Maxau, COSMO-LEPS and ECMWF-EPS. Both forecasts have the base time of 
06:00 UTC 1 March 2007 ; (a) and (b) show the raw ensemble outputs, while (c) 
and (d) shows the parameterised ensemble outputs. 

Catchment averaging of raingauge data 

The estimation of catchment average rainfall from raingauge data is a well-
researched topic. Methods range from simple linear weighting methods, such as 
Thiessen polygons and its variants, to more complex multiquadric surface-fitting and 
Kriging methods that encompass uncertainty estimates. The project consultation 
meetings have highlighted catchment rainfall as the most significant source of 
uncertainty, serving to confirm this from a practioner’s viewpoint. 

Previous research has also shown that lumped conceptual rainfall–runoff models are 
very sensitive to having good estimates of catchment average rainfall as input. Also, 
the uncertainty in catchment average rainfall need not be consistent between events, 
and this is one reason why data assimilation methods are important in compensating 
for errors in observed inputs in any particular event as it happens. 

The question of how best to estimate catchment average rainfall becomes broader 
when combining raingauge data with radar estimates of rainfall. For example, 
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transient errors in the radar data can make the use of radar data in isolation 
problematic. 

Recent research on this issue by Cole and Moore (2008, 2009a) discusses these 
problems and presents one way of combining the good spatial pattern information 
that radar provides with the better point estimates of rainfall magnitude provided by 
raingauge networks. The benefits to flood forecasting are demonstrated using both 
lumped (PDM) and distributed (G2G) rainfall–runoff models. Raingauge-only as well 
as merged radar and raingauge estimators are developed and compared for use with 
rainfall–runoff models. It is important to note that the multiquadric methods employed 
are available both within HYRAD, and in module adapter form for use within NFFS. 
Also of note is the link this research makes between integrated multiquadrics and the 
popular Thiessen weighting methods for deriving rainfall estimates averaged over 
grid-square and catchment areas. 

Further insight into rainfall estimation accuracy can be gained through looking at 
studies using dense experimental networks of raingauges, such as that installed on 
the HYREX (HYdrological Radar Experiment) project, which was funded by the 
Environment Agency as part of their contribution to this NERC Special Topic. The 
HYREX network consisted of 50 tipping-bucket raingauges within the 135 km2 River 
Brue catchment in Somerset, and research studies based on this dataset include the 
studies by Wood et al. (2000a,b) and more recent work by Villarani et al. (2008). 

Similarly, empirical results are provided by Moore (2002) concerning the effect of 
raingauge density on the accuracy of rainfall estimation using the Environment 
Agency’s dense raingauge network over London and the Thames Basin. 

Representation of antecedent conditions 

It is well known that antecedent conditions are important in flood runoff generation, 
which has a highly nonlinear relationship to input rainfall that is dependent on the 
antecedent state of a catchment. Even in flash flood situations in the UK, the 
importance of antecedent conditions is crucial. Although both the Lynmouth and 
Boscastle flood events occurred in summer (on 16 August in 1952 and 2004 
respectively) the amount of runoff generated was increased by the fact that the 
catchment areas involved had already been wetted by rainfall in the preceding week. 
In larger catchments as well, the highest floods occur when heavy rainfalls fall onto 
already saturated catchments (as in the January 2005 Carlisle flood when runoff 
coefficients were estimated at 73% and in the summer 2007 floods that followed the 
wettest 3 months in England since records began). 

This suggests that knowledge of antecedent conditions is needed in flood forecasting 
so that runoff coefficients in a major event can be reflected in the modelled flows 
more accurately. There are many different ways of assessing the antecedent state of 
a catchment. The first is by continuous simulation. This forms the basis of the 
conceptual rainfall–runoff models used widely by the Environment Agency within 
NFFS: namely PDM, TCM, MCRM and NAM. These are continuous soil moisture 
accounting models that aim to represent the changing responsiveness of catchments 
through water balance principles. This is also the approach that is adopted by the 
European Flood Alert System (EFAS) run at the Joint Research Centre (see Section 
2). In this case the LISFLOOD model employed is run at coarser time and space 
scales for the whole of Europe, switching to shorter time-steps when a potential flood 
event is detected. 
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The Met Office MORECS/MOSES-PDM land surface schemes also provide 
estimates of soil moisture state at a spatial scale across the whole of the UK (Hough 
2003). MORECS is updated every day and uses a 40 km grid. MOSES-PDM (Smith 
et al. 2006) now runs within the UKPP (UK Post Processing) suite at an hourly time-
step and for a 2 km grid. Outputs from these models might be used as an index of 
antecedent wetness for a catchment, but should be used with care because the 
simple hydrological components of MORECS/MOSES-PDM may not be directly 
compatible with the hydrological models used in flood forecasting. 

The MORECS approach is also used in the South West Region of the Environment 
Agency, but has been enhanced to include more raingauges in the estimation 
procedure, and to operate at a finer spatial resolution, typically using catchment-
based polygons with areas in the range 50–400 km2. These values are used in 
conjunction with PRTF rainfall–runoff models, and recent studies suggest that these 
locally derived values improve upon both the standard MORECS outputs, and 
MOSES values. The Catchment Wetness Index (CWI) is also used rather than the 
soil moisture deficit since this includes allowance for recent rainfall (API5) and 
appears to be more closely related to catchment runoff. Observed baseflows are also 
used as a surrogate for antecedent conditions in catchments where this has been 
shown to improve model performance. 

A further possibility is to measure antecedent wetness directly. This is generally 
problematic because of the large spatial heterogeneities in soil saturation that are 
expected to be found in catchments that vary spatially in geology, soil type, land use 
and management, and the way that topography affects saturation. However, a useful 
index of antecedent conditions, at least in perennial streams, is the river flow itself. 

River discharge is used to initialise the subsurface drainage stores of both lumped 
and distributed hydrological models. But this still leaves scope for variability in the 
near surface soil storage that will have an effect on the model flows being able to 
reflect the runoff coefficients observed. 

An interesting use of the river flow itself as an index of wetness arises in the transfer 
function (TF) and DBM forecasting methods (e.g. Moore 1982; Young 1993, 2002; 
Young and Beven 1994; Romanowicz et al. 2006a, b, 2008). Data analysis methods 
were used in calibration to determine what the effective rainfall might be, and it was 
found that this was then strongly, but nonlinearly, related to discharge. This 
relationship can then be used in the prediction of effective rainfall in forecasting. 

Representation of ungauged inflows 

The mass balance issue associated with ungauged inflows imposes similar problems 
to the catchment averaging of raingauge data. Again, models with gains that are 
identified directly from historical data can allow for any consistent differences 
between upstream and downstream discharges (or levels, see Romanowicz et al. 
2008) while data assimilation can compensate for variations from past events using 
real-time adaptation techniques. 

The problem of representing ungauged lateral inflows to flow routing and 
hydrodynamic models has recently been reviewed for the Environment Agency under 
the ‘Rainfall–runoff and other modelling for ungauged/low-benefit locations’ project 
(Moore et al. 2008). Simple scaling and transposition methods working from nearby 
gauged locations and applying factors, based for example on area and Standard 
Average Annual Rainfall (SAAR) weightings, are commonly used and can be 
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effective. They rely on similarity assumptions relating to runoff response and the 
forcing rainfall; these impact on accuracy. 

Model parameter transfer provides a more sophisticated option and relaxes the 
former assumption, as the transferred rainfall–runoff model can be forced by the 
rainfall estimated over the ungauged catchment. Methods for transfer commonly 
require that model parameters are related to catchment properties, for example 
through regression or use of site-similarity measures; these approaches include 
estimates of model simulation accuracy. 

A new approach pursued within the project is to formulate a conceptual–physical 
grid-based model where the model structure and properties are linked directly to 
spatial datasets on elevation, soil, geology and land cover; only a small number of 
area-wide parameters are left to be calibrated across the model domain. This 
approach led to the development of the Grid-to-Grid (G2G) Model, currently 
undergoing pre-operational NFFS trials within the Environment Agency. The 
capability to forecast ‘everywhere’ on a 1 km grid across England and Wales means 
that the model can be used to provide estimates of ungauged inflows in real time that 
reflect the morphology of the ungauged catchment and the forcing rainfall. The 
accuracy of the approach, while not being as good as for a model calibrated to a 
gauged catchment, is encouraging especially for catchments where flood response is 
strongly controlled by topography. Further developments and accuracy assessments 
are ongoing and planned. The flood forecasts from the G2G Model could be used as 
ungauged lateral inflows required by flow routing and hydrodynamic models 
employed to represent flow through a river network in NFFS. 

Model calibration (rainfall–runoff models) 

The principles for calibration of rainfall–runoff models are well established. For 
example, the manuals to the PDM and TCM (PSM) rainfall–runoff models (CEH 
Wallingford 2005a,b) contain practical user guides that aim to provide clear advice on 
model calibration. This includes the strategy for record selection for calibration and 
assessment as well as the sequential grouped approach to parameter estimation; 
daily as well as 15-minute time-steps can be used in the calibration process. A good 
understanding of the model is a prerequisite and practice is required to develop an 
acceptable level of skill. Emphasis is placed on intelligent manual adjustment of 
parameters supported by the hydrograph interactive visualisation facility, using 
automatic optimisation as a later stage refinement. This impacts on the quality of the 
final calibration of the simulation model. 

The model time-step can also be a consideration, particularly for model performance 
as levels rise towards and through flood warning threshold levels. For a large, slowly 
responding river, an hourly time-step may be sufficient, while a shorter time-step is 
required on flashier catchments. Also, the frequency of updating can significantly 
affect the accuracy of updated forecasts for such catchments (Moore et al. 1993). 
With current Environment Agency telemetry systems, the minimum time-step which is 
feasible at present is 15 minutes (although some radar rainfall products are available 
at 5-minute intervals). 

In contrast, the calibration of the updating parameters (state correction or ARMA 
error prediction) is a largely automated task employing a modified form of the 
Simplex automatic optimisation procedure. Constraints to ensure admissible ARMA 
model parameters are applied. The emphasis is on practical use, so more advanced 
facilities for plotting the objective function surface to explore parameter 
interdependence and associated dot and dash plots are not highlighted. Performance 



 

 Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models 51 

measures provided focus on RMSE and R2 efficiency (and the error mean and 
variance) along with peak timing and magnitude statistics. But visualisation of the 
modelled hydrograph against the observed hydrograph is paramount when judging 
performance. The different models share a common generic calibration shell 
sometimes referred to as TSCAL (Time Series CALibration). A quick guide to 
objective functions is also provided so a model calibration can be tailored to different 
uses other than flood forecasting. There are no uncertainty estimates provided for the 
calibrated parameters. 

Probabilistic flood forecasting introduces some interesting issues for model 
calibration. In the past, models have been calibrated by trial and error or by 
optimisation using a chosen performance measure without taking account of 
uncertainties in either inputs or output estimates, except in an informal way. It is now 
more widely recognised that uncertain inputs and outputs, as well as uncertain model 
structures, will affect the calibration process. In fact, except in the case where the 
model is fully identifiable from the available data (Young 2009), there may not be a 
clear optimal model parameter set, but rather many different sets that give 
acceptable simulations in calibration (e.g. Beven 2005, 2009). 

This is currently a topic of considerable debate in the hydrological literature between 
those who promote Bayesian statistical parameter estimation methods (e.g. 
Mantovan and Todini 2006; Liu and Gupta 2007; Stedinger et al. 2008) and those 
who suggest that the modelling process involves epistemic as well as statistical 
errors, so that methods of statistical inference might give misleading results (e.g. 
Beven 2006, 2009; Beven et al. 2008c). 

This debate is not really important, however, to the forecasting problem when the 
objective is to minimise the variance of the n-step ahead forecast. Clearly having a 
well-calibrated model might help towards this aim, but it is highly likely that the 
characteristics of the next flood event will be rather different to any of the events in 
the calibration period. Thus data assimilation and updating processes assume a 
much greater importance than in the case of simulation (at least while telemetry of 
sensor data or direct observation remains available during an event). 

In forecasting, it is also possible to forecast river levels directly if a model is 
formulated to do so (e.g. Romanowicz et al. 2006b, 2008). This has the advantage of 
making direct use of the level measurements, for which uncertainty is generally small 
and, therefore, not introducing the uncertainty associated with the rating curve into 
the forecasting process. The disadvantage of this approach is it does not invoke any 
mass balance constraints, although this is difficult to justify in flood situations 
anyway, when we cannot be sure of a mass balance match between measured 
inputs and measured outputs for either rainfall-flow or flow routing problems because 
of measurement uncertainties. It also does not produce flow estimates where these 
are required to estimate velocities or the upper boundary conditions for a 
hydrodynamic routing model. In both cases, however, a rating curve (together with its 
uncertainty) could be introduced at this point to convert levels to velocities or 
discharge. In models that are constrained to maintain mass balance, a similar effect 
can be achieved by conditioning rainfall multipliers in applications to historical events 
(e.g. Kuczera et al. 2006). 

3.2.2 Validity of rating curves 

Rating curves are of critical importance in flood forecasting at least in terms of the 
operational models existing in the current regional NFFS configurations. They are 
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used to calculate flows up to ‘time now’, which is then the start point for subsequent 
forecasts when error correction is applied 

They are also crucial in the calibration of rainfall–runoff models and incorrect rating 
curves can give rise to wildly inaccurate flow values. A very good example of this 
occurred in the January 2005 event for Carlisle when the Environment Agency’s 
existing rating curve was used to calculate flows at Temple Sowerby which is the 
primary upstream site from which forecasts for Carlisle were issued. The 
Environment Agency’s rating curve (extended far beyond any spot flow gaugings) 
yielded a flow of 382 m3/s, which gave rise to predicted levels in Carlisle that did not 
overtop the defences, underpredicting the actual observed peak by approximately 
1 m. After local remodelling of this gauge using 1D/2D methods (ISIS/TUFLOW) it 
was determined that the calculated flow should have been 926 m3/s, which did give 
rise to the correct levels in Carlisle. This situation was exacerbated by there being 
entrainment banks local to the gauge which overtopped during the event. It was of 
course inappropriate to extend the rating curve beyond the bank levels in this case. 

Incorrect rating curves can also give rise to effective percentage runoff values above 
100% or indeed below 10% which would nullify the benefits of an accurate historical 
or forecast rainfall distribution. However, they may be less relevant when considering 
explicit relationships between recorded levels or rainfall totals and levels at 
forecasting points but such models do not exist within the current NFFS regional 
configurations. Rating curves are also important in general terms for current 
hydrological analysis such as the FEH (Flood Estimation Handbook) statistical 
approach, which is dependent on historical annual maximum flow (AMAX) series that 
in most cases are calculated via rating curves. 

If it is required to forecast levels even in extreme events up to 0.1%AEP (as specified 
in ‘Making Space for Water’), it is required that the associated rating curve is 
appropriate for the measured water level at that return period. 

It must be emphasised that uncertainty associated with rating curves can always be 
reduced by simulating the extension of the relevant rating curve using hydraulic 
models as described above for Temple Sowerby. This process is described at length 
in the Environment Agency R&D Report W6-061 (Ramsbottom and Whitlow 2003), 
which considered simple hydrological techniques through to complex three-
dimensional (3D) modelling. Best practice within the Environment Agency is to use 
1D methods where the site is less critical and hybrid 1D–2D models when the site is 
designated as critical to accurate prediction of threshold crossings at high risk 
locations. For example, very good results have been obtained on the Thames 
floodplain at Sutton Courtenay and Farmoor using this approach even when more 
than half the flow bypasses the station. 

3.2.3 Flow routing and hydrodynamic models 

Model calibration (flow routing models) 

The principles of model calibration are well established for flow routing models. For 
example, the manual to the KW channel-flow routing model (CEH Wallingford 2005c) 
contains a practical user guide that aims to provide clear advice on model 
configuration and calibration. This discusses configuration of a routing reach in terms 
of subdivision into sections, the location of ungauged lateral inflows and the form of 
scaling used, the form and location of overflows, and the form of wave-speed curve. 
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Once a configuration has been decided and parameters affecting the mass balance 
constrained on physical grounds, there is much more reliance on automatic 
optimisation than for rainfall–runoff modelling. The TSCAL calibration environment is 
used, as described previously in relation to PDM and TCM. For data assimilation 
ARMA error prediction is used with the parameters calibrated automatically and 
constrained to be admissible. 

Both DODO used in Midland Region and the ISIS flow routing models (Muskingum 
and VPMC) rely on manual calibration. The DODO model was documented for the 
Environment Agency (then the National Rivers Authority) by CEH (then the Institute 
of Hydrology): see Wallingford Water (1994). Further details of the ISIS flow routing 
models are provided in the user manual to the software. 

Routing models have also been developed that can work directly with water levels 
(e.g. Romanowicz et al. 2006a, b, 2008). As noted above, the observations of levels 
are generally of low uncertainty at all stages (as long as the sensor continues to 
provide information during a flood). Experience suggested that this usefully controls 
(but does not eliminate) the heteroscedasticity of the forecast variance (Romanowicz 
et al. 2008). 

Model calibration (hydrodynamic models) 

In general terms for almost all practical modelling studies, the calibration of hydraulic 
models for design purposes is reliant on comparison between peak levels, and a 
figure often quoted (e.g. for flood risk mapping applications) is that the recorded and 
simulated values should be within 250 mm. The timing of the simulated peak levels is 
usually of secondary consideration in this case, whereas it assumes much more 
importance for flood forecasting. 

Experience tells us that a well-calibrated forecasting model should achieve peak level 
agreement within 150–200 mm without error correction and better than this (less than 
100 mm) when error correction on level is performed. 

It is in the context of practical ARMA-based error correction on either flow or level 
that the importance of time accuracy in the original calibration can be seen. For 
example, this has been particularly apparent in the real-time simulation of flows on 
the Bristol Avon. 

Model calibration of hydraulic models is often done by physical argument (e.g. 
assumptions about roughness coefficients), followed by expert evaluation of the 
results in comparison to any observational data available. In part, this is because of 
the computer requirements of running optimisation codes with distributed 
hydrodynamic models (especially fully 2D models); in part, because of a lack of 
calibration data on spatial patterns of inundation; and, in part, because hydrodynamic 
models are assumed to be more secure in their physical representation of the system 
than in the case of rainfall–runoff models. 

Representation of floodplain storage 

Representation of floodplain storage and conveyance can be an important issue in 
flood forecasting particularly when a substantial amount of flow is conveyed or stored 
beyond bank top. It is often the case when older ‘design’ hydrodynamic models have 
been converted for flood forecasting purposes that LiDAR data were not available 
during the construction of the model which made representation of floodplain flow 
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and storage particularly difficult. LiDAR coverage is now relatively extensive, which 
enables direct simulation of floodplain flows or storage via a 2D model that can be 
linked dynamically with an existing channel model. 

It is not standard practice at present to use 2D or 1D/2D models within the NFFS with 
the notable exception of the Proudman Oceanographic Laboratory’s Continental 
Shelf (CS3) model. The implication of this is that information gained from a 2D model 
would have to be used to inform the re-schematisation of the 1D forecasting model. 
The conclusion of this is that, as with rating curves, uncertainty in floodplain storage 
or conveyance can be reduced by additional modelling work. 

Indeed, floodplain modelling is an active area of research within FRMRC and other 
research programmes, including comparisons of model outputs with observed 
inundation extents (e.g. Romanowicz et al. 1996; Aronica et al. 1998; Romanowicz 
and Beven 1998; Bates et al. 2004; Pappenberger et al. 2005b, 2006b, 2007a). The 
model performance can depend upon a range of factors, and uncertainties can arise 
from a number of sources; for example, in observations of flood extent (e.g. 
Pappenberger et al. 2005b); the accuracy of LiDAR data; the representation of the 
floodplain geometry and flow paths (especially in 1D models or coarse grid 2D 
models); the representation of the effects of floodplain infrastructure on flows (walls, 
buildings, culverts etc); and from spatial differences in effective roughness. 

Influence of structure operations 

Structure operations can also significantly affect the forecasting of levels either due 
to their failure to operate as expected or due to blockage, or because they are 
controlled by a third party such as British Waterways or a riparian owner (such as 
often occurs at mills). 

In practical situations the influence of structures is often greater when backwater 
lengths associated with them extend further upstream as occurs often during low-
gradient watercourses. 

The operation of structures is often critical in terms of operational use of washlands 
or sacrificial storage and there are many examples of these systems such as the 
Sale and Didsbury storage basins on the Upper Mersey and the extensive network of 
washlands upstream of Lincoln in the Witham catchment. The operational rules 
associated with these structures can be immensely complicated and embroiled with 
historical arrangements made with riparian landowners such as exist for the Upper 
Mersey flood basins. 

Also, in some cases the structure does not operate as envisaged due to manual 
intervention of operators for whatever reason and this can cause particular difficulties 
for flood forecasting. 

The potential role of structure blockage as a source of flooding cannot be 
underestimated. To illustrate this point, Edenvale Young has undertaken a large 
number of pre-feasibility (250) and project appraisal studies for Powys County 
Council (40) and Caerphilly Borough Council. Of the 27 first stage project appraisals 
for Powys County Council, 22 or (81%) of the sites have blockage as the primary or 
secondary flooding mechanism in conjunction with high rates of flow. These studies 
are all on ordinary watercourses and a large number of the sites include trash 
screens, culverts and medium-sized bridges which are vulnerable to blockage and 
cause flooding. On a nationwide basis, the Welsh Assembly Government has 
calculated that approximately 60% of all flooding problems on ordinary watercourses 
in Wales relates to the blockage of culverts. This percentage seems to be holding 



 

 Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models 55 

true for subsequent groups of projects and for sites in Caerphilly Borough. In terms of 
blockage to culverts (not bridges) the percentage is slightly lower at 63%, which 
reflects the national average. 

The implications of a prescribed amount of blockage at a particular structure can be 
simulated directly by a hydraulic model but it is unfeasible to simulate all blockage 
scenarios that may occur. 

The conclusion of this analysis is that for some forecasting models – particularly 
those covering urban and heavily culverted areas – uncertainty in structure operation 
or blockage can never be eliminated and it is a factor that could usefully be simulated 
using probabilistic methods 

3.3 Model-specific considerations 
This section considers some typical sources of uncertainty for the types of rainfall–
runoff, flow routing and hydrodynamic models which are currently used within the 
Environment Agency. 

In developing the scope for this study the Project Board decided that event-based 
rainfall–runoff models – which cannot run in continuous mode – such as PRTF 
should not be considered, although the findings on uncertainty in catchment 
averaging of rainfall and rating curves will be very relevant to PRTF models. 
However, some broader discussion of the PRTF model is included here for 
completeness. 

Section 3.3.1 discusses rainfall–runoff models while Section 3.3.2 discusses flow 
routing and hydrodynamic models. The focus of the discussion is on rainfall–runoff 
models, since the consultations identified this topic as a key source of uncertainty. 
Finally, Section 3.3.3 describes some practical considerations with the 
implementation of models on NFFS. 

3.3 1 Rainfall–runoff models 

Rainfall–runoff models of conceptual lumped form and based on continuous water 
accounting principles have many commonalities but differ importantly in their detail. 
Thus some general remarks can be made at the outset on typical sources of error 
affecting such models. 

The main function of a rainfall–runoff model is usually to transform catchment 
average rainfall, and an estimate of potential evaporation (PE), to river flow at the 
catchment outlet, and models of this type are therefore associated with the following 
sources of uncertainty: 

i. input 

ii. model structure 

iii. model parameter 

iv. model state 

v. output. 
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A dominant source of input uncertainty is in the catchment average rainfall estimated 
from raingauges, and possibly radar, and for future times from extrapolated forms of 
these estimates and from NWP models. This issue has been discussed previously. 

The PE estimate is another source of model input uncertainty. The estimate used 
may range in complexity from a simple sine curve, through to annual (and maybe 
diurnal) profiles derived from MORECS, to the use of MOSES PE estimates. 
Experience suggests that rather simple approximations may suffice. This is possibly 
because of the way that modelled soil moisture deficits are replenished to a 
saturation level that wipes out the previous history of PE. It is also partly ‘calibrated 
out’ in the model process of converting from PE to actual evaporation as a function of 
soil moisture deficit. 

A very recent and quite detailed operationally focused review of PE estimation has 
been carried out by CEH for Southern Region as part of an investigation to apply an 
extended form of the PDM rainfall–runoff model to groundwater catchments (Cole 
and Moore 2009b). This highlights differences in MORECS and MOSES PE 
estimates and also considers PE profiles in use with rainfall–runoff models within the 
NFFS. Recommendations are made on the PE estimates to be used in Phase 2 of 
the project. The sensitivity of rainfall–runoff performance to the PE estimate will be 
included in the Phase 2 assessment. 

While rainfall and PE are the principal time series inputs to rainfall–runoff models, 
there may be other inputs deserving of inclusion in the modelled water budget. For 
example, the extended PDM (Moore and Bell 2002) for groundwater catchments can 
utilise time series of pumped abstractions; however, this is not yet available in the 
NFFS adapter form of the PDM. A similar capability has been developed for the TCM 
(in PSM) but also remains in research code form. 

Snowmelt models can be embedded or linked to rainfall–runoff models and these 
have their own forms of input uncertainty. The most important input uncertainty is the 
estimation of the snowfall input, which is very problematic at the catchment scale and 
a major source of snowmelt flood uncertainty. Also atmospheric variables that control 
the melt of snow, particularly air temperature, are important in the maturation and 
depletion of the snowpack: fortunately, temperature is more accurately and easily 
estimated over catchment areas. CEH has carried out reviews and assessments of 
snowmelt models for the Environment Agency: these include the MCRM snowmelt 
model and the PACK model (standalone but used by the Environment Agency with 
the PDM) used in NFFS. For further discussion, see Moore et al. (1996, 1999), Bell 
and Moore (1999, 2000) and Bell et al. (2000).  

Model structure uncertainty will always exist as a model is by definition a highly 
simplified mathematical representation of reality. This is particularly the case for a 
rainfall–runoff model as the processes operating within a catchment controlling the 
transmission and storage of water are complex and largely non-observable. This 
leads to rather simple representations of the water storage and transmission 
processes operating in a catchment. A particularly convenient approximation is the 
catchment-average formulation that lumped rainfall–runoff models assume. In 
particular the pattern of rainfall within the catchment is not taken into account: this is 
best thought of as model structure source of error. 

Parameter uncertainty is intimately linked to model structure but is best associated 
with the uncertainty of the model calibration process, whether by manual or 
automatic means. In the same way that there is no ‘valid’ or ‘correct’ model structure, 
these terms also do not apply to the parameter set being sought. Thus ‘model 
validation’ is a misnomer and model assessment is preferred. The parameter set 
chosen will depend on the purpose of the model forecasts and in turn to the 
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objective: this may be couched informally (e.g. visually acceptable fit) or formally 
(using objective functions which can be equivalent to performance measures). It is 
common for a ‘good’ rainfall–runoff model structure to suffer from problems of model 
parameter interdependence making the search for an ‘optimal’ parameter set (or 
sets) challenging. This leads to manual calibration being the preferred option for 
some rainfall–runoff models, at least in the initial stages, possibly using automatic 
optimisation as a refining and support tool. The modeller’s skill level is likely to impact 
on parameter uncertainty, along with the dataset being used for calibration (in terms 
of the record length, the range of floods encompassed and quality). 

The states of a model (such as the contents of stores representing soil-, ground- and 
channel-water) can be prone to uncertainty, most clearly due to errors in the rainfall 
input aggregating as errors in the store water contents. There is interplay between 
model structure, model parameter and rainfall input in the way this uncertainty in the 
state manifests itself. It is possible to correct for errors in the states through data 
assimilation, commonly using river flow observations. Similar principles apply when 
initialising a model for the first time. State correction is most successful at low flows 
when flows largely derive from a ‘slow store’ (typically representing groundwater) and 
a direct relation between storage and water release applies. The flow observation 
itself is subject to uncertainty and this ‘output uncertainty’ may be a major source, 
particularly as the river goes out of bank. Output uncertainty also impacts on model 
parameter uncertainty through the model calibration process. 

Having broadly reviewed the sources of uncertainty in a general rainfall–runoff model 
context, attention will be turned to consider some specific research of particular 
relevance to the Environment Agency operational interests in this area. 

The conceptual rainfall–runoff models used within the NFFS are the PDM, MCRM, 
TCM and NAM. These models were detailed and reviewed by CEH (then the Institute 
of Hydrology) for the Environment Agency under the R&D project ‘Comparison of 
rainfall–runoff models for flood forecasting’ (Moore and Bell 2001). The second part 
of the project compared the performance of these models, with the exception of 
NAM, on nine catchments of varied character spread throughout the regions of the 
Agency (Bell et al. 2001). An overview of the project is provided in Moore et al. 
(2000. Performance was assessed in simulation and updating mode using 
hydrograph plots complemented by R2 efficiency and Threshold CSI (Critical Success 
Index) performance measures. The latter skill score measure judged the efficacy of a 
model to correctly forecast the exceedance of a set of flow thresholds, particularly 
relevant to the use of a forecast to trigger an alert level of a given severity. For some 
catchments radar estimates of rainfall were available: this allowed a comparison to 
be made of model performance as impacted by the radar, raingauge or merged 
radar–raingauge estimator used for catchment average rainfall. The project results 
provide important quantitative insight into comparative model accuracy and how this 
is affected by the rainfall estimate used as input and the nature of the catchment. 

Discussions specific to each model used in NFFS follow, primarily relating to ease of 
use and drawn from the ‘Comparison of Rainfall–Runoff Models’ project. These 
discussions are particularly relevant to uncertainty due to model structure and 
parameters for each model. 

PDM 

Calibration of the PDM (Probability Distributed Model) is usually straightforward for 
any given model structure, but the variety of options among the model components 
means that it may not be easy to determine the best structure. A practical guide now 
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supplied with the PDM provides clear guidance and recommends a standard 
structure. The Pareto distribution of soil storage depths has been found to provide a 
simple yet flexible description of soil moisture storage for most catchments. This 
should be the first choice, only experimenting with other distributions if problems are 
encountered. Partitioning of rainfall between soil storage and fast and slow response 
paths is generally achieved through a direct runoff to the fast path with simple 
recharge to the slow (groundwater) path. For some catchments (e.g. the Witham), 
direct runoff to the fast response path with demand-moderated recharge to the slow 
(aquifer) path can prove more successful. 

A cascade of two identical linear reservoirs is usually appropriate for the fast 
response path. A quadratic or, more usually, cubic storage should be used for the 
slow response path. In general state correction is preferred to error prediction for 
forecast updating. The soil moisture storage, evaporation, recharge and runoff 
generation mechanisms in the PDM are interlinked and highly nonlinear, and the 
effect of changes in the associated model structures and parameter values can be 
difficult to predict. Use of the PDM at a daily time-step can be useful in determining 
slow response model parameters; this is now less useful due to improved graphics 
and support of very long datasets at a 15-minute time-interval. In general the PDM is 
relatively insensitive (robust) to initial soil moisture conditions. Although an initial 
period of warm-up is beneficial to the MCRM, the PDM is less demanding. 

MCRM 

The MCRM (Midlands Catchment Runoff Model) has a large number of parameters: 
22 in the main rainfall–runoff part excluding the snow and reservoir components. 
However, once the initial conditions for an event are set up correctly the model can 
be more straightforward to calibrate than the number of parameters might suggest. 
Several of the parameter values should lie within a narrow range and so can be set 
to standard values initially. Calibration of the model can be divided into five parts: the 
groundwater, the soil store, the timing, the smoothing, and, finally the interception 
store. Model parameters can be identified by taking each of these parts in turn and 
using a mixture of manual and automatic optimisation (the TSCAL environment was 
used in the research project); in practice, this procedure is normally done iteratively. 

The performance of the MCRM model can be very sensitive to the initial soil moisture 
deficit; it is therefore vital to have a good understanding of the antecedent conditions 
before calibrating the model. This might involve including a ‘warm-up’ period before 
the event begins. Operationally, initial conditions are based on previous runs and 
adjusted weekly using MORECS data (at the time of the research study). 

TCM 

Calibration of the TCM (Thames Catchment Model) is relatively difficult and time-
consuming, requiring an orderly approach starting from a physically based structure 
and parameter set and proceeding via judicious optimisation of selected parameters. 
Automatic methods of parameter estimation are not very useful, except as a last-
stage refinement. 

The structure of the TCM is based on subdivision of a basin into different response 
zones representing differing types of land use, soil, geology and topology, for 
example representing runoff from gravel, clay, aquifer and riparian areas. 
Identification of these zones can be achieved using the IHDTM (Integrated 



 

 Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models 59 

Hydrological Digital Terrain Model) in conjunction with spatial datasets on urban 
area, 100-year flood extent and WRAP (Winter Rain Acceptance Potential). The 
zonal responses should be sufficiently different both to avoid excessive parameter 
interaction and also because each zone should have a hydrological justification. This 
process produces proportions of the catchment covered by differing hydrological 
response zones. These proportions are multiplied by the area of the catchment to 
give an initial value for the size of each response zone. Final values for the area of 
each zone may differ from these initial values, as zone size is a parameter in the 
TCM and can be adjusted to give optimum model performance. In addition, the zone 
size can act as a multiplicative rainfall factor, adjusting for the representativeness of 
the raingauges used. Therefore the total area of the zones may differ from the size of 
the catchment after calibration, and also their relative sizes compared to each other 
may change. For some catchments, it may suffice to think simply in terms of a ‘slow 
response’ zone and a ‘fast response’ zone, analogous to the slow and fast response 
paths of the PDM. 

The TCM requires a large number of parameters, but most of these can be left at 
their default, physically based values unless absolutely necessary. Specifically, for 
each zone, parameters such as γ, Φ, Rc, qc and a can often be fixed at standard 
values for a particular zone type. The main parameters to optimise for each zone are 
the time constants k and K and the zone area A. Depending on the type of zone they 
represent, there are recommended starting values for k and K; the starting value for 
A can be found from the IHDTM used in conjunction with the spatial digital datasets. 
Optimisation should start with the baseflow zone first and then subsequent zones 
with faster response times, although often this is an iterative process. The channel 
flow routing component of the TCM provides delay and attenuation of the combined 
outflow from the zonal components when running at a sub-daily time-step. However, 
much of this behaviour can be represented through adjustment of the pure time delay 
parameter and the time constants of the zonal storages. Therefore, the number of 
reaches is commonly set to zero. It is possible that where a satisfactory calibration 
cannot be obtained, experimentation with different numbers of reaches can be 
carried out, bearing in mind that each reach introduces a delay equal to the model 
time-step. Consequently, here the final part of calibration after finding the individual 
zone parameters (particularly the storage time constants k and K and area A) is to 
estimate the time delay, τd. This can often be done using the automatic Simplex 
optimisation. 

NAM 

The NAM model employs upper and lower soil zone and groundwater storages and 
parallel routing stores in its formulation. It has 16 parameters. This model was not 
included in the Phase 2 assessment so there was no experience gained on ease of 
use and how this relates to model structure and parameter uncertainty. 

PRTF 

The PRTF (Physically Realisable Transfer Function) is implemented as an event-
based model within the NFFS, and has been used in South West and North West 
regions for many years within the operational forecasting systems for those regions 
(Han 1991; Yang and Han 2006). 

A standard transfer function (TF) model expresses the output as a weighted 
combination of r past outputs and s current and past lagged inputs, with the weights 
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termed the r autoregressive and s moving average parameters. In a rainfall–runoff 
context the output may be river flow and the input rainfall, for example. The PRTF is 
a special form of TF model that aims to ensure that its impulse response function has 
a physically realistic form: that is it should be positive and not exhibit oscillatory 
behaviour (it should be stable). The PRTF approach reparameterises the r 
autoregressive parameters (typically r is equal to 2 or 3) so they are defined by a 
single parameter. Moore and Bell (2001) observe that this can be referred to as an 
‘equal root’ parameterisation and gives a stable impulse response function for 
positive values of the parameter. It should be noted that the ‘pure’ TF formulation 
(without an ARMA error model) used in the PRTF means that observations of flow 
(for present and past times) are used in forecast construction: a form of ‘full state 
correction’ that is inherent to the model structure. 

In the original formulation, when using total rainfall as an input, the PRTF model 
applied directly to runoff and rainfall data does not take account of the actual 
nonlinear nature of catchment flood response to storm rainfall, notably the 
dependence on antecedent catchment wetness (Han 1991). In response to this 
adjustment factors were introduced to alter the volume, shape and time response. 
The volume adjustment scales the moving average parameters while the shape 
adjustment shifts the peak and is realised through analytical expressions for 
adjusting the (equal root) moving average and moving autoregressive parameters. A 
time shift simply changes the pure time delay between rainfall and runoff. These 
three adjustments are made by operators of the flood forecasting system as a flood 
event is identified and develops in real time. The procedure involves judgement of 
catchment conditions and of forecasts made as the flood develops and as new flow 
observations are received via telemetry. This form of procedure does not fit well 
within a framework that aims to largely automate forecast construction for all times, 
not just during flood events, and which in the future will aim to provide uncertainty 
estimates for such forecasts. 

Some other approaches to accommodate the effect of varying antecedent conditions 
in PRTF models include: 

• Use of different parameter sets for different storm characteristics and 
catchment wetness conditions: however, this can bring difficulties of 
operational implementation. 

• Recursive parameter estimation, often concentrating on the model gain 
(here, the runoff coefficient) to track the parameter variation. 

• Transformations of the rainfall input to an ‘effective rainfall’ that accounts 
for antecedent wetness conditions and its nonlinear influence on flood 
response using a Catchment Wetness Index (CWI) approach. Observed 
flow itself may also be used as a surrogate index of catchment wetness. 

The consultation exercise indicated an interest in catchment state and its uncertainty, 
particularly for regions using PRTF models with ‘effective rainfall’ as input. One 
option in this case would be to also explore rainfall–runoff models of the conceptual, 
continuous water accounting type that incorporate catchment state explicitly through 
their model formulation. This would be a useful topic for investigation but is outside 
the scope of the present project. 

3.3.2 Flow routing and hydrodynamic models 

The types of flow routing and hydrodynamic models which are currently used in 
NFFS are: 
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Flow Routing 

• KW 

• DODO 

• VPMC 

 

Hydrodynamic 

• ISIS 

• MIKE11 

In general, for all types of model, uncertainties can arise in gauged or ungauged 
inflows, and in the accuracy of level and/or flow data used in the model calibration, 
and in real-time operation. 

For flow routing models, issues can arise with specification of the wave-speed–flow 
relationship (if required), and the general conceptualisation of the river reach 
(number of sections, tributary inflows etc). 

For hydrodynamic models, there are additional uncertainties in key parameters such 
as the hydraulic roughness of open channel sections or culverts, and afflux 
associated with structures such as bridges, weirs or sluices. For out-of-bank 
situations this also applies to discharge coefficients and the stage-area relationships 
for storage areas. 

Hydraulic roughness can play an important role in flood forecasting as seasonal 
variations can be considerable within unmaintained channels. Generally the range of 
appropriate roughness values affecting forecasts should be possible to estimate 
given local knowledge of a particular channel even if the precise value at a given time 
may be difficult to establish. Information to aid this process may be obtained from 
ultrasonic or ADCP (Acoustic Doppler Current Profiler) gauges in open channels. 

Initial conditions are also a source of uncertainty for hydrodynamic models. This is 
particularly important for storage areas represented as reservoir units which have no 
means of representing the evapotranspiration process unless by associating a rainfall 
boundary which is not generally done. Another issue is that gravity drainage of 
storage areas via flapped outfalls for example is often neglected in design models as 
it has limited impact on peak levels. 

It should be noted that, as for rating curves and floodplain storage, these issues can 
be addressed by further modelling effort rather than necessarily implementing 
probabilistic methods as the sole solution. 

Section 4.3.3 provides background on approaches to model updating in ISIS and 
MIKE11, while the following subsections describe the DODO and KW flow routing 
approaches (with similar issues to consider for the VPMC approach). 

DODO 

The DODO model is based on a form of Muskingum storage function which relates 
the volume of water stored in a river reach at a given time to the reach inflow and 
outflow. The reach inflow is lagged in time with the lag decreasing as a power 
function of the reach inflow, but limited to a minimum lag value. The component of 
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reach inflow above the bankfull discharge is routed through a parallel, second 
Muskingum storage, after accounting for an initial contribution to static floodplain 
storage. On the recession, water in static storage drains out of the reach, initially 
slowly, but then freely below a critical return bankfull storage as a power function of 
the volume of water in static floodplain storage. Lateral inflows to the reach are 
divided equally between the reach inflow and the reach outflow; a downstream input 
can also be added to the routed outflow to give the final reach outflow. The DODO 
model has a total of twelve parameters, six representing in-bank routing and six 
representing out-of-bank routing. It was originally developed for use within the 
Severn-Trent Flood Forecasting System (ST-FFS) (Douglas and Dobson 1987) and 
now is used in the Midlands Region forecasting system for hydrological flow routing. 
A detailed documentation of the model was undertaken by the Institute of Hydrology 
(now CEH Wallingford) and reported in Wallingford Water (1994). 

KW 

The KW model is a generalised form of kinematic wave model which makes 
allowance for wave-speeds to vary with discharge magnitude. In addition, storage 
functions are provided to represent flow into washlands to complement the modelling 
of in-bank flows. The basic form of the model is presented in Moore and Jones 
(1978) and Jones and Moore (1980). Water movement down a river channel is 
approximated by the kinematic wave equation with lateral inflow. This equation is 
expressed in finite difference form such that attenuation of the flood wave is 
controlled by the space discretisation (number of sub-reaches) and wave-speed 
(dimensionless) for a given time-step. A time-varying wave-speed is allowed, 
changing as a function of the observed flow. The choice of functions available include 
a piecewise linear function over three or four segments as well as cubic and 
exponential parametric functions. An auxiliary threshold storage function can be 
applied, either at selected model nodes to represent overflow into the floodplain, or to 
observed lateral inflows to compensate for errors in the rating relationship, especially 
for out-of-bank flows. A number of forms of parameterised threshold function are 
available. The use of a variety of parametric functions to define the model form is 
particularly useful for real-time application to large, complex river basins where the 
use of survey data might be expensive in time or survey data may not be available. 
Calibration of the parametric model functions is accomplished using the Model 
Calibration Facilities of the TSCAL (Time Series CALibration) environment. For a 
more extensive description of the KW model the reader is referred to the KW user 
guide (CEH Wallingford 2005c) and Moore (1999). 

3.3.3 NFFS-specific considerations 

Many of the probabilistic techniques described in this report require multiple model 
runs at each time-interval (although the number required can be modest, in many 
cases). The following sections describe some options for performing runs of this type 
in NFFS, and for either speeding up model run times (with a focus on hydrodynamic 
models), or for emulating the performance of models. 

Scenario runs 

The NFFS system is designed to run in a fully automated manner. For this reason 
most of the parameterisation of models is contained within a fixed file structure which 
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is used for every model run. It has long been the case that one ‘optimum’ solution to 
model calibration is sought as the best representation of the physical system. 

However, within NFFS there is the possibility to use alternative parameter sets within 
what-if scenarios. These parameter sets can be predefined in a local directory in 
PI XML format (ModuleParFiles). The ability to handle varying parameters per run (as 
opposed to just time series of inputs) is handled by the model adapter. The adapter 
interprets the PI XML parameters and must incorporate these values into the 
required native format prior to the run. Alternatively the native format parameter or 
model file can be predefined and stored in a local directory (ModuleDataSetFiles) for 
use in the model run as part of a what-if scenario. In this case NFFS has no way to 
interact with the exported parameters. 

Currently, only the MCRM model adapter in NFFS is designed to incorporate PI XML 
parameter adjustments. However, it should be noted that ISIS data comprises a 
single modular text file which could be converted readily to XML format if it was 
regarded as important to investigate parameter updating or uncertainty as part of the 
current project. 

Event-based parameter sets and the ability to modify parameters in real time are also 
planned for use for FEWS applications in the USA and Australia (available summer 
2009). However, one general point to note is that, for deterministic models, such as 
the conceptual rainfall–runoff models employed in NFFS, the need for multiple 
parameter sets may be the consequence of a shortcoming in the model structure or 
of its calibration, where improvement should be first sought. Similarly parameter 
adjustment (parameter updating) is not generally advised as a form of data 
assimilation. However, this functionality has an important role to play in uncertainty 
estimation and this point is discussed later. 

Model configuration changes 

Model configuration changes, particularly to hydrodynamic models, can give rise to 
enormous benefits in terms of run times and Table 3.4 presents some startling 
statistics for a range of models of different levels of complexity (cross-sections, 
structures, floodplain representation etc). 

Table 3.4 Examples of run time improvements for ISIS v3.1 models. 

Model Run 
duration 
(hours) 

Run time 
for real-
time model 
(seconds) 

Equivalent 
run time 
for design 
model 
(seconds) 

Run time 
improvement 
ratio 

Oxford Thames 312 24 3600 150
Thames 312 12 1500 125
Lower Colne 312 71 1800 25
Lower Thames 312 25 3600 144
Ravensbourne 39 79 3600 46
Lower Lee 78 35 24000 686

 

It should be noted that these improvements to run time were not achieved by 
converting sections to hydrological routing models or by wholesale simplification of 
the models. As a measure of this, the converted models could still be used in 
principle for real-time inundation mapping if required. 
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It must be noted that to achieve run-time improvements of this magnitude requires 
not inconsiderable skill and experience from the modeller and great care is also 
required in the subsequent configuration process. 

It may be interesting to establish what the minimum run time may be to enable some 
direct use of hydrodynamic models in a probabilistic context rather than by emulation 
alone. 

In terms of minimising run times, one option may be to minimise run durations for the 
forecasting runs. This could be achieved by running the models only as far as the 
target lead time (or just beyond) from ‘time now’. Even if this approach is adopted, 
there is always a need to run the model from the time of the last ‘state run’. State 
runs are re-performed once a day in almost all cases but to reduce run durations it 
may be possible to increase the frequency of these as appropriate to the model and 
target lead time. 

It is worth noting that in some situations flow routing models can sometimes perform 
as well as (and run faster than) hydrodynamic models, although the focus of this 
study is on probabilistic approaches rather than comparing alternative types of 
deterministic model (and there is a considerable body of research on the strengths 
and limitations of each approach, e.g. see the Real-Time Modelling Guidelines). Also, 
the aim in this study is to explore a representative range of all model types, including 
situations where hydrodynamic or other models/emulators are clearly more 
appropriate (e.g. where there are backwater or tidal influences). 

Model emulators 

Emulators provide another option for improving model run times: the DBM models 
(Young 2002; Taylor et al. 2007) can be used for the dynamic emulation of 
computationally intensive models, such as distributed hydraulic or hydrological 
models (Young and Ratto 2008). Here, for a specified set of the high order model 
parameter values, a ‘nominal’ DBM emulation model is identified and estimated on 
the basis of data generated by the high order model. This nominal emulation is 
normally able to explain over 99% of the flow or level variations of the high order 
model. If this exercise is repeated over a whole range of the high order model 
parameters, then it is possible to map the relationship between these parameters and 
the parameters of the DBM model, as shown schematically in Figure 3.4. 
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Figure 3.4 The process of dynamic emulation model synthesis. 

In this form, the DBM emulator can be used to replace the high order model for 
functions such as sensitivity analysis, uncertainty estimation or forecasting. This 
approach to emulation is still the subject of research and development but it holds 
great promise. For example, Figure 3.5 shows recent results (Beven et al. 2008b; 
Young et al. 2009) from a DBM emulation of the HEC-RAS hydrodynamic routing 
model: here, the estimated nominal emulation model is validated against new data 
generated by the HEC-RAS model with a new set of upstream inputs. 

 

Figure 3.5 Validation of a DBM emulator for the HEC-RAS model at six 
downstream sites based on a new set of upstream level inputs. 
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3.4 Summary of chapter 
Some key points from this chapter include: 

• A detailed summary is provided of the key uncertainties in rainfall–runoff, 
flow routing and hydrodynamic models. This review is based both on 
international research, and the experience of the project team. 

• The main sources of uncertainty which are discussed include 
uncertainties in model calibration, estimation of ungauged inflows, rating 
curves, antecedent conditions, the influence of structures and floodplain 
storage, and from rainfall forecasts and actuals. 

• A similar review has also been performed for the main types of rainfall–
runoff, flow routing and hydrodynamic models used within the 
Environment Agency for flood forecasting, including the PDM, MCRM, 
NAM, DODO, KW and ISIS models. However, the focus of this review 
has been on the types of models selected for consideration in the case 
studies on this project. 

• Other topics which are discussed include the existing functionality in 
NFFS for performing ensemble and scenario runs, and the potential for 
using model reconfiguration and model emulators to improve model run 
times when multiple model runs (ensembles) are required at each 
forecasting time-step. 
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4. Uncertainty framework 

4.1 Introduction 
This section describes the review of techniques under Tasks 1.3 and 1.4 of the 
project, and the high-level version of the uncertainty framework which will form the 
basis for the more detailed framework to be developed during Phase 2 of the project. 
The aim of Task 1.3 was: 

To recommend and test suitable techniques for the probabilistic treatment 
of the most important sources of uncertainty and combine them into a 
high-level unified, scalable framework for integrated catchment models. 

while the aim of Task 1.4 was: 

To investigate the requirements, possibilities and benefits of real-
time/state updating of probabilistic hydraulic/hydrological models and the 
value of different types of data (historical and real-time) in constraining 
uncertainties. 

In Work Package 9 of the first phase of the Flood Risk Management Research 
Consortium (FRMRC), the following general classification scheme for techniques for 
estimating uncertainty was proposed: 

• Forward uncertainty propagation methods – in which the uncertainty is 
assumed to be known or specified in advance, and is used to determine 
the likely range or distribution of model outputs. Methods include Monte 
Carlo or ensemble analyses, various statistical techniques (e.g. 
expectation analyses, analyses of historical data), and fuzzy set methods. 

• Conditioning approaches – in which the model outputs are conditioned on 
current and historical observations, including Recursive Instrumental 
Variable methods, Bayesian Analytical Methods, Bayesian MCMC 
Methods, and the GLUE methodology (sometimes known as pre- and 
post-processing approaches). 

• Real-time data assimilation methods – such as the Kalman Filter (and 
extended and ensemble versions) and particle filters. 

Section 4.2 presents a review of forward uncertainty propagation techniques), while 
Section 4.3 reviews data assimilation and pre- and post-processing approaches. 
Section 4.4 then considers a range of generic uncertainty estimation tools. Finally, 
Section 4.5 discusses development of the high-level uncertainty framework. 

4.2 Forward uncertainty propagation techniques 
The following forward uncertainty propagation techniques are discussed here: 

• Multi-model techniques 

• Monte Carlo methods 

• Fuzzy set methods. 
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Ensemble approaches are also another example of this technique, and are most 
usually associated with rainfall forecasts. They are discussed in detail in Section 
3.2.1. 

In simple situations, analytical approaches to the forward uncertainty propagation 
problem can sometimes be taken under very strong assumptions that the system is 
linear, and (most often) that the sources of error can be characterised as normal 
distributions with known constant variance (e.g. Beven 2009). For example, analytical 
propagation of uncertainty, with these strong assumptions, is often used for time-
stepping of uncertainties out to the required lead time in adaptive real-time 
forecasting (see later). 

Multi-model techniques 

Model structural uncertainty is often neglected in hydrological forecasting systems. 
An approach to deal with this uncertainty is to use multi-model ensemble techniques, 
which are also used within the atmospheric forecasting community. For chaotic 
systems like the atmosphere, considering these model uncertainties may be more 
important than in systems that are not chaotic. Models with different model structure 
are used to get a handle on the model structural uncertainty. These model results 
can be combined into one forecast with uncertainty bounds using (Bayesian) model 
averaging (BMA) techniques (see later). 

For example, in Italy, ARPA-SIM have developed a flood forecasting system for the 
Po river (FFS-PO) composed of three modelling chains that simulate the entire Po 
basin and river system behaviour starting with observed data and forecast 
meteorological data. The models that should be implemented in the full version of 
FFS-PO are: 

• Hydrological models: NAM, HEC-HMS, TOPKAPI 

• Hydrodynamic models: MIKE11, HEC-RAS, PAB. 

The modelling system is shown in Figure 4.1. 

  

METEOROLOGICAL MODELS 

HEC-HMS DHI – NAM TOPKAPI 

HEC-RAS DHI – MIKE11 PAB 

First chain Second chain  Third chain

HMS/NAM/TOPKAPI 

RAS/MIKE11/PAB 

User config 

 

Figure 4.1 Illustration of the modelling system for FFS-PO. 
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According to the ARPA-SIM specification these three model chains will work in 
parallel performing forecasts on an hourly basis, so that the overall system will 
include the following model combinations: 

• 11 meteorological models (LAMI + ESEMBLE) 

• 3 hydrological models (NAM, HEC-HMS, TOPKAPI) 

• 3 hydrodynamic models (MIKE11, HEC-RAS, PAB). 

The full system will be configured for 33 model chains + 1 user. An evaluation of 
forecasts made or the experience gained with this system is not yet available. 

A similar approach was also adopted on the MAP D-PHASE project, which is 
described in Section 2, with multiple rainfall–runoff models running in parallel, with 
outputs compared to a common set of thresholds at a catchment basis to determine 
the likelihood of flooding. 

Monte Carlo approaches 

Monte Carlo simulation is a powerful methodology for the forward propagation of 
uncertainty through nonlinear systems, particularly when the dimensions of the 
sources of uncertainty are small. As in any forward uncertainty estimation 
methodology, it is first necessary to define the character of each source of 
uncertainty (often in the form of prior assumptions about the distributions of inputs or 
parameters) and any correlations or interactions between sources of uncertainty. 

Given those prior distributions, random samples are taken and used to run the 
model. Care must be taken with selecting a random number generator, particularly 
where large numbers of samples are to be taken. For forward uncertainty 
propagation, the random samples are usually generated using a form of importance 
sampling, such that samples are chosen in a way consistent with the prior 
distributions, so as to be of equal weight in representing the posterior output 
distribution. This can be achieved by sampling uniformly on the probability scale for 
each source of uncertainty. There are also more efficient, but more approximate 
sampling techniques, such as the Latin hypercube (Beven 2009). 

Correlation between sources of uncertainty is also important. While it is often the 
case that we know little about whether different sources of uncertainty interact, 
ignoring correlation can lead to overestimation of the real uncertainty. A modern 
method of representing multivariate interactions that can be used with arbitrary 
distributions is the use of copula sampling (Beven 2009). 

Fuzzy set methods 

As noted earlier, not all uncertainties in the modelling of environmental systems can 
be treated properly using probabilistic methods, although it is a common strategy to 
use probabilistic methods as an approximation, even in cases where errors are not 
easily represented using a simple stochastic error model. It is more acceptable to do 
so in the case of forecasting in real time when the deficiencies of the error model can 
be compensated by updating during data assimilation. In simulation, however, the 
recognition that not all uncertainties are probabilistic and that some error may result 
from epistemic errors has led to a variety of alternative approaches to error 
propagation (Beven 2002, 2005). 
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One of these approaches is the use of fuzzy sets, originally due to Zadeh (1965), 
where uncertainty of a variable is represented as a membership function (normally in 
the range 0–1) to a fuzzy set. Such sets can then be combined using a choice of 
methods, such as set union and set intersection, giving more flexibility than within a 
formal statistical framework. More detail on fuzzy set methods can be found in Klir 
and Folger (1988), Klir (2006) and Beven (2009).  

Fuzzy methods have also been incorporated into the Generalised Likelihood 
Uncertainty Estimation (GLUE, see Section 4.4 below) methodology as a way of 
calibrating models subject to non-probabilistic uncertainties. (see, for example, 
Beven 2006, 2009; Page et al. 2007; Li et al. 2009), including flood routing models 
(Pappenberger et al. 2007a, 2007b). 

4.3 Data assimilation and conditioning techniques 
Data assimilation techniques can help to both constrain and quantify uncertainty 
(although for the techniques used operationally at present in the Environment Agency 
only the former approach is used). Conditioning techniques aim to better express the 
residual uncertainty in probabilistic terms, based on recent or historical model 
performance, and can be used with or without a data assimilation procedure. Hence, 
for data assimilation, the focus is often on reducing uncertainty (although uncertainty 
estimates can also be provided with some techniques) while, for conditioning, the 
focus is on quantifying uncertainty. 

Note that, for some conditioning techniques, the model performance must be 
evaluated over long periods which requires access to a database of historical model 
forecasts for the models and data inputs in their current state, or to regenerate those 
values. This requirement is similar to that for deterministic models when considering 
models driven primarily by raingauge and/or upstream river flow values; indeed, it is 
standard practice in many model calibration studies, including sometimes improving 
the historical data if necessary to account for changes to rating curves, instrument 
locations etc (or restricting doubtful periods from the analysis). 

For radar rainfall data, the data held by the Environment Agency date back to about 
the year 2000, placing some limits on the periods which can be considered. For 
rainfall forecasts, conditioning is more problematic at present, although the situation 
will improve over time. This is because at present there is no long-term hindcast or 
reanalysis dataset available for the current forecast products. However, the situation 
is perhaps analogous to that when the Environment Agency started to archive radar 
rainfall data; over time an archive is developed which can be used in model 
development (again taking account of any significant changes to nowcasting or NWP 
models). 

This section reviews a range of data assimilation and conditioning techniques which 
are available internationally (Sections 4.3.1 and 4.3.2), and then Section 4.3.3 
discusses examples of techniques which are currently used in NFFS. Finally, Section 
4.3.4 discusses some initial considerations on the use of data assimilation 
techniques in integrated catchment models (which will be considered further in Phase 
2 of the project). 
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4.3.1 Data assimilation techniques 

Introduction 

Flood forecasting systems are typically constructed from a range of models that are 
applied to the prediction of discharges and levels in the river system, as a function of 
observed meteorological conditions and possibly short- or medium-term rainfall 
forecasts. These models are employed in a real-time environment, where models 
take information on the current and past states of the system, and forecasts are 
made for a certain period of time into the future as a function of boundary inputs on 
the system (Refsgaard 1997). 

Data assimilation or updating is a feedback system where the modelling process is 
conditioned using the information on the current state of the system. These process 
models can be considered as a set of equations containing parameters and state 
variables (Refsgaard 1997), where state variables are transient in time, and the 
parameters are generally (but not always) held constant at some value determined in 
the calibration of the model prior to application in the real-time environment. 

Data assimilation and updating procedures are often categorised into four different 
approaches (Refsgaard 1997; WMO 1992). Figure 4.2 shows schematically where 
these different approaches interact with the model. In all cases the updating 
procedure is applied as a consequence of the comparison of model outputs and 
observed values. The evolution of the model outputs is a consequence of the input 
variables. 

 

Process model  

State Variables | Parameters

Updating 
procedure

A B C D

Observed variablesInput variables

 

Figure 4.2 Schematic diagram of different updating procedure approaches 
(from Refsgaard 1997). 

The four approaches to updating described in the figure are as follows: 

Option A. Updating of input variables 

The input variables are typically considered the dominant source of error. 
Precipitation is often the primary input variable for rainfall–runoff processes, and 
errors in the estimation of the precipitation can be significant. The input variables are 
therefore adjusted based on the residuals of the comparison of model outputs and 
measured variables. Automatic procedures for this approach are scarce, and when 
applied it is typically carried out manually by experienced modellers. There is also a 
problem of disaggregation, in that it is often not clear where in the time series of the 
input variables the error correction is to be applied. The problem of equifinality may 
also arise, in that error correction in several different areas of the input variables may 
lead to the desired result. One example of input updating (PT updating) applied in 
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operational systems is the input correction procedure available in Sweden within the 
HBV-96 model of the Swedish Meteorological and Hydrological Institute (SMHI) 
based on optimisation of precipitation and temperature over a certain time-window. 

Option B. Updating of model state variables 

Based on the observed residuals, the model state variables are adjusted. A number 
of approaches can be followed ranging from simple to complex statistical filters. 
Simple methods include the correction of the capacity of conceptual reservoirs in a 
conceptual hydrological model according to the model bias after a complete model 
run. Another methodology is the Kalman Filter that is well proven for linear systems, 
and the Extended Kalman Filter for nonlinear systems. Kalman filters adjust the state 
variables in a physically consistent way (encapsulated in the model transfer 
functions) using statistical assumptions about the spatial and temporal correlation of 
model errors. Kalman filters are typically applied in-line with the model, where the 
model filter step is carried out at the time-step at which the observed data are 
available. Simple methods are typically off-line procedures, where the state variables 
are adjusted after the model run. 

Option C. Updating of model parameters 

Updating of the model parameters according to the observed residuals is in many 
ways similar to the updating of model states. Kalman filters can be theoretically 
applied for this purpose, but examples of actual application are scarce. Model 
parameters such as roughness coefficients and runoff coefficients can be considered 
for adjustment. For the more physically based approaches to flood forecasting, the 
procedure could be seen as a constant recalibration of the model, and is therefore 
somewhat questionable, except perhaps in the case of fully parameterised models. 
As Kachroo (1992) notes ‘it is intrinsically difficult to accept the operation of any 
hydrological system can change significantly over such a short interval as the 
observation time’. However, parameter sampling has a role in the estimation of 
uncertainty in certain types of models. 

Option D. Updating of model outputs, or error correction 

Error correction (also known as output correction) is one of the oldest and most 
versatile methods of data assimilation (Madsen et al. 2000; Broersen and Weerts 
2005). Rather than adjustments of the state variables of the model as done in Option 
B (and effectively in Option A) the errors are corrected there where they are 
observed. Often the correlation of model residuals is strong both temporally and 
spatially, and in this option a model of this residual is developed. A typical example is 
of ARMA(X) models that are calibrated using the observed residuals. The error 
model is applied to adjust the model output, and can be equally applied to both the 
model outputs over the period where observed values are available (update period) 
as the forecast period. In the latter part, where the adjustment of the model output is 
propagated into the forecast period, the adjustment will slowly dissipate (depending 
on the error model structure). The following sections provide more detailed 
background on some of these techniques. 

Kalman and particle filtering 

Sequential data assimilation techniques provide a general framework for explicitly 
taking into account input uncertainty, model uncertainty and output uncertainty. One 
of the best known sequential data assimilation techniques is the Kalman Filter (KF) 
(Kalman 1960), which was developed for linear systems. It was later extended to 
nonlinear models, resulting in the Extended Kalman Filter (EKF). Both became 
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popular in hydrological modelling in the late 1970s and early 1980s (Kitanidis and 
Bras 1980; Georgakakos 1986a, 1986b). However, the linearisation in the EKF is 
notoriously inaccurate if the nonlinearities are strong. A possible way to circumvent 
these problems is by letting the errors evolve with the nonlinear model equations by 
performing an ensemble of model runs. This has led to the development of the well-
known Ensemble Kalman Filter (EnKF) (Evensen 1994; Burgers et al. 1998). 

In a separate line of research, filter methods for non-Gaussian nonlinear dynamical 
models have been developed. These sequential Monte Carlo methods, such as 
sequential importance resampling (SIR) and residual resampling (RR), also known as 
particle filtering, originate from the research area of object recognition, target 
tracking, financial analysis, and robotics. So far they have received little to no 
recognition for the application to hydrological models (Moradkhani et al. 2005a; 
Weerts and El Serafy 2006). 

The central idea of EnKF and particle filters is to represent the state probability 
density function (pdf) as a set of random samples. The difference between the EnKF 
and particle filters lies in the way of recursively generating an approximation to the 
state pdf. 

When applying EnKF, in the analysis step, only the first two moments of the prior pdf 
of the model states are used to obtain the posterior pdf of the model states. Applying 
it to highly nonlinear processes (like rainfall–runoff) makes it unlikely that the prior 
density is Gaussian distributed, and therefore it is likely that the posterior is 
determined not only by the mean and variance of the prior density, but also by the 
whole density. 

The advantage of particle filters is that no assumptions on the form of the prior pdf of 
the model states are necessary and that the full prior density is being used, in 
contrast to EnKF. In theory this would mean that particle filtering is more sensitive to 
the tails of the prior distribution, a property which may be of vital importance in flood 
forecasting, although this may be at the cost of a much larger number of simulations. 

For flood forecasting, the potential of EnKF was proven successfully by comparing it 
with EKF on a calibrated hydrodynamic Rhine application (El Serafy and Mynett 
2004) and applying it within FEWS-NL Rhine & Meuse (Weerts 2008); and input 
uncertainty estimation was recently analysed through the use of EnKF and particle 
filters for the HBV model (Weerts and El Serafy 2006). EnKF is now used 
operationally in the FEWS-NL Rhine system to update the states of the 
hydrodynamic model SOBEK-RE of the Rhine. 

EnKF is in general less sensitive than particle filters to mis-specification of the model 
and of the input uncertainties. Application of both of these data assimilation 
techniques together in flood forecasting systems is feasible, although the 
computational burden might still be an obstacle. It is clear that a trade-off between 
accuracy and computational burden exists. The results of applying the filters to real 
data showed that the particle filters are more sensitive to the choice of the model 
error and measurement error (Weerts and El Serafy 2006). This makes EnKF more 
robust and therefore one may prefer EnKF in an operational flood forecasting setting. 
For research purposes, where the computational burden is less important and 
accuracy more important, one may prefer particle filters (Weerts and El Serafy 2006). 

Variational methods 

Variational methods have been widely used in data assimilation for numerical 
weather prediction as a means of dealing with a very large number of observations to 
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be assimilated in a computationally efficient way. The technique depends on defining 
the adjoint model, which provides local gradient terms for any predicted variable that 
can be matched to an observable. These gradients will vary in space and time, 
depending on the nonlinearity of the model. Linear extrapolation is then used to 
adjust model predicted variables towards the observed values, depending on an 
estimate of the covariance matrix. In this, it is similar to the Extended Kalman Filter 
(EKF) but, unlike the EKF, does not update the covariance matrix as the data 
assimilation proceeds. More detail on the method can be found in Beven (2009). 

Data Based Mechanistic methods 

The Data Based Mechanistic (DBM) approach provides a range of techniques both 
for forecasting river levels and flows, and for assessing and updating the uncertainty 
in the estimates within a data assimilation framework. As noted earlier, the Lancaster 
University DBM approach to probabilistic flood forecasting was first implemented in 
providing a forecasting system with data assimilation and probabilistic uncertainty 
estimation for Dumfries and the Nith catchment in 1991 (Lees et al. 1994; Beven 
2001). However, this section focuses on the uncertainty and data assimilation 
aspects of the approach. 

Developments in the methodology have been described by Young (2002, 2009) and 
Romanowicz et al. (2006a,b, 2008). The DBM approach uses various computational 
routines available in the CAPTAIN Toolbox for Matlab (see Taylor et al. 2007 and 
http://www.es.lancs.ac.uk/cres/captain/), or their equivalent, to identify and estimate 
models directly from rainfall and flow/level data. The resulting model has a physical 
interpretation in terms of interconnected hydrological stores in series and parallel 
and, as such, can be compared with similar conceptual models, such as IHACRES, 
PDM and HYMOD (Figure 4.3). The advantage of the DBM model is that its 
structure, including the nonlinear input transform (Figure 4.4), and dynamic order are 
identified statistically from the data and so it is not prone to over-parameterisation. In 
addition, it is a stochastic model and so the uncertainty associated with its 
parameters and additive noise components are quantified during the estimation 
(calibration) phase of modelling. These are then available when the model is 
incorporated in an appropriate forecasting system. 

The simplest and most obvious stochastic forecasting environment for DBM models 
used in the forecasting environment is a version of the Kalman Filter (Kalman 1960). 
This incorporates the input nonlinearity and can include advanced options, such as 
adaptive gain and heteroscedasticity elements that exploit recursive parameter 
estimation (see Young 2002, 2009; Romanowicz et al. 2006; Young et al. 2006). The 
primary advantages, however, are the inherent real-time state updating and 
stochastic error correction (equivalent to ARMA error correction), together with 
standard error estimates on the forecasts that are a function of the flow or level state-
dependent uncertainty estimation, as illustrated in Figures 4.3 to 4.5. These show the 
results of applying the DBM methodology to adaptive forecasting of the 2005 Carlisle 
flood using a cascade of only two rainfall-level and one level-to-level components, 
with identified nonlinearities as shown in Figure 4.4 (but without an error correction 
model in this case). 
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Figure 4.3 Structure of a DBM model. 

 

 

Figure 4.4 Identified nonlinearities in the DBM model for rainfall to level and 
level-to-level models on an initial application to the River Eden (after Leedal et 
al. 2008). 
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Figure 4.5 Adaptive 6-hour ahead forecasts at Sheepmount, Carlisle during the 
January 2005 flood event in an initial application of the DBM methodology to 
the River Eden (after Leedal et al. 2008). 

4.3.2 Conditioning approaches 

Quantile regression 

Regression is a widely used statistical technique for investigating the relationship 
between variables. 

Quantile regression is a related technique for estimating functional relationships 
between variables for all portions of a probability distribution (Koenker and Bassett 
1978). Based on the historical performance of a model, the method provides 
adjustment factors which can be applied to a real-time forecast to improve estimates 
of uncertainty. 

A similar technique is percentile matching (Hashino et al. 2007) in which the 
percentile of a simulated flow Fs(Q) is used to extract a corresponding flow from the 
inverse of the Cumulative Density Function (CDF) of the observations F0

-1: 
1( ( ))bcs o sQ F F Q−=  

where Fs is the cumulative distribution function of the simulated flow Q. 

This correction adjusts both the mean and variance (and higher moments) of the 
simulation outputs to match those of the observed climatology. The simulated and 
observed CDFs are ideally based on the same period. These techniques have been 
used in pre-operational testing by the National Weather Service in the USA, for 
example (Wood and Schaake 2008); see Section 2.1.2. 
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Bayesian Model Averaging 

In a situation of several competing forecast models, a multi-model approach can be 
adopted to use information from every model, instead of choosing a single optimal 
model. Even if one model is known to perform generally better than the others, it is 
not certain which model is optimal for a particular forecast situation. The choice for a 
forecast model is therefore uncertain. 

The Bayesian Model Averaging (BMA) method (Raftery et al. 2003, 2005) is an 
example of a multi-model technique. An overall probabilistic forecast is generated 
from a linear combination of normally distributed predictive probability density 
functions (pdfs), based on forecasts from the individual models in the ensemble. The 
weight of each pdf is the posterior probability that the corresponding model is correct. 
The individual distributions are bias-corrected conditional pdfs, given that the 
corresponding model gives the best forecast. The total uncertainty is thus split into 
two components, corresponding to the model choice and the uncertainty given the 
optimal choice. The bias-correction is essential for good performance in practical 
applications. 

The Bayesian weights and the sigmas of the individual pdfs are calculated from the 
performance of each model over a training period, using recent historical 
observations and model forecasts. For example, Raftery et al. (2003) vary the length 
of the training period to optimise the calibration of the overall probabilistic forecast. 
For hydrological applications, the optimal training period is at least as long as the 
time of concentration of a catchment, thereby including a number of hydrological 
runoff events (Beckers et al. 2008). 

Observations and forecasts from multiple sites can be included in the training if the 
performance of the individual models can be assumed similar for each site. This can 
improve the estimates for the weights and sigmas of the individual models. 

A major advantage of the BMA method in an operational setting is that it is relatively 
robust. Because of the relatively short training period, the method naturally adopts 
itself to changing environments, such as missing data, model updates that improve 
the performance of one of the forecast models and addition of a new model to the 
ensemble. 

The BMA method assumes that the ensemble of forecast models represents the 
range of all plausible models and that it includes, for each forecast situation, the 
correct forecast. This is never the case in the real world. Therefore, the probabilistic 
forecast that results from the BMA technique is only an estimate of the true predictive 
uncertainty. In case of a small number (say less than five) of competing models, or 
for an ensemble of very similar models, the BMA method inevitably breaks down. If 
the ensemble of forecast models is too limited, this can sometimes be overcome by 
using different combinations of meteorological and hydrological components. This 
approach seems to be promising for at least one application in the Netherlands 
(Beckers et al. 2008). 

The BMA method requires that the likelihood of the model choice can be based on 
the training period. This is no longer valid in rapidly changing conditions, such as dry 
to wet transitions. It has been suggested that the training should be based on ‘similar 
conditions’ instead of a preceding period. However, this has not been tested yet. 

In its original formulation by Raftery et al. (2003) the uncertainty of the individual 
model forecasts is assumed to be normally distributed. Vrugt and Robinson (2007) 
extended the method for Log-normal and Gamma distributed variables. Their results 
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indicate that this generalisation is to be preferred for skewed predictands, such as 
river discharges or water levels. 

Todini (2008) has proposed some modifications to the BMA method, including a 
transformation to normal space. This avoids the assumption of normally distributed 
uncertainties and produces good results for the Po River. 

Finally, Vrugt and Robinson (2007) point out that the Expectation-Maximization (EM) 
algorithm that is used to find the weight and sigma of each pdf (Raftery et al. 2003) 
need not necessarily converge to the optimal values. Vrugt and Robinson (2007) 
propose some alternative optimisation tools. Todini (2008) uses a Newton–Raphson 
optimisation method. 

Vrugt and Robinson (2007) also compared BMA to EnKF and concluded that the 
EnKF was superior. However, we believe that this depends very much on the specific 
application. 

An Open Source BMA software package in R is available from: 
http://cran.r-project.org/web/packages/BMA/index.html 

Bayesian Processor of Output (BPO) 

A comprehensive approach to gain a description of the overall uncertainty of a flow 
forecast available is through the application of Bayesian revision. Krzysztofowicz 
(1999) proposed the Bayesian Forecasting System (BFS) theory for streamflow 
predictions. This theory constitutes a general framework for Bayesian inference on 
the uncertainty of a flow forecast, while using deterministic hydrological and/or 
hydraulic models. The basic concept of the BFS is to derive the uncertainty of a 
forecast by ‘revising’ prior knowledge on the behaviour of the system over a historical 
period of operation. If performed correctly, the result of the revision process, referred 
to as posterior density function, represents a reliable assessment of the uncertainty 
of the forecast, which is conditional on a whole range of information available at the 
beginning of a forecast. It is referred to as predictive uncertainty (Krzysztofowicz 
2001; Todini 2007). 

A simple Bayesian uncertainty processor for a flood forecasting system, based on the 
application of Bayes theorem, can be formulated in terms of the random variables 

ns , nh , 0h  (Krzysztofowicz and Kelly 2000) as follows: 
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where sn is flow or stage forecasted at lead time n (expressed in number of hours or 
days), hn is the flow or stage which has been observed for day n, and h0 is the flow or 
stage observed at the onset of the forecast. In this example, the conditioning is 
limited to the random variables hn and h0. However, the formulation can be arbitrarily 
expanded to include additional conditioning variables, if necessary. 

The conditional probability density ƒn is a likelihood of actual discharges or stages, 
given a model forecast and conditioning observation(s). The conditional density gn is 
a prior probability density function on the flow predicted for day n, conditional on the 
observation. The denominator is the expected density on the forecasted flow given 
by the total probability law: 
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The prior knowledge on the system, which is stochastically described by the 
conditional probability density function gn is based on assumed probability 
distributions on discharges or stages. A proper specification of the prior density and 
likelihood function is essential in obtaining an informative posterior. Failing to do so 
may compromise the performance of the processor. The determination of an 
adequate prior function constitutes a challenge, especially in the absence of 
sufficiently long historical time series of observations, as is the case in poorly 
monitored basins. 

Examples of the BPO applied to small and medium catchments (short lead times) 
have been given by Krzysztofowicz and Kelly (2000) and Verkade (2008). Examples 
of applying the BPO to the Rhine basin (long times) have been presented by 
Reggiani and Weerts (2008b) and Reggiani et al. (2009). 

4.3.3 Examples from the Environment Agency 

Examples of approaches to data assimilation within NFFS are provided for the 
following: FEWS ARMA error correction, CEH ARMA error prediction, PDM state 
correction, and the ISIS GAUGE algorithm. 

Approaches to updating in MIKE11 can also be found in Rungo et al. (1989), 
Refsgaard (1997), Madsen et al. (2000) and Butts et al. (2005), and include an 
Ensemble Kalman Filter approach, which is not currently used within the 
Environment Agency. Further information on the technique described by Rungo et al. 
(1989) is provided in the section on ISIS GAUGE, and this option is used 
operationally in some of the MIKE11 models in Anglian Region. 

Section 3 also describes some aspects of state updating approaches within the 
rainfall–runoff models used on NFFS. An extensive discussion of possible future 
approaches to forecast updating, at both gauged and ungauged sites, is also given in 
Section 7 of the Environment Agency R&D Report Rainfall–Runoff and Other 
Modelling for Ungauged/Low-Benefit Locations (Moore et al. 2007). A particular 
priority identified for further research is to investigate a ‘two-pass state-correction’ 
approach to forecast updating. The approach is intermediate between error 
prediction and state correction and can be used to (i) deal with serial-correlation in 
errors from normal state correction and (ii) correct states forwards in time from the 
time-origin of the forecast. 

FEWS ARMA error correction 

The FEWS ARMA error correction module is an implementation of the ARMAsel 
algorithm of Broersen and Weerts (2005) and Broersen (2007). A description of the 
implementation is given on the Deltares Wiki pages (Schellekens 2008a) along with 
the FEWS configuration documentation (Schellekens 2008b). 

The module actually comprises two different models: the autoOrderMethod and the 
fixedOrderMethod. The autoOrderMethod provides model identification and 
calibration routines, but currently does not permit the use of moving average (MA) 
terms. The fixedOrderMethod does include MA terms but does not allow model order 
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identification. MA terms will, however, be included in the autoOrderMethod in the 
next release of FEWS. 

The module includes several pre- and post-processing routines: 

• mean (bias) correction 

• Box–Cox transformation 

• interpolation of small gaps. 

Differencing to improve stationarity is not available through the module. 

FEWS can carry out on-the-fly or off-line calibration of the error correction module. 
On-the-fly calibration is easily configured, with a relative view period of the observed 
and simulated time series that are presented to the module determining the length of 
the calibration period. The ARMA calibration routine in the FEWS error correction 
module runs very quickly, so the length of the calibration period does not significantly 
affect workflow run times. Off-line calibration is also possible and can be carried out 
on the stand-alone NFFS. 

CEH ARMA error prediction (PDM, KW, TCM, ISIS,…) 

State correction techniques have been developed based on adjustment of the water 
content of conceptual storage elements in the belief that the main cause of the 
discrepancy between observed and modelled runoff will arise from errors in 
estimating basin average rainfall, which in turn accumulate as errors in water storage 
content. Rather than attribute the cause directly and devise empirical adjustment 
procedures we can analyse the structure of the errors and develop predictors of 
future errors based on this structure which can then be used to obtain improved flow 
forecasts. 

A feature of errors from a conceptual rainfall–runoff model is that there is a tendency 
for errors to persist so that sequences of positive errors (underestimation) or negative 
errors (overestimation) are common. This dependence structure in the error 
sequence may be exploited by developing error predictors which incorporate this 
structure and allow future errors to be predicted. Error prediction using an ARMA 
(AutoRegressive Moving Average) dependence structure is now a well-established 
technique for forecast updating in real-time (Box and Jenkins 1970; Moore, 1982, 
1999). Error prediction is available as an alternative to empirical state correction in 
the PDM and TCM (PSM) rainfall–runoff models; it is also provided as the updating 
technique for use with the KW channel flow routing model. 

Predictions of the error are added to the deterministic model prediction to obtain the 
updated model forecast of flows. In contrast to the state correction scheme, which 
internally adjusts values within the model, the error prediction scheme is wholly 
external to the deterministic model operation. The importance of this is that error 
prediction may be used in combination with any model, be it of transfer function, 
conceptual or ‘physics-based’ form, and for representing rainfall–runoff or channel 
flow processes. 

The ARMA error prediction module developed by CEH Wallingford for use within the 
NFFS is most commonly used as an updating technique with the PDM and TCM 
(PSM) rainfall–runoff models and the KW channel flow routing model. In these cases 
an ARMA model structure is used to forecast future values of a single time series of 
model simulation errors. Then the forecast error at each time-step in the future can 
be added to the corresponding model simulation value to obtain the updated 
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forecast. The forecast error is constructed as a weighted combination of past 
simulation model errors (and forecasts of them for future times) and past one-step-
ahead forecast errors if a moving average (MA) component is included. When a 
model has multiple time series of errors, for example associated with different 
observation locations within a hydrodynamic model like ISIS, then the ARMA module 
can also accommodate this. Both the usual additive errors can be modelled or, 
through log transformation, multiplicative errors: for further details see Moore (2007). 

A quality flag associated with each time series value can be used to invoke 
interpolation of missing values arising either from intermittent missing observations or 
those at the end of the time series corresponding to future times. A best estimate of a 
missing value is obtained as a linear weighted combination of neighbouring observed 
values, with the weights chosen using a minimum error-variance criterion. The 
approach involves use of the covariance function of the ARMA model rather than just 
the ARMA coefficients employed in the normal recursive forecast calculation. Further 
details are provided in a note prepared for the Environment Agency Thames Region 
(CEH Wallingford 2005d). 

The NFFS module adapter form of the CEH ARMA model algorithm is documented in 
CEH Wallingford (2004). 

The ARMA model is calibrated off-line using a historical dataset. CEH’s TSCAL 
(Time Series CALibration) generic Model Calibration Shell environment used with 
PDM, TCM (PSM) and KW models provides facilities to automatically estimate the 
ARMA model parameters for a given model structure. A simplex direct search 
procedure (Nelder and Mead 1965), modified following suggestions made by Gill et 
al. (1981), is used with constraints that ensure the resulting ARMA model is 
admissible. 

Two practical points should be noted. First, the ARMA model is applied assuming the 
time series has a zero mean (no constant term is included or sample mean 
subtracted). This ensures that the updated flow forecasts asymptote to the simulation 
model forecasts with increasing lead time. In turn, the simulation model flows (e.g. 
PDM) will decay to zero with no forcing rainfall in accord with the mass balance 
(unless a constant background flow is included in the simulation model to represent 
the artificial effects of abstractions/returns). Second, the ARMA model parameters 
are applied in real time at their fixed values obtained through off-line calibration. This 
is judged ‘safer’ than recursively estimating them in real time, especially if there is a 
risk of telemetry data corruption. 

PDM state updating 

The term ‘state’ is used to describe a variable of a model which mediates between 
inputs to the model and the model output (Szollosi-Nagy 1976). In the case of the 
PDM rainfall–runoff model the main input is rainfall, and basin flow is the model 
output. Typical state variables are the water contents of the surface and groundwater 
stores and of the probability distributed soil storage. The flow rates out of the 
conceptual stores can also be regarded as state variables: examples are the flow out 
of the surface storage and the flow out of the groundwater storage. When an error 
occurs between the modelled and observed value of basin runoff it would seem 
sensible to ‘attribute the blame’ to mis-specification of the state variables and attempt 
to ‘correct’ the state values to achieve concordance between observed and modelled 
flow. Mis-specification may, for example, have arisen through errors in rainfall 
measurement which, as a result of the model water accounting procedure, are 
manifested through the values of the store water contents, or equivalently the flow 
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rates out of the stores. A formal approach to state correction is provided by the 
Kalman Filter algorithm (Jazwinski 1970; Gelb 1974). This provides an optimal 
adjustment scheme for incorporating observations, through a set of linear operations, 
for linear dynamic systems subject to random variations which may not necessarily 
be Gaussian in form. 

For nonlinear dynamic models (such as the PDM), extended forms of the Kalman 
Filter that invoke a linearisation approximation may be used but are no longer optimal 
in the state adjustment provided. The implication of this is that simpler, intuitive 
adjustment schemes can be devised. These potentially provide better adjustments 
than the more complex and formal extensions of the Kalman Filter which 
accommodate nonlinear dynamics through approximations. Moore (1999) called 
schemes which make physically sensible adjustments ‘empirical state adjustment 
schemes’. 

A simple example is the apportioning of the error between the surface and 
groundwater stores of the PDM in proportion to their contribution to the total flow. The 
basic equation for state adjustment is mathematically similar to the Kalman Filter: 
namely the updated state estimate is given by the current state estimate plus an 
adjustment given by a (Kalman) gain parameter times the error. However, in this 
case the gain is defined empirically rather than statistically through the relative 
uncertainty (variance) in the estimates of the current state and observation. 

The choice of empirical gain to use is guided by physical insight. For example, when 
apportioning the error adjustment to the fast and slow flows (or stores) of the PDM 
this is done in proportion to their relative contribution to the totalled modelled flow 
(their sum). Two gains applied to the proportion adjustment for each state update are 
treated as parameters to be estimated through off-line optimisation using historical 
records. If these gains equal unity then a ‘full state update’ is realised such that the 
modelled flow equals the observed flow after the state adjustments have been made. 
When not equal to unity the gains act as ‘relaxation coefficients’ providing partial 
(under or over) adjustments towards the observed flow. Thus the gain used for 
empirical state updating is given by a physical apportionment rule multiplied by a gain 
factor parameter. 

A range of variants of empirical state updating have been developed for use with the 
PDM: these are described in Moore (1999, 2007) and CEH Wallingford (2005a). Note 
that the adjustment is carried out sequentially at every time-step. The variant 
normally used employs a weighting on the proportional adjustment so that more of 
the error adjustment is apportioned to the fast (surface) store when active; the slow 
store will have been adjusted outside flood events. 

State correction is essentially a form of negative feedback and, although often very 
effective, can sometimes give rise to over- or under-shooting behaviour characterised 
by high accuracy at short lead times but with degraded accuracy at moderate lead 
times before a recovery in accuracy at longer lead times. This behaviour appears to 
be associated with a combination of some or all of the following: large gain factors, 
time lags between the correction of a state value and the appearance of an effect on 
the modelled flow, and rapid increases in the model error (often due to timing errors 
on the rising limb). The latter is also a problem for ARMA error prediction schemes. 

Both the state correction and ARMA error prediction schemes provided by CEH do 
not embrace the estimates of forecast uncertainty required by this project. 
Uncertainty estimates for ARMA models have been available for many years (e.g. 
Box and Jenkins 1970) but the assumptions underlying these mean they only provide 
rather crude approximations for errors deriving from hydrological models. Since the 
empirical state correction methods are based on a Kalman Filter structure, it might be 
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possible to develop approximate estimates of uncertainty through analogy with the 
Kalman Filter variance update equations. This has not been tried to date. The 
uncertainty estimation methods discussed elsewhere provide possible approximate 
solutions to both ARMA error prediction and empirical state correction methods 
applied to different hydrological models. 

Error Forecast Model (MCRM and DODO) 

The Environment Agency Midlands Region approach to forecast updating is referred 
to as the ‘Error Forecast Model’ or EFM. It examines the difference between 
observed and simulated outflows over the last m time-steps of the hindcast period (6 
hours for the hourly operational model). A judgement is made on how predictable 
future errors are and forecast outflows are adjusted accordingly. The approach is 
described in detail in Wallingford Water (1994). The approach extended to work for a 
variable time-step (from the original hourly one to say 15 minutes) is outlined in CEH 
Wallingford (2009). It is available for use with the MCRM rainfall–runoff model and 
the DODO hydrological flow routing model. 

In outline, the updating scheme is based on forecasting the error differences, using 
an exponentially fading weighted average of m-1 (normally five) past observed and/or 
forecast error differences. The forecast error is then the old error plus the forecast 
error difference. Adding this to the simulation model forecast gives the required 
updated forecast. The updating procedure for a period t+1 to 2t, asymptotes the 
updated forecasts back to the raw forecast at a lead time of 2t. If the updated 
forecast is negative the forecast reverts to that at the previous time-step. In the event 
that missing data occur in the hindcast period no updating is attempted and the 
simulated flows are used over the whole forecast period. 

Thus the basic approach is to predict error differences from one (hourly) time-step to 
the next using an exponentially weighted average of five past error differences. It is 
equivalent to an autoregressive model structure, of order five, operating on the error 
differences, and using predefined autoregressive coefficients equal to 0.36, 0.21, 
0.12, 0.07 and 0.04. While the error model is stationary in the error differences it is 
non-stationary in the errors themselves. The model is referred to as a non-stationary 
AutoRegressive (AR) model within the so-called ARIMA class of models (Box and 
Jenkins 1970). Its use in the present context stems from its ability to project forward a 
trend. Forecasts with increasing lead time asymptote to a level determined by the 
autoregressive coefficients and the five previous error differences. Therefore the non-
stationary autoregressive model produces forecasts which are stable, asymptoting to 
a level (only when used for simulation does the integration, or summation process, 
characteristic of this model become unstable.) 

The EFM contrasts with standard forms of ARMA error correction where the updated 
forecasts are assured of asymptoting to the simulation model forecast with increasing 
lead time, provided a bias adjustment is not invoked. This is not generally the case 
for the integrated form of AR model, which asymptotes to a variable level rather than 
to zero. Return to the simulation forecast is imposed in the EFM by switching to a 
second updating scheme after a duration t, which assures a linear approach to the 
simulation model forecast, meeting it a time 2t. This can create a discontinuity in the 
updating scheme leading to unrealistic forecast hydrographs. 

It is conjectured in Wallingford Water (1994) that the motivation for the EFM 
approach may stem from abrupt changes in observations arising from observation 
error: then straightforward application of ARMA models can lead to an error model 
response function having an abrupt rise and a long tail resulting in unrealistic 
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forecasts. It is suggested that this might be overcome using an AR model with equal 
roots that makes allowance for observation error, yielding a model with a lower less 
abrupt peak response but still with a long decay to zero. CEH has not been asked to 
pursue this further although the method has been coded. A variance ratio of the 
observation and model errors controls the deflation of the peak response. 

For state updating, the techniques used within MCRM and TCM are as follows: 

• MCRM state updating – There is no formal algorithm for state updating in 
the MCRM rainfall–runoff model used operationally. However, the facility 
exists to manually edit the model states. It is believed that this is primarily 
restricted to resetting the soil moisture store with reference to Met Office 
estimates of soil moisture deficit. The potential to reset the states of the 
snowmelt and reservoir balance model components also exists. 

• TCM state updating – The forms of ‘empirical state correction’ developed 
by CEH for use with the PDM model (see above) have also been applied 
to the TCM (PSM) model. The principles are similar but state adjustments 
are made to the zonal flows (equivalent to adjusting the quadratic 
saturated stores) of the TCM representing different response zones 
within the catchment being modelled (rather than the fast and slow 
components of the PDM flows). Similar proportional adjustments are 
made in relation to each zone’s contribution to the total flow. Further 
details are given in the PSM Rainfall–Runoff Model User Guide (CEH 
Wallingford 2005b). 

ISIS updating 

In real-time forecasting, there is a need to improve existing models in real time by an 
updating process which enables improvements to the outputs caused by the model 
failing to meet observed data for whatever reason (e.g. geomorphology, inability for 
one model to accurately represent every situation). It also provides an updated state 
from which to begin a forecast. 

Since version 2.4.1, ISIS has contained a new unit referred to as the GAUGE unit 
which facilitates internal updating of flows. This was motivated by functionality 
required by the Anglian Region flood forecasting team which was regarded as 
particularly important during procurement of the Anglian Flow Forecasting Modelling 
System (AFFMS), ultimately developed by the Danish Hydraulic Institute but recently 
replaced by the Anglian Regional implementation of the NFFS. To date, this unit has 
only been used at South Bridge in Northampton within the suite of River Nene flood 
forecasting models. 

The GAUGEUnit is a method of specifying a time series of observed water level or 
discharge at a given node (or nodes) so that the model can self-adjust to meet these 
conditions; it can also be used to project the error to use for the model forecast. 

As with all updating methods, it is not intended to be a substitute for model 
calibration; such methods are reliant on a well-calibrated model to produce more 
accurate results. 

It is planned that the ISIS inputs used in updating will in the future be made generic in 
order that different updating methods can be introduced and feed the correction to 
the ISIS simulation at run time. Currently, one updating method has been introduced, 
which serves as the ISIS default. 
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The general response is simple and independent of the eventual update method 
used – a discharge-time series is applied at the location of the GAUGE unit, acting as 
a ‘correction flow’ to be added or removed from the model. Where the updating is 
based on stage, rather than level, rating information must be supplied within the 
GAUGE unit to associate stage with discharge. 

There are two processes to be modelled – updating and forecasting. Updating can 
occur up to the time of forecasting and involves the process of altering model 
parameters to bring the simulated results into line with observed results by way of 
generating an additional flow into the system. Forecasting uses the error estimated 
during the update period to project into the future. Users may select whether they 
wish to update only or to forecast (which involves updating during the pre-forecast 
period) as well. 

In either case, a simulation involves one simulation up to the time of forecast with no 
effect from the GAUGE Unit, from which the model derives the relevant parameters 
for updating. A further simulation is then performed using the additional flow derived 
from the updating parameters during the pre-forecast period, projected into the 
forecast period if appropriate. Thus the updating/forecasting run consists of the 
original model simulation augmented by extra inflows at the gauged site(s). 

If there are multiple gauged sites in one model, then it is possible that these will not 
be independent, and thus updating each site simultaneously would lead to incorrect 
updating due to double-counting. The method therefore involves running a number of 
iterations, updating each site simultaneously. The number of extra iterations should 
be at least equal to the maximum number of non-independent sites. The user is able 
to specify the number of updating iterations (defaulting to the number of updating 
sites + 1) in the gauge control file. 

The default method that is currently used for ISIS updating is based on the approach 
by Rungo et al. (1989). No estimates of uncertainty are provided as part of this 
procedure. The updating procedure involves estimation of a phase and amplitude 
error of the measured quantity during the pre-forecast period. The estimation of both 
these components of the error helps distinguish between those errors; for example, if 
one was correcting the error purely on amplitude, then a phase error could be 
interpreted as a large amplitude error. 

As the above methodology describes, there is a run-time cost associated with this 
approach to error correction since it involves a minimum of one extra model run and 
in general one additional run per internal updating location. For larger and slower 
models, this can be a very high price to pay. 

4.3.4 Data assimilation in integrated catchment models 

The major constraint in uncertainty propagation through cascades of flood runoff and 
flood routing models is the nonlinearity of the component models. This means that, in 
general, analytical propagation of errors will not be possible and that recourse must 
be made to approximate numerical methods. It is then important to differentiate 
between two cases: situations where data assimilation is possible and situations 
where data assimilation is not possible. When, during an event, telemetry fails at a 
site, then the first case may revert to the second. 

Data assimilation allows, for any site having transmitted observational data, the 
updating of forecasts at that point and the uncertainty associated with the forecasts, 
conditional on the inputs from the model component upstream (ultimately estimates 
of rainfall input). These inputs will be uncertain, but in both model calibration and 
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data assimilation, it is possible to condition both the forecast and uncertainty estimate 
on the best estimate of the upstream input. Uncertainty propagation at each site is 
then only required in time out to the required lead time for the forecast. This is a very 
simple and computationally efficient way of handling the propagation of uncertainty in 
integrated models. It will not necessarily underestimate the forecast uncertainties 
because of the way in which the data assimilation allows the uncertainty estimates to 
be updated, dependent on the forecast innovation at each time-step. It can be used 
regardless of what data assimilation methodology is being used. 

Alternatively, and more accurately (at least for well-behaved cases), techniques such 
as the Ensemble Kalman Filter and particle filters can allow for input uncertainties, 
propagated through a model component within the data assimilation framework. 
There has, to our knowledge, been little research to compare these approaches 
within hydrological forecasting situations. 

For the case of propagation without data assimilation, this will generally be more 
computationally demanding because the uncertainty in an upstream component will 
become the input to an uncertain component downstream. Unconstrained by data 
assimilation, the uncertainty in the forecasts will therefore grow as propagation 
proceeds through more downstream components. Propagation then needs to 
proceed sequentially. Monte Carlo sampling, with a sufficient number of samples, will 
be the most accurate method of propagation through nonlinear components, but will 
be computationally expensive. Approximate sampling methods can also be used, 
such as Latin hypercube sampling, which might lead to considerable run time 
savings, particularly in the case of multiple correlated inputs to a component. Simpler 
techniques, in which the Monte Carlo sampling is performed off-line, might also be 
considered. 

4.4 Generic tools and techniques 
This section describes three ‘toolkit’ approaches to support the implementation of 
data assimilation and/or uncertainty estimation techniques. The methods which are 
described are DATools, GLUE and CAPTAIN, and Table 4.1 summarises the 
techniques which are implemented within each approach. 

Table 4.1 Summary of functionality of the generic tools and techniques. 

Tool or 
technique 

Forward uncertainty 
propagation 

Data assimilation and 
uncertainty estimation 

DATools Via specification of 
boundary condition, state 
and/or parameter 
uncertainties 

Ensemble Kalman Filter, 
and residual resampling 
filter 

GLUE Via specification of 
boundary condition, state 
and/or parameter 
uncertainties 

Updating of likelihood 
weights for ensemble of 
behavioural models 

CAPTAIN Via specification of 
boundary condition, state 
and/or parameter 
uncertainties 

Predictor corrector filters, 
including Kalman Filter 
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DATools 

DATools is a generic software package for data assimilation (El Serafy et al. 2007; 
Weerts 2007; Weerts et al. 2009). DATools can be used standalone or within Delft-
FEWS. DATools is completely configurable via XML configuration. Using DATools, it 
is possible to apply data assimilation methods for existing and new models. The 
focus of DATools lies in enabling data assimilation methods for operational 
forecasters using Delft-FEWS, but it can also be used for academic studies 
(standalone version). This means that the PI interface of Delft-FEWS is supported, 
although some additional requirements with respect to state exchange have been 
added. 

Configuration of DATools can be done via XML configuration. This makes the system 
very flexible and easy to understand. Within the DATools software it is also possible 
to perform uncertainty analysis using a module called UATools. This works in a 
similar fashion to DATools via XML configuration. In the near future model calibration 
will also be included in DATools. 

To be able to use DATools the model needs to be linked via a model adapter to 
DATools. Existing adapters for FEWS normally only exchange input time series and 
output time series. To be able to update states or change parameters (for uncertainty 
analysis) more information needs to be exchanged between the model and DATools. 
Therefore, the existing adapters need to be adapted/extended to handle exchange of 
model states and parameters. 

DATools is used operationally in FEWS-NL (Weerts 2007, 2008). The hydrodynamic 
model SOBEK-RE of the Rhine is updated every 2 hours in the historical run. To limit 
the runtime (forecast runs are much longer than update runs), the mean state is used 
in the forecast run (although it is also possible to run the full ensemble in the 
forecast). UATools has also been used for performing uncertainty analyses in several 
projects by Deltares. 

GLUE 

GLUE (Generalised Likelihood Uncertainty Estimation) is a methodology for the 
representation of complex uncertainties in modelling through conditioning of Monte 
Carlo realisations of one or more model structures. Each realisation is compared with 
any available observations and given a likelihood measure that is used to weight the 
prediction of the model realisation when used in prediction. Models that do not give 
acceptable predictions of the observations are rejected as non-behavioural and given 
a likelihood of zero. Although GLUE is general, in the sense that formal statistical 
likelihoods can be used where there is a belief that a simple statistical model is an 
adequate representation of the errors (see, for example, Romanowicz et al. 1996), it 
is based on a quite different philosophy of model error that accepts that uncertainties 
may be epistemic rather than probabilistic and accepts the potential for equifinality in 
model results (Beven 2002, 2006). 

GLUE can use a variety of different formal and informal likelihoods, including fuzzy 
measures, and is flexible in the way in which they are combined as new 
observational data become available (e.g. Beven and Freer 2001; Beven 2006; Page 
et al. 2007; Smith et al. 2008c; Li et al. 2009). Uncertainty in the observables used in 
model calibration can easily be incorporated into the conditioning process. GLUE has 
been used as an uncertainty estimation methodology for forecasting with data 
assimilation (e.g. the flood inundation forecasting example of Romanowicz and 
Beven1998), and can be viewed as a form of particle filtering (e.g. Smith et al. 
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2008b) but, because of its basis in Monte Carlo sampling, it will generally be 
computationally expensive for forecasting. It has also been used in conditioning a 
variety of rainfall–runoff models (e.g. Beven and Binley 1992; Beven and Freer 2001; 
Page et al. 2007; Li et al. 2009) and flood routing models (e.g. Aronica et al. 1998; 
Bates et al. 2004; Pappenberger et al. 2005b, 2007a, 2007b). 

More information on the GLUE methodology may be found in Beven (2009, Section 
4.5, Box 4.4). 

CAPTAIN 

The Computer Aided Program for Time-series Analysis and Identification of Noisy 
systems (CAPTAIN) is a toolbox of computational routines (m-files) for use within the 
Matlab-Simulink software environment (see http://www.es.lancs.ac.uk/cres/captain/ 
and Taylor et al. 2007). Almost all of the routines are numerical recursive algorithms 
that can be used within a flood forecasting and warning environment. Moreover, by 
combining them in a customised manner, if necessary with a graphical user interface, 
it is possible to synthesise a complete flood forecasting and warning system. For 
example, the quasi-distributed forecasting system for the River Severn, developed at 
Lancaster University under the aegis of the FRMRC, was implemented in this 
manner (see Romanowicz et al. 2006b; Young et al. 2006). 

The algorithms in CAPTAIN can be divided into the following four categories that are 
relevant within the present flood forecasting and warning context (an additional 
category is concerned with digital control system design). In almost all cases, the 
various routines are able to handle and infill missing data. 

i. Recursive estimation algorithms for time series analysis. These include 
the Kalman Filter (KF) for data assimilation and forecasting (see Section 
4.3.1), which can be made adaptive by the incorporation of the recursive 
parameter estimation algorithms mentioned below under category ii; the 
associated Fixed Interval Smoothing (FIS) algorithms for the off-line 
estimation, interpolation and smoothing of state variables in state-space 
models; related KF/FIS algorithms for the optimal estimation and 
forecasting of ‘unobserved component models’ for univariate time series, 
such as rainfall and flow series, that include trends and harmonic/quasi-
harmonic components (as in tidally affected data). The KF algorithm has 
obvious application in the construction of flood forecasting systems based 
on state-space models; and the FIS algorithms provide a very flexible tool 
for (a) the off-line decomposition of time series into physically meaningful 
components; (b) infilling series by interpolation over gaps; and (c) the on-
line forecasting of the components, separately or combined. 

ii. Iterative and recursive-iterative algorithms for identifying and estimating 
linear and nonlinear (state-dependent parameter) transfer function (TF) 
models in either discrete or continuous-time. The discrete-time TF is 
implemented as a difference equation model and the continuous-time TF 
as a differential equation model, both of which are used widely in 
conceptual hydrological models for the representation of model stores. 
The data-based, multi-order TF models can be linear or nonlinear and are 
the major tool in DBM modelling (see Section 4.2), where they are 
normally decomposed into physically interpretable serial and parallel 
connections of hydrological stores (generalisations of PRTF models in 
the simplest linear case). The recursive options for these algorithms allow 
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for their use on-line in real time for applications such as data assimilation 
and adaptive forecasting. 

iii. State-Dependent Parameter (SDP) identification and estimation of 
nonlinear models. The SDP algorithm investigates whether any 
parameters in linear models are nonlinearly dependent on other 
measured variables and estimates the nature of this dependency, initially 
in non-parametric, graphical form. This converts the linear model into a 
widely applicable nonlinear form: typical hydrological examples are the 
DBM rainfall–flow and nonlinear flow routing model, where the finally 
parameterised SDP nonlinearities have a clear hydrological interpretation 
and simply convert the input into an ‘effective’ series (e.g. effective 
rainfall). 

iv. A large collection of other routines and algorithms for a wide variety of 
tasks, including data analysis (correlation analysis, spectral analysis etc), 
model order and structure identification (criteria such as AIC, SIC, YIC 
etc), TF model decomposition, and model diagnostics (Nash-Sutcliffe 
Efficiency, time-variable parameter estimation etc). 

4.5 High-Level uncertainty framework 

4.5.1 Introduction 

As part of Phase 1 of this project (Task 1.3), a start has been made on developing a 
generic unified framework for assessing the uncertainty of a forecast in NFFS (i.e. 
predictive uncertainty). The development of the framework is being performed in 
three phases: 

• Phase 1 – High-level framework – what needs to be considered (Task 
1.3). 

• Phase 2 – Detailed framework – the choice of approach for each 
combination of circumstances (Task 2.1). 

• Phase 3 – Guidelines for these different situations (Task 3.1). 

Table 4.2 shows the items which are being considered in these different phases of 
the project. 

This section focuses on the development of the high-level framework (Task 1.3, 
Phase 1), which will be developed to a more detailed level in Task 2.1 and beyond 
once the high-level concept has been agreed with the Project Board. The objectives 
of the framework are summarised in Section 4.5.2 while Section 4.5.3 describes the 
key components. Finally, Section 4.5.4 summarises the uncertainty estimation 
techniques which might be considered for inclusion in the framework. 

 



90  Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models  

Table 4.2 Indicative summary of the key considerations in development of the uncertainty framework and guidelines. 

Item Task 1.3 – High-level framework Task 2.1 – Detailed framework Task 3.1 – Guidelines 
Level of risk Identify the preferred approach to estimating risk, 

and the key factors in the framework which will be 
linked to risk. Also how this links to the complexity 
of approach 

Define the choices and options that are available in 
each situation 

Provide descriptions and tools (e.g. flowcharts, risk 
matrices) to help users with choosing an appropriate 
method 

Lead time 
requirements 

Identify the key areas in which lead time 
requirements will influence the choice of 
uncertainty estimation techniques 

Define how lead time requirements relate to 
catchment response time, and hence to choice of 
an appropriate uncertainty estimation technique 

Provide guidance on how to estimate forecast lead time 
requirements and relate these to catchment response 
times, and hence to choice of technique 

Types of 
models 

List the uncertainty estimation methods that are 
potentially suitable for general types of model 
(rainfall–runoff, flow routing, hydrodynamic etc) 
and the specific types of models (PDM, ISIS etc) 
which will be considered in the framework 

Define which methods are applicable to each 
general and specific type of model, taking account 
of model-specific issues, the capabilities of NFFS, 
likely model run times in probabilistic mode etc 

Provide guidance on applying the recommended 
methods to each type of model 

Sources of 
uncertainty 

Define the sources of uncertainty that will be 
considered in the framework, and how these relate 
to lead time requirements, and list possible 
methods that can be used for each source 

Define possible methods that might be used in a 
forward uncertainty analysis for each source and 
general type of model considered in the framework, 
taking account of catchment-specific issues (tidal 
influences, control structures, reservoirs etc) 

Provide guidance on identifying the key sources of 
uncertainty in models based on forecast lead time 
requirements, catchment response times to forecasting 
point(s), catchment-specific issues, data availability, 
requirements for hindcasts etc 

Data 
assimilation 

Describe the main factors to consider when 
deciding whether to use data assimilation, and 
how these relate to the level of risk 

Describe the techniques that are appropriate in 
each modelling situation  

Provide guidance on the data requirements for each 
technique described in the framework and the 
consequences of data errors/instrument failures etc 

Operational 
requirement 

Define the operational situations that might 
influence the choice of uncertainty estimation 
technique and which will form decision points in 
the framework (and how these link to lead time 
requirements) 

Define which uncertainty estimation techniques are 
likely to be appropriate in each situation, taking 
account of lead time requirements 

Provide guidance on common types of operational 
requirement in the Environment Agency (with 
examples), and the techniques which could possibly be 
used operationally 

Run times Define the choices for reducing model run times 
that will be considered in the framework 

Define the methods that are appropriate for the 
different modelling situations described in the 
framework 

Provide guidance on how each technique might be 
implemented 
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4.5.2 Objectives of the framework 

The framework will provide guidance on the methods to be used to quantify and 
reduce the uncertainty of the individual components as well as to quantify and reduce 
the uncertainty of a complete model cascade, and will categorise each approach by 
factors that determine its effectiveness including: 

• type of model (e.g. rainfall–runoff, flow routing, hydrodynamic); 

• lead times (targets, technically feasible); 

• availability of good quality river gauge telemetry data for data 
assimilation; 

• complicating factors (e.g. control structures, storage). 

The framework will also form the basis for some of the methodologies to be 
incorporated in the guidelines to be produced within Task 3.1 of this project. 

Although the focus is on the types of conceptual rainfall–runoff, flow routing and 
hydrodynamic models currently used operationally within the Environment Agency 
(both individually, and in end-to-end integrated catchment models), the framework is 
being developed in a way that is robust and flexible enough to allow for the inclusion 
of additional uncertainty techniques later on (outside this project), and aims to form a 
common framework to assess the uncertainty in flood forecasting models from end-
to-end, which is robust, scaleable and risk-based. 

The framework should then allow users to meaningfully combine the probabilistic 
treatment of important sources of uncertainty to gain an understanding of the overall 
uncertainty in the flood forecast. Numerical Weather Prediction (NWP) rainfall 
ensembles, as tested in the ‘Hydrological Modelling with Convective Scale Rainfall’ 
project, are also being considered within the framework (although consideration of 
how to generate these ensembles is outside the scope of the present project). 

The following section describes some of the key issues which are highlighted in 
Table 4.2, and the discussion proceeds in the same order as in that table. 

4.5.3 High-level framework 

Level of risk 

Defra and the Environment Agency are moving towards a risk-based approach to 
flood risk management, and it has been agreed that the framework should take 
account of the level of risk when selecting appropriate techniques. 

Clearly, at high-risk locations (high probability of flooding, and large potential damage 
or risk to life) the effort of setting up an advanced probabilistic forecast system is 
more justified than for low-risk areas. For example, if the flood damage can be 
reduced by taking timely response measures and the expected damage reduction 
exceeds the investment in the forecast system, then this adds to the economic case 
for improvements to the forecasting system. In many practical applications, this may 
amount to the following criteria: 
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• The probability of flooding and the potential damage and/or loss of life in 
the area of interest are relatively high. 

• The flood damage can be reduced significantly by timely response 
actions. 

• A probabilistic component to the forecasting system is technically 
feasible. 

In development of the guidelines and uncertainty framework in later tasks (e.g. Tasks 
2.1, 3.1), a number of risk-based approaches could be considered to assess which 
are the most important sources of uncertainty in different situations. Examples could 
include: 

• estimates for economic damages; 

• measures of vulnerability on the floodplain; 

• simple multi-criteria approaches. 

For example, models could possibly be optimised based on vulnerability measures 
(Pappenberger et al. 2007a) in which one set of models might be suitable for 
predicting the risk of flooding in one settlement, while another set of models might be 
suitable for predicting the risk of flooding in another settlement or at a road junction 
critical to evacuation plans. Local level sensors might also be installed to allow data 
assimilation algorithms to be implemented to improve the location forecasts for that 
location, with sufficient lead time to allow any damage mitigation measures to be 
effective. 

Other simpler indicators could also be considered, such as the number of properties 
at risk, information derived by regional teams on failure to meet Environment Agency 
forecasting targets (POD/FAR), or existence of a Major Incident Plan for a location. 
The National Flood Risk Assessment (NaFRA) dataset was also proposed by a 
reviewer, but the Project Board felt that this was too broad-brush for this study in its 
current form. 

To assess the level of risk, an approach based on the Environment Agency’s Flood 
Warning Level of Service Risk Matrix is proposed (see Figure 2.6), in which risk is 
based on the combination of the number of properties at risk, and the probability of 
flooding (expressed using the standard of protection at the site of interest). However, 
this approach is aimed primarily at a single forecasting location, whereas for an 
integrated catchment model forecasts may be provided for several locations, each 
with different numbers of properties and standards of protection. During Phase 2 of 
the project, some thought will therefore be required on how to apply this approach to 
multiple forecasting locations. 

Having assessed the level of risk, this can be used as a guide to which approach to 
use, both in choice of techniques, and the level of complexity of analysis work to 
come to an optimal modelling solution. For example, in the Real-Time Modelling 
Guidelines (see Section 2.2.1), two levels of detail were used depending on the level 
of risk: 

• Method A – a purely qualitative approach suitable for a rapid first 
assessment of potential modelling solutions. 

• Method B – the main model selection approach, which aimed to arrive at 
a reasonable compromise between technical, cost, benefit and other 
considerations. 
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A similar approach might be adopted here, with simple and more complex uncertainty 
estimation approaches (although cost-benefit considerations are outside the scope of 
this project). The level of risk might also influence the reliance placed on data 
assimilation, with a trade-off between requiring higher accuracy at high-risk locations 
(e.g. city centres), to which data assimilation can contribute, and the risks if a key 
instrument fails during a flood event. 

Lead time requirements 

In the Real-Time Modelling Guidelines (Section 2.2.1), the lead time requirement was 
a key aspect of the model selection process, where it was noted that ‘The choice of 
catchment model generally involves a trade-off between accuracy and minimum 
warning time requirements, with rainfall–runoff models using rainfall forecasts giving 
the longest lead time, and lowest accuracy, and at-site triggers often giving the most 
accurate results, although with the shortest lead time’. 

Table 4.3 illustrates some of the typical trade-offs between forecast lead time and 
accuracy with – in general terms – lead time decreasing, and accuracy increasing, 
moving down the table. 

Table 4.3 Indication of the relationship between input data and the type of 
forecast model (Environment Agency 2002). 

Input  Type of forecast model 
Rainfall forecasts Rainfall–runoff 
Rainfall measurements  Rainfall–runoff 
Forecast inflows Routing 
Measured inflows Routing 
At-site levels and flows Local model 
Levels at or near the site None (triggers) 
 

The combination of accuracy and lead time defines the quality of the forecast and 
thereby the added value in terms of potential reductions in flood damage and loss of 
life. Generally, the potential damage reduction increases with increasing lead time 
and accuracy up to a point of diminishing returns, beyond which any additional lead 
time is of little further benefit. Also, as described in the following section, in many 
situations there are often minimum lead times required for specific response actions. 

In practice, the choice of model type and input data will depend on a balance 
between the operational requirement for lead times and the catchment response 
time, as described in the following subsections. 

The forecasting lead time requirement depends primarily on the lead times required 
by flood warning duty officers, local authorities and the emergency services. Often, 
these will be times to the crossing of a flood warning (Action or Response) threshold. 
Typically, shorter lead times may be used in the actual operational flood warning, 
while forecasts at longer lead time are used as guidance.  
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For example, the consultations and review have suggested that the following typical 
lead times are required: 

• 1 or 2 hours – national target (Wales and England respectively). 

• 4–6 hours – initiating Major Incident Plans/Severe Flood Warnings. 

• Several hours – installation of temporary/demountable barriers. 

• Several hours to days – planning staff rotas, early warnings to 
professional partners, flood watches etc. 

These times need to be related to typical catchment response times to the 
forecasting point(s) of interest as discussed in the following subsection. 

In real-time use, the model cascades within NFFS are run in two principal operational 
modes: 

i. a historical mode 

ii. a forecast mode. 

In the first mode the models are forced by hydrological and meteorological 
observations over a limited time period prior to the onset of the forecast in order to 
update the model states. In the second mode, the models are run over the required 
forecast lead time, and the internal model states at the end of the historical run are 
taken as initial conditions for the forecast run. 

Depending on the lead time at which forecasts are issued in comparison to the 
hydrological response time, the dominant uncertainties will lie in the inputs derived 
from rainfall forecasts, rainfall observations, and rainfall–runoff, flow routing and 
hydrodynamic models (as appropriate). As the process of forecasting is geared 
primarily towards providing timely and accurate information for the flood warning duty 
officer when deciding whether to issue a flood warning, the most important 
uncertainties within the process at that lead time will need to be considered. 

Within NFFS two cases can be distinguished: 

• Type 1: Forecasts can be made with sufficient lead time directly from 
measured rainfall and/or radar and/or uncertain radar projections and/or 
measured or forecast flows at a station further upstream. 

• Type 2: Forecasts where lead times are not sufficient using measured 
data so that rainfall forecasts are critical. There are two sub-cases: 

- small catchments – in this case, NWP (ensemble) forecasts are 
unlikely to be useful at small catchment scale except for general 
severe event warnings; 

- large catchments where long lead times (24 hours) are required for 
decisions about staff mobilisation etc (normal warnings would come 
under Type 1 cases in large catchments). 

In England and Wales the Type 1 case dominates. However, flow forecasts based on 
NWP rainfall forecasts (Type 2) are increasingly used within the Environment Agency 
to provide guidance on likely mobilisation and other requirements in advance of a 
flood event, and the issuing of Flood Watches, although at present are not used 
directly for issuing Flood Warnings or Severe Flood Warnings. 
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In the Real-Time Modelling Guidelines, for the indicative method (Method A), the 
following rule of thumb (adapted from Reed 1984) was proposed based on 
catchment response time (Tp): 

• Tp ≤ 3 hours – Rainfall–runoff modelling based on rainfall forecasts 
(STEPS/radar-only). 

• 3 ≤ Tp ≤ 9 hours – Rainfall–runoff modelling based on rainfall actuals 
(raingauge/radar) (or rainfall–runoff modelling combined with routing in 
the lower reaches). 

• Tp ≥ 9 hours – Flow routing. 

For the more detailed method (Method B), the various time delays in receiving 
telemetry data, deciding to issue a warning and issuing that warning, were also 
considered in relation to the catchment response time (i.e. to the locations where 
forecasts are required). These approaches might be adapted to advise on the type of 
uncertainty estimation and data assimilation techniques which are most appropriate 
for different lead times. 

Alternatively, an approach which was suggested in the Probabilistic Flood 
Forecasting Scoping Study (Environment Agency 2007) might be adopted and 
developed further. This was based on a view of catchment response zones proposed 
by Lettenmaier and Wood (1993). 

The method is based upon a set of criteria which compare the desired warning lead 
time Tw to the hydrological response time TP at the location for which the forecast is 
to be provided, ignoring any time delays in the detection, forecasting and warning 
aspects of the system (Figure 4.6). This hydrological response time is further sub-
divided into the time that water needs to flow through the river channel (Tr) and the 
time that the water needs to flow from the land phase into the river (Ts). The division 
between the land phase and the river channel is somewhat arbitrary, but generally 
the river channel is considered to be the main river (system), while the response of 
the land phase is the response of (sub)catchments before the water flows into the 
main river system. The following four situations are defined: 

i. Tw < Tr or Ts << Tr. The warning will be issued on the basis of water that is 
already in the main river channel; or the time the water needs to flow from 
the land phase into the river is insignificant compared to the time the 
water needs to flow through the main river. This may be the case for 
forecast point VII in the figure, assuming that catchments E and F have 
only a minor contribution. 

ii. Tw < Tp and Ts ≈ Tr. The warning will be issued on the basis of water that 
is still on the land phase and the response time is determined by the time 
this water needs to flow from the land phase into the river channel as well 
as by the time the water needs to flow through the main river. This may 
be the case for forecast point IV in the figure. 

iii. Tw < Tp and Ts >> Tr. The warning will be issued on the basis of water 
that is still on the land phase and the response time is mainly determined 
by the time this water needs to flow from the land phase into the river 
channel. This may be the case for forecast point I in the figure. 

iv. Tw > Tp. The desired lead time is such that a warning may be issued on 
the basis of water that has not yet fallen as rain. In this case also a 
rainfall forecast is needed for a timely forecast. 
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Cases i to iii are typically applied for short-range forecasting in medium and larger 
basins. Case iv is typically applied in either medium to long-range forecasting in 
larger river basins or for forecasting in small (flashy) river basins. Of course, for the 
longer lead time situations, forecasts may rely in the early stages of the event 
primarily on rainfall forecasts or observations, and may exhibit significant reductions 
in uncertainty as input data streams switch as the event progresses (e.g. from rainfall 
forecasts to rainfall observations to a flow routing approach). The magnitude of these 
changes in uncertainty may depend on whether a single model parameter set is 
used, or whether calibrations have been performed separately for each type of input 
data stream. 

 

Figure 4.6 Schematic layout of a catchment, including the main river, 
tributaries and catchments. 

If this approach was used, then a tentative classification scheme (which could be 
developed further) might be as shown in Table 4.4 for some of the more common 
sources of uncertainty in catchment modelling. 
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Table 4.4 A possible uncertainty classification scheme for fluvial flood 
forecasting using the Lettenmaier and Wood (1993) classification scheme 
(Environment Agency 2008). 

Type Primary sources of uncertainty Secondary sources of uncertainty 
1 - High flow ratings 

- Hydraulic/routing model parameters 
- River channel/floodplain survey 

Likely 
- Abstractions/discharges 
- Runoff from lateral catchments (Type 3 or 
4) 
Depends on catchment/flood risk area 
- Tidal boundary 
- Washland operations 
- Tidal barrier operations 
- River control structures 
- Flood defence geometry and condition 

2 - A combination of Types 1 and 3 - A combination of Types 1 and 3 
3 - Rainfall actuals 

- Rainfall–runoff model parameters 
- Antecedent conditions 

Likely 
- River levels (if updating) 
- High flow ratings (if updating) 
Depends on catchment/flood risk area 
- Snowmelt 
- Reservoir operations 
- Flood defence geometry and condition 

4 - Rainfall forecasts 
- Rainfall–runoff model parameters 
- Antecedent conditions 

Likely 
- River levels (if updating) 
- High flow ratings (if updating) 
Depends on catchment/flood risk area 
- Snowmelt 
- Reservoir operations/state 
- Flood defence geometry and condition 

Types of models 

The possibilities for estimating uncertainty depend on the type of model both in 
general terms (e.g. rainfall–runoff model) and the specific modelling package (PDM, 
ISIS). Some factors to consider include: 

• the main sources of input data (or forecasts) to the model; 

• typical model run times; 

• the way that the model is implemented in NFFS (e.g. PI XML files); 

• the sensitivity of the model to individual model parameters. 

The consultations and review have suggested that, based on the current types of 
integrated catchment models used within the Environment Agency, at least the 
following types of model may need to be considered in the framework (although will 
not necessarily all be considered in the case studies): 

• PDM – conceptual rainfall–runoff model 

• MCRM – conceptual rainfall–runoff model 

• TCM – conceptual rainfall–runoff model 

• NAM – conceptual rainfall–runoff model 

• DODO – flow routing model 

• VPMC – flow routing model 

• KW – flow routing model 
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• ISIS – hydrodynamic model 

• MIKE11 – hydrodynamic model. 

The Real-Time Modelling Guidelines (Section 2.2.1) also noted that the following 
catchment-related issues could be factors in model selection, and similar 
considerations might also apply to the choice of uncertainty estimation method (to be 
investigated): 

• fast response catchment 

• floods can occur on a permeable or dry catchment 

• flood response can vary depending on spatial variations in rainfall 

• groundwater influences 

• large lowland chalk or clay catchment 

• urban catchments 

• ungauged catchment 

• snowmelt 

• simple river reach 

• flat, lowland river 

• simple floodplain 

• embanked floodplain 

• levels only at reach ends 

• reservoirs 

• natural lakes, bogs and wetlands 

• mobile river bed 

• tributary inflows 

• fan-shaped flow networks 

• flow control structures (sluices, barrages etc) 

• off-line storage, abstractions, discharges and diversions (e.g. washlands, 
pumps, flood relief channels) during flooding conditions 

• event-specific problems. 

Sources of uncertainty 

The major sources of uncertainty that need to be addressed for integrated catchment 
models operated in NFFS include: 

• uncertain boundary conditions (current and future); 

• uncertain initial conditions; 

• structural errors in each model of the model cascade; 
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• uncertain model parameters; 

• uncertain structure operating rules. 

In general, there will be sources of uncertainty at each level and step in the model 
cascade, and this section highlights (at a high level) the issues which will need to be 
considered further during Task 2.1 of the project. In particular, the consultations 
suggested that the following sources of uncertainty are most important in the models 
which are currently operated by the Environment Agency: 

• catchment averaging of raingauge data 

• validity of rating curves 

• model calibration (hydrodynamic models) 

• model calibration (rainfall–runoff models) 

• representation of floodplain storage 

• representation of antecedent conditions 

• representation of ungauged inflows 

• influence of structure operations. 

The issue of uncertainty in rainfall forecasts (STEPS, MOGREPS etc) was also 
identified as important, although outside the scope of this project (other than for 
consideration in the uncertainty framework). 

The sources of uncertainty affect the uncertainty in the forecast in different ways, and 
the relative contributions depend on the lead time and locations of interest. As an 
example, Figure 4.7 shows indicative estimates for the contributions to the total 
uncertainty for a downstream location in a large river. For this location, the 
uncertainty of the precipitation forecast has a limited influence for a very short lead 
time but becomes dominant at longer lead times. 

  

 

Figure 4.7 Illustrative example of contributions to the total uncertainty as a 
function of lead time for a specific downstream location in a large river. 
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However, for locations further upstream, the situation would be very different from 
that depicted in the figure. 

One route to estimating uncertainty and its relative contributions is to use a forward 
uncertainty analysis, in which the likely uncertainty in model parameters, input data, 
model state etc are hypothesised, and fed through the model (or chain of models) to 
estimate the overall uncertainty in flows and/or levels. Some forward uncertainty 
propagation techniques include: 

• analytical approaches 

• ensemble techniques 

• multi-model techniques 

• Monte Carlo approaches 

• fuzzy set methods. 

Table 4.5 provides some examples of forward uncertainty propagation techniques for 
the sources of uncertainty shown above. 

Table 4.5 Examples of forward uncertainty techniques. 

Source of uncertainty Examples of techniques 
Catchment averaging of 
raingauge data 

Monte Carlo sampling of raingauge weights, radar 
rainfall fields, catchment average rainfall, sampling 
from a range 

Validity of rating curves Decomposition of error sources, addition of variances 
(ISO/British Standard procedures), Monte Carlo 
sampling, evaluation of historical performance, 
sampling from a range 

Model calibration 
(hydrodynamic models) 

Monte Carlo sampling of roughness coefficients, 
evaluation of historical performance 

Model calibration (rainfall–
runoff models) 

Monte Carlo sampling of key model parameters 
and/or model initial conditions, multi-model 
comparisons, evaluation of historical performance, 
sampling from a range 

Representation of 
floodplain storage 

Quasi 2D flood modelling using Monte Carlo sampling 
or sensitivity analysis based on uncertain model 
parameters, expert judgement or comparison with 
observations, Monte Carlo sampling of states (storage 
volume) or parameters (storage properties) 

Representation of 
antecedent conditions 

Monte Carlo sampling of states (e.g. soil moisture 
deficit) or parameters (runoff coefficient) 

Representation of 
ungauged inflows 

Monte Carlo sampling of parameters (e.g. scaling 
factors on nearby gauged flows), expert judgement, 
sensitivity analyses 

Influence of structure 
operations 

Expert judgement, sensitivity analyses  

 

A key task in Phase 2 of the project will be to review which of these (or other) 
techniques are appropriate for the types of models currently used in NFFS (PDM, 
MCRM, TCM, NAM, KW, DODO, ISIS etc). Also, for some techniques, an archive of 
both data and forecasts is required to assess past forecast accuracy, which requires 
historical records of sufficient length (with an appropriate number of historical flood 
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events), and the ability to regenerate (hindcast) forecasts, which can be an issue for 
some types of forecast (e.g. rainfall–runoff model forecasts based on ensemble NWP 
inputs, or radar rainfall fields). 

The influence of each source of uncertainty depends on its contribution to the total 
uncertainty for the lead times and locations of interest. Therefore, to apply the 
framework, a starting point could be to perform a qualitative analysis for the 
catchment of interest to produce a shortlist of uncertainties that are relevant and 
which it might be useful to propagate through the model cascade, using methods 
such as those shown in the table above. 

Data assimilation 

Data assimilation (or real-time updating) can improve the accuracy of forecasts, 
provided that the data used are of sufficient quality and reliability. In many cases, an 
error correction or state updating algorithm is used to help to allow for differences 
between the observed and forecasted values, based on performance evaluated in 
the historical mode of operation, or using parameters calculated off-line. The 
consultation exercise showed that the following automated methods are currently in 
use within NFFS: 

• Delft-FEWS ARMA error correction 

• CEH ARMA correction (used with PDM, KW, TCM) 

• MCRM error correction 

• PDM state updating 

• MIKE11 error correction 

• ISIS GAUGE. 

An indirect form of updating is also employed for the two event-based types of model 
used within NFFS (PRTF and HYADES), in which the most appropriate parameter 
set to apply is selected on the basis of current flows and/or catchment conditions. 

For some approaches to data assimilation, such as the Kalman Filter, an assessment 
of uncertainty can also be provided. The following general factors should also be 
considered: 

• Quantification and reduction of the forecast uncertainty is only possible 
when measurements are available. Note that the measurements 
themselves are also uncertain (rating curves, measurement errors etc). 
This should be taken into account (if possible) when reducing and 
quantifying uncertainties. 

• Ideally, uncertainties are quantified and treated/reduced closest to their 
origin. For the Type 1 case above, data assimilation is crucial and should 
be used wherever possible. The major issues with this case are the 
propagation of uncertainty and best methods of data assimilation in 
cascades of models. For Type 2, data assimilation may still be crucial 
depending on the catchment response and lead time requirement. 

• Uncertainty quantification of the forecast is possible at each step in the 
processing chain (for a single model or for the complete model cascade) 
by making the current forecast conditional on past performance (given 
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that the lengths of historical and forecast records are long enough). This 
holds for both the Type 1 and Type 2 case above. 

In some cases, post-processing of ensemble or probabilistic outputs may be 
desirable to improve the mean and spread of estimates (e.g. using quantile 
regression or Bayesian uncertainty techniques). 

In addition to data quality (high flow performance etc), another factor to consider is 
the resilience of the data assimilation process and the level of risk, for example if an 
instrument fails. Also, under current procedures in NFFS, duty officers can view 
forecasts both with and without updating to help to identify whether any problems 
have occurred in the updating process (e.g. due to timing errors in model outputs). 
One question to consider in Task 2.1 is therefore the importance of this type of 
comparison since it may not be possible/meaningful for some types of data 
assimilation algorithm. 

If a chain or cascade of models is used (i.e. an integrated catchment model), there is 
also the issue of how the outputs from individual models are to be combined, and 
whether the outputs are to be updated at each boundary between models (i.e. at 
several points, moving down the catchment), or only as a final step at the forecasting 
point(s) for which the forecast is required. There may also be issues to consider 
regarding whether values are updated in terms of levels or flows, with various factors 
to consider which may affect the updating procedures, such as backwater influences, 
tidal influences, the influence of structure operations, and the suitability of high flow 
ratings. 

Operational requirements 

Another factor to consider in the framework may be the intended operational use of 
the forecasts. For example, for some applications a simple estimate or visualisation 
of the spread of estimates may be sufficient. However, if the probabilistic inputs are 
being used directly in major decisions (e.g. evacuating a city), or as inputs to another 
organisation’s decision support system, then more formal estimates of probability 
may be required (perhaps with conditioning or post-processing of outputs). 

The question of how the forecasts are evaluated is also important, and links to skill 
scores and other performance measures. Ideally, improvements in the forecast 
system (i.e. reduction of the uncertainty) must be quantified in terms of performance 
through diagnostic forecast verification. Diagnostic verification is concerned with 
assessing different attributes of (ensemble) forecasts, such as reliability, skill, 
resolution, discrimination etc, to diagnose the performance of the forecast system 
and process so that cost-effective improvements may be made. The choice of 
measures may therefore sometimes influence the choice of modelling approach. 

In some situations, a cost or damage function can also be constructed to quantify the 
effect of making better decisions, based on more accurate probabilistic forecasts. 
However, this is a developing area, so for practical applications a subjective estimate 
must often be made of the effect of a higher quality forecast on the decision-making 
process. In the end, the benefit of improved decision making should outweigh the 
investment in the forecast system. 

Task 2.4 of this project may also consider real-time inundation mapping, in which 
case the question arises of whether a procedure is required to assimilate data at the 
hydrodynamic model nodes between telemetry sites (e.g. by interpolation) or whether 
a state updating procedure can be used instead which avoids the need for this. 
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Run times 

Model run times will probably be a factor to consider in the detailed framework, since 
some approaches may not be feasible within the time constraints of providing 
operational forecasts in NFFS. The framework may need to indicate factors to 
consider, and different choices for different modelling situations, for example: 

• Computational improvements – e.g. parallel processing, faster 
processors. 

• Model configuration changes – e.g. nested models, model 
simplification/rationalisation. 

• Statistical approaches – e.g. sampling or grouping of ensembles. 

• Model emulators – e.g. simpler models to emulate the behaviour of more 
complex models. 

Also, it might be possible for an initial (more computationally intensive) assessment 
be performed off-line, as required in some approaches. This would, of course, 
depend on suitable data (in terms of quality, record length, availability of hindcasts 
etc ) being available to support the approach. 

4.5.4 Uncertainty estimation techniques 

Earlier sections in this report describe a wide range of approaches to estimation of 
uncertainty which have been used in research, pre-operational and operational flood 
forecasting studies. It is the intention that a selection of these techniques will be 
applied in the case studies to be performed in Phase 2 of the project (see Section 5), 
while the uncertainty framework might also consider a wider range of possible 
choices. 

Table 4.6 provides an overview of the methods which have been discussed in this 
report using the following classification scheme: 

• Forward uncertainty propagation – methods which consider the likely 
uncertainty from individual sources, and propagate that uncertainty 
through a cascade of models. 

• Data assimilation techniques – methods which can help to improve the 
quality of a forecast, while also giving an estimate of uncertainty. 

• Conditioning approaches – pre- and post-processing techniques which 
can help to improve and quantify the model outputs in probabilistic terms. 

The table shows that some types of method (e.g. ensemble QPF) have been used 
more widely than others (although this particular technique is being considered on 
the ‘Hydrological Modelling with Convective Scale Rainfall’ project, so is outside the 
scope of the present study). 
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Table 4.6 Overview of uncertainty estimation techniques for flood forecasting 
applications described in this report. 

Section  Item Methods 
Forward uncertainty propagation 
2.1.1 MAP D-PHASE Multi-model ensemble QPF 

Multi-model hydrological models  
2.1.1 EFFS Multi-model and ensemble QPF 
2.1.1 EU IMPRINTS Multi-model and ensemble QPF 
2.1.2 EFAS Ensemble QPF 
2.1.2 FEWS-NL Multi-model/ensemble QPF 
2.1.2 Lake Como Monte Carlo rainfall estimation 
2.1.2 CI-FLOW Multi-model ensembles (QPF, hydrological, surge) 
2.2.2 T46 Ensemble, and pseudo-ensemble, QPF 
3.3.3 FRMRC2 Data based mechanistic emulators 
4.2.1 General Analytical approaches 
4.2.1 ARPA-SIM Multi-model ensemble (QPF, hydrological, 

hydrodynamic) 
4.2.1 General Monte Carlo, Latin hypercube, copula sampling 
4.2.1 General Fuzzy sets 
4.5.3 General Simpler techniques (e.g. sampling from a range) 
 
Data assimilation  
2.1.1 FEWS-NL Ensemble Kalman Filter (hydrodynamic model) 

Error correction 
Particle filtering 

2.1.1 FLOODRELIEF Ensemble Kalman Filter 
2.1.1 FRMRC2 Adaptive DBM models 
2.1.1 FREE Adaptive DBM models at smart sensor nodes 
2.1.1 FLOODsite Machine learning techniques (ANN, M5 etc) 
2.1.1 River Nith Adaptive DBM models 
2.1.1 FRMRC2 Adaptive DBM models 
4.3.1 General Error correction/prediction 
4.3.1 General State updating 
4.3.1 General Parameter updating 
4.3.1 General Kalman filtering 

Particle filtering 
4.3.1 General  Variational methods 
4.3.1 General DBM models 
Conditioning approaches (pre- and post-processing) 
2.1.1 NWS XEFS Ensemble Pre-Processing (EPP) 
2.1.1 NWS XEFS Hydrological Model Output Statistics (HMOS) 
2.1.1 NWS XEFS Ensemble Post-Processing 
2.1.1 FEWS-NL Bayesian Model Averaging (BMA) 
2.1.1 FEWS-NL Bayesian Processor of Output (BPO) 
4.3.2 General Quantile regression 
4.3.2 FRMRC Generalised Likelihood Uncertainty Estimation 

(GLUE) 
4.3.2 General Bayesian Model Averaging  
4.3.2 General Bayesian Processor of Output 
QPF = Quantitative Precipitation Forecast 

Table 4.7 provides a shorter summary in which each particular technique is only 
listed once. 
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Table 4.7 Overall summary of uncertainty estimation techniques for flood 
forecasting applications described in this report. 

General 
technique 

Methods 

Forward 
uncertainty 
propagation 

Ensemble techniques 
Multi-model techniques 
Monte Carlo sampling 
Analytical approaches 
Latin hypercube 
Copula sampling 
Fuzzy sets 
Emulators 
Simpler techniques (e.g. sampling from a range) 

Data 
assimilation 

Error correction 
State updating 
Parameter updating 
Particle filtering 
Kalman Filter 
Ensemble Kalman Filter 
Adaptive Data Based Mechanistic (DBM) 
Machine learning techniques (ANN, M5 etc) 
Variational methods 

Conditioning 
approaches 

Hydrological Model Output Statistics (HMOS) 
Quantile regression 
Ensemble Pre-Processing (EPP) 
Ensemble Post-Processing 
Bayesian Model Averaging (BMA) 
Bayesian Processor of Output (BPO) 

It is proposed that this general classification scheme is adopted for use in further 
development of the uncertainty framework. 
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4.6 Summary of chapter 
The main points from this chapter include: 

• A detailed review is provided for three main approaches to estimating 
and/or constraining uncertainty: forward uncertainty propagation, 
conditioning and data assimilation. 

• The forward uncertainty propagation techniques which are discussed 
include multi-model techniques, Monte Carlo methods, and fuzzy set 
methods. The data assimilation and conditioning techniques which are 
discussed include updating of input variables, updating of model state 
variables, updating of model parameters and updating of model outputs 
(i.e. error correction). 

• The issues with data assimilation and conditioning in integrated 
catchment models are also discussed, together with generic tools and 
techniques which could be used to implement them (such as DATools, 
GLUE and CAPTAIN). 

• Particular data assimilation techniques which are described include 
Kalman filtering, particle filtering, variational methods and Data Based 
Mechanistic approaches, while conditioning approaches which are 
considered include quantile regression, Bayesian Model Averaging and 
Bayesian Processor of Output methods. 

• The main data assimilation techniques currently used within the 
Environment Agency are also reviewed, and the review suggests that, at 
present, there is no existing data assimilation technique implemented in 
NFFS which allows for an assessment of uncertainty. 

• The high-level features are introduced for the uncertainty framework to be 
developed further in Phase 2. These include the following key decision 
points in selection of an appropriate uncertainty estimation technique: 
level of risk, lead time requirements, types of models, sources of 
uncertainty, data assimilation techniques, operational requirements and 
model run times. 
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5. Phase 2 Recommendations 

5.1 Introduction 
This section describes proposals for Phase 2 of the project, for which the main tasks 
to be considered are: 

• Task 2.1 – To further develop the high-level unified uncertainty 
framework for quantifying uncertainty for the major sources of uncertainty 
identified in Task 1.2 in integrated catchment models and suggest 
suitable validation measures. 

• Task 2.2 – To recommend and investigate alternative ways of reducing 
run times for real-time probabilistic models without significantly increasing 
uncertainty. 

• Task 2.3 – To demonstrate and validate the probabilistic treatment of 
uncertainties for selected integrated catchment models through case 
studies and test configurations in NFFS. 

• Task 2.4 – To briefly test how uncertainties in flood forecasting may affect 
flood extent and depths and to make recommendations for future 
research on how to carry forward the outputs of probabilistic flood 
forecasting to the generation of probabilistic flood warning maps (extent, 
depths). 

At the time of writing, the scope for Task 2.4 is still under consideration, and the time 
and budget available for that task may be transferred to other tasks within Phase 2 of 
the project. This task is therefore not discussed further here, although one of the 
case studies has been selected as a possible candidate for consideration on this task 
(based on current understanding of the requirements for this task). 

The main outputs from Phase 2 will consist of the test configurations in NFFS and the 
Phase 2 report, which will describe the detailed uncertainty framework and 
approaches to reduce run times with their advantages and disadvantages, and will 
include the case study fact sheets, a description of the work performed on Task 2.4, 
and a draft structure for the guidance and implementation plan to be prepared in 
Phase 3 of the project. 

This section describes the proposed approach for the remaining tasks in Phase 2 of 
the project. Section 5.2 discusses proposals for further development of the 
uncertainty framework, while Section 5.3 describes the approach to selection of 
possible case studies, and recommendations for potential case study catchments 
and associated techniques. 

5.2 Further development of the uncertainty 
framework 
During Phase 2 of the project, detail will be added to the framework in terms of 
specific techniques, types of models, ways of reducing run times etc. For example, 
Table 5.1 shows some initial ideas on possible key decision points and dependencies 
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which could underpin the logical structure of the framework (although it is not 
proposed that this format is used in the actual framework). For example, under the 
entry ‘Level of Risk’, a link could be provided to the ‘Operational Requirement’ entry 
showing that post-processing (conditioning) of outputs is justified if the risk is high, 
but possibly not required if the risk is low. These inter-relationships between entries 
will be explored further during Phase 2 of the project, using the case studies as a 
starting point for the analysis. 

Decisions will also be taken on the most operationally useful formats to use for the 
framework and guidelines, which could possibly include flowcharts, decision trees, 
risk matrices, and tables summarising the strengths and limitations of each approach. 
Additional ideas for the format of the framework and guidelines may also arise during 
work on Work Package 1.7 within FRMRC2 which is proceeding over the same 
timescales as this project (see Section 2.1). 

The framework will also consider good practice issues such as the need to evaluate 
model performance after flood events (and recommended approaches), continuing 
model maintenance, and appropriate performance measures for assessing different 
aspects of model performance, such as skill scores, skill of the mean forecast, the 
spread-skill relationship of the probabilistic forecast, the Brier score, ranked 
probability score, vulnerability based measures, and contingency measures (POD, 
FAR etc). 

However, the focus of the review of performance measures will be on a small number 
which could be used to assess the probabilistic outputs on the case studies (and 
which would be practical to implement operationally). As with the Real-Time 
Modelling Guidelines, the framework will provide clear guidance on the data 
requirements, benefits and limitations of each approach. 

The benefits of new technologies being developed within ongoing research 
programmes (e.g. FRMRC), such as adaptive sensor networks, could also be 
discussed as a low cost route to obtaining real-time data at key locations (e.g. critical 
infrastructure) to assist with model evaluation and updating. Any approaches 
recommended would where feasible comply with general Environment Agency policy 
on Flood Incident Management/Forecasting (e.g. a risk based approach). For 
consistency, if possible, criteria for deciding on level of forecasting service will also 
be considered. 
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Table 5.1 Summary of possible decision points in the uncertainty framework. 

LEVEL OF RISK 
Lead time requirements Complexity of method used to estimate lead times 
Types of models  
Sources of uncertainty Whether a forward uncertainty analysis is justified 
Data assimilation The data quality/reliability required to support the approach 

The need for backup approaches in case an instrument fails 
Operational requirement The need for post-processing to assess probability distributions 
Run times The target run time specified for model runs 
LEAD TIME REQUIREMENTS 
Level of risk  
Types of models  
Sources of uncertainty The sources of uncertainty which are important to consider 

Possible requirements for ensemble rainfall forecasts 
Data assimilation Possible post-processing requirements (e.g. for ensemble QPF) 
Operational requirement The potential applications of the forecast 
Run times Number of upstream components in the integrated catchment model 
TYPES OF MODELS 
Level of risk Not applicable 
Lead time requirements Not applicable 
Sources of uncertainty The sources of uncertainty which are necessary to consider 

The uncertainty estimation techniques which can be used 
Data assimilation Possible post-processing requirements (e.g. for ensemble QPF) 
Operational requirement  
Run times Run times required for deterministic model 
SOURCES OF UNCERTAINTY 
Level of risk  
Lead time requirements  
Types of models Sources of uncertainty which may need to be considered 

Uncertainty estimation techniques which are practical to use 
Data assimilation Data assimilation techniques which are practical to use 
Operational requirement Possible post-processing requirements to improve probability estimates 
Run times Can depend on the number of sources considered 
DATA ASSIMILATION 
Level of risk  
Lead time requirements  
Types of models Influences the types of methods which can be used 

Decisions required on whether to update at model boundaries 
Sources of uncertainty  
Operational requirement  
Run times Can depend on the method selected e.g. EnKF, ARMA 
OPERATIONAL REQUIREMENT 
Level of risk  
Lead time requirements Directly influences the lead time requirement 
Types of models  
Sources of uncertainty Possible need for post-processing to derive estimates of probability 

Performance measures/skill scores used 
Data assimilation Whether estimates with and without data assimilation are required 

Possible requirement for real-time mapping 
Run times The time available in which to calculate and post-process forecasts 
RUN TIMES 
Level of risk  
Lead time requirements  
Types of models  
Sources of uncertainty Techniques which are feasible to use in real-time 
Data assimilation Techniques which are feasible to use in real-time 
Operational requirement The time available for pre-processing, model runs and post-processing 
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5.3 Selection of case studies and techniques 

5.3.1 Introduction 

The consultation exercise (see Section 2.2 and Appendix A) confirmed that the 
following choice of case studies would provide examples which would be of interest 
and relevant to all regions in the Environment Agency: 

• Two complex linked integrated catchment models, combining rainfall–
runoff, flow routing and/or hydrodynamic models: for example, based on 
PDM/KW/ISIS or MRCM/DODO/ISIS. 

• Two simpler examples to illustrate key concepts: for example a rapid 
response catchment with rainfall and other sources of uncertainty, and a 
well-defined river reach including structures, rating curve uncertainty and 
other factors. 

The intention would be that at least one of these case studies should use a data 
assimilation technique. There was also a general view that the case studies should 
be chosen on technical grounds (i.e. specific types of models, and forecasting 
situations), rather than other criteria such as risk, or current model performance 
regarding level of service. 

The proposed high-level uncertainty framework (see Section 4.5) suggests the 
following key criteria for the choice of appropriate uncertainty estimation methods: 

• level of risk 

• lead time requirements 

• types of models 

• sources of uncertainty 

• data assimilation 

• operational requirement 

• run times. 

To assist in development of the framework, it would be useful if the case studies 
could illustrate a range of issues related to these requirements and this aspect was 
given although, as noted above, excluding the level of risk from the selection criteria. 
A number of other factors could also have been considered, such as the availability 
of previous research and model performance evaluation reports for the catchments, 
but it was considered that the criteria above were more relevant to this study. 

The following sections describe how the recommended case studies were chosen to 
fit within this framework (Section 5.3.2) together with – for the remaining examples – 
some practical considerations related to the timescale and resources available to 
perform the case studies (Section 5.3.3). Finally, Section 5.3.4 describes the 
techniques which it is provisionally proposed to use on the chosen case studies 
during Phase 2 of the project. 

The case studies would be conducted in such a way that the 
techniques/methods/NFFS workflows/codes developed on this project could be easily 
transferred to other cases, or reused by experienced personnel, once any 
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considerations of prior rights for existing software etc (licences, permissions, royalties 
etc) have been resolved. All files/workflows/scripts etc for the case studies would be 
provided to the Environment Agency in a project record spreadsheet for the test 
configurations. 

5.3.2 Illustrating use of the uncertainty framework 

Lead time requirements 

Section 4.5 discusses several possible categorisation schemes by lead time, and 
Table 5.2 illustrates how the suggested case studies could be classified using the 
following proposed approach: 

• Type 1 – Flow routing model (mainly forecasting from an upstream 
gauging station). 

• Type 2 – Integrated catchment model (combination of rainfall–runoff and 
flow routing models). 

• Type 3 – Rapid response catchment (primarily rainfall–runoff modelling 
using observed rainfall). 

Note that the Type 4 case, using forecast rainfall, is excluded from the case studies 
because it is being considered as part of the Hydrological Modelling with Convective 
Scale Rainfall project. Also, note that some of the Integrated Catchment Models also 
have rapid response and flow routing models included within them. 

Table 5.2 Possibilities for the case studies from the consultation meetings. 

Region Type 1 
Rapid Response 
Catchment 

Type 2 
Integrated Catchment 
Model  

Type 3 
Flow Routing Model(s) 

Anglian  Cam  
Midlands  Upper Severn, Warwickshire 

Avon 
Lower Trent, Soar 

North East Upper Calder South Tyne,  
Wansbeck 

Derwent 

North West Upper Ribble, Douglas, 
Greta 

Derwent Lower Eden, Lower 
Ribble 

Southern  Medway, Sussex Ouse, Adur  
South West  Bude/Neet, Bristol Avon  
Thames  Ravensbourne Thames Barrier 
EA Wales  Tawe, Taff, Solva  

Types of models 

The consultations also showed general agreement that the case studies should 
illustrate a range of model types and cascades of model types, applicable to a 
number of regions. 

However, a Project Board requirement was also NOT to consider event-based 
models which cannot run in continuous mode, such as PRTF (although related 
hydrological or hydrodynamic routing reaches could still be considered). 

Table 5.3 summarises the potential case studies which remain if these selection 
criteria are applied. 
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Table 5.3 Potential case studies taking account of types of models. 

Region Type 1 
Rapid Response 
Catchment 

Type 2 
Integrated Catchment 
Model  

Type 3 
Flow Routing Model(s) 

Anglian  Cam  
Midlands  Upper Severn 

Warwickshire Avon 
Lower Trent 
Soar 

North East Upper Calder South Tyne 
Wansbeck 

Derwent 

North West 
 

Upper Ribble 
Douglas 
Greta 

Derwent Lower Eden 
Lower Ribble 

Southern  Medway 
Sussex Ouse 
Adur 

 

South West   Bude/Neet 
Bristol Avon 

Thames  Ravensbourne Thames Barrier 
EA Wales  Tawe 

Taff 
Solva 

 

Sources of uncertainty 

The Project Board, and the consultation exercise, also suggested that the following 
sources of uncertainty are most important in the models which are currently operated 
by the Environment Agency: 

i. Catchment averaging of raingauge data 

ii. Validity of rating curves 

iii. Model calibration (hydrodynamic models) 

iv. Model calibration (rainfall–runoff models) 

v. Representation of floodplain storage 

vi. Representation of antecedent conditions 

vii. Representation of ungauged inflows 

viii. Influence of structure operations. 

From the consultations, the top three entries in this list were as follows: 

• Catchment averaging of raingauge data 

• Validity of rating curves 

• Model calibration (rainfall–runoff models) 

With only a few catchment-specific exceptions, the issue of structure operations was 
generally towards the bottom of the list for most regions. 

Also, the review of previous studies has not revealed any general methods for 
dealing with uncertainty across the range of types of structure used within the 
Environment Agency (which is not to say that such a method could not be 
developed). 

It has therefore been decided to exclude consideration of this topic from the case 
studies. 
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The following potential case studies have been excluded on this basis: 

• Medway – many structures and rating curve issues relating to data 
quality; not just rating curve uncertainty? 

• Soar – significant ungauged inflows and complex structure operations; 
forecasting model currently under development. 

• Solva – flood alleviation reservoir with a culverted outflow of a type which 
is not widely used within the Environment Agency except in small 
catchments. 

The Thames Barrier example, although of great interest within the Environment 
Agency, is also a very specific forecasting issue which is unlikely to be of general 
application nationally. 

The consultations also suggested that a study combining ensemble flow forecasts 
with ensemble surge forecasts would also be of interest, but this is outside the scope 
of the present project. 

For the remaining sources of uncertainty, all of the integrated catchment models 
illustrate these issues to some extent; however, the following potential case study 
has been excluded on the basis that it includes complicating factors which may not 
be widely applicable to other catchments: 

• Cam – catchment-specific chalk influences which are not necessarily 
captured using current rainfall–runoff modelling techniques. 

For the rainfall–runoff models, again all are good possibilities, but the following model 
has been excluded due to the complicating factor of a VPMC flow routing model 
reach down to the key Flood Warning Area: 

• Greta – flow routing reach in addition to the rainfall–runoff model 
component. 

As discussed earlier, there is also a requirement to demonstrate the application of 
uncertainty estimation methods to a flow routing situation, where the influence of 
structures and floodplains etc might dominate, but the hydrological aspects are not 
so important. On these grounds, the following potential case studies have been 
excluded from the model selection, leaving the choice shown in Table 5.4: 

• Bristol Avon – significant gauged and ungauged inflows, in addition to the 
routing issues. 

• Derwent (North East) – proposed as a flow routing example but actually a 
full integrated catchment model. 

• Lower Ribble – major gauged inflow from the River Darwen. 

• Taff – reservoirs for which it is understood that, at present, there is no 
mechanism for updating levels in real time (although this is planned for 
the future). 
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Table 5.4 Potential case studies taking account of sources of uncertainty. 

Region Type 1 
Rapid Response 
Catchment 

Type 2 
Integrated Catchment 
Model  

Type 3 
Flow Routing Model(s) 

Anglian    
Midlands  Upper Severn 

Warwickshire Avon 
Lower Trent 
 

North East Upper Calder 
 

South Tyne 
Wansbeck 

 

North West Douglas 
Upper Ribble 

Derwent Lower Eden 

Southern  Sussex Ouse 
Adur 

 

South West   Bude/Neet 
Thames  Ravensbourne  
EA Wales  Tawe  

Remaining issues 

The remaining items in the high-level uncertainty framework are: 

• data assimilation 

• operational requirement 

• run times. 

All of the remaining possibilities are suitable to illustrate approaches to data 
assimilation, and it is understood that the data availability and reliability would be 
sufficient to support this. Similarly, there are no particular features regarding the 
operational requirement to select one case study rather than another. 

For the integrated catchment models, the issue of run time is important and, to 
illustrate different potential approaches to assessment of uncertainty, it would be 
desirable to choose models which use a hydrodynamic component, due to the longer 
run time compared to a hydrological flow routing method alone (e.g. DODO, KW, 
VPMC). The Wansbeck catchment can therefore be excluded on these grounds, 
leaving the catchments shown in Table 5.5. 

Table 5.5 Potential case studies taking account of remaining issues. 

Region Type 1 
Rapid Response 
Catchment 

Type 2 
Integrated Catchment 
Model  

Type 3 
Flow Routing Model(s) 

Anglian    
Midlands  Upper Severn 

Warwickshire Avon 
Lower Trent 
 

North East Upper Calder South Tyne  
North West Douglas 

Upper Ribble 
Derwent Lower Eden 

Southern  Sussex Ouse 
Adur 

 

South West   Bude/Neet 
Thames  Ravensbourne  
EA Wales  Tawe  
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5.3.3 Practical considerations 

A number of practical considerations also need to be taken into account in the choice 
of case studies. 

Firstly, it was noted during the consultations that any proposed models should 
already be configured onto NFFS so that it was not necessary to spend time doing 
this during Phase 2 of the project. At present, only two of the models shown in Table 
5.5 – the Upper Ribble and the Ravensbourne – are currently not configured 
although it is understood that configuration of the Ravensbourne is almost 
completed. This case study has therefore been retained, while the Upper Ribble has 
been excluded. 

Another requirement was that the case studies should be selected so that the 
experience gained will be of benefit to most, if not all, other regions. For the 
remaining potential case studies, two regions – Midlands and Thames – use rainfall–
runoff model types which are unique to the region, but this was felt to be too broad a 
criterion to exclude these examples (since much can still be learned about catchment 
averaging and rating curve issues, and approaches to parameter sampling). 

To share knowledge between regions, it would also be desirable to choose at most 
one category of model per region and, for the case studies which involve 
hydrodynamic models, to maximise the use of existing expertise in the project team, 
it would also be desirable to choose models that we have worked on recently, or are 
currently working on. The following catchments meet this criterion: 

• Adur – model development (Atkins) 

• Lower Eden – model development (Edenvale Young, Atkins), FREE 
(CEH), FRMRC (Lancaster) 

• Lower Ribble – model development (Atkins) 

• Lower Trent – model development (Edenvale Young) 

• Ravensbourne – model development ongoing (Edenvale Young) 

• Severn – model development (Edenvale Young), FRMRC studies 
(Lancaster) 

• Sussex Ouse – model development (Atkins, Edenvale Young) 

• Upper Calder – model development (CEH) 

• Warwickshire Avon – T46 case study catchment (CEH). 

If this criterion is applied, then Table 5.6 summarises the potential case studies which 
would remain. 
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Table 5.6 Potential case studies taking account of project team catchment 
knowledge. 

Region Type 1 
Rapid Response 
Catchment 

Type 2 
Integrated Catchment 
Model  

Type 3 
Flow Routing Model(s) 

Anglian    
Midlands  Upper Severn 

Warwickshire Avon 
Lower Trent 
 

North East Upper Calder   
North West Douglas  Lower Eden 
Southern  Sussex Ouse 

Adur 
 

South West    
Thames  Ravensbourne  
EA Wales    
 

A further consideration is that – to share expertise among Environment Agency 
regions – it would be desirable to select only one general category of model (Rapid 
Response etc) from the remaining selection. Considering the Severn and 
Warwickshire Avon, the Severn has perhaps been studied more widely, within 
FRMRC and elsewhere, and would be the preferred choice. For the Sussex Ouse 
and Adur, the Adur is perhaps of less general interest due to the extensive tidal 
floodplain in the lower reaches, with the main flood risk areas in the upper and middle 
reaches of the catchment. Excluding these catchments would then leave the choice 
shown in Table 5.7. 

Table 5.7 Potential case studies with only one general type per region. 

Region Type 1 
Rapid Response 
Catchment 

Type 2 
Integrated Catchment 
Model  

Type 3 
Flow Routing Model(s) 

Anglian    
Midlands  Upper Severn  Lower Trent 
North East Upper Calder   
North West Douglas  Lower Eden 
Southern  Sussex Ouse  
South West    
Thames  Ravensbourne  
EA Wales    
 

Again, applying the criterion that there should only be one general type of model per 
region, then the following considerations apply: 

• Midlands Region – the Severn is perhaps of more general interest to 
other regions, compared to the relatively simple example of the Lower 
Trent. 

• North West – the Lower Eden forecasting model has been extensively 
reviewed since the January 2005 floods in Carlisle, and is therefore 
perhaps of more interest than the Douglas. 

If these criteria are applied, then Table 5.8 shows the remaining potential case 
studies. 
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Table 5.8 Potential case studies selecting only one potential case study per 
region. 

Region Type 1 
Rapid Response 
Catchment 

Type 2 
Integrated Catchment 
Model  

Type 3 
Flow Routing Model(s) 

Anglian    
Midlands  Upper Severn   
North East Upper Calder   
North West   Lower Eden 
Southern  Sussex Ouse  
South West    
Thames  Ravensbourne  
EA Wales    
 

Table 5.9 shows the key factors which would then be considered with this selection 
of case studies. 

Table 5.9 Summary of catchments in Table 5.8 

Region Region  Model type Category Existing data 
assimilation 

Upper Severn Midlands  MCRM/DODO/ISIS Integrated 
Catchment Model 

ARMA 

Upper Calder North East PDM Rapid Response 
Catchment 

ARMA/state 
updating  

Lower Eden North West VPMC/ISIS Flow Routing ARMA 
Sussex Ouse Southern PDM/ISIS Integrated 

Catchment Model 
ARMA 

Ravensbourne Thames TCM/ISIS Integrated 
Catchment Model 

ARMA 

 

This selection is close to the requirement for four catchments and spans five regions, 
three types of rainfall–runoff model, and three types of flow routing/hydrodynamic 
model. However, there is only scope to consider two integrated catchment models in 
Phase 2 of the project, so the choice needs to be narrowed down further (and this will 
be discussed with the Project Board). 

The following comments (paraphrased) were made on these catchments during the 
consultation meetings: 

• Lower Eden – the forecast relies primarily on flow routing. Ungauged 
inflows are a significant factor between Temple Sowerby and Great 
Corby. Note that PRTF models provide the hydrological inputs, and the 
lower boundary is not tidal. Floodplains are generally accounted for in the 
ISIS model build, although with some questions on the most appropriate 
cell representation to use (reservoir units or secondary channels). The 
region has also trialled the flood risk mapping module in NFFS, for the 
reach from Great Corby to Sheepmount on the Eden. 

• Ravensbourne – this is the first hydrodynamic model in the region for a 
rapidly responding urban catchment with a distributed set of hydrological 
inputs. It is a TCM-ISIS model with radar rainfall inputs, and 
approximately 30–40% of the catchment area is gauged. It is not, 
however, certain that it will be fully configured on NFFS by the time that 
the case studies will be performed. 
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• Upper Severn – uncertainties arise regarding the extent to which flows go 
out of bank, and how to represent this storage in the model (e.g. in the 
Lower Severn between Tewkesbury and Gloucester, and for the Upper 
Severn around Shrewsbury in large flood events). 

• Sussex Ouse – no particular comments noted. 

• Upper Calder – could also provide examples of rapid response 
catchments (Todmorden, Walsden). Rainfall forecasts are required 
(ideally) to obtain sufficient lead time on some catchments (e.g. on the 
Upper Calder where catchment response times may only be 1.5 to 2 
hours). 

This process has therefore provided a possible basis for selection of the case 
studies. The next step is to consider how best to map the techniques that need to be 
tested to these case studies and this is discussed in the following section. 

Also, given the timescale and resources available in Phase 2 of the project, it may be 
necessary to identify subcatchments within the larger models which will still be a valid 
test bed for the techniques to be tested, and this point is also discussed below. 

5.3.4 Selection of techniques 

Proposed techniques 

The review studies described in Sections 2, 3 and 4 of this report have identified the 
range of techniques shown in Table 4.7. Table 5.10 summarises an assessment of 
the suitability of these techniques for use on this project. 

Based on the review, and the experience in the project team, the items shown in bold 
font are seen as practicable to consider within Phase 2 of the project, for which the 
requirement is to implement draft NFFS test configurations for the case studies by 
November 2009, with final versions by March 2010. 
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Table 5.10 Summary of techniques which will be considered during the case 
studies (see text for description of bold font entries). 

General 
technique 

Method Comment 

Ensemble techniques Ensemble nowcasts (STEPS) will be evaluated for two events 
Multi-model techniques Not selected in the usual sense of considering multiple types of 

models at a site (which are generally not available in the 
Environment Agency), but multiple parameter sets will be 
considered for the same model (see simpler techniques) 

Monte Carlo sampling Well-established technique and proposed for off-line use 
(although considered too computationally intensive at present for 
real-time implementation in integrated catchment models in 
NFFS) 

Analytical approaches Not suitable for chains of nonlinear models and/or real-time 
evaluation of uncertainty 

Latin hypercube Can be used in multivariate sampling where distributions and 
covariation of uncertain input variables are known; more efficient 
than Monte Carlo sampling but with some approximations 

Copula sampling Can be used when marginal distributions of uncertain input 
variables are known but where interactions between variable are 
complex; more complex than Monte Carlo sampling 

Fuzzy sets Can be used where uncertain input variables are poorly 
specified, for example where only a range is easily specified; 
technique under development for flood forecasting applications 

Emulators Technique that holds great promise for forecasting, uncertainty 
emulation and other applications 

Forward 
uncertainty 
propagation 

Simpler techniques Off-line Monte Carlo sampling and sampling from a range will be 
explored as examples of quick and simple techniques to 
implement (see Table 5.11), and have been proven in 
operational studies on the Rhine FEWS-NL system, for example 

Error correction Current Environment Agency approach 
State updating Current Environment Agency approach 
Parameter updating Technique generally not appropriate for conceptual and 

physically based models 
Particle filtering Some advantages over Ensemble KF techniques but also some 

operational disadvantages (robustness, computational) 
Kalman Filter Long-established technique with many applications 
Ensemble Kalman 
Filter 

Technique established for a few years and trialled in several 
practical flood forecasting applications 

Adaptive Data Based 
Mechanistic 

Models will be developed and implemented into NFFS for the 
Lower Eden and Upper Severn case studies, building on 
previous FRMRC and other work 

Machine learning 
techniques 

A range of new techniques under development and 
demonstrated in research studies 

Data 
assimilation 

Variational methods More appropriate for meteorological and coastal forecasting 
applications (2D/3D) 

Hydrological Model 
Output Statistics 

Method being evaluated by the National Weather Service (NWS) 
in the USA which focuses on short range forecasts but is still 
under development  

Quantile regression Simple method which can easily be tested to determine the 
potential in flood forecasting and is being used/evaluated in 
some applications 

Ensemble Pre-
Processing  

Method under development by the NWS and others  

Ensemble Post-
Processing 

Method used for many years to remove biases in long-term flow 
volume forecasts 

Bayesian Model 
Averaging 

Experimental method that has already proved successful for 
both coastal and river applications and will soon be available 
within Delft-FEWS 

Conditioning 
approaches 

Bayesian Processor of 
Output 

Experimental method and still many details unclear besides the 
large volume of historical data that is needed (although near 
operational studies on the Rhine showed potential of the 
method) 
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The entry for simpler forward uncertainty propagation techniques refers to the 
methods which are summarised in Section 4.7 of this report. Table 5.11 summarises 
these methods for the top three sources of uncertainty identified during the 
consultation meetings. 

Table 5.11 Some potential simpler forward uncertainty propagation techniques 
for the top three sources of uncertainty identified in the consultation meetings. 

Source of uncertainty Potential methods 
Catchment averaging of raingauge data Off-line Monte Carlo sampling of catchment 

average rainfall, raingauge weights, or radar 
rainfall fields, assume a typical range 

Validity of rating curves Decomposition of error sources, addition of 
variances (ISO/British Standard procedures), off-
line Monte Carlo sampling, evaluation of 
historical performance, assume a typical range 

Model calibration (rainfall–runoff models) Off-line Monte Carlo sampling of key model 
parameters (e.g. GLUE) and/or model initial 
conditions, multi-model comparisons, evaluation 
of historical performance, assume a typical range 

 

Note that the word ‘simpler’ in this context is also relative, since implementation of 
some of these approaches could be a significant task. 

The methods used in Phase 2 would be selected from this list, possibly with some 
equivalent methods substituted if initial exploratory modelling shows that to be more 
beneficial to the project. Perhaps the simplest technique of all is to specify a likely 
range for the parameter or variable of interest (e.g. ±10%), and to choose a few 
values which are representative of that range (e.g. max, mean, min). For the more 
complicated Monte Carlo based approaches, it is proposed that any simulations are 
done off-line, and that the results are implemented in the case studies using the 
following existing features of NFFS: 

• Multiple data inputs – NFFS allows more than one data input (ensemble) 
to be evaluated per model at each time-step (as in the Hydrological 
Modelling with Convective Scale Rainfall project, for example). The 
Monte Carlo (or other) off-line simulations would be used to guide the 
selection of an appropriate number (ensemble) of rainfall inputs to 
represent the full distribution of catchment rainfall uncertainty and 
interpolation schemes. 

• Multiple rating curves – NFFS allows more than one rating curve to be 
defined at a gauging station, and for a forecast to be derived for each 
curve at each model time-step, providing an ensemble of forecasts. The 
Monte Carlo (or other) off-line simulations would be used to guide the 
choice of an appropriate number of curves to represent the full 
distribution of rating curve uncertainty. 

• Multiple parameter sets – NFFS allows more than one set of parameters 
per model to be evaluated at each time-step, allowing an ensemble of 
forecasts to be generated. The Monte Carlo (or other) off-line simulations 
would be used to guide the selection of the key parameters to consider, 
and their likely distributions. For simplicity, only a single key parameter 
would be considered at a time (rather than multiple parameters, and 
parameter interdependence). 
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For example, recent work by Deltares on the operational FEWS-NL model suggests 
that – for the Meuse catchment – as few as 5–6 ensemble members may be 
sufficient to capture the key parameter uncertainty. 

For the simpler forward uncertainty propagation methods, this approach would avoid 
the need for further development in NFFS, allowing time and resources to be spent 
on evaluating the more advanced techniques instead. Deltares could also make the 
UATools uncertainty analysis software available to the project team and the 
Environment Agency to assist with the off-line studies. 

A Bayesian Model Averaging approach might also be evaluated for one example to 
illustrate how this approach can be used to derive a single ‘best’ forecast from each 
of a set of ensemble members, although BMA techniques are more usually applied to 
multiple structures/types of models, rather than multiple sets of parameters with a 
single or multiple inputs for the same model. 

Level of risk 

In the high-level uncertainty framework, it is proposed that two levels of detail might 
be used linked to the level of risk: 

• Method A – a simple approach suitable for a rapid first assessment of 
potential modelling solutions. 

• Method B – the main model selection approach, which aims to arrive at a 
reasonable compromise between technical, cost, benefit and other 
considerations. 

Table 5.12 presents a first attempt at classifying the methods selected in the previous 
section, based on a combination of the complexity of the method, and the past 
experience of the project team in implementing the approach. 

Table 5.12 Classification of the selected techniques by level of risk. 

Technique Method A Method B 
Forward uncertainty 
propagation 

Assume a typical range Off-line Monte Carlo 

Data assimilation Kalman Filter/DBM Ensemble Kalman Filter 
Conditioning approaches Quantile regression Bayesian Model Averaging 

Model run times 

Model run times will also be a factor to consider during the case studies and, in the 
high-level uncertainty framework, the following four approaches are proposed for 
consideration: 

• Computational improvements – e.g. parallel processing, faster 
processors. 

• Model configuration changes – e.g. nested models, model 
simplification/rationalisation. 

• Statistical approaches – e.g. sampling or grouping of ensembles. 

• Model emulators – e.g. simpler models to emulate the behaviour of more 
complex models. 
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The issue of computational improvements and statistical approaches will be 
considered mainly through review, and possibly some exploratory 
testing/benchmarking, unrelated to the case studies. 

It is proposed that the remaining two approaches – model reconfiguration and 
emulators – will also be illustrated in the case studies, using the following 
approaches: 

• Model configuration – one case study showing the benefits of 
reconfiguration of a hydrodynamic model, based mainly on a previous 
study by the project team. 

• Emulators – Data Based Mechanistic approach applied to two 
catchments. 

Matching techniques to case studies 

To maximise benefits from the project, the following process is proposed for the 
development of the case studies and uncertainty framework. 

• Step 1 – trial simple and complex (Method A and B) forward uncertainty 
propagation methods for rainfall and rainfall–runoff model uncertainty on 
the Type 1 – Rapid Response case study. 

• Step 2 – trial simple and complex (Method A and B) forward uncertainty 
propagation methods for rating curve uncertainty on the Type 3 – Flow 
Routing case study. 

• Step 3 – trial simple and complex (Method A and B) conditioning 
approaches on the Type 1 – Rapid Response case study. 

• Step 4 – trial simple and complex (Method A and B) data assimilation 
approaches on the Type 3 – Flow Routing case study. 

• Step 5 – trial emulation and model reconfiguration approaches on the 
Type 3 – Flow Routing case study and compare approaches and run time 
reductions with Step 4. 

This approach should help to reduce the project risk by testing techniques on the 
simpler models first, and in a phased manner (i.e. not applying all techniques at the 
same time). 

At the end of this stage, all key methods and techniques would have been used on 
one or other of the two simple case studies. The uncertainty framework would also 
be developed further to include the lessons learned from these studies. 

At this point we would propose to finalise the scope for the more complex integrated 
catchment model case studies based on what has been learned in the earlier case 
studies and before work starts on the more complex catchments. Figure 5.1 
illustrates this process. 
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Upper Calder
(A, B)

Lower Eden
(A, B)

Rainfall, 
Rainfall-Runoff

Rating Curves

Conditioning
(A, B)

Data Assimilation
(A, B)

Run Times

Quantile Reg.

BMA

KF/DBM

EnKF

Reconfiguration

Emulator
Ravensbourne

(B)

Upper Severn
Where possible

A A B

A = Simple Approach

B = Complex Approach
(A)

 

Figure 5.1 Illustration of the sequence in which the case studies will be 
performed. 

The Ravensbourne will be a test bed for using the more complex hydrologically 
related techniques for an integrated catchment model, while the second integrated 
catchment model (the Upper Severn) will be used to combine both hydrological and 
flow routing related techniques; however, to keep the scope of this case study 
manageable, it will only consider simple techniques. 

In this work, the focus of effort would be as follows for the two integrated catchment 
models to be considered: 

• Type 2 – Integrated Catchment Model – Model 1 – focus on the 
hydrological aspects for forward uncertainty propagation, and 
conditioning of model outputs. 

• Type 2 – Integrated Catchment Model – Model 2 – focus on the rating 
curve aspects for forward uncertainty propagation, data assimilation, 
model reconfiguration and emulation. 

The Model 1 example would therefore be a step towards the more complicated 
Model 2 example, which would be the end point for the case studies. The lessons 
learned would be documented in factsheets outlining the approach, outputs, benefits 
and limitations. It may also be possible to draw preliminary conclusions from these 
studies about the performance of models in typical forecasting situations. The 
uncertainty framework might also be refined following completion of these studies. 
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Regarding the proposed choice of case studies in the previous section, the following 
catchment-specific issues are worth noting: 

• Type 1 – Upper Calder – some limited rainfall forecast ensembles for 2 
days in 2007 may also be available through the Hydrological Modelling 
with Convective Scale Rainfall project (although it is presently outside the 
scope of this project to consider these). 

• Type 2 – Model 1 – Ravensbourne – the main issues relate to rainfall 
rainfall–runoff modelling and ungauged inflows. 

• Type 2 – Model 2 – Upper Severn OR Sussex Ouse – the example 
chosen would represent a range of modelling uncertainty issues. For the 
Sussex Ouse, it is likely that it would not be feasible to consider the 
whole catchment, but just a major tributary – the Uck – which was one of 
four pilot studies nationally for NFFS. For the Severn, the issue of 
floodplain storage and backwater effects is an interesting dimension to 
the problem. 

• Type 3 – Lower Eden – an interesting aspect of this case study would be 
to compare the model uncertainty (for the current operational model) with 
the ratings in operation before the January 2005 flood, and following the 
improvements made to high flow ratings after that event based on the 
new data recorded. Also, to examine the gains from data assimilation at 
the lower end of the model for two forms of the model; starting upstream 
of and immediately downstream of the major Eamont tributary. 

For the Lower Eden, it would also be possible to document how reconfiguration of the 
model over the years has improved the run-time performance as suggested earlier 
under ‘Model run times’ since two members of the Project Team have previously 
worked on this aspect of the model (Atkins, Edenvale Young). This case study would 
also be an option for Task 2.4 (floodplain mapping) since it is one of the few 
examples for which this option has been implemented on NFFS so far. 

The following figure (Figure 5.2) summarises these proposals for the case studies. 



 

 Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models 125 

 
Forward propagation Data assimilation Post-

processing  Emulation Reconfig- 
uration 

 Rainfall RR model parameters Rating       

 Simple Complex Simple Complex Simple Complex Simple Complex Simple Complex Simple  

Pr
ep

ar
at

or
y 

an
al

ys
is

 
(o

ff-
lin

e)
 

Sa
m

pl
in

g 
fr

om
 a

 
ra

ng
e 

M
on

te
 C

ar
lo

 s
am

pl
in

g 

Sa
m

pl
in

g 
fr

om
 a

 
ra

ng
e 

M
on

te
 C

ar
lo

 s
am

pl
in

g 

Sa
m

pl
in

g 
fr

om
 a

 
ra

ng
e 

M
on

te
 C

ar
lo

 S
am

pl
in

g 

N.A. N.A. 

H
in

dc
as

t a
na

ly
si

s 

N.A. 

M
od

el
 id

en
tif

ic
at

io
n 

  

R
ea

l-t
im

e 
ap

pl
ic

at
io

n 

En
se

m
bl

e 
of

 ra
in

fa
ll 

in
pu

ts
 

En
se

m
bl

e 
of

 ra
in

fa
ll 

in
pu

ts
 

En
se

m
bl

e 
of

 m
od

el
 

pa
ra

m
et

er
s 

En
se

m
bl

e 
of

 m
od

el
 

pa
ra

m
et

er
s 

En
se

m
bl

e 
of

 ra
tin

g 
cu

rv
es

 

En
se

m
bl

e 
of

 ra
tin

g 
cu

rv
es

 

K
al

m
an

 F
ilt

er
 o

r D
at

a 
B

as
ed

 M
ec

ha
ni

st
ic

 

En
se

m
bl

e 
K

ar
m

an
 

Fi
lte

r (
En

 K
F)

 

Q
ua

nt
ile

 re
gr

es
si

on
 

B
ay

es
ia

n 
M

od
el

 
A

ve
ra

gi
ng

 (B
M

A
) 

D
at

a 
B

as
ed

 
M

ec
ha

ni
st

ic
 

  

Upper Calder 1 1 1 1         1 1     

Lower Eden         1 1 1 1     1 1 

Ravensbourne   1   1           1     
Upper Severn or 
Sussex Ouse 2   2   2   1  1  2   

Key              
  Minor contribution to model uncertainty         
  Project team chosen not to test technique (to keep scope of study manageable)      
             
1 Assessment of these techniques will be the focus of case study        
2 Case study will provide supporting information on the assessment of this technique      

Figure 5.2 Summary of proposals.
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Appendix A – Note on Consultation 
and Review 

1 Introduction 
1.1 Background 
Robust forecasts are vital in providing a comprehensive flood warning service to people and 
businesses at risk from flooding. For fluvial flood forecasting, rainfall–runoff, flow routing and 
hydraulic models are often combined into model cascades and are run automatically in the 
Environment Agency’s National Flood Forecasting System (NFFS). 

The outputs from these models are currently deterministic with one model run delivering the flood 
forecast which is assumed to be the best representation, although Forecasting Duty Officers 
assess and advise on the uncertainty in forecasts based on experience and judgement. It is widely 
known that the accuracy of flood forecasts can be influenced by a number of factors, such as the 
accuracy of input data, and the model structure, parameters and state (initial conditions). Having a 
sound understanding of these modelling uncertainties is vital to assess and improve the flood 
forecasting service that the Environment Agency provides. 

This R&D project will develop and test practical probabilistic methods to quantify and, where 
possible, reduce uncertainties around fluvial flood forecasts from sources other than predicted 
rainfall, which is already being addressed on the ‘Hydrological Modelling with Convective Scale 
Rainfall’ R&D project.1 This will provide an overarching framework for assessing uncertainties in 
fluvial forecasting in a risk-based manner which, for completeness, will also provide the possibility 
to include rainfall forecasting uncertainty. Some of the specific project objectives are: 

• To review current experience and consult key stakeholders to refine user needs. 

• To recommend and test suitable techniques for the probabilistic treatment of the most 
important sources of uncertainty and combine them into an overarching uncertainty 
framework. 

• To assess the possibilities and benefits of real-time/adaptive updating for probabilistic 
hydraulic/hydrological models. 

• To demonstrate and validate the suggested techniques for linked forecasting models 
through case studies in NFFS. 

• To recommend and investigate alternative ways of reducing run times for probabilistic 
flood forecasts. 

• To provide updated guidance on probabilistic fluvial flood forecasting and develop an 
implementation plan. 

The main output from this project will be up-to-date practical guidance on how to use probabilistic 
techniques in fluvial flood forecasting in order to interpret possible uncertainties around flood 
forecasts and ultimately allow for improved management of flood events. This will be 
supplemented by a number of practical case studies which will demonstrate how certain 
uncertainty techniques can add value to the forecasting process. The main focus of this project is 

                                                           
1 It is worth noting that, in many of the larger catchments in the UK, satisfactory forecast lead times can be 
obtained from observations of rainfall and/or upstream river levels or flows alone 
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to demonstrate the practicality and benefits of applying probabilistic techniques to fluvial flood 
forecasting models which are sufficiently robust to be considered for use in an operational 
environment. 

A national Flood Incident Management project is currently determining approaches and business 
change required to embed probabilistic flood forecasting and warning (PFFW) into current 
Environment Agency practices. R&D Project SC080030 is closely aligned with this project and will 
provide some of the required scientific evidence and methods. 

1.2 Scope of Report 
The project started in December 20082 and will complete in late 2010, and includes the following 
three main phases: 

• Phase 1 – review, consultation and scoping (4–5 months). 

• Phase 2 – development of suitable uncertainty framework and application to case 
studies (11–12 months). 

• Phase 3 – best practice guidance (7–8 months). 

One of the early tasks in Phase 1 of the project was to consult regional flood forecasting staff to 
determine gaps in available guidance, to assess end user requirements, to discuss ideas for 
possible case studies, and to allow for refinements in project scope. This report describes the main 
findings from those consultations and is the first main output from the project. The findings from the 
report will be discussed at the first project workshop, which will be held in Solihull on 16 March 
2009. 

The consultations were performed by telephone and meetings during the period 18 December 
2008 to 16 January 2009 and, with the exception of the final meeting, at least one member of the 
Project Board was present at each discussion. Table 1.1 summarises the dates, locations and 
participants in each discussion. 

A detailed agenda was issued in advance of each meeting and this report is structured around the 
following five main topics which appeared in the agenda: 

• Views on the relative importance of different sources of uncertainty in different 
forecasting situations, and for different types of models and forecast lead time 
requirements. 

• The selection criteria for case studies during Phase 2 of the project. 

• Ongoing regional studies (if available) on sources of uncertainty in fluvial flood 
forecasting models. 

• Experience with the performance of integrated catchment models combining rainfall–
runoff, flow routing and/or hydrodynamic components. 

• User requirements for the Real-Time Modelling Guidelines and other project outputs. 

The majority of meetings lasted from 2 to 3 hours, with the shortest lasting just under 2 hours, and 
the longest lasting about 4 hours. Typically, the background to the project was presented during 
the first 10–20 minutes of each meeting, with approximately half of each meeting spent on a 
general summary of approaches to forecasting in each region, and a discussion of the first main 
topic on the list above (sources of uncertainty). 

                                                           
2 The research contractors are Atkins (lead), Deltares, Lancaster University, CEH Wallingford and Edenvale 
Young 
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The report attempts to provide a summary of the full range of views which were expressed 
although, in many cases, comments have been abbreviated or paraphrased to provide more 
consistency throughout the report (e.g. in the length and format of each item). Also, at this stage, 
no interpretation or commentary on the comments is provided, and this will appear in the draft 
Phase 1 report which is to be issued in March 2009. 

1.3 Layout of Report 
The remainder of this report is presented as follows: 

Section 2 – Sources of Uncertainty – describes views regarding sources of uncertainty in flood 
forecasting models, and the relative importance of each source. 

Section 3 – Case Studies – summarises comments on the proposed criteria for selecting case 
studies, and suggestions from each region for possible case studies. 

Section 4 – Ongoing Studies – describes ongoing regional and national studies which were 
mentioned during the consultations. 

Section 5 – Experience with integrated catchment models – summarises the current types of 
integrated catchment models in each region, and experience gained in developing and using these 
types of model. 

Section 6 – User Requirements – summarises initial views on the content, format and uses of the 
uncertainty framework and guidelines to be produced during Phase 3 of this project. 

Section 7 – Conclusions – summarises the main conclusions from the consultation exercise. 
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Table 1.1 – Summary of Consultation Meetings and Phone Conferences (Project Board 
representatives shown in bold type). 

Consultation Location Date Participants 
Southern Region Worthing (by phone) 18 December 

2008 
Mike Vaughan 
Paul Swinburne 
Julia Farrell 
Kevin Sene (Atkins) 

Midlands Region Solihull 19 December 
2008 

Richard Cross 
Karen Hudson 
Ian Clayton 
Kevin Sene (Atkins) 

North East Region Leeds 22 December 
2008 

Andy Lane 
Dave Hill 
David Lindsay 
Susan Daffern 
Richard Maxted (by email) 
Neil Ryan (by email) 
Kevin Sene (Atkins) 

Anglian Region Peterborough (by phone) 6 January 2009 Steve Taylor 
David Price 
Deborah Cooper 
Stefan Laeger 
Kevin Sene (Atkins) 
Neil Breton (Atkins) 

Thames Region Reading (by phone) 8 January 2009 Nigel Outhwaite 
David Rylands 
Stuart Hyslop 
Stefan Laeger 
Kevin Sene (Atkins) 
Neil Breton (Atkins) 

Thames Barrier Thames Barrier (by 
phone) 

13 January 
2009 

Colin Carron 
Sothi Sothiratnam 
Stefan Laeger 
Kevin Sene (Atkins) 
Neil Breton (Atkins) 

EA Wales Cardiff (by phone) 13 January 
2009 

Andy Lane 
Sam Taylor-Heard 
Stefan Laeger 
Kevin Sene (Atkins) 
Neil Breton (Atkins) 

South West 
Region 

Exeter (by phone) 14 January 
2009 

Oliver Pollard 
Stefan Laeger 
Kevin Sene (Atkins) 
Neil Breton (Atkins) 

North West 
Region 

Warrington 16 January 
2009 

Mark Franklin 
Peter Spencer 
Claire Wheeler 
Debbie Pinnington 
Kevin Sene (Atkins) 
Yiping Chen (Atkins) 
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2 Sources of Uncertainty 

2.1 Introduction 
In general terms, sources of spatial and temporal uncertainty can include (e.g. Beven et al. 2005; 
Butts et al. 2005): 

• Random or systematic errors in model inputs (boundary or initial conditions). 

• Random or systematic errors in observed data used to measure simulation accuracy. 

• Uncertainties due to calibration of effective (model) parameter values. 

• Uncertainties due to incomplete or biased model structures (i.e. model configuration). 

In fluvial flood forecasting applications, sources of uncertainty can include rainfall observations and 
forecasts, antecedent conditions, high flow ratings, downstream boundary conditions (tidal levels, 
structure settings etc), and other sources. Real-time updating (data assimilation) techniques, such 
as error correction and state updating, can also help with reducing and quantifying the uncertainty 
in model outputs. 

Model types which may need to be considered include rainfall–runoff, flow routing, and 
hydrodynamic models, and models for specific control structures (washlands, reservoirs, 
barrages). The magnitude of uncertainties can vary with lead time and the magnitude of the event. 
The influence of real-time updating or data assimilation also needs to be considered, together with 
other potential sources of uncertainty (e.g. channel blockage, human errors, defence breaches, 
infrastructure failure). 

The discussions were structured around the following three main questions and the remainder of 
this section summarises the main responses to those questions: 

• For river flood forecasting (rainfall–runoff and routing) models, what in your experience 
are the main sources of uncertainty in model forecasts, and how do these vary with 
type of model, location, type of rainfall event etc? (Section 2.1) 

• What, for your region, would you say are the most important sources of uncertainty, 
and can you rank these in any particular order? (Section 2.2) 

• For the suggestions from the Project Board, which specific aspects of these topics 
seem most important to you? Also, do you have any other suggestions for sources of 
uncertainty which might be considered on this project (with reasons)? (Section 2.3) 

2.2 Main Sources of Uncertainty 
An early suggestion from the Project Board was that the project could investigate the practicability 
and benefits of applying probabilistic techniques for the following sources of uncertainty: 

• Catchment Averaging of Raingauge Data 

• Validity of Rating Curves 

• Model Calibration (Hydrodynamic Models) 

• Model Calibration (Rainfall–Runoff Models) 

• Representation of Floodplain Storage 
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• Representation of Antecedent Conditions 

• Representation of Ungauged Inflows 

• Influence of Structure Operations. 

The following subsections describe the main discussions regarding each of these topics. 

2.2.1 Catchment Averaging of Raingauge Data 

The discussions suggested that uncertainties in raingauge-based inputs to catchment models can 
arise from a number of sources, relating to the raingauge network density, the type of rainfall event 
(frontal/convective etc), electrical and other instrumentation problems, and other factors (e.g. 
snowfall). The type of event is particularly an issue for convective type rainfall, when raingauges 
can miss the heaviest rainfall. All regions reported using raingauge data as inputs to some, or all, 
of the integrated catchment models used in the region, and Table 2.1 summarises the catchment 
averaging methods which were described. 

Table 2.1 – Approaches to Catchment Averaging of Raingauge Data (values show number of 
regions). 

Method Most 
catchments 

Some 
catchments 

Thiessen Polygons 3  
Thiessen Polygons (adjusted subjectively 
for SAAR, topographic influences etc) 

2  

Regional Surface Fitting Procedure 2  
Weights based on distance from 
catchment/topography/other factors 

1 1 

 

The number of raingauges used in catchment averaging procedures ranged from a small number 
(with either 1–2 or 5–6 quoted typically) through to the approach of using all of the gauges 
available in the region (some 90–100 gauges, in one case). Some advantages noted in using a 
small number of gauges were that the rainfall estimation procedure can be tailored to the individual 
catchment model (in particular, for topographic effects), while a regional approach is considered to 
be more robust to loss of data during an event, and provides greater consistency across 
catchments. 

The use of weather radar based rainfall actuals was also discussed. All regions reported that the 
images are used to monitor the progression and development of rainfall events, and that rainfall 
accumulation values are used as a backup in case of failure of the raingauge inputs. Two regions 
also reported the quantitative use of radar rainfall data as a primary input to rainfall–runoff models 
for catchments where intercomparison studies had shown that the catchment rainfall estimates 
outperformed the raingauge based estimates. In the past, one region had also previously explored 
real-time adjustment of radar data with raingauge data, and the new hourly Met Office bias 
correction approach was also noted (although this is based on a less dense network of raingauges 
than that operated by the Environment Agency). 

Several regions noted that they had observed considerable differences between raingauge and 
radar rainfall based estimates of catchment rainfall, and that sometimes these were not systematic, 
in the sense of being consistently higher or lower during rainfall events. Some regions see the 
accuracy of radar rainfall actuals as comparable to that of raingauge data, with the best approach 
to use depending on the location of the catchment relative to the nearest radar, topography, the 
raingauge network density, and other factors, while others doubt the ability of radar rainfall 
estimates to capture orographic effects. However, both types of measurement are subject to 
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uncertainties, and it is often difficult to say which is more representative of the actual values. The 
need to calibrate rainfall–runoff models to the same rainfall inputs as used in real-time was 
therefore emphasised on several occasions. 

In most meetings, the performance of precipitation nowcasts (0–6 hours ahead) and Numerical 
Weather Prediction model outputs (6–36 hours ahead) was also discussed, in addition to that of 
raingauge-based and radar rainfall actuals.3 At present, within the Environment Agency, it is a time 
consuming task to compare these types of data and forecasts, with doubts about the appropriate 
performance measures to use. However, it was noted that the ongoing national Skill Scores 
project, which is due to complete in 2009, will for the first time provide tools in NFFS to allow a 
consistent approach to the intercomparison of rainfall forecasts, radar rainfall actuals, and 
raingauge data at a catchment scale across England and Wales. Also, several regions noted that 
improvements should be seen once the new Thurnham, Old Buckenham and Northumbrian radar 
become operational. 

Regarding the use of rainfall forecasts in catchment models, in some regions, many catchments 
are large enough to provide sufficient lead time by waiting for rainfall to ‘hit the ground’, so that the 
use of rainfall forecasts is primarily for early warning for mobilisation, and a general ‘heads up’, and 
sometimes this is in a negative sense; for example, that no flooding is likely over the next 
weekend. In other regions, rainfall forecasts provide the only practical way of providing sufficient 
lead time on fast response catchments, and at least two regions are currently making limited use of 
rainfall–runoff model outputs with rainfall forecast inputs as a key tool to help with issuing flood 
warnings for a few fast response catchments, using thresholds for the onset of flooding (i.e. ‘Result 
Thresholds’). 

2.2.2 Validity of Rating Curves 

A number of issues can lead to uncertainty in rating curves, including seasonal effects, backwater 
influences, artificial influences, tidal influences, a lack of spot gauging data (for natural river 
reaches), and issues with gauge datums. However, for flood forecasting applications, it is the 
uncertainty at the high flow end of the rating which is of most importance, with problems including 
the difficulty of gauging at high flows, and the rarity of high flow events. Also, additional flow 
mechanisms may become apparent at high flows, such as floodplain flows, non-modular flows, and 
bypassing of gauges. 

Many points were raised during the discussion of this topic, and these can be briefly summarised 
as follows: 

• High Flow Issues – the problems with high flow ratings are well known and to some 
extent can be mitigated by an appropriate model design (e.g. omitting gauges which 
are known to be less accurate at high flows), and additional modelling studies (e.g. 
extending ratings using 1D or 2D hydraulic modelling, and additional spot gauging 
campaigns). The issue of rating curve limits was also raised, and whether it is better to 
truncate the rating (because it is uncertain) or to derive an estimate for the full 
hydrograph (which may be considerably in error) to provide inflows to locations further 
downstream. 

• Seasonal Influences – seasonal influences were reported to significantly affect the 
accuracy of rating curves in 3 regions (and these were typically regions in lower lying 
parts of England and Wales). These effects cannot be easily represented in NFFS at 
present although it is understood that this functionality is being developed, together 
with the option to switch ratings (e.g. from a rated section to an ultrasonic gauge when 
flows go out of bank). Seasonal effects can also to some extent ‘balance out’ over a 
number of events. In one example which was quoted, weed growth could be sufficient 

                                                           
3 These discussions were useful although it was noted in each meeting that uncertainty in rainfall forecasts is 
outside the scope of the present project (other than in developing the uncertainty framework) since this is 
being considered in the ‘Hydrological Modelling with Convective Rainfall’ project 
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to change the flow regime, leading to water bypassing the station. In another, seasonal 
influences had been found to change the behaviour of error correction updating 
routines over the course of a year. 

• Mobile River Beds – the issue of changes in bed profiles due to tidal effects, and 
following major flood events, was raised as an issue affecting rating curves and model 
calibration for certain locations in 2 regions. 

• Development of Rating Curves – all regions reported that rating curves are normally 
developed by Field Monitoring and Data, but are sometimes improved as part of flood 
forecasting model development projects. Also, that curves are usually developed 
independently of integrated catchment models, and the rating curve parameters are not 
tuned to improve the model performance. Rainfall-level calibration options (e.g. as in 
the PDM model) are generally not used. Rating curves are normally based on spot 
gaugings (if available), survey and backwater calculations, or 1D or 2D hydrodynamic 
modelling, although the derivation of effective ratings, based on upstream and 
downstream flows, and low flow spot gaugings, was also described as a temporary 
solution. 

• Maintenance of Rating Curves – although outside the scope of this project, another 
issue which was discussed was that of updating models following improvements by 
FMD to rating curves due to new spot gauging data, to account for changes to the river 
or gauge characteristics (e.g. flood defences, bridge structures, gauge datums etc), or 
to account for seasonal effects. 

• Use of Rating Curves in Models – one point which was noted was that typically models 
are calibrated to flows which are derived from observed levels using a rating curve, and 
the forecast flows are then converted back to levels using the same curve. This to 
some extent mitigates errors in the rating, but only partially since it can be difficult to 
calibrate a model if flows are significantly in error (e.g. runoff may exceed rainfall), and 
incorrect flows at an upstream location can lead to errors in forecasts further 
downstream. 

• Other Approaches to Measuring Flows – it was also noted that rating curves are 
usually not an issue where flows are measured directly (e.g. at ultrasonic gauges) or 
using a theoretical rating in which there is reasonable confidence (e.g. for a Crump 
Weir which fully contains high flows). 

2.2.3 Model Calibration (Hydrodynamic Models) 

All regions reported using hydrodynamic models as part of integrated catchment models, although 
in some cases this was only a recent development (in the past 4–5 years), and experience is still 
being gained with operation of this type of model. Some points which were raised during the 
discussions included: 

• General – models are often developed from existing floodplain mapping and/or flood 
defence scheme models, rather than being built as part of flood forecasting model 
development projects. This means that, provided that the base model has satisfactory 
performance, the hydrodynamic component of the forecasting model should also 
perform in a similar way (ignoring, for the moment, uncertainties in rainfall–runoff model 
inputs and ungauged inflows). The issue of model uncertainty has therefore, to some 
extent, already been considered in the original model development (although 
improvements can always be made). The point was also made that, compared to 
hydrological models, the errors are often more systematic, and easier to constrain and 
control. 
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• Roughness Coefficient – this was generally reported as a secondary issue, related 
mainly to fine tuning of models, rather than a significant source of uncertainty. 
However, one region noted that values can be affected by seasonal influences, and (as 
for rating curves) that weed growth can sometimes be sufficient to change the flow 
regime (e.g. flows bypassing a gauge). Another region noted that the effective 
roughness can often be flow dependent, with higher values for in-channel flows 
(depending on type of channel, and floodplain characteristics), and with difficulties in 
estimating appropriate values for floodplain flows. The potential uses of the 
Conveyance Estimation System were also discussed to guide estimates for the 
roughness coefficient. 

• Tidal Boundaries (general) – tidal boundaries were noted as a source of uncertainty in 
some cases, although related mainly to volumes on the floodplain, rather than the 
estimates or forecasts for levels at the downstream boundary. Two regions noted that, 
where tidal influences extend a significant way inland, some key issues can include 
how well models can propagate the tidal effects upstream, and the influences of 
floodplain storage, tide-locking, structure overtopping, and gate operations. For regions 
which use STFS forecasts of tidal levels, uncertainties in this component were 
generally reported not to be a significant factor for integrated catchment models, 
compared to the hydrological and hydraulic sources of uncertainty. Where tidal 
forecasts were important, this tended to be for specific locations or estuaries; for 
example, to the operation of the Thames Barrier, where ongoing work to develop a 
finer grid (3.5 km) version of the CS3X model was described for the Thames Estuary 
and Bristol Channel, and a number of studies into other sources of uncertainty (see 
Table 3.1). 

• Real-time Updating – there was a range of views on how to use updating techniques 
with real-time hydrodynamic models, with a general move away from ‘monolithic’ 
models towards a number of models linking the main river flow gauges in a catchment. 
Error correction techniques are then easy to apply at the gauge locations, although 
require the model to be split at updating locations, meaning that downstream influences 
are not necessarily correctly propagated upstream. Internal model node updating is 
used in one region. 

• Datums/Bed Levels – one region reported that these factors can cause major 
uncertainties in calibrating and using hydrodynamic models, with bed movements of 4–
6 metres having been observed at one location. For this same region, a region-wide 
programme of GPS surveying is addressing issues with gauge datums. 

• Full Flow Models – one region reported use of full flow models for a range of purposes 
other than flood forecasting, including navigation and water resources. In this case, the 
uncertainties arising from abstractions and discharges are more significant than for a 
model developed primarily for flood forecasting. 

At this point, it was also convenient to discuss hydrological flow routing models, with two regions 
noting that representation of the wave-speed–discharge curve can be a major source of 
uncertainty, as can representation of the influence of flows to and from the floodplain. There was 
also some discussion of simpler approaches to flow routing, including the use of single or multiple 
level to level correlations, and how often they are typically developed on peak values, but applied 
across the full flow range (an approach which can work well in some situations). One region also 
noted a significant issue with matching of model performance at the boundaries between flow 
routing and hydrodynamic models (i.e. achieving consistency in forecasts for both flows and 
levels). 
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2.2.4 Model Calibration (Rainfall–Runoff Models) 

Lumped rainfall–runoff models are widely used to estimate the inflows in integrated catchment 
models. Sources of uncertainty can include catchment rainfall estimates (see Section 2.2.1), rating 
curves (see Section 2.2.2) and the representation of antecedent conditions (see Section 2.2.6) and 
ungauged inflows (see Section 2.2.7). 

Considering the rainfall–runoff modelling component alone, then the sources of uncertainty can 
include the parameter values which are used, and the model structure (where there is a choice). 
Also, the perceived model performance can depend on the performance measures which are 
chosen to calibrate and evaluate the model (for example, peak flow, timing of peak flow, timing of 
threshold crossing, flow volumes, root mean square error), and may vary with forecast lead time 
and whether real-time updating is used. Model performance for high flows, outside the range of 
calibration, is also an issue. 

This topic generated considerable discussion during the consultations and the items which were 
discussed included: 

• Model Structural Issues – several regions highlighted the distinction between model 
structural errors, and model calibration errors. Structural errors relate to the choice of 
model, how the catchment is conceptualised (e.g. the number and size of sub-
catchments) and other factors, such as the use of alternative options in the modelling 
package (if there is a choice). For integrated catchment models, these issues were 
considered less amenable to uncertainty estimation techniques, unless the route is 
taken of developing a number of alternative models, and model configurations, and 
running them in parallel on NFFS to compare the model outputs. 

• Model Calibration – for the types of models which are currently used within the 
Environment Agency, with the exception of event based and MCRM models, all regions 
now calibrate models to at least a few months of data, allowing a range of high flow 
and low to medium flow events to be included in the calibration. Nevertheless, given 
the performance measures which are often used (peak flow, timing of peak), and the 
fact that there are historically more flood events in winter, this tends to bias models 
towards performing better for widespread frontal events, rather than for the convective 
events which have been a feature of several major flood events in recent years. This 
issue also relates to the representation of catchment antecedent conditions (see 
Section 2.2.6). There can sometimes also be a case for using different calibration 
criteria for different locations around a catchment; for example, optimising a model for 
peak levels on tributaries, and for the overall shape/volume of the hydrograph for the 
main river channel. 

• Extreme Events – it was noted several times that models may also not perform well for 
extreme events, due to a lack of data for calibration, and possibly due to additional 
runoff processes occurring for very high flows/high intensity rainfall (for example, soil 
compaction, and development of additional flow routes). 

• Catchment Size – there were some brief discussions of what a reasonable lower limit is 
for the size of subcatchments in integrated catchment models, and how this relates to 
the scale/resolution of data inputs (e.g. weather radar grid scale, raingauge network 
density). Values in the range 2–60 km2 were quoted as the smallest in current use. 

• Result Thresholds – from the consultations, the use of rainfall–runoff model forecasts 
as the main basis for issuing flood warnings appears to be increasing, although is still 
not widespread. Of the two regions which discussed this point, one uses Result 
Thresholds at nearly all Forecasting Points, and one uses Result Thresholds in a few 
fast response catchments (but has plans to migrate all existing thresholds at 
Forecasting Points in the near future). 
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• Model Parameters – of the four main types of conceptual rainfall–runoff model used 
within the Environment Agency (see Section 5.2), the maximum number of parameters 
available for model calibration is typically in the range 10–20. However, for all types of 
model, typically only 3–5 parameters have a major influence on flood flow estimates 
(depending on the modelling package). 

2.2.5 Representation of Floodplain Storage 

Floodplain storage can affect both the timing and magnitude of flows further downstream in a river 
network, and so can be an important consideration in the design and operation of the flow routing 
and/or hydrodynamic components of integrated catchment models. Floodplain effects may also 
cause some of the difficulties which are sometimes experienced with the calibration of rainfall–
runoff models, such as overestimation of peaks and timing errors. 

When hydrodynamic models are used, the floodplain is usually included (where survey data is 
available) and hence the model performance implicitly allows for floodplain storage to some extent. 
However, uncertainties can arise from inaccuracies in survey data and – as noted earlier – the 
estimation of roughness coefficients. Also, model performance can depend on how the floodplain is 
represented, and how robust the methods are to wetting and drying of the floodplain (reservoir 
units, extended sections etc). In general though, these uncertainties were only considered to be 
significant on the lower and middle reaches of major rivers/areas, such as the Severn, Dee, Wye, 
Ouse, Somerset Levels, and Derwent. However, one issue which can arise is in multiple events, 
when cumulative errors in the filling and emptying of floodplain can become significant. Similar 
issues can also arise with controlled storage (e.g. washlands) and these are discussed in Section 
2.2.8. Where floodplains are extensive, there can sometimes also be issues with understanding the 
main flow paths, and real-time 2D models might be an option for the future. 

Where simpler modelling approaches are used (e.g. hydrological flow routing, or correlations) the 
effects of floodplain storage tend to be represented only if sufficient high flow data is available to 
parameterise the influence on downstream flows. However, in one region, floodplain storage levels 
in routing models can be updated during an event; for example based on observations taken by 
people on site, or from telemetered floodplain gauges. 

2.2.6 Representation of Antecedent Conditions 

The representation of antecedent conditions can have a major influence on the performance of the 
rainfall–runoff modelling component of an integrated catchment model. Primarily, this relates to soil 
moisture conditions, but other factors such as soil compaction (related to farming practices), 
snowmelt, frozen ground and groundwater levels were also mentioned. Other issues, such as 
floodplain storage, and reservoir levels, might also be considered under this heading, but are 
discussed in Sections 2.2.6 and 2.2.8 respectively. 

During the consultations, this topic generated considerable discussion, and the key points which 
were raised included: 

• Soil Moisture – for conceptual rainfall–runoff models (e.g. PDM, NAM), the soil store 
contents are modified at each time step based on observed (or forecast) rainfall and 
indicative evaporation. Values are unconstrained except in very wet or dry periods, 
when stores may fill or empty. In some models, there is the facility to update state 
values in real-time (e.g. PDM) or using manually entered parameters (e.g. MCRM) 
while, for HYADES models, one of four pre-defined runoff factors can be chosen to 
represent current conditions. For PRTF models, a Catchment Wetness Index (CWI) 
estimation procedure is used to select the most appropriate model parameters to use, 
and this is based on the MORECS approach, with actual evaporation values based on 
hourly MOSES estimates, and a PRTF-specific approach to estimating Antecedent 
Precipitation Index. These various approaches generally work well except that several 
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regions reported that there are sometimes issues during the transition from dry summer 
conditions to wetter winter conditions, and with performance being better for intense 
rainfall, rather than for more moderate events (although real-time updating can help to 
reduce these effects). For most methods, without state updating, soil moisture values 
are unconstrained (not ‘ground truthed’), although it was also noted that any long-term 
drift in estimates tends to be halted as model stores fill in wet periods and empty in dry 
periods. It was suggested that alternative approaches, for example using MOSES or 
the IHACRES methods, might in the future lead to improved real-time estimates for soil 
moisture. 

• Evaporation – regarding evaporation values, a variety of approaches was reported and 
these are summarised in Table 2.2. Views differed on whether using values which can 
vary over time is beneficial, with one region reporting significant improvements in 
model performance when using historical (MORECS) data in model calibration. Weekly 
MORECS values, or hourly MOSES values, were suggested as sources of ‘real-time’ 
evaporation data, although at present are only used operationally in one region as part 
of the procedure to estimate soil moisture values (see above). 

Table 2.2 – Summary of Approaches to Estimating Sub-Daily Evaporation. 

Method Most 
catchments 

Some 
catchments 

Fixed sinusoidal profile of daily values 2  
Fixed monthly profile, with weekly updates 
based on MORECS outputs 

1  

Disaggregated daily MORECS values (for 
calibration only); fixed profile in real-time 

1  

Choice of 4 fixed profiles   1 
Single regional profile 3  
Other 1 1 
 

• Snow Cover – snowmelt was reported by all regions not to be a significant issue at 
present, while noting the potential for flooding problems in the future, and some major 
historical events (e.g. 1946/47, 1962/63, 1999). Both Midlands and North East Regions 
include a snowmelt component in rainfall–runoff models, and in the past used to 
receive data from an extensive network of snow observers, although this has declined 
in recent years. Where snowmelt models are used, it is important to keep the 
snowcover/depth stores updated since otherwise flows can increase significantly (and 
unrealistically) when air temperatures rise. It was noted that, even where a snowmelt 
model is not available, if raingauges are heated, the influence of snowfall can 
sometimes to some extent be inferred from the telemetered data. 

• Groundwater – groundwater related issues (e.g. chalk, limestone, karstic formations, 
sink holes) were reported for some catchments within 3 regions. However, at present 
the general view was that the current rainfall–runoff models which are used 
operationally do not always adequately represent groundwater influences, although a 
new module is currently being developed in PDM, and the TCM model was originally 
developed for groundwater/water resources modelling. The MCRM model also 
represents groundwater, and groundwater level conditions can be updated manually if 
data are available. One region also reported use of a simple cumulative rainfall based 
index to estimating the likelihood of groundwater flooding. 
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2.2.7 Representation of Ungauged Inflows 

A common problem in developing integrated catchment models is often that significant proportions 
of the catchment are ungauged. The inflows to the river network from these catchments must 
therefore be modelled in some way. A variety of approaches was reported for estimating ungauged 
inflows and these included the following techniques: 

• Transfer of model parameters from a gauged catchment with similar characteristics 
(analogue catchments). 

• As above, but then fine tuning parameter values to achieve a good calibration in the 
routing component of the model. 

• Interpolation of parameters from gauged catchments upstream and downstream. 

• Estimation of an impulse function based on Flood Estimation Handbook values (PRTF 
models only). 

• Scaling flows on gauged flows in a nearby catchment (e.g. based on catchment area), 
possibly including a time difference also. 

The use of Flood Estimation Handbook (and Flood Studies Report) catchment characteristics was 
noted as one way to help with identifying appropriate analogue catchments. The use of parameter 
transfer techniques seems to be becoming more widespread, with several regions reporting recent 
adoption of this approach (with lag and scaling methods used mainly in the past). The main 
advantage of transferring parameters is that this allows the overall model to better represent the 
spatial variations in runoff from variations in rainfall around a catchment. 

In general, the importance of the ungauged component depends on the location and timing of 
inflows relative to the main channel flows and Forecasting Points, and the fraction of the catchment 
which is ungauged. Also, if the ungauged proportion of a catchment is high, there are questions 
about whether a model should be developed, and the risks due to the high uncertainty, and that at 
the very least this uncertainty should be quantified as part of the model development process, 
particularly for high risk locations. 

2.2.8 Influence of Structure Operations 

The operation of control structures such as barrages, flow regulators, lock gates, sluices and 
reservoir outfalls can have a significant influence on flows further downstream, and was reported 
as a source of uncertainty in several regions. Off-line storage areas such as washlands are also a 
factor in North East and Anglian regions, while Anglian Region also has several examples of 
pumped catchments, as does North West Region (e.g. the Alt Crossens catchment). Demountable 
defences were also noted, although the influence on flows downstream is probably small in most 
cases. 

Even where real-time information is available, a key problem can be that there are no well-defined 
operating rules for sluices, gates etc, and structures are not always owned by the Environment 
Agency. Also, even if the rules are known, operators may vary these for good reasons, and the 
effectiveness of these variations can depend on the experience and skill of individual staff. Gates 
may also fail during an event. 

By contrast, two regions noted that, in practice, structures may be opened or uncontrolled during 
flood events. For example, for reservoirs, although outflows may be controlled at low flows for 
compensation and scour releases, spillway flows are often unconstrained while, for rivers with 
canals, lock gates may normally be opened to allow the flood to pass. In these cases, there may 
be little need to explicitly represent these structures (assuming of course that, for gates, these are 
always opened in advance of flooding). 
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Flood defence breaches were also mentioned as another source of uncertainty although it is 
difficult to predict the likely locations of breaches and dam breaks or the extent of the resulting 
flooding (and this is probably outside the scope of this project). Similar points were also made 
about the difficulties (and uncertainties arising) in forecasting the effects of blockages at bridges, 
culverts and control structures, with instrumentation (e.g. at trash screens, CCTV) being the only 
realistic solution at present to detect problems. 

Perhaps the most significant issue for several regions was the representation of reservoirs, and of 
the initial conditions (levels) at the start of a simulation. It was noted that even small errors in levels 
can have a large influence on outflows, particularly when the reservoir is spilling. To obtain a better 
understanding of reservoir influences, two regions noted that models had been developed with and 
without a reservoir included to assess the sensitivity to reservoir influences in real-time (for one 
case) and for post event analysis (for the second case). The MCRM model also includes an in-built 
reservoir balance model. Two regions also noted that a new reservoir module for NFFS is being 
developed and, once implemented, may significantly reduce the uncertainty in reservoir outflows, 
provided that real-time information is available on reservoir levels. This module, although not 
hydrodynamic, will use a simple reservoir routing approach, based on observed reservoir levels, 
and a representation of the spillway/outflow control rules, and should be available later in 2009. 

2.3 Most Important Sources of Uncertainty 
Following the general discussions on sources of uncertainty, each region was asked, if possible, to 
rank these sources in order of importance. Table 2.4 summarises the replies which were given, 
with a score of 1 being the highest, and 8 the lowest. 

Table 2.4 – Most Important Sources of Uncertainty (1 = highest, 8 = lowest, c = depends on 
the catchment, forecasting issues, locations of forecasting points, lead time requirements 
etc). 

Source of Uncertainty 
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Catchment Averaging of Raingauge Data 1 1 6 1 2 c 3 1 
Validity of Rating Curves 4 4c 7 3 c 2 2 2 
Model Calibration (Hydrodynamic Models) 2/3 5c 5 5 c c c 2/3 
Model Calibration (Rainfall–Runoff Models) 2/3 2 1 4 1 3 1 2/3 
Representation of Floodplain Storage c 3 4 c c c c c 
Representation of Antecedent Conditions c 8c 3 c c 1 c 4 
Representation of Ungauged Inflows 5 6c 2 2 3 c c c 
Influence of Structure Operations c 7c 8 c c c c c 

 

For convenience, scores of 1, 2 or 3 are shown shaded. Several regions were reasonably 
confident in providing the first three or four entries in the list, while noting that the remaining entries 
all depended on catchment issues, lead time requirements, forecasting issues, the types of model, 
and other factors, and could merit a score of 1, 2 or 3 in some situations. One point which was 
noted several times was how the uncertainty varies depending on the locations of Forecasting 
Points in the catchment, and the catchment response time, with the flow routing/hydrodynamic 
components becoming more important (for a given lead time) in the lower reaches of a catchment. 



150  Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models  

Entries which could not be placed in any particular order, or whose score might vary, are shown by 
the letter c. In particular, structure operations and antecedent conditions were both noted as 
entries which could be considerably higher for some specific catchments. Also, the hydrological 
topics (catchment averaging, rainfall–runoff models, antecedent conditions, and ungauged inflows) 
are all interconnected to some extent, as are the remaining hydrodynamic topics (with rating 
curves providing a link between these two general categories of uncertainty). 

Specific forecasting situations may also suggest a very different order; for example, during the 
Thames Barrier consultation meeting, the following prioritisation was provided: coastal surge 
forecasts, astronomical tide estimates, inflows at the western boundary of the Lower Thames 
model, roughness coefficients/operation of structures, and observed tidal levels at the downstream 
boundary of the estuary model. 

The answers to this question will provide the Project Board with an indication of the most important 
sources of uncertainty, while recognising that this is a difficult question to answer, and may in 
some cases depend on regional skills and expertise, and the modelling tools which are used. For 
example, where reservoirs are an important influence on flood flows, the uncertainty was ranked as 
high but, once the new reservoir module becomes available in NFFS, models which adopt this 
module may be significantly more accurate, and so this source of uncertainty will drop towards the 
bottom of the list. A key step in developing plans for the main phase of the project will be to 
consider which sources of uncertainty are technically feasible to consider, within the time available 
during Phase 2 of the project, and the relative importance of each source. 

It is also worth noting that, for all regions, uncertainties in forecast rainfall were stated to be at or 
near the top of the list, while acknowledging (see earlier) that the development of techniques to 
generate ensemble rainfall forecasts falls outside the scope of this project. 

2.4 Specific Aspects and Other Sources 

2.4.1 Specific Aspects 

For some of the entries in Table 2.4, the following additional clarifications were provided on specific 
aspects that were most important: 

• Antecedent Conditions – while all regions noted that soil moisture was probably the 
most important factor, one region noted that snowcover/depth is also an important 
regional issue, while another noted groundwater as important, and another felt that 
estimating evaporation was a critical factor. 

• Validity of Rating Curves – one region noted that errors in datum values were probably 
the most important factor to consider, and another that rating curves at the boundaries 
between different types of model are probably the most important consideration. 

2.4.2 Other Sources of Uncertainty 

The main additional source of uncertainty which was noted was in the performance of real-time 
updating routines (although this is not normally considered as a source of uncertainty). For 
example, one region gave updating a score of 3 in the ranking exercise described in the previous 
section. 

Although it was generally agreed that real-time updating usually provides significant improvements 
to forecast accuracy, and is recommended as best practice, problems can arise with poor data 
quality, and with the particular characteristics of individual updating algorithms. Some examples 
which were noted included: 
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• Erroneous results with error correction routines due to minor timing errors in 
hydrographs. 

• Step changes in river flows due to minimum flow conditions in hydrodynamic models, 
or drift in the flow estimates from rainfall–runoff models during low flow periods. 

• Time delays and a ‘feedback loop’ arising from state updating of a particular rainfall–
runoff model store. 

• Phantom peaks being inserted during relatively minor events by an error correction 
routine. 

• The overall shape/volume of the hydrograph not being preserved/realistic after 
updating. 

However, it was generally agreed that these problems are linked to specific approaches to 
updating, and the ongoing national initiative on error correction (see later) should lead to some 
specific recommendation on the best approaches to model updating. One region also reported that 
the use of 1st order error correctors helps to constrain the magnitude of adjustments, although with 
the disadvantage of the adjustments decaying rapidly with increasing lead time. 

Another issue which was noted by two regions was that model performance is increasingly 
evaluated in terms of contingency measures (POD, FAR etc) and the lead time provided to 
properties which were flooded, which requires a knowledge of how gauge thresholds (Result 
Thresholds) relate to property flooding thresholds. The accuracy of this relationship (gauge to 
property thresholds), and of the surveyed elevations for the property thresholds, are therefore also 
factors in model performance, and are additional sources of uncertainty (although this topic is 
outside the scope of this project). 

The topic of model structural/conceptualisation errors was also discussed during all meetings and, 
although important, was generally felt to be less easily amenable to an uncertainty analysis, i.e. for 
this project, the starting point for the assessment of uncertainty should be a completed model, 
rather than a model design, with the focus on techniques which can be applied in real-time (or 
simulated real-time). 
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3 Case Studies 

3.1 Introduction 
During Phase 2 of the project, a number of approaches to assessing uncertainty will be tested on a 
small number of case studies. We intend to have 4 case studies for practical forecasting problems 
based on forecasting techniques using continuous simulation approaches which we anticipate will 
still be used in 5 years time. These will consist of two complex linked integrated catchment models, 
combining rainfall–runoff, flow routing and/or hydrodynamic models (e.g. based on PDM/KW/ISIS, 
MRCM/DODO/ISIS) and two simpler examples to illustrate key concepts: for example: 

• a rapid response catchment with rainfall and other sources of uncertainty; 

• a well-defined river reach including structures, rating curve uncertainty and other 
factors. 

At least one of these examples will include real-time updating and the influence on model 
performance with increasing lead time. Multi-model techniques might also be considered, such as 
comparisons of model outputs in real-time for different inputs (e.g. raingauge, radar rainfall), or 
different sets of model parameters. 

During the consultations, it was noted that the choice should reflect the breadth of Environment 
Agency forecasting situations, and that the Project Board is open to other suggestions (while 
noting that rainfall forecasts fall outside the scope of this project, since they are being considered 
within the ‘Hydrological Modelling with Convective Scale Rainfall’ project). The discussions were 
structured around the following two questions and the remainder of this section summarises the 
main responses to those questions: 

• Do you have any comments on the initial suggestions from the Project Board for case 
studies? (Section 3.1) 

• Do you have any suggestions for specific catchments for consideration as case studies 
(with reasons)? (Section 3.2) 

It was also noted as part of the introduction to the topic that, with eight regions, and the Thames 
Barrier, and only four case studies planned, then obviously it will not be possible to have case 
studies in all regions. However, the case studies will be selected so that the experience gained will 
be of benefit to most, if not all, other regions. One other proviso placed on the selection of case 
studies was that models should already be built and configured onto NFFS (since no new model 
development will be performed during this project). 

3.2 Comments on Initial Suggestions 
The general consensus from the consultations seemed to be that the choice of types of case study 
seemed sensible, and would provide examples which will be of interest and relevant to all regions. 
There was also a general view that the case studies should be chosen on technical grounds (i.e. 
specific types of models, and forecasting situations), rather than other criteria such as risk, or 
current model performance regarding level of service. One region also made the point that 
probabilistic techniques, although valuable, could sometimes require more time to make decisions 
when used operationally, so the initial applications are likely to be on catchments (or at Forecasting 
Points) with longer lead times, and this could be a factor in the choice of case studies.  
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In abbreviated form, the following more detailed points were also made: 

• Rapid Response case study – some regions were interested to know the lead times 
covered by the term ‘rapid’ and it was noted that perhaps the term ‘fast response’ 
would have been more appropriate; the aim being to examine a model which relies 
primarily on a rainfall–runoff model to provide a forecast. The actual lead time is 
unimportant and could be several hours. However, it was noted that the project is not 
exploring the use of probabilistic techniques to extend the forecasting service to new 
types of forecasting issue; for example, where catchment response times are less than 
the level of service target. 

• Integrated Catchment Models – three regions noted that their integrated catchment 
models do not usually include a hydrological flow routing component i.e. that rainfall–
runoff models join directly to hydrodynamic models. The hydrological flow routing 
aspect is therefore of less interest, although should not be ruled out if it is relevant in 
other regions. More generally, one region noted that, within the constraints of technical 
feasibility, the more sources of uncertainty which can be combined, the better; for 
example, ungauged catchments, confluence flooding issues, structures, and 
uncertainty arising from rating curves and the effects of updating. 

• Other Suggestions – confluence flooding was suggested as another possible type of 
simple case study, and a basic component of many larger integrated catchment 
models. An example could be provided for a confluence with a caravan park at risk, for 
example. 

3.3 Suggestions for Specific Catchments 
Suggestions for possible case studies were received from all 8 regions, and these are summarised 
in Table 3.1, and Figure 3.1 (although note that PRTF models are outside the scope of the present 
study). 
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Table 3.1 – Regional suggestions for possible case studies. 

Region Catchment Category Model Types Description 
Anglian Cam Integrated Catchment 

Model 
PDM/ISIS The model includes four tributaries upstream of a key risk area, where there is a 

structure. One of the tributaries is ungauged, one is well calibrated, and two are 
candidates for real-time updating, with approximately 70% of the flow gauged  

Severn Integrated Catchment 
Model 

MCRM/DODO/ISIS Cascades of models, and types of models, in the middle and lower reaches of the 
catchment 

Lower Trent Flow Routing MCRM/DODO/ISIS A well defined reach for which most of the major inflows are gauged, and ratings 
have been reviewed following the Summer 2007 floods. Various structures and a 
tidal downstream boundary 

Soar  Flow Routing MCRM/DODO/ISIS Significant ungauged inflows and complex structure operations; forecasting 
model currently under development 

Midlands 

Warwickshire 
Avon 

Integrated Catchment 
Model 

MCRM/DODO/ISIS Major tributary of the river Severn at Tewkesbury. Several gauged fast response 
inflows, and no major issues with structures during flood events 

South Tyne Integrated Catchment 
Model 

PDM/ISIS 3 gauged PDM models, ungauged catchments, and an ISIS reach. The 
catchment has been used for pilot tests of performance measures such as POD 
and FAR, and variations in performance with lead time, and examining 
performance with raingauge data, no rain, and radar rainfall data 

Wansbeck Integrated Catchment 
Model 

PDM/KW 3 PDM models and a KW routing reach. The main flood risk area is Morpeth for 
which severe flooding occurred in 2008 

Upper Calder Rapid Response PDM Fast response catchments to Todmorden and Walsden Water. Forecasts for the 
exceedance of Result Thresholds used to guide the issuing of flood warnings 

North East 

Derwent Flow Routing PDM/KW/ISIS A catchment which could provide an example of storage issues, and which has 
PDM models with 4–5 routing reaches, and an ISIS model 

Upper Ribble Rapid Response PRTF Model for the Upper Ribble to Ewood 
Douglas Rapid Response PDM Model for the catchment to Wigan, with a reservoir in the catchment 
Greta Rapid Response PDM/VPMC Model for the Greta at Keswick consisting of PDM and routing models, with 

reservoir influences 
Lower Eden Flow Routing VPMC/ISIS Flow routing and hydrodynamic reaches to Carlisle, with a fluvial lower boundary. 

There is an adequate lead time from flow routing, although PRTF rainfall–runoff 
models have also been developed 

Lower Ribble Flow Routing PRTF/ISIS Floodplains and tributary inflows in the lower catchment to Preston, with a tidal 
downstream boundary  

North West 
 

Derwent Integrated Catchment 
Model 

PDM/VPMC/ISIS An integrated catchment model combining rainfall–runoff, reservoir, routing and 
hydrodynamic components 
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Table 3.1 (continued) 

Region Catchment Category Model Types Description 

Medway Integrated Catchment 
Model 

PDM/ISIS A complex model with many rainfall–runoff inputs and structures (gates, 
locks/navigable reaches), and the Leigh Barrier 

Sussex Ouse Integrated Catchment 
Model 

PDM/ISIS A complex model for the catchment to Lewes, with a reservoir, tidal downstream 
boundary, and four major subcatchments 

Southern 

Adur Integrated Catchment 
Model 

PDM/ISIS A complex model with an extensive area of tidally influenced floodplain, with flap 
gates controlling flows to and from the floodplain, and issues with stop logs in 
summer months 

Bude/Neet Integrated Catchment 
Model 

PRTF/ISIS A fast response catchment with a tidal downstream boundary in the town of Bude, 
with two rainfall–runoff models and a hydrodynamic model reach 

South West 

Bristol Avon Integrated Catchment 
Model 

PRTF/ISIS A complex model to the city of Bristol with several linked ISIS models and rainfall–
runoff model inputs 

Ravensbourne Integrated Catchment 
Model 

TCM/ISIS A rapidly responding urban catchment with a distributed set of hydrological inputs. 
The integrated catchment model is a TCM-ISIS model with radar rainfall inputs, 
and approximately 30–40% of the catchment area is gauged 

Thames 

Thames Barrier Flow Routing ISIS The Thames Barrier is a possibility for a case study, and an investigation into how 
to combine ensemble surge forecasts with probabilistic fluvial forecasts would be 
of particular interest (although this is outside the current scope of the project). The 
current long-term programme of continuing improvements is currently focusing on 
uncertainties (where relevant) in surge estimates, wind shear effects, 
astronomical tide estimates, tidal levels at the estuary mouth, and in further 
improving the representation of tidal flows over Teddington weir, minor discharges 
into tributaries, and other factors 

Tawe Integrated Catchment 
Model 

PDM/ISIS A rapid response catchment to Swansea with 3 PDM models and one ISIS routing 
and a hydrodynamic model. The downstream boundary is at a structure 

Taff Integrated Catchment 
Model 

PDM/ISIS A complex model for the Rhondda, Cynon, Upper Taff and Lower Taff reaches 
down to Cardiff, with 2 reservoir models in the upper reaches 

EA Wales 

Solva Integrated Catchment 
Model 

PDM/KW/ISIS A small fast response catchment to the town of Solva in Pembrokeshire, with an 
ISIS model for a flood detention reservoir in the middle reaches 
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Figure 3.1 – Locations of the catchments suggested for possible case studies. 
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4 Ongoing Studies 

4.1 Introduction 
The aim of this section of the consultation meetings was to briefly review the current 
approaches to assessing uncertainty which are used in each region, and to compile a 
list of area, regional, national and other studies which regional teams consider might be 
useful to the present study. 

The discussions were structured around the following three main questions and the 
remainder of this section summarises the main responses to those questions: 

• Are any other methods used in your region to assess uncertainty in flood 
forecasts in real-time? (Section 4.2) 

• Have any regional or area studies been performed recently, or in the past, 
on the main sources of uncertainty in fluvial flood forecasting models, and 
what approaches are used? Are there any reports available for the project 
team to review? (Section 4.3) 

• Are you aware of any other studies which might be useful to this project 
(within, or outside, the Environment Agency)? (Section 4.4) 

4.2 Real-time Methods to Assess Uncertainty 
During the Probabilistic Flood Forecasting Scoping Study (2006–07), and subsequent 
discussions during 2008 linked to the Hydrological Modelling with Convective Rainfall 
Study, the regional consultations suggested that the following methods are currently 
used for assessing uncertainty in flood forecasts: 

• Use of the probability estimates in Heavy Rainfall Warnings 

• Scenario modelling of gate settings, closures and blockages 

• Sensitivity studies for surge estimates (e.g. +200 mm) 

• Running of fluvial models with alternative rainfall inputs and scenarios 
(raingauge, radar actuals, forecasts etc) 

• Look-up tables on sensitivity of levels/flows to rainfall estimates 

• Running of alternative surge models (CS3, local, manual calculations) 

• Evaluation of outputs from alternative approaches, e.g. rainfall–runoff, 
rainfall/catchment state assessment, threshold-based approaches 

• Running of rainfall–runoff models for alternative catchment states (dry/wet 
etc) 

• Attaching a likely range (in metres) to forecasts of peak levels. 

The present consultations suggested that the following additional methods have also 
recently been adopted, or are being evaluated: 
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• Time lagged ensembles – an NFFS option to display successive forecasts 
on the same graph, giving an indication of the consistency in forecasts 
between model runs (see Figure 4.1). 

• Peak level forecast range plots – plots which show how successive model 
forecasts have changed as the peak approaches, for comparison with the 
observed flows (to time now), and bands showing the best estimates at 
each lead time for the range of the forecast. 

• ‘Poor man’s ensembles’ – comparisons of flow forecasts for different 
models and rainfall inputs. 

 

Figure 4.1 – Example of a time lagged ensemble plot provided by Midlands 
Region. 

4.3 Regional and Area Studies 
The following studies were noted as being possibly useful to the present study, and 
copies of the relevant reports were provided (when available): 

• Rainfall–Runoff Model Sensitivity Tests – a study into the performance of 
the PDM components of an integrated catchment model, using 
stochastically generated rainfall, and sampling for different parameter sets. 
Runs have also been performed with and without rainfall to investigate the 
likely limits on forecast lead time. 

• Rainfall Actuals Sensitivity Tests – regional studies into the performance of 
integrated catchment models using catchment average rainfall estimates 
based on raingauge data and radar rainfall data. 

• Performance Measures/Level of Service studies – pilot tests for a 
catchment of performance measures such as POD and FAR, including 
variations in performance with lead time, and also examining performance 
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with raingauge data, radar rainfall data, and assuming no future rainfall 
(with a region-wide study under development). 

• Reservoir Influences – studies for a catchment which was affected during 
the Summer 2007 floods into the variations in forecast flows when including 
and excluding one or more reservoirs in the upper reaches of the 
catchment. 

• More generally, it was noted that there may also be useful information 
within the model development reports for the four case studies which will be 
chosen for development during Phase 2 of the project (to be determined). 

4.4 Other Relevant Studies 
The following ongoing and recent national projects were noted as being potentially 
useful to this project:4 

• FEWS User Day 16–17 October 2008 – a two day workshop to outline 
current and future developments in FEWS. 

• Error Correction Workshop – an NFFS workshop held during October 2008, 
and related ongoing national study into the performance of error correction 
routines. 

• Communication and Dissemination of Uncertainty – an R&D project which 
is close to completion and is considering the issues surrounding 
communication and dissemination of uncertainty in flood forecasts. 

• Fast Response Catchments – a study into potential approaches to flood 
forecasting for fast response catchments, which was commissioned by an 
area office during 2008. 

• Data Assimilation – ongoing research in the Netherlands on Kalman Filter 
and other approaches to updating of coastal forecasts. Also, ongoing 
studies by Proudman Oceanographic Laboratory. 

• Coastal Flood Forecasting project – an ongoing R&D project to develop 
techniques for generating ensemble surge forecasts and probabilistic wave 
and wave overtopping forecasts. 

• Skill Scores project – an ongoing project which seeks to recommend which 
performance measures should be routinely computed in NFFS (with 
appropriate enhancements to NFFS). Provisionally the list includes: 

- rainfall forecasts and radar rainfall actuals (0–3 hours, 3–6 hours, then 6 
hourly blocks from 6 to 36 hours ahead); 

- catchment average rainfall from raingauges and radar rainfall; 

- forecast flows and observed flows (2, 6, 12, 24 and – where possible – 
36 hours ahead). 

Objective functions which will be used include bias, R2, RMSE and RMSF, and 
threshold-based measures. A range of procedural and computational issues are 
currently under investigation (for example, the approach to event matching). 

                                                           
4 Note that the Phase 1 report will refer to additional studies which we are aware of 
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5 Integrated Catchment Models 

5.1 Introduction 
Most regions now operate a number of integrated catchment models, and the aim of 
this section of the consultations was to discuss experience with developing and using 
these models, and any key sources of uncertainty which have been identified, and their 
relative importance in the accuracy of flood forecasts provided. Experience with real-
time updating (data assimilation) was also of particular interest, including error 
correction and state updating. 

The discussions were structured around the following three main questions and the 
remainder of this section summarises the main responses to those questions: 

• What experience has been gained with the performance of integrated 
catchment models combining rainfall–runoff, flow routing and/or 
hydrodynamic components? (Section 5.2) 

• What do you find are the most difficult/challenging aspects of model 
calibration (catchment rainfall estimation, permeable catchments, high flow 
ratings, representation of control structures etc)? (Section 5.3) 

• Can you provide any descriptions or assessments of model performance 
which might be useful to this project? (Section 5.4) 

5.2 Regional Experience 
All regions reported experience with developing and using integrated catchment 
models. Table 5.1 summarises the types of models which were described as being 
currently in use or being tested with a view to implementation operationally. 

Table 5.1 – Indicative summary of current uses of integrated catchment models 
for catchments where models are available. 

Method All Catchments Many/Several 
Catchments 

Some 
Catchments 

PDM/ISIS 1 2  
PDM/KW/ISIS   2 
PDM/KW  1 1 
MCRM/DODO  1  
MCRM/DODO/ISIS   1 
NAM/MIKE11  1  
PRTF/ISIS  1 1 
PRTF/VPMC/ISIS   1 
TCM/ISIS 1   
 

Several regions also described the use of rainfall–runoff models alone for fast response 
catchments and/or lower risk catchments, and the use of level to level correlations. The 
types of rainfall–runoff model currently in use included PDM, HYADES, MCRM, TCM, 
NAM and PRTF models. 
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The current approaches to real-time updating in each region were also discussed, and 
Table 5.2 summarises the methods which were reported: 

Table 5.2 – Indicative summary of current uses of approaches to data 
assimilation for catchments where integrated catchment models are available. 

Method All Catchments Most/Several 
Catchments 

Some/A Few 
Catchments 

FEWS ARMA 1 2 4 
ARMA (various forms)  2 2 
PDM state updating  2 1 
Manual – snow   1 
Manual – groundwater   1 
Manual – soil moisture 
deficit 

 1  

Manual – gate settings   1 
ISIS GAUGE   1 
MIKE11 error correction    
MIKE11 state updating   1 
PRTF updating  2  

5.3 Most Difficult/Challenging Aspects 
During most meetings, this topic was largely covered within the initial discussions on 
sources of uncertainty (Section 2.1). The most difficult and challenging aspects which 
were noted might therefore be summarised as follows: 

• Catchment Averaging of Raingauge Data – number of raingauges to 
include, weighting factors to use, relative performance of raingauge and 
radar rainfall based actuals. 

• Validity of Rating Curves – seasonal influences, mobile bed levels, high 
flow/out of bank ratings, maintenance of ratings in models. 

• Model Calibration (Hydrodynamic Models) – understanding/improving the 
performance of ‘monolithic’ models, deciding where/how/whether to 
implement real-time updating, seasonal influences, mobile bed levels, 
propagation of tidal influences upstream, representation of 
abstractions/discharges (if relevant), problems at model boundaries. 

• Model Calibration (Rainfall–Runoff Models) – overall model 
conceptualisation/smallest catchment size, model performance for 
convective events and in moderate rather than intense rainfall events, most 
appropriate performance measures to use. 

• Representation of Floodplain Storage – accuracy of survey data, 
understanding/representing flow paths on floodplains, roughness coefficient 
for in-bank/floodplain flows, real-time updating for floodplain storage, 
draining of the floodplain (in multiple events). 

• Representation of Antecedent Conditions – representation of soil moisture 
during the transition from summer to winter conditions; real-time 
information/updating for snowmelt modelling; representation of groundwater 
influences, evaporation modelling. 

• Representation of Ungauged Inflows – catchment conceptualisation (using 
a few large subcatchments or many smaller catchments), the general 
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approach to estimating ungauged flows (scaling, parameter transfer, FEH-
based etc). 

• Influence of Structure Operations – representation of reservoir storage and 
operations, lack of real-time information on structure operations, differences 
between actual and design operating rules, operational problems (gate 
failures, blockages, flood defence breaches etc). 

• Real-time Updating – allowing for ‘drift’ in baseflow conditions, updating in 
tidal conditions, updating when there are timing errors, the influence of poor 
data quality. 

• Flood Mapping Module – run times, setting up and maintaining 
survey/defence heights etc. 

As already noted in previous sections, a number of general issues were also discussed 
relating to data quality, data availability, catchment changes over time (ratings, channel 
characteristics, flood defences etc), model performance measures etc. 

5.4 Model Performance Assessments 
This topic was largely covered in the response to the question about recent regional 
and area studies (see Section 4.3), for which the main studies which were noted 
involved sensitivity tests to different types of rainfall inputs, and for different rainfall 
forecast lead times, investigations of the most appropriate performance measures to 
use (and regional application of those measures), and studies into the influence of 
reservoirs. 
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6 User Requirements 

6.1 Introduction 
The anticipated benefits of the project are as follows: 

• Improved understanding of major sources of uncertainties in fluvial flood 
forecasting. 

• Consistent and tested unified uncertainty framework with robust methods to 
quantify and reduce (where possible) uncertainty for integrated catchment 
models in fluvial flood forecasting from ‘end to end’. 

• Lessons learned from applying and validating selected uncertainty 
techniques to case studies. 

• Practical guidance on how to apply probabilistic fluvial flood forecasting 
operationally. 

The main project outputs will include the case studies, the unified framework, 
guidelines on applying probabilistic techniques, and the project technical and summary 
reports. The format of the guidelines will be discussed as the project progresses, but 
some possible contents could include: 

• Risk-based approaches for selection of appropriate techniques, accounting 
for catchment characteristics and forecast lead time. 

• Short case studies of best practice in the form of Factsheets. 

• Flowcharts and diagrams to guide users through the selection process. 

The framework could also consider good practice issues such as the need to evaluate 
model performance after flood events (and recommended approaches), continuing 
model maintenance, and appropriate performance measures for assessing different 
aspects of model performance, such as skill scores and contingency measures (e.g. 
POD, FAR), skill of the mean forecast, the spread-skill relationship of the probabilistic 
forecast, the Brier score, ranked probability score, and vulnerability based measures. 
However, the focus of the review of performance measures will be on a small number 
which could be used to assess the probabilistic outputs on the case studies (and which 
would be practical to implement operationally). As with the Real-Time Modelling 
guidelines, the framework will provide clear guidance on the data requirements, 
benefits and limitations of each approach. 

The discussions were structured around the following four main questions and the 
remainder of this section summarises the main responses to those questions: 

• Of the suggestions above, which would you find useful in a guideline 
document on probabilistic fluvial flood forecasting? (Section 6.2) 

• What formats do you find most useful in the currently available guidance on 
approaches to model development (flowcharts, case studies, itemised 
instructions, tips and advice, tables of strengths/limitations of approaches 
etc)? (Section 6.3) 

• Do you have any experience of using the Real-time Modelling guidelines 
from 2002, and subsequent documents which have incorporated ideas from 
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those guidelines (AMS Work Instructions, Tips and Guidance notes etc)? 
(Section 6.4) 

• What do you see as the main risk-based criteria to consider in selection of 
an appropriate modelling approach? (Section 6.5) 

As part of the introduction to the topic, it was noted that preparation of the guidelines is 
one of the final tasks on the project (in 2010) and the topics which will be considered 
will depend to some extent on the findings from Phase 2 of the project. However, it is 
useful to have any early ideas on content and format as this may guide the 
development of the framework and guidelines in later stages of the project. 

6.2 Content of the Guidelines 
The discussions on this topic suggested that there was a general view that the 
guideline document should set out a national approach to how the selected 
probabilistic techniques should be implemented, with a general feeling (with one 
exception) that it should not be too prescriptive (‘not a cookbook’, ‘guide not tell’). 

Several consultees also said that, ideally, the document should be linked to, or 
supplemented by, the NFFS case studies, so that a practical implementation can be 
viewed, and that this should be combined with generic ‘lessons learned’. Also, that a 
balance needs to be kept between providing long lists of choices and options, and 
providing only a small number of approaches (or a single approach) which is not 
generally applicable to other catchments or regions. The various options and choices 
could also be linked to risk (see later). At some meetings, there was also some 
discussion about whether the guidelines would only be used a few times (for example, 
when learning new techniques), or referred to frequently for reference during model 
design and development. 

In abbreviated form, some other points which were made included the following 
observations: 

• Factsheets could be useful, and tables summarising the strengths and 
limitations of different approaches. 

• Information on the staff resources to implement solutions would be useful, 
together with descriptive information on the likely benefits, and possible 
‘quick wins’. 

• The document should not be too lengthy and should be easily accessible 
for quick reference to specific items. 

• A checklist approach could be useful, highlighting issues to consider, with 
short guidance and pointers. 

• More detailed technical background on specific techniques may be useful. 

• Documents should be accessible but not too long, and may need to be 
aimed at two levels; model users and model developers. 

• Advice on appropriate performance measures would be very useful. 

• The likely system requirements should be noted, with ‘health warnings’ 
regarding model run times and post-processing requirements (if required). 

• Sharing of best practice between regions is always useful. 
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• The document should set out a national approach to how probabilistic 
techniques should be implemented (‘a framework for how to do it’). 

• The case studies and examples will be useful, maybe with full 
descriptions/factsheets available for further reading in more depth (a 
document to ‘dip in to’). 

• The development of a ‘tool kit’ approach would be useful. 

• In addition to using guidelines during the initial model design, there could 
also be advantages in identifying potential issues during the model build 
phase, and in planning long-term programmes for model development. 

• The guidelines should be flexible enough to adapt to new approaches in 
future (and not a list of instructions). 

• Being able to see the thought process in setting up the 4 case studies 
would be particularly useful. 

• The guidance could also include protocols and checklists containing 
information on probabilistic issues and uncertainty. 

• The guidance should be shared with modelling partners that develop the 
models. 

• The guidelines could suggest a tiered approach, starting with a simple 
method, then working up to more complex methods. 

• Guidance on combining ensemble flow forecasts with ensemble surge 
forecasts would be useful where this is relevant (although this is outside the 
scope of this project). 

• The framework/guidelines should also consider how to combine ensemble 
flow forecasts from the Hydrological Modelling with Convective Rainfall 
(T46) study with the probabilistic outputs from this project. 

• Descriptions of assessments of model performance for historical events 
would be very useful (sources of uncertainty, how to treat probabilistically 
etc). 

• Although outside the scope of the present project, a new NFFS training 
module could be created for probabilistic forecasting, allowing for ongoing 
training (not just at the project workshop in Phase 3). 

• Guidance on assessing the critical areas of uncertainty in models, and in 
targeting work where the maximum benefit is obtained, would be useful; for 
example, the choices between improving ratings versus improving radar 
forecasts versus more rainfall–runoff work on tributaries (written reply). 

• The introduction of national ‘what-if’ scenarios should be avoided as there 
are always local variations, and the most appropriate scenarios would 
depend on local factors and the characteristics of the event (written reply). 

• Whatever techniques are recommended, they should be able to generate 
probabilistic forecasts in a similar time to current approaches, for multiple 
rivers/forecasting points (written reply). 

It was also noted that there may be regional differences in what is useful; for example, 
between regions with an extensive coverage of integrated catchment models, where 
the current focus is on improving the performance of existing models, and regions with 
only a few models, where the focus is on extending the coverage of models. 
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A number of other, more general, comments were made on the guidance and other 
information currently available for the Project Board to consider (but which were 
outside the scope of this project and so are not reported here). The issues of providing 
guidance on the generation of rainfall forecasts, and the communication and 
dissemination of information on uncertainty, were also raised at some meetings (and in 
a written submission), but are being considered on other projects, and are outside the 
scope of the present study (although the uncertainty framework will consider how 
uncertainty in rainfall forecasts might be combined with other sources of uncertainty). 

6.3 Currently Available Guidance 
This topic generally did not generate much discussion and, in abbreviated form, the 
main points and observations which were made were: 

• An entry for key words (a ‘prompt list’), with links to definitions, as found in 
some current documents, would be useful. 

• The comments on flowcharts and checklists ranged from the view that 
these are useful through to flowcharts not being favoured and 
checklists/protocols not widely liked. 

• Tips and Guidance documents are useful for providing additional 
information. 

• More detail on the technical aspects would be useful to supplement current 
guidance which seems weighted towards process/policy aspects. 

6.4 Real-time Modelling Guidelines 
The Real-time Modelling Guidelines were produced during 2001 and 2002 and 
provided a risk-based approach to the selection of modelling techniques for fluvial flood 
forecasting problems. In addition to the main document, some aspects have 
subsequently been included in work instructions and other documents, and in model 
development specifications. In abbreviated form, the points which were made on the 
guidelines included: 

• The mixture of flow charts and case studies in the guidelines has been 
found to work well in the past. It was also felt that this document benefits 
from being brief and non-technical. 

• The guidelines contained guidance on the staff time inputs required, and it 
would be useful to adopt a similar approach in the new document. 

• The guidelines were useful and need a relaunch, and could be repackaged. 
This would provide the opportunity to make sure that everyone has the 
same information available to them. It was felt that there is too little 
technical content in the other currently available guidance. 

• The guidelines were produced at a time when each region operated its own 
models and forecasting systems, and pre-dated the more consistent 
approach which has become possible with the introduction of the NFFS. 
The guideline document was therefore ‘of its time’ and requires updating. 

• The economic (cost-benefit) aspects, although seen as important when the 
guidelines were produced, are perhaps less important nowadays, and 
therefore any new document should focus mainly on technical issues. 



 

 Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models 167 

6.5 Risk Based Criteria 
One option for the guidelines and uncertainty framework is that the choice of method 
could be tailored to the level of risk, in addition to accounting for catchment 
characteristics and forecast lead time requirements. The distinction between 
computationally complex methods and scientifically complex approaches was also 
discussed (with the former possibly being easy to implement, but taking a lot of 
computer time). In abbreviated form, the points which were made on a risk-based 
approach included: 

• The methods could vary in depth and extent according to risk, perhaps as 
estimated from the ‘Anglian Matrix’ (HHH etc), and/or linked to numbers of 
properties and risk to life (these often go together). 

• It is assumed that the options presented will link into simple measures of 
risk e.g. a risk matrix (HHH) approach. 

• There was some doubt about the value of a risk based approach unless 
starting out model development work from scratch (with no model for the 
catchment(s) of interest). Alternatives to the risk matrix values (HHH etc) 
could include properties at risk, and cost-benefit. Technical feasibility is 
also important to consider (e.g. on fast response catchments). 

• A risk based (HHH) approach seems sensible. Catchment and data issues 
are important as well, e.g. the location of Forecasting Points in the 
catchment, the locations of structures, lead time requirements, data 
availability and quality etc. 

• Possibilities for a risk based approach could include the number of 
properties at risk and Risk Matrix values (HHH etc); also, the presence of a 
Severe Flood Warning. Technical feasibility is also important to consider 
e.g. on fast response catchments. 

• One more general point was the suggestion that risk and uncertainty in 
model development should be identified/quantified at the 
feasibility/inception stage, and should ideally be part of the criteria for 
identifying whether the model development project is worthwhile, 
highlighting the various trade-offs between model complexity, data 
availability, and model uncertainty. This would help to mitigate against the 
development of a model with high uncertainty being developed in a high 
risk area, as this could have unfortunate consequences. 



168  Science Report – Risk-based probabilistic fluvial flood forecasting for integrated catchment models  

7 Conclusions 
The consultation meetings and phone conferences allowed discussions to be held with 
regional flood forecasting teams early in the project to determine gaps in available 
guidance, to assess end user requirements, to discuss ideas for possible case studies, 
and to allow for refinements in project scope. The following topics were considered: 

• Sources of uncertainty in Integrated Catchment Models 

• The selection criteria for case studies during Phase 2 of the project 

• Ongoing regional studies (if available) on sources of uncertainty 

• Experience with the performance of integrated catchment models 

• User requirements for the Real-Time Modelling Guidelines and other 
project outputs. 

The consultations were performed by telephone and meetings during the period 18 
December 2008 to 16 January 2009. Approximately 25 Regional Flood Forecasting 
and Area Flood Warning Duty Officers participated in the consultations, with written 
contributions received from an additional two people. With the exception of the final 
meeting, a Project Board member participated in each meeting. The majority of 
meetings lasted from 2 to 3 hours, with the shortest lasting just under 2 hours, and the 
longest lasting about 4 hours. 

The consultations have provided a good picture of the current usage of integrated 
catchment models within the Environment Agency, and the sources of uncertainty in 
models of this type, and the related benefits. Key issues which have been highlighted 
include uncertainties in both the hydrological and hydrodynamic components of 
models, with more than half of the issues raised concerning the hydrological aspects 
(and rating curves). Some useful indications have also been provided of what would be 
useful in the guidelines and uncertainty framework which will be produced later in the 
project. Approximately 24 catchments were also suggested as potential case studies. 

The findings from the consultations will inform planning for Phase 2 of the project, and 
selection of the four case studies to be considered. This report will also be discussed at 
the Phase 1 Project Workshop which is planned to be held in Solihull on 16 March 
2009. 
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Glossary 
Term Description 
Agency 
Management 
System 

A series of Work Instructions and related documents which clarify 
procedures, targets etc for Environment Agency staff 

Baseflow The stream flow component arising from water moving through the 
aquifer to the stream channel 

Catchment model A model (or models) using observations of rainfall and/or upstream 
flows and/or levels to forecast flows and/or levels at a point within a 
Flood Warning Area (typically a gauging station) 

Damage reduction The amount of pre-flooding action that can be taken to reduce the 
cost of the flooding event expressed as a percentage factor, taking 
into consideration the lead time of the warning (i.e. the length of time 
between when a warning was issued and when flooding occurs) that 
allows the pre-flooding action to be carried out 

DODO Flow routing model (Midlands Region) 
Flood Risk Area 
 

An area at risk from flooding which may or may not have an existing 
warning service  

Flood Warning 
Area 

A proportion of the floodplain containing a community at risk from 
flooding which is provided with an appropriate flood warning service 
as per the Risk Decision Box 

HYADES Unit hydrograph model (rainfall–runoff) 
HYRAD A weather radar processing and display system produced by CEH 

Wallingford 
ISIS 1D hydrodynamic modelling package (HR Wallingford) 
Lead time The maximum time ahead which a model or rainfall forecast can 

predict flows or rainfall. Also flood warning lead time 
MIKE11 1D hydrodynamic model (DHI) 
MNP Netherlands Environmental Assessment Agency 
MOGREPS An ensemble Numerical Weather Prediction modelling approach 

(currently 0–36 hours) developed by the Met Office 
NAM Rainfall–runoff model (DHI) 
Nimrod Deterministic nowcasting technique now replaced by STEPS (Met 

Office) 
Rainfall actuals Observations of rainfall occurring at present using raingauges or 

radar  
Rainfall–runoff 
model 

A model which converts observed or forecast rainfall into estimated 
river flows 

Routing model 
 

A model which translates flows from the upstream to the downstream 
end of a river reach allowing for floodplain effects, tributary inflows etc 

Service 
effectiveness 

The proportion of flood serviced properties which were sent a timely, 
accurate and reliable flood warning 

STEPS Nowcasting technique that provides deterministic forecasts (0 to 6 
hours) operationally now with ensembles planned for release in 2009 
(Met Office) 

Trigger A river level above which a flood warning is issued (or considered); 
now called Threshold 

Ungauged 
catchment 

A catchment with no river level recorder 

Updating The use of observed river levels or flows to attempt to improve a 
forecast by correcting the forecast to better match the observed 
values 
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List of abbreviations 
 

Term Meaning/definition 
AMS Agency Management System 
ARMA AutoRegressive Moving Average 
BMA Bayesian Model Averaging 
BPO Bayesian Processor of Output 
CAPTAIN Computer Aided Program for Time-series Analysis and Identification 

of Noisy systems 
CEH Centre for Ecology & Hydrology (Wallingford) 
CHPS Community Hydrological Prediction System 
CWI Catchment Wetness Index 
DBM Data Based Mechanistic 
D-PHASE Demonstration of Probabilistic Hydrological and Atmospheric 

Simulation of flood Events 
ECMWF European Centre for Medium-range Weather Forecasts 
EFAS European Flood Alert System 
EFFS European Flood Forecasting System 
EKF Extended Kalman Filter 
EnKF Ensemble Kalman Filter 
EPS Ensemble Prediction System 
FAR False Alarm Rate 
FEWS Flood Early Warning System 
FOEN Federal Office for the ENvironment (Switzerland) 
FREE Flood Risk from Extreme Events 
FRMMS Flood Risk Management Modelling Strategy 
FRMRC Flood Risk Management Research Consortium 
G2G Grid-to-Grid Model (CEH Wallingford) 
GLUE Generalised Likelihood Uncertainty Estimation 
HEPEX Hydrologic Ensemble Prediction EXperiment 
KF Kalman Filter 
KW Kinematic Wave flow routing model (CEH Wallingford) 
MAP Mesoscale Alpine Programme 
MCRM Midlands Catchment Runoff Model (rainfall–runoff) 
MOGREPS Met Office Global and Regional Ensemble Prediction System 
MORECS Met Office Rainfall and Evaporation Calculation System 
MOSES Met Office Surface Exchange Scheme 
NFFS National Flood Forecasting System 
NWP Numerical Weather Prediction 
NWS National Weather Service (USA) 
PDM Probability Distributed Model (CEH Wallingford) 
PFFW probabilistic flood forecasting and warning 
POD Probability of Detection 
PRTF Physically Realisable Transfer Function model (rainfall–runoff) 
PSM Penman Store Model (incorporatesTCM and IEM) 
QPF Quantitative Precipitation Forecast 
RMSE root mean squared error 
STFS Storm Tide Forecasting Service (Met Office) 
TCM Thames Catchment Model (rainfall–runoff) (provided in PSM along 

with IEM) 
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Term Meaning/definition 
TF transfer function 
UNEEC UNcertainty Estimation based on local Errors and Clustering 
VPMC Variable Parameter Muskingum-Cunge flow routing model 
WMO World Meteorological  Organization 
XEFS eXperimental  Ensemble Forecasting System 






