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EXECUTIVE SUMMARY

The Environment Agency has duties and powers to ensure the protection of groundwater and
the remediation of contaminated land and groundwater.  These responsibilities are covered by
the Groundwater Regulations 1998, Water Resources Act 1991 (WRA 1991) and the
Environmental Protection Act 1990 (EPA 1990). To assist in this regulatory role,
environmental risk assessment methodologies are employed by the Agency as part of the
decision-making process.  With regard to the protection and remediation of groundwater,
contaminant fate and transport models are often used.  They may take the form of
deterministic models or probabilistic tools, such as LandSim and ConSim.

In using contaminant fate and transport models there are three main sources of uncertainty:

• Conceptual - is the system sufficiently well understood and defined? Unless the conceptual
model is right, any further analysis will be spurious.

• Model - does the mathematical model adequately describe the conceptual system and its
behaviour?

• Parameter - are the parameters values used in the model known and adequately described?

The purpose of this document is to provide guidance, both internally for the Agency and for
external bodies, on parameter inputs to quantitative probabilistic approaches to contaminant
fate and transport modelling.  These probabilistic approaches address the uncertainty and
variability of input parameters by using probability distributions to describe each parameter.
This document includes guidance on the theory of probability distributions, the practical
application of these distributions in contaminant transport models and the interpretation of
results. This document also emphasises the importance of a robust conceptual model.

A key step in contaminant transport modelling is the selection of values for input parameters.
In a probabilistic model, the range of values for an input parameter is defined by a probability
density function (PDF).  These take account of uncertainty and variability which may arise
from a number of sources especially:

• Intrinsic Uncertainty;

• Experimental Uncertainty;

• Heterogeneity;

• Time Variation.

This approach does not account for an incorrect conceptual model.  The statistical definitions
and characteristics of the commonly used probability distributions are explained in the text,
and provide a theoretical background to the application of probabilistic models.

In order to produce defensible results, contaminant transport models require the input of site-
specific data wherever possible, but often data are limited or not available.  When data are
available they must be critically reviewed to establish their validity and their appropriate use
in defining PDFs.  Key questions include:

• Are the data from the same (or a relevant) population?
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• Are the data time dependent?

• Are extreme values representative of the system?

• Are measurements representative of the system as a whole?

• Are data reasonable and physically possible?

• Can data be scaled up from the scale of measurements to the scale of the problem?

This data review should form part of the conceptual model.

The report describes methods for fitting PDFs to field data (even if these data are limited),
together with methods for upscaling field measurements to provide a probabilistic description
of the average system behaviour.

Where data are not available, parameter values and ranges may need to be obtained from
other sources.  Sources may include published literature or reliance on expert judgement with
appropriate explanation.  Other, less widely used methods are available, such as the
Maximum Entropy and Bayesian Methods.

The interpretation of model results is a key step in probabilistic modelling.  It is important to
understand the sensitivity of the model to the parameter distributions that have been used and
to check model results are valid when compared with field data.  The report provides
guidance on understanding the sensitivity of models to parameter distributions.

Keywords

Contaminant transport, uncertainty, risk-assessment, probabilistic, probability density
functions, PDF.
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GLOSSARY

Analytical model Exact mathematical solutions of the flow and/or transport
equation for all points in time and space.  In order to produce
these exact solutions, the flow/transport equations have to be
simplified (e.g.  very limited, if any, representation of the
spatial and temporal variation of the real system).

Bayesian method A technique of re-calculating probable outcomes by
incorporating new data, combining what is known with what
is expected.

Binomial distribution Describes the number of times an event occurs in a fixed
number of trials.

Compliance point Location where a target concentration must be achieved.

Conceptual model A simplified representation of how the real system is believed
to behave based on a qualitative analysis of field data.  A
quantitative conceptual model includes preliminary
calculations for key processes.

Continuous variable Parameter that varies continuously in space or time.

Convergence When an infinite series or sequence of numbers tends to a
limit.

Confidence interval Interval constructed to have a known probability of containing
the true value of an unknown parameter.

Covariance A measure of the correlation between two parameters.

Cumulative distribution
function (CDF)

Mathematical function of a parameter representing the
probability distribution, usually conceptualised as a graph
showing the percentage of values less than or equal to a given
value.

Dependent parameter Two parameters are dependent if knowledge of the value of
one of them alters the probability distribution of the other.

Deterministic model A model where all elements and parameters of the model are
assigned unique values.

Discrete variable Variable that is defined by a series of distinct values, but
which cannot take intermediate values.

Dispersivity A property that quantifies the physical dispersion of a solute
being transported in a porous medium.

Distribution Description of the frequency of observations.

Event Single occurrence.

Exponential distribution Used to describe events occurring randomly with time.
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Gamma distribution This distribution is always positive but is skewed (not
symmetrical about its mean).  It is often used to represent the
time between occurrence of events.

Geometric mean Exponential of mean of logarithms, the nth root of the product
of n values.

Harmonic mean Reciprocal of the arithmetic mean of the reciprocals of the
observations.

Heterogeneity Variability in space.

Histogram A column graph showing numbers of measured values
occurring within equally-spaced intervals.

Hydraulic conductivity A coefficient of proportionality describing the rate at which
water can move through a permeable medium.

Hydraulic gradient The rate change in total hydraulic head with change in
distance in a given direction. (dimensionless).

Latin Hypercube method A sampling technique used by Monte-Carlo analysis where
the parameter space is sub-divided and parameter values are
then picked from each interval as a way of ensuring that
values are taken from the entire probability distribution.

Log-normal distribution A probability distribution whose logarithms are distributed
normally.

Log-uniform distribution A probability distribution whose logarithms are distributed
evenly between an upper and lower bound.

Log-triangular distribution A probability distribution whose logarithms form a
distribution function that looks like a triangle.

Maximum entropy method A theoretical approach that optimises distributions given the
information available.

Mean (arithmetic) Arithmetic average of a set of values, 1/nth of the sum of n
values.

Median Value for which there is a 50% probability of the actual value
from a distribution being greater.

Mode Most likely value of a set of observations.

Mathematical model Mathematical expression(s) or governing equations which
approximate the observed relationships between the input
parameters (recharge, abstractions, transmissivity etc) and the
outputs (groundwater head, river flows, etc).  These governing
equations may be solved using analytical or numerical
techniques.
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Model A simplification of reality in order to aid in the understanding
of and/or predict the outcomes of the real system. In this
report the term ‘model’ is used to describe the code or
equations plus the data.

Monte-Carlo analysis A method of carrying out a calculation using probability
distributions rather than numbers.  It is simple and powerful
and involves repeated sampling from the input distributions.

Normal distribution A probability distribution characterised by a mean and
standard deviation.

Numerical model Solution of the flow and/or transport equation using numerical
approximations, i.e. inputs are specified at certain points in
time and space which allows for a more realistic variation of
parameters than in analytical models.  However, outputs are
also produced only at these same specified points in time and
space.

Parameter
(hydrogeological)

Physical property of the system under investigation (e.g.
hydraulic conductivity).

Parameter (distribution) Characteristic of a theoretical probability distribution (e.g.
mean, standard deviation).

Parameter space A representation of all the values that could be taken by all the
parameters (usually imagined as an n-dimensional volume,
where n is the number of parameters).

Percentile The value below which occur a specified proportion of
observations (in an ordered set of observations).

Population All the possible outcomes of an event, e.g. hydraulic
conductivity of all possible 1cm3 of an aquifer.

Porosity The ratio of the volume of void spaces in a rock or sediment
to the total volume of the rock or sediment. (dimensionless).

Probability Any outcome of an event can be allocated a probability p
(with 0≤p≤1) such that, if the event happened an infinite
number of times, the proportion of times that this outcome
occurred would be p.  If p=0 then the event never occurs, and
if p=1 the event always occurs.

Probability density function
(PDF)

Mathematical function representing the probability
distribution of a parameter, i.e. the likelihood that a given
value will occur.

Probability distribution The probabilities associated with the possible outcomes of an
event.   The ‘event’ in the context of this document is usually
the value of a parameter.
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Parameter of distribution Characteristic of a theoretical distribution (e.g. mean, standard
deviation).

Probabilistic model An aggregation of model realisations, where the input
parameters to each realisation are characterised by probability
distributions.

Realisation Single calculation with a single set of parameter values (in the
context of repeated parameter sampling).

Receptor An entity (e.g. human, animal, controlled water, vegetable,
building, air) which is vulnerable to the adverse effects of a
hazardous substance or agent.

Remedial target The goal of remedial activity set for the site; may take the
form of a maximum or minimum permitted concentration in
the soil or groundwater.

Recharge The quantity of water that reaches a water resource such as an
aquifer, calculated as rainfall less runoff, evapotranspiration
and soil storage.

Retardation A measure of the reduction in solute velocity relative to the
velocity of the advecting groundwater caused by processes
such as adsorption.

Sample A sub-set of the population.

Scale dependency The tendency of a parameter to take different values
depending on the scale over which it is being measured.

Standard deviation Measurement of the variability of a distribution. Square root
of the variance.

Skewed distribution A distribution which has a degree of asymmetry about the
centre value of the distribution.

Sensitivity analysis A process of identifying the model parameters that have most
effect on the model output.

Stochastic field Used to describe the uncertainty of a parameter which varies
in space.

Triangular distribution A simple probability distribution with a PDF graph that looks
like a triangle and is defined by a minimum, most likely and
maximum value.

Uncertainty The degree to which a well-defined and located parameter
(e.g. the horizontal hydraulic conductivity of a 1 cm cube of
rock at a defined location) is unknown.

Uniform distribution A simple probability distribution giving equal chance for a
range of values given  a minimum and maximum value.

Upscaling The process of deriving an effective value for a parameter
applicable to the scale of interest, using information about the
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value of the parameter at a smaller scale, its variability, and
the process of interest.

Variability The degree to which a well defined parameter varies in space
and/or time, e.g. the hydraulic conductivity of all possible
1 cm cubes of rock from a particular aquifer horizon.

Variance Measurement of the variability of a distribution.  Square of the
standard deviation.
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1. Introduction

1.1 Background
The Environment Agency (the Agency) has duties (i.e. obligations) and powers (i.e. ability
and discretion) to ensure the protection of groundwater and the remediation of contaminated
land and groundwater.  These responsibilities are covered by the Groundwater Regulations
1998, the Water Resources Act 1991 (WRA 1991) and the Environmental Protection Act
1990 (EPA 1990).  Fundamental to the Agency’s regulatory role is the assessment of risk to
the environment and determination of the need for protection or remediation.  The Agency
employs the principle of risk assessment (the risk of a contaminant source causing harm or
pollution via a given pathway at an identified receptor) to assist with decision making for
problems involving contaminant transport and also encourages external bodies to adopt the
risk assessment philosophy.

Risks may be assessed qualitatively (e.g. a high, medium or low risk of pollution) or
quantitatively (e.g. by predicting the concentration and consequences of a contaminant at a
specified location at a certain time).  This report deals specifically with quantitative
approaches for contaminant transport modelling in groundwater, as part of quantitative risk
assessment, which can be divided into two categories: deterministic and probabilistic.
Deterministic assessments involve the assignment of a single value to each parameter, and the
calculation results in a  single number. This approach implies a high degree of certainty in the
input data, e.g. the input parameter can be defined by a single value or its variability is known
everywhere.  A high proportion of environmental risk assessments involve studies of the
subsurface where such a level of certainty is not present.

Probabilistic approaches provide methods of addressing uncertainty or variability in a known
and structured way using probability distributions of values; as knowledge increases the
corresponding reduction in uncertainty can be incorporated.  A range of possible outcomes,
which can be described by a probability distribution, will be generated by a probabilistic
model as a result of the combination of different input parameter values (e.g. by calculating
the percentage chance that a specified concentration will be exceeded at a specified location at
a certain time).

Uncertainty in defining parameter values results both from our lack of knowledge or
understanding of a system and from potential errors in measurements or test results.
However, most parameters also have natural variability.  Hydraulic conductivity, for example,
will vary spatially within an aquifer and this variability will be reflected in test results.  Both
natural variability and uncertainty need to be considered when assigning values to input
parameters (Hertwich et al., 1999).

The probability density function (PDF) is a commonly used method to describe the likelihood
of a parameter having any particular value and its use is the topic of this document.

1.2 Purpose of this document
This document provides practical guidance on assigning values, in the form of probability
distributions, to uncertain or variable parameters used in contaminant fate and transport
models of the subsurface, and highlights the potential problems of their inappropriate
application.  The document is not intended to give a rigorous scientific explanation of
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probability distributions or probability density functions, but to guide the reader on
understanding the main issues.  The emphasis is on the practical application of the theory to
environmental risk assessment and contaminant transport modelling.

This document is not intended as a ‘recipe book’, but as a guide to using data that have been
collected as part of a properly structured investigation and to assigning values to parameters
which cannot be measured. The document does not specifically deal with the development of
a conceptual model, but does emphasise its importance to contaminant fate and transport
modelling (see also Environment Agency, 2001a).

1.3 Definition of terms

Many of the terms in popular use in the context of contaminant fate and transport modelling
and environmental risk assessment are often used loosely and this can lead to
misunderstanding.  The glossary in this report aims to provide a clear definition of the
technical terms used in the report.  However, there are a number of key terms that are critical
to understanding the concepts in this document and these are reproduced below:

Key Definitions:

Uncertainty The degree to which a well-defined and located parameter (e.g. the
horizontal hydraulic conductivity of a 1 cm3 of rock at a defined location) is
unknown.

Variability The degree to which a well defined parameter varies in space and/or time,
e.g. the hydraulic conductivity of all possible 1 cm cubes of rock from a
particular aquifer horizon.

Probability Any outcome of an event can be allocated a probability p (with 0≤p≤1) such
that, if the event happened an infinite number of times, the proportion of
times that this outcome occurred would be p.  If p=0 then the event never
occurs, and if p=1 the event always occurs.

Probability
distribution

The probabilities associated with the possible outcomes of an event.   The
‘event’ in the context of this document is usually the parameter having a
particular value (or narrow range of values).

Probability density
function (PDF)

Mathematical function of a parameter representing the probability
distribution, usually conceptualised as a graph of PDF against the parameter
value.  In simplistic terms, the magnitude of the function represents the
relative likelihood of the parameter taking that value.  In the case of a
discrete set of possible values, the function represents the probability itself
but for continuously variable parameters this definition breaks down and we
have to redefine the PDF more rigorously.  In this case, the area under the
PDF curve between a and b represents the probability of the parameter being
between a and b.

Model A simplification of reality in order to aid in the understanding of and/or
predict the outcomes of the real system. In this report the term ‘model’ is
used to describe the code or equations plus the data.

Probabilistic model An aggregation of model realisations, where the input parameters to each
realisation are characterised by probability distributions.

Deterministic model A model where all elements of the model are assigned a single value.

a b
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1.4 Target audience
This document is aimed at environmental professionals undertaking or reviewing
environmental risk assessments and contaminant fate and transport modelling.  Users need to
be numerate and have an understanding of the principles of hydrogeology, the movement and
behaviour of contaminants in the ground, the principles of risk assessment and the constraints
of the legislation/regulatory policy within which decisions are made.  This document assumes
that the reader has the necessary understanding of these principles.  To add to this
understanding, this document aims to show how a knowledge of uncertainty in hydrogeology
can be incorporated within the risk assessment to provide an indication of the possible
environmental impacts.

1.5 Relationship to other procedures

This guidance note is one of a number of technical guidance documents produced by the
Agency’s National Groundwater and Contaminated Land Centre and is aimed at improving
understanding and capability, both inside and outside the Agency, in the risk based approach
to environmental protection.  This document is one of a series of three technical guidance
notes produced on the subject of contaminant fate and transport modelling in the subsurface.
The other two documents in this series are:

• Guide to Good Practice for the Development of Conceptual Models and the Selection and
Application of Mathematical Models of Contaminant Transport Processes in the
Subsurface (Environment Agency, 2001a).

• Guidance on the Assessment and Interrogation of Subsurface Analytical Contaminant Fate
and Transport Models (Environment Agency, 2001b).

The first document provides guidance on:

• Whether a mathematical modelling approach is justified;

• Development of a conceptual model and how this should then translated through to a
mathematical model;

• Selection of a modelling approach;

• Construction and testing of the mathematical model;

• Assessment of model results;

• Presentation and reporting.

The second document provides guidance to Agency staff on how to critically examine a
submitted model.

This document is intended as a supporting document, providing specific guidance on dealing
with uncertainty in fate and transport modelling and assigning values to uncertain parameters.

These documents are intended to be used in conjunction with the Agency R&D report
Methodology for the Derivation of Remedial Targets for Soil and Groundwater to Protect
Water Resources (Environment Agency, 1999a) which presents a framework for deriving
remedial targets for soil and groundwater to protect water resources and includes a brief
discussion of contaminant fate and transport models.
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Two risk assessment modelling software packages have also been developed for use by the
Agency in assessing the potential impacts on water quality:

• LandSim allows probabilistic quantitative assessments of landfill site performance and its
likely impact on water quality (Environment Agency, 1996, 2001c).

• ConSim allows probabilistic quantitative assessment of the likely impact on water quality
from contaminated sites (Environment Agency, 1999b).

These packages allow uncertainties in parameter definition to be considered, and describe data
uncertainty using probability density functions (PDFs).  This document is directly relevant to
users of the above packages and is designed to provide guidance that complements the
information in the user manuals.

1.6 Report layout
This document should be used in conjunction with the Guide to Good Practice for the
Development of Conceptual Models and the Selection and Application of Mathematical
Models of Contaminant Transport Processes in the Subsurface (Environment Agency, 2001a)
which contains more detailed and comprehensive discussion of the key topics.

Chapter 2 gives an overview of the general approach to contaminant fate and transport
modelling and the parameters that need to be considered.  This chapter also discusses
parameter uncertainty and outlines the procedure for defining and applying PDFs.

Chapter 3 explains PDFs in detail and how they can be defined.  The most commonly used
types of PDF are described and the significance of independent and dependent parameters is
discussed.

Chapter 4 looks at data requirements and the practicalities of selecting appropriate PDFs
based on the data available.

Chapter 5 describes modelling methods which use PDFs and discusses the number of
simulations required to obtain statistically valid results.

Chapter 6 sets out an example problem which is used to illustrate the influence of PDFs and
combinations of PDFs for different parameters on modelling results.

Chapter 7 discusses the interpretation of modelling results, how they relate to observed
behaviour and the importance of checking that modelling results are credible.  The potential
pitfalls of interpreting results of modelling with PDFs are also outlined.



NGWCLC report NC/99/38/3 Page 5

2. Overall approach

2.1 The application of a probabilistic approach to fate and transport
modelling

The main steps in the application of a fate and transport model are summarised in Figure 2.1.
Essential to this process is the development of a conceptual model to describe system
behaviour, determining the objectives for the model (including whether the use of a
mathematical model is appropriate), and selecting a computer model that adequately
represents the system behaviour.  The selection of hydrogeological parameter values forms a
key component of this process and is the focus of this document.  Further detailed guidance
on the application of fate and transport models is given in Environment Agency (2001a and
2001b).

Recognition and understanding of uncertainty is key to fate and transport modelling.
Uncertainty will be associated with:

• Our understanding of the system (conceptual uncertainty). For example, is the decrease in
contaminant concentration away from the source due to natural degradation and what
processes are giving rise to and controlling degradation?

• Whether the mathematical model adequately describes the system behaviour (modelling
uncertainty). Application of a mathematical model will require a number of assumptions to
be made about the system behaviour (for example, can sorption be described by a linear
isotherm?). Uncertainty may be attached to whether these assumptions are valid.

• Definition of parameter values (parameter uncertainty). For example uncertainty may be
associated with our measurement of a parameter value or our knowledge of the natural
variation in a parameter value.  A parameter may, however, not be knowable (intrinsic
uncertainty) i.e. future rainfall events.  This is discussed in greater detail in Sections 2.2
and 3.1.

The development of the conceptual and mathematical model should be an iterative exercise,
with the model being continually challenged and refined through reference to field
observations. Nevertheless uncertainty will still be associated with these models. The key is
understanding the effect of uncertainty and deciding whether we can accept this level of
uncertainty in using the results from a fate and transport model.

This document sets out approaches to managing parameter uncertainty, but these approaches
do not provide a solution to conceptual uncertainty. The latter often is the main problem in
assessing contaminant fate and transport and therefore it is important that investigations are of
a sufficient standard to define the system with confidence. In many cases further
investigations may be required if development of the conceptual model and mathematical
model have shown inconsistencies and/or shortfalls in our definition of the system behaviour.
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Figure 2.1  Basic steps in the application of a fate and transport model
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It is important to recognise that an incorrect conceptual model will invalidate the results of the
study. Even though a model may reproduce field observations, this does not necessarily mean
that it is correct (although it will obviously improve our confidence in the model) as (for
example) different combinations of assumptions and/or parameter values may produce the
same model results. A more realistic test will be whether the model continues to match field
conditions under different conditions.

The main parameters that are relevant to fate and transport modelling in the unsaturated and
saturated zones are listed in Table 2.1. This table also identifies some of the sources of
uncertainty in defining these parameters and some of the common assumptions that are made
in mathematical models. The actual parameters used will depend on the type
(analytical/numerical) and complexity of the model.

Model parameters may be defined as single values (as in a deterministic model) or as a range
of values (as in a probabilistic model). A deterministic model will give the result as a single
value, whereas a probabilistic model will give a range of results.

In practice, a parameter value will either be:

• A single value (such as volume of contaminant released), but for which there may be
uncertainty about the actual volume;

• A parameter which varies naturally (such as spatial variation in clay content within the
aquifer) and there is uncertainty about this variation and how our finite set of field
measurements describes this variation.

This is discussed in further detail in Section 2.2.

In a probabilistic simulation, the possible combinations of parameter values are used as input
to the model, resulting in a range of possible outcomes as illustrated by Figure 2.2.  In relation
to the use of fate and transport models in risk assessments, a probabilistic approach will
provide information on the likelihood of particular impacts on a receptor, taking account of
uncertainty in defining the parameters that control contaminant transport.

Sensitivity analyses can be used in combination with either type of model to examine the
influence of changing a parameter value on the calculated result and thereby identify which
parameters have the greatest influence on the result.
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Table 2.1 Influence of model parameters on contaminant transport

Parameter Influence on contaminant transport Example PDF Main uncertainties

Source term • Mass of contaminant entering the
system.

• Contaminant concentrations in
groundwater.

Log-triangular
(mass)
Uniform (timing)

Ø Mass and timing of contaminant of release.

Ø Source concentration and geometry (borehole investigation may not allow the
plume geometry to have been defined such that maximum concentration is
underestimated).

Recharge • Dilution
• Contaminant loading (leaching)

Uniform, Normal Ø Seasonal variation in effective rainfall and leaching of contaminants.
Ø Indirect recharge (leaking drains, leakage from rivers, surface water

run-off from areas of hard standing).
Ø Recharge is typically derived indirectly from measurement of rainfall

and evaporation. Measurement of these values may be uncertain.
Hydraulic conductivity  (k) • Rate of contaminant transport

(advection) and arrival time at
receptor.

• Calculated groundwater dilution.

Log-normal, Log
Triangular

Ø Contaminant transport is sensitive to this parameter.  Field
measurements can often vary by more than an order of magnitude (due
to the natural heterogeneity of most aquifers).

Ø Important parameter to determine by field measurement - literature
values unlikely to be sufficiently precise, although Aquifer Properties
Manual (BGS/Environment Agency 1997 and 2000) data may be
adequate for some problems.

Ø Values can be measured using range of techniques including laboratory
testing, falling head tests, pumping tests. Each of these methods results
in measurement of hydraulic conductivity over different volumes which
may not be directly relevant to the correct ‘average’ for the whole
volume modelled.

Hydraulic gradient (i) • Rate and direction of groundwater
flow.

• Calculated groundwater dilution.

Uniform Ø Important to determine by field measurements (minimum of three
boreholes required).

Ø Anomalous gradients may be obtained where monitoring  borehole
intersects more than one aquifer horizon.

Ø Hydraulic gradient and direction of flow can vary with time.
Ø Hydraulic gradient is dependent on hydraulic conductivity.  Steep

gradients unlikely to occur in zones of high permeability.
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Table 2.1 (continued) Influence of model parameters on contaminant transport

Parameter Influence on contaminant transport Example PDF Main uncertainties

Porosity (n) • Rate of contaminant movement
and arrival time at receptor.

Uniform, Normal Ø Measurement of the transport porosity is often difficult and expensive
and  therefore the value of this parameter is often assumed based on
measurement of total porosity, literature values or expert opinion.

Ø Relative importance of fissure flow and intergranular flow.
Ø Importance of fissure-pore water diffusion in dual porosity aquifers in

contaminant transport.
Groundwater velocity • Rate of contaminant movement

and arrival time at receptor.
Ø Typically calculated as a function of hydraulic conductivity, gradient,

porosity (see above).
Dispersivity • Spreading of contaminant.

Arrival time at receptor.
• Reduction in contaminant

concentrations.

Triangular,
Uniform

Ø Scale dependent.
Ø Rarely measured in the field (due to time and cost of measurement).

Values typically assumed to be a function of pathway length (for
example longitudinal dispersivity often assumed to be one tenth of
pathway length). Important to determine how dispersion is being used
to represent contaminant movement.

Diffusion • Spreading of contaminant Triangular,
Uniform

Ø Usually only significant where rates of groundwater flow are low, e.g.
strata characterised by values of hydraulic conductivity of less than 1 ×
10-9 m/s. Rarely measured in the field due to relatively slow rates of
contaminant movement. Values for diffusion coefficient usually based
on literature.

Mixing depth/aquifer
thickness

• Dilution by groundwater flow
• Significance of vertical dispersion

(for thin aquifers vertical
dispersion should be negligible)

Uniform Ø Typically estimated based on experience, theoretical calculation,
hydrographs (groundwater level variation), borehole logs (high k zones)
and/or vertical dispersivity. Mixing depth will typically be less than the
aquifer thickness.

Bulk density • Used in calculation of contaminant
retardation (see below)

Uniform, Normal Ø Measurement is straight forward and relatively cheap once samples
have been obtained.  Literature values typically fall in narrow range and
can reasonably be used; consequently calculations of retardation rates
are relatively insensitive to this parameter.

Sorption/retardation • Rate of contaminant migration. Triangular,
Uniform

Ø Typically represented as a linear reversible reaction.  Sorption may be
more accurately represented by a non-linear isotherm.

Partition coefficient (Kd ) • Used in calculation of retardation
of contaminant or in soil water
partitioning

• Rate of contaminant migration

Triangular,
Uniform (use  Log
distributions if large
range in values)

Ø Partitioning can be sensitive to soil or groundwater pH, pKa, H, foc and
contaminant Koc, and values can range by more than an order of
magnitude. Typically Koc and H based on literature values, and
combined with field derived foc to derive site-specific Kd.
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Table 2.1 (continued) Influence of model parameters on contaminant transport

Parameter Influence on contaminant transport Example PDF Main uncertainties

Organic partition coefficient
(KOC)

• Used in calculation of retardation
of contaminant and soil water
partitioning.

• Rate of contaminant migration

Triangular,
Uniform

Ø Often based on literature values, although a range of different values
may be given in literature sources.

Fraction of organic carbon
(fOC)

• Calculation of partition coefficient Triangular,
Uniform

Ø For low fOC values (less than 0.001), organic transport may be
dependent on mineral surface area.

Cation exchange capacity
(CEC)

• Delay for breakthrough of cations
(e.g. potassium, ammonium)

Triangular,
Uniform

Ø Measurements’ sensitivity to pH, Eh, solute concentration.

Ø Aquifers have a finite capacity for cation exchange.  Cations will
compete for available exchange sites and this is typically handled by
specifying a reaction efficiency (usually based on literature values or
expert opinion) as a measure of available sites.  Cation exchange is
normally a reversible process.

Biodegradation • Reduction of contaminant mass
and concentration.

Triangular,
Uniform

Ø Determination of degradation rates often based on literature values
which:

§ may not be appropriate to UK conditions (e.g. aquifer type, water
temperature);

§ may be for different conditions from those observed at a site (e.g.
anaerobic conditions may occur at site, whereas the literature value
may be for aerobic conditions);

§ laboratory values which may not be applicable to field conditions.

Ø Determination of degradation rates from field observations usually
reliant on having time-series of monitoring data covering a number of
years (See EA R&D Publication 95 (EA, 2000)).
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Probabilistic models allow parameter uncertainty to be taken into account in the analysis.
However, they should not be viewed as an alternative to obtaining site-specific data, and they
cannot compensate for the deficiencies of an incorrect conceptual model or an incorrect or
inappropriate mathematical model.

The results of a probabilistic model can, however, be used to guide site investigations.  For
example, a fate and transport model may have been used to predict the possible extent of a
contaminant plume. Boreholes could then be sited within this predicted plume to provide data
that could help constrain the uncertainty in parameters describing transport of contaminants.

2.2 Lack of knowledge:  uncertainty and variability

In theory, if the values of all the relevant hydrogeological parameters are known, and the
contaminant release history is known, it is possible to calculate the expected concentration of
a contaminant at any subsequent time and location of interest.  In practice, such precise
calculations are rarely possible because of lack of knowledge in key parameters.  Two basic
kinds of lack of knowledge can be distinguished: uncertainty in a parameter that clearly has a
single value (e.g. the catastrophic failure of a storage tank is a discrete event, even though the
precise date of failure may not be known), and variability in a parameter that is a function of
location or time (e.g. the hydraulic conductivity of the material comprising an aquifer).

A parameter having a single, albeit uncertain, value can be described by a probability density
function or PDF.  The PDF describes how likely it is that the parameter has any particular
value.

A parameter that varies in space, for example hydraulic conductivity, could be defined if
sufficient data were available. However, this will seldom be the case. As a result our
knowledge of the hydraulic conductivity at every point, other than at the point of
measurement, is uncertain. This is what is known as a stochastic field.  In practice, there will
usually be some relationship between the hydraulic conductivities at adjacent points.  It may
be possible to derive a statistical description of the spatial variability of a parameter, for
example using geostatistics.  From this description, it is possible to generate realisations of the
spatial distribution of a parameter value.  The generation of these realisations is a very large
subject, beyond the scope of this guidance (refer to Cressie, 1991 and Deutsh et al., 1992).

In practice for many models, stochastic fields will be simplified into single parameters.  For
example, rather than modelling the spatial variation of hydraulic conductivity between
contaminant source and receptor, a single appropriate average value of hydraulic conductivity
may be used. Because the detailed distribution of hydraulic conductivity is unknown, this
overall average value is uncertain.  An uncertain single value can be described by a PDF.
There are statistical techniques that can be used to derive the PDF of the appropriate average,
given measurements of point values. A mechanism for converting spatial variability into
uncertainty in a single ‘average’ value is covered in Appendix B.

2.3 Procedure for defining and applying PDFs
The key stages in defining and using PDFs are shown in Figure 2.3 and summarised below.
The chapters noted in brackets indicate the chapters in this document which expand on these
stages.
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Figure 2.3  Main Stages in the Application and Use of Probability Density Functions
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Data collection and review (Chapter 4).  Assessment of the available data to determine
parameter ranges. Extreme values should be included unless there is reason to suspect
analytical problems or anomalous results.  Where limited data are available, expert judgement
should be used to determine minimum and maximum parameter values and the likely
parameter distribution.

i) Understanding of patterns, trends and variation (Chapter 4).  Before considering
the PDF, the distribution of the parameters must be understood and any important
features incorporated into the conceptual model

ii) Selection of appropriate PDFs (Chapter 4).  Selection of an appropriate PDF
(Uniform, Log-normal etc) to represent the observed parameter variation and the
uncertainty in its definition.

iii) Run the fate and transport model (Chapter 5).  A Monte Carlo simulation is the
most commonly used technique.  The model is repeatedly run using data sets chosen
from the PDFs, until repeatability (refer to Section 5.1) in the model results has been
achieved.

iv) Model refinement and validation (or testing the model against observed data)
(Chapter 7).  Model results should be compared with field observations to test the
validity of the model.  The model and the field observations should then be examined
to determine if they are both still credible. In the case where the results are not
credible, this may point to the inappropriate use of mathematical model (it does not
represent the conceptual model), or the inadequacy of the conceptual model,  In some
cases it may be appropriate to revise the PDFs where, for example, extreme values
had originally been included in the data set but which resulted in model predictions
that were inconsistent with the field observations.

v) Sensitivity analyses (Chapter 7).  Identification of the parameters whose uncertainty
has the greatest influence on the model results. For sensitive parameters
consideration should then be given as to whether further information should be
obtained.

vi) Review of results (Chapter 7).  Critical review of the model results to ensure that
assumptions in constructing the parameter distributions and the model are valid.
Dependent on this comparison then the following will be appropriate: use of the
model as a predictive tool; revision of the conceptual model; reassessment of the data
and the PDF used to define the model parameters; and/or the collection of further
data.

The overall process in the development of a fate and transport model is detailed in
Environment Agency (2001a). The development of the conceptual and mathematical model
(including parameter values) is an iterative process, with each model being updated or revised
as more data become available.
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3. Definition and purpose of probability density functions

3.1 Introduction
This section describes and illustrates some of the principles of probability that underpin
uncertainty theory.  Readers who wish to become more familiar with probability theory
should refer to a probability textbook which introduces the concepts in detail, such as Till
(1974), Davis (1973) or Gilbert (1987).

3.2 Why use probability distributions?

Probability distributions are used in order to describe uncertainty and variability.  When we
carry out a calculation we select values for parameters even though these values may not be
well-known.  Some parameters can be measured fairly directly without the need for
interpretation (e.g. the area of a piece of land), but even then there is uncertainty associated
with how accurately it was measured (experimental uncertainty).  More often, there is
uncertainty associated with the fact that a parameter is continuously varying in space or
varying in time.

The major sources of uncertainty in a calculation are:

• Incorrect conceptual model.  This form of uncertainty occurs when our calculation is not
correct because we have oversimplified or misrepresented the physics of the situation and
arises from a fundamental misunderstanding or oversimplification of the system – an
incorrect conceptual model.  This form of uncertainty is not addressed by the approach
presented in this document and needs to be evaluated if valid decisions are to be made
following the review of the model results (see Environment Agency, 2001b for further
guidance on conceptual models).

• Intrinsic uncertainty.  A parameter may not be ‘knowable’ (for example, because it
relates to the future - such as the number of holes that will occur in a landfill liner
throughout the life of the landfill).  A parameter that has been estimated or relies on expert
judgement has intrinsic uncertainty.

• Time variation.  This derives from the fact that some parameters vary in time (e.g.
thickness of unsaturated zone due to water level variations) and, therefore, we will not
know the value at any time where it has not been measured.  This is a form of intrinsic
uncertainty.

• Experimental uncertainty.  This derives from the limitations in accuracy and precision of
the measurement technique.  Precision refers to the fact that the measurement can only be
resolved to a certain extent (say to the nearest centimetre).  A lack of accuracy means that
the measured value differs from the true value (e.g. due to a wrongly calibrated tape
measure).  A measured parameter always has experimental uncertainty.

• Heterogeneity (spatial variation).  This derives from the fact that if a parameter (e.g. clay
content) varies spatially, we will not know the precise value at any point where it has not
been measured.  What we may ultimately need to know is the ‘net’ or effective value of the
parameter over the scale of interest– which depends on the upscaling method used (see
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Section 4.4 and Appendix B).  The uncertainty in the effective parameter is related to the
variability in the sampled parameter.

3.3 Samples and populations
It is necessary to make a distinction between the population, that is all possible measurements
(which may be an infinite number), and the sample of the population, which consists of the
measurements that are available.  The population is completely described by its distribution
which can in turn be defined by parameters (e.g. population mean (µ) and variance (σ2)).
These parameters will generally be unknown as it will rarely be possible to make all the
necessary measurements to define the population.

Statistics can be derived for the sample of measurements (e.g. sample mean and standard
deviation). These statistics are not the same as the parameters (of distribution) of the
population. For example, the sample mean is an estimator of the population mean (but it is not
a unique value - if a different set of measurements or sample of the population were taken, the
estimated sample mean would be different, albeit often only slightly).

Unfortunately, the terminology does not differentiate between the two, with words such as
‘mean’ used to signify both the average of the sample of measurements and the mean of the
population (sometimes called the expected value of the distribution).  The former is in fact a
‘statistic’ and is an ‘estimator’ of the population mean.  To assist with clarity, Table 3.1
defines the properties of a probability distribution and also includes the statistic generally
used to estimate them from a sample

Appendix A provides an example of the calculation of statistics for a data set.
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Table 3.1 Parameters of probability distributions and their statistics

Parameter Description Parameters of population
distribution

Statistic of sample measurements

Arithmetic
mean

Commonly
understood as
‘average’
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∞
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n
1

X

Geometric
mean

Inverse logarithm
of the mean of the
logarithms
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
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∞

∞−

dxxfx )()ln(exp
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of the inverses
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After ranking the data, the ½(n+1)th

value.

If there are an even number of
measurements, then take the average
of the ½nth value and the ½(n+1)th

value

Mode Most likely value M such that f(M)>f(x) for all
x not equal to M

Group the data in intervals and the
mode is the most populated interval.
(Note:  A population and sample may
have more than one mode)

Variance Indicates how
spread out the
distribution is.

∫
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= 2)(
1

1
XX

n
V i

Standard
Deviation

Square root of
variance

σ SD = √V

Notes:  In the variance, the (n-1) term is sometimes approximated to n, if n is very large. The
probability density function is f(x).  In the statistics column, it is assumed that the sample consists of n
readings X1, X2, X3,…, Xn.  The population consists of all possible measurements (this may be an
infinite sample).  It is assumed that all the distributions are continuous rather than discrete.

3.4 Common probability distributions

This section explains and defines the most common probability distributions.  Table 3.2 gives
the mathematical expression of each of these distributions and Figure 3.1 shows a graphical
representation.  Figure 3.1 has been drawn so that each of the distributions presented have
been derived using the same mean (10), standard deviation (3) and ensuring that the area
under the curve is always 1. The exception was the exponential distribution for which the
parameters of the distribution were set to give an area under the curve of 1.

Probability density functions require different numbers of parameters to be defined. For
example, the Uniform distribution requires a minimum and maximum value to be defined,
whereas the Triangular distribution requires a minimum, most likely and a maximum value.
Thus the definition of a PDF is not necessarily the answer for all data shortage problems as an
uncertain hydrogeological parameter value is described in terms of two or more uncertain
statistical parameters.  This may not represent an increase in knowledge!
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3.4.1 NORMAL
The most common observed distribution is the Normal distribution (also called the Gaussian
distribution).  The Normal distribution implies a symmetrical grouping of the sample around a
specific value (mean) with less chance of a sample further away from this value.  The graph
of the PDF is often referred to as the “bell-curve”.  An example of a normally distributed
parameter is the clay content of samples from a certain geological unit.

Probabilities from Normal distributions can be described as either a one-tailed or two-tailed
distributions (Figure 3.2). A two-tailed probability is used when both high and low extreme
values need to be taken account of (i.e. the range in values across the mean). A one-tailed
probability is used when outcomes above or below a certain value are of concern.

It is useful to note that 68.3% of a Normal distribution occurs within one standard deviation
on either side of the mean (two-tailed probability), 95.4% within two standard deviations and
99.7% within three standard deviations. For a one tailed distribution, the 95-percentile, that is
the value which is greater than 95% of the population, will be at 1.64 standard deviations
from the mean (closer than 2 standard deviations because we are looking at the tail on one
side only).  This is illustrated in Figure 3.2.

The Normal distribution function can theoretically take any value from minus infinity to plus
infinity (i.e. it is unbounded).  In principle, therefore, any parameter known always to be
positive cannot be perfectly normal because there is zero probability that a negative number
will occur.  In practice, the Normal distribution is the best distribution for very many
observations in nature and as long as the mean is more than three standard deviations away
from zero (in which case the distribution produces a probability of a negative number of only
0.15%), it can be safely used.

In some software (e.g. ConSim, LandSim), a MODIFIED NORMAL distribution is defined
which is a Normal distribution with the negative tail cut off and the PDF adjusted upwards by
a factor everywhere else to recover the lost probability (i.e. so that the area under the curve is
still 1).  This distribution is useful because it is similar to the Normal distribution and cannot
be negative. For example, the ConSim package constrains the Normal distribution between
zero and infinity to prevent negative values being used in the analysis (otherwise defining a
Normal distribution for porosity of 0.1 with a standard deviation of 0.2 would introduce
negative values into the calculation).

The Normal distribution is symmetrical about its mean.  If there is evidence that a distribution
is skewed, then the Normal distribution should not be used.

The Normal distribution can usually be used to describe the variation in porosity
measurements and clay content.

3.4.2 UNIFORM
The Uniform distribution distributes probability equally between two extreme values.
Example: If monitoring occurs on the first of each month and there is no contamination on
1 January but there is contamination on the 1 February a Uniform distribution assumes that
there is an equal probability that the contamination event happened on any of the intervening
days.
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Figure 3.1   Graphical Representation of Common Probability Distributions
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In selecting a minimum and maximum value for a Uniform or a Triangular PDF (see below)
based on observed measurements, it is important to recognise that these are unlikely to
describe the actual population range. For this reason, it may be appropriate to use expert
opinion to define higher and lower values than those determined from observed measurements
(although this would need to be justified). However, care needs to be exercised as the
maximum and minimum measurements may be anomalous (due to measurement error) or
inappropriate to the problem (i.e. a very low value of hydraulic conductivity may relate to a
clay lens within a sand and gravel deposit, and where contaminant movement is via the
coarser sand and gravel fraction).

Uniform distributions typically are used to describe variation in porosity and measured
lengths (e.g. distances, water table fluctuations etc).

3.4.3 LOG-NORMAL
A distribution is Log-normal if the logarithms of the values are distributed normally.  A
common example is hydraulic conductivity, which has been observed to vary in the field by
several orders of magnitude.  The true average of a Log-normal distribution is the geometric
mean (which is the exponential of the arithmetic mean of the natural logarithms).  There are
two common ways of mathematically expressing this distribution as a PDF (Palisade
Corporation @Risk Model).  In Table 3.2, the version in which µ is the arithmetic mean of the
logarithms and σ is the standard deviation of the logarithms is presented (Till, 1967) and is
used in this report.  The arithmetic mean of the logarithms is also the geometric mean. A Log-
normal distribution contains no negative values and is skewed.

It is important to check, when using software packages, which parameters of the distribution
need to be entered.  For example ExcelTM requires the mean and standard deviation of the
logarithms, whereas ConSim asks for the arithmetic mean and standard deviation of the raw
data set.  The Crystal Ball Package gives a number of options, the default is the arithmetic
mean and standard deviation of the raw data, but the geometric mean and standard deviation
can also be input.

The arithmetic mean and standard deviation of a log normally distributed data set are related
to the arithmetic mean and standard deviation of the logarithms of the data by the following
equations (Till, 1967).

µ = exp (µn + ½ σn
2)

σ = µ2 (exp (σn
2) - 1)

where;

µn = mean of natural log or geometric mean of the data set

σn = standard deviation of natural logs

µ = arithmetic mean of the data set

σ = standard deviation of the data set.
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If the data set does not follow a Log-normal distribution then these two equations do not hold
(see Appendix A).

A Log distribution is recommended for distributions that span more than one order of
magnitude and which appear to be skewed.  It is not appropriate where distributions appear to
be linear, i.e. no bias to one end or the other, in which case a Uniform distribution should be
used.

The Log-normal distribution is typically used to describe the variation in hydraulic
conductivity values.

Note on logarithms:

Logarithms may be taken using any number as a base, but are commonly made using either e
or 10

7183.2...
!3

1
!2

1
!1
1

  1  e ≅+++=

logs to base e are written loge or ln

logs to base 10 are written log10 or log

They are related by ln x = ln10 log x

i.e. lnx = 2.3026 log x

Log-normal distributions can be calculated using either base, but they must be used
consistently, bearing in mind the multiplier between them.  There is a mathematical advantage
in some circumstances in using ln.

3.4.4 TRIANGULAR
The Triangular distribution can be regarded as a simple approximation of the Normal
distribution.  It is called triangular because of the shape of the PDF.  It has three parameters: a
minimum value, a maximum value and a most likely value (mode). As for the Uniform
distribution (Section 3.4.2), maximum and minimum values should be defined based on
expert judgement rather than the observed range of measurements.  By definition, values
cannot be lower than the minimum or higher than the maximum.  Most experts have a feeling
for the range of a physical property in terms of a maximum credible value and minimum
credible value rather than as a standard deviation or some other parameter of distribution.
Understanding of these three parameters (maximum, minimum and mode) is fairly intuitive.
Consequently for Uniform, Triangular and Log-triangular distributions the range of values are
constrained compared to Normal and Log-normal distribution.  For this reason, the Triangular
distribution is useful for estimated and elicited distributions, where the variation (between
lowest and highest values) is less than an order of magnitude.

3.4.5 LOG TRIANGULAR
A distribution is Log-triangular if the logarithms of all the measurements are distributed in a
Triangular distribution.  As with the Triangular distribution, this distribution is useful because
the parameters are intuitive.  The distribution is useful for estimated and elicited distributions,
where the variation (between lowest and highest values) is greater than an order of magnitude.
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Figure 3.2  Some Properties of the Normal Distribution
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3.4.6 Other Distributions
There are a number of other less commonly used distributions including Exponential,
Gamma, Binomial, Poisson, and Log-uniform. These distributions are generally less
appropriate for describing aquifer or contaminant properties (there is typically insufficient
data to justify a close fit of data to those distributions), although the Exponential, Binomial
and Poisson distribution can be used to describe events, such as the failure of a pipeline or a
liner which may result in the release of a contaminant. These other distributions are described
below.

EXPONENTIAL
This distribution is always positive but has zero as its mode.  It is commonly used to describe
the time between events that occur randomly, but at a steady long-term expected number of
events per time period.  The mean and standard deviation of this distribution are identical.

GAMMA
This distribution is always positive but is skewed (not symmetrical about its mean).  It is often
used to represent contaminant concentrations or the time between occurrence of events.  It
represents the expected number of arrivals in a given time period. It is in fact the sum of n
Exponential distributions.

BINOMIAL
The binomial distribution describes the likelihood of a given event occurring in a fixed
number of trials, usually in the context that it occurs or does not occur.  This distribution can
only take discrete values (such as 0, 1, 2 etc), and not fractions. An example of its use is in
LandSim, where it is used to define probability of the failure, or not, of leachate drainage
pipes.

 POISSON
The poisson distribution describes the number of times an event occurs in a given interval
(e.g. number of fractures per m3 of rock). This distribution can only take discrete values (such
as 0, 1, 2 etc), and cannot be a fraction.

LOG-UNIFORM
The distribution is described by the log of the minimum and maximum values. It is used
where these values range by more than an order of magnitude, i.e. the range is very poorly
defined. In the vast majority of cases the use of such a distribution points to the need for more
information rather than further analysis.



NGWCLC report NC/99/38/3 Page 24

Table 3.2 Properties of the common probability distributions

Distribution PDF Mean Variance Mode Median Parameters

Uniform 0             x<a
1/(b-a)        a <x<b
0                 b<x

(a+b)/2 (b-a)2/12 None (a+b)/2 a (minimum),
b (maximum)

Normal







 −−
2

2

2
)(

exp
2

1
σ

µ

πσ

x µ σ2 µ µ µ, σ

Log-normal







 −−
2

2

2
)(ln

exp
2

1
σ

µ

πσ

x

x

exp(µ+½σ2) exp(2µ+σ2).(exp(σ2) -1) exp(µ-σ2) exp(µ) µ, σ

Triangular 0                                  x<a
2(x-a)/(b-a)(c-a)          a<x<b
2(c-x)/(c-b)(c-a)           b<x<c
0                                   x>c

(a+b+c)/3 (a2+b2+c2-ab-ac-bc)/18 b a+√[½(c-a)(b-a)]  b>(a+c)/2
c-√[½(c-a)(c-b)]   b<(a+c)/2

a (minimum),
b (most likely),
c (maximum)

Exponential x<0           0
x>0           exp(-x/λ)/λ

λ λ2 0 λ ln 2 λ

Gamma x<0                     0

x>0             )exp(
)(

1

λ
βλβ

β

x
x

−
Γ

−

λβ λ2β λ(β-1)    β>1
0            β<1

λ, β

Note: Γ(x) is the gamma function.  If x is a positive integer it takes the value x! or x-factorial.
β  is shape factor
λ is rate
where a, b and c are constants
The above distributions are illustrated in Figure 3.1.
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3.5 Uncertainty analysis

When several different distributions are combined in a calculation, the resulting distribution
has its own characteristics and may not even be of the same type as any of the constituent
distributions.  To find the probability of the output parameter exceeding a certain value, it is
necessary to search throughout the parameter space (all the possible parameter values) for the
sub-space where the combination takes this value or larger and then find the probabilities of
each of the parameters falling in this sub-space.  Unfortunately the mathematics of
determining such distributions are extremely complex and even the multiplication of two
Normal distributions becomes very complicated.

Routinely when we attempt to calculate an impact we use scoping values in our equations.
Sometimes they may be best-case estimates and sometimes they may be worst-case estimates,
both of which are examples of combinations of extreme values of parameters.  One problem
with combinations of extreme estimates is that these may be far more unlikely than we
appreciate.  This is because the chance of all the parameters taking their extreme values
simultaneously is far more remote than the chance of any one of them taking its extreme value
individually. This is considered further in Section 5.2.

The realisation of this fact is one of the reasons for using uncertainty analysis and trying to
establish exactly how much of a worst case we are talking about.  Is it 1 in a million chance, 1
in a billion, 1 in 10?  These are all unlikely but there is significant difference between them.
The example in Box 3.1 shows the result of combining two Uniform distributions.  We use
this example to illustrate that “worst-case” analysis is sometimes far more conservative than it
seems. Whilst a worst-case analysis may be justified under the precautionary approach,
decisions based solely on such results may have financial implications disproportionate to the
actual level of risk.
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Box 3.1.  How conservative is worst case?

Suppose we have two Uniform distributions independently distributed between 0 and 100
(imagine picking blindly a number from 1 to 100 twice and multiplying them).  The 95-
percentile at the upper range of each distribution is therefore 95.  In other words, there is
only a 5% chance of choosing a number larger than this.  What is the 95-percentile of the
product of the two?

Using the ‘worst-case’ approach, we would simply multiply the two 95-percentiles and get
9025.  The chances of actually getting a product as large as this are surprisingly small
(0.49% in fact). This can be demonstrated by determining the number of pairs of parameters
that give a product ≥9025, as illustrated by case (a) Figure 3.3. The true probability of this
being exceeded is 0.0049 (0.49%), i.e. the value of 9025 is the 99.51%ile. Figure 3.3
illustrates how this was calculated, by calculating the area of the parameter-space where the
value is exceeded.

By comparison the 95-percentile of the product of two Uniform distributions ranging from
1 to 100 is 7010 as illustrated by case (b), Figure 3.3, i.e. the product of two 95%iles is
more conservative than the 95%ile of the product.

This example serves to illustrate the importance of understanding the effect of combining
“worst case” parameters i.e. combining two 95% values gives a result equivalent to the
99.51%.

Figure 3.3  The product of two uniform distributions
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Monte-Carlo analysis
There are methods of calculating approximately what the resultant means and variances
would be from combining PDFs (they involve Taylor series expansions about the mean).
However the power of modern computers has given us a much simpler approach.  Monte-
Carlo analysis does not require difficult mathematics and can deal with complex combinations
of PDFs including calculations with conditional statements (i.e. if-statements) such as those
involved in fate and transport calculations.

Monte-Carlo analysis involves generating sets of values for the input parameters, by picking
them from their respective distributions.  Each set of input parameters is then used to calculate
a realisation of the output result.  If this sampling is carried out thousands of times, the
distribution of results tends to approach the theoretical distribution that was difficult to derive
mathematically. Section 5.1 describes Monte-Carlo analysis in more detail.

The histogram of the results is the main output of this technique and represents an
experimentally-derived estimate of the true PDF of the calculated output.  The Monte-Carlo
result will get closer and closer to the mathematical answer, as more and more realisations are
carried out.  It is a sort of experiment and, as such, produces an approximation to the answer.
Each time a Monte-Carlo analysis is carried out the derived histogram will be different, but
with a large enough number of realisations, an acceptable level of accuracy and repeatability
can be obtained.

3.6 Dependent parameters
One limitation of Monte-Carlo analysis is that the sampling generally assumes all the
parameters are independent of one another.  Unfortunately this is not always true.

For example, the hydraulic gradient is not independent of the hydraulic conductivity of an
aquifer since there is a negative correlation between the two. For example, shallow hydraulic
gradients are typically associated with higher values of hydraulic conductivity and steeper
gradients by lower values of hydraulic conductivity.

Some probabilistic models (e.g. LandSim and ConSim) do not allow dependency to be taken
into account; the expectation is that expert users will input reasonable values given their
knowledge of the hydrogeology. However, it should be recognised that the Monte Carlo
method can and will pick extreme values from dependent ranges that would not be expected
to occur in nature e.g. high hydraulic conductivity with low hydraulic gradient.

Some modelling packages allow adjustments to the Monte-Carlo method to be made to take
this sort of linear dependence into account.

Linear dependence means that the two parameters are related by the equation:

Y = aX + b + E (1)

where X and Y are the parameters, a and b are constants and E is a normally distributed error
with mean equal to 0.   The smaller E is, the more tightly the two parameters are related.

To take dependence into account in a calculation, both a and b need to be estimated (refer to
Box 3.2) and an indicator of how closely the two parameters are related (which is determined
by the error E).  The statistic required by these packages is the correlation coefficient (see
Box 3.2) between the two parameters.  The correlation ranges from -1 (negatively correlated)
to +1 (positively correlated) with 0 indicating no correlation.  The constants, a and b, are
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determined from the PDFs already entered for the parameters.  An alternative is to define the
second variable in terms of the first using an expression comparable with Equation 1 above.

The correlation coefficient can be estimated from a large number of data-pairs of the two
parameters using the statistics given in Box 3.2.   In practice, the data-pairs can be entered to
the two software packages above and they will calculate all the parameters.  However, the
definitions of the common parameters and their relationship to the much-quoted R-squared
statistic, are provided below.

In packages that do not specifically address parameter dependency, a straight forward solution
is to define a PDF for the parameter with the greatest uncertainty, and to use a single value for
the other dependent parameter. So, for example, hydraulic conductivity (which varies greatly)
may be described using a Log-normal PDF, while hydraulic gradient (which is generally less
variable) is described by a single (most likely) value.

Box 3.2  Definition of dependency statistics

Correlation coefficient (r)  between two parameters x and y is defined as:

r = C/(SDxSDy)

where C is the covariance defined as C = Σ(xi- x̄)(yi- ȳ)/(n-1),

x̄  = Σxi/n, and

ȳ  = Σyi/n.

n = number of samples

SD = standard deviation of sample measurements

R-squared is a related parameter which statistical packages usually report after regressing the
data.  Data regression is the calculation of the constants a and b by minimising the squares of
the residual values. R-squared represents the proportion of variation in X explained by the
model.

R2 = 1 -Σ(yi-a'xi-b')2/((n-1)SDy
2)

where a' is the estimator for a, defined by a' = Σ(xi-x̄)(yi- ȳ)/ Σ(xi- x̄)(xi- x̄ )

and b' is the estimator for b, defined by b'  =  ȳ- a' x̄
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4. Choosing a PDF and data requirements

4.1 Procedure for defining the uncertainty in a parameter value
In most modelling and risk assessment scenarios the possible range of values for some
parameters will not be known.  There may be very limited or, in some cases, no site-specific
data with which to define some parameter ranges and a method of selecting appropriate values
and PDFs must be found.  If there is no site-specific information on any of the parameters
then modelling is inappropriate.

Certain parameters can readily be measured in the field (e.g. hydraulic conductivity, hydraulic
gradient), but others are generally not measured (e.g. dispersivity) and values must be
obtained from other sources.  Where site-specific data are available they may be limited and
consideration must be given to the way in which they are used to generate PDFs.

This chapter provides guidance on the review and screening of data and on the various
approaches to choosing an appropriate PDF.

4.2 Data requirements

It is not the purpose of this document to describe methods and techniques of acquiring field
data, although some reference is made to the reliability or data quality of some methods.
Published good practice guidelines or standards should be used where applicable and
parameter testing should, where possible, be carried out by laboratories accredited for the
relevant test(s).  The process of collecting site-specific data, which will then be used to
characterise a site and input into a quantitative risk assessment, is critical to the quality of the
data and hence the quality of the model and results.

The first stage in the assessment is to determine which parameters are required for input to the
fate and transport model.  This will be dependent on the type of model selected.  For each
parameter either a single value (deterministic) or range of values (probability distribution)
will need to be defined.  The possible cases are:

i) Sufficient site-specific data are available;

ii) Limited site-specific data are available;

iii) Insufficient site data are available, but literature values are available from similar
geological/hydrogeological regimes or experts are available who can estimate
parameters for the site.    It is stressed that care needs to be taken in using literature
values and deciding whether they are appropriate.  Literature values and expert
opinion  values should, in general, only be used for model input parameters that:

- have values quoted in the literature covering only a small range, e.g. bulk
density;

- are relatively insensitive parameters in the analysis (e.g. variation of this
parameter within its credible range does not significantly affect the model
outcome);

- can be justified based on comparison or correlation with similar site(s).
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iv) Absent. Data are very restricted or absent.  In this case more site investigation is
necessary before modelling, although literature values or expert opinion values help
as part of an initial scoping exercise.

Before choosing a PDF the data should be reviewed critically in order to establish the
following:

• Are the data from the same (or a relevant) population?  For example, a large number of
permeability tests may have been undertaken at a site underlain by the Millstone Grit – this
is a layered aquifer, and each layer may be characterised by a different hydraulic
conductivity and therefore it may not be appropriate to group all of the test results.
Alternatively, it may be reasonable to combine results from a number of different locations
to obtain a larger data set if it can be demonstrated that they are part of the same population
(e.g. test results from different sites may be combined if it is shown they relate to the same
geological horizon).

• Are data time dependent?  Some parameters are variable in time and if any trends exist,
they must be identified and incorporated into the conceptual model.  For example, it does
not make sense to calculate the mean of a series of steadily decreasing leachate
concentration measurements.

• Are extreme values representative of the system?   Do they describe an important part
of the system or are they truly anomalous?  In the initial definition of a PDF, extreme
values should be retained unless the measurement can be justified to be anomalous.
Comparison of model results with field observations may then provide a basis for
including or excluding extreme values.

• Are measurements representative of the system as a whole?  For example, values of
hydraulic conductivity may be available from public water supply abstraction boreholes
but these are likely to have been located in zones of high hydraulic conductivity and will
not necessarily be representative of the aquifer as a whole. They will be more
representative than values derived from laboratory testing of cored samples because of the
sample size (i.e. aquifer scale compared to core scale). This is called bias in the sampling
procedure and illustrates the importance of thinking about what is being measured and
whether it is representative of the part of the system behaviour we are interested in.

• Are data reasonable?  In some cases it may be appropriate to check the measurements
with similar sites or established databases (the BGS/Agency Aquifer Properties Manuals
provides a useful data source) to check if data are anomalous.  Are the numbers physically
possible?  For example, values of 10-6 for storage coefficient are not feasible.

• Should the data be scaled up? Upscaling refers to deriving a value for a parameter at the
scale of interest  (i.e. regional value) based on measurements made at a smaller scale
(i.e. laboratory measurements).  The decision to upscale should be based on the conceptual
understanding of the system behaviour, i.e. is it described by individual measurements or
by the ‘average’ of the measurements.  If the latter, then the ‘average’ should be calculated.
The uncertainty in the ‘average’ will generally be less than the uncertainty in the individual
measurements (see Section 4.4).  This is illustrated by Figure 4.1 where it would be
appropriate to upscale the measurements of hydraulic conductivity for model 1, but
inappropriate for model 2.  This figure illustrates the importance of thinking about the
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geology of the deposit as this may give some idea about the geometry of different
lithologies, i.e. whether beds may be continuous or discontinuous.

Cautionary note on upscaling: laboratory scale measurements may not be representative at
field scale. Even pumping test results may not be representative of regional aquifer values.

Where sufficient data are available, graphical techniques (including histograms, cross-plots,
cumulative frequency plots) should be used to develop a qualitative understanding of the data
(i.e. presence of outliers) and the type of distribution that may be appropriate (see
Section 4.3.2).

When presenting parameter distributions it is important that there is an audit trail and that the
process of defining PDFs is documented.  There must be precise definition of the parameter
whose distribution is determined, and the data used to support the definition.  It is
recommended that the following information should be provided:

• raw data – the source and nature of the measurements should be described and the data
should be presented in a table and, preferably, in graphical format including the use of
histograms or frequency plots;

• results of any statistical analysis of the data (mean, standard deviation etc);

• the basis for excluding/including any extreme values;

• information on how measurements were undertaken, including any uncertainty in the
measurements.

4.3 How to select an appropriate PDF

The best approach to selecting parameter values and PDFs will vary depending on the amount
of site-specific data available for each parameter.  Three scenarios are considered in this
section.  The numbers of data points given are for guidelines only.

i) Sufficient data are available to warrant statistical analysis to determine a PDF (more
than 30 points), Section 4.3.2;

ii) Limited data are available (roughly 5-30 data points) and you may have to assume
the type of PDF, but the parameters can be estimated from the data, Section 4.3.3;

iii) Insufficient data.  There are no or very limited data (4 or less) and you will have to
incorporate elicitation to determine the type of PDF and its parameters, Section 4.3.4.

The approach to defining a PDF must ensure that it is consistent with the assumptions
incorporated into the conceptual model of the system.  This is discussed in the first section
below.  It will also depend on whether the hydrogeological parameter described by the data is
upscaled.  Is it a single uncertain value or is it a stochastic field, for which an appropriate
uncertain average is needed?  This point is discussed in detail in Section 4.4.

Finally, it should be stressed that the definition of a probability distribution and its parameters
must incorporate clear thinking.  For example, when did a petrol tank leak if it was full in
March and empty in June when next inspected?  A Uniform distribution between March and
June reflects the fact that the leak could have occurred at any time between these dates with
equal probability.
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Figure 4.1    Scaling up and Uncertainty
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4.3.1 Patterns and trends
Before any statistical analysis is carried out, the data need to be carefully analysed for patterns
and trends.  The term ‘pattern’ is used here to refer to spatial distribution and ‘trend’ to time-
dependent data.  If a trend or pattern is identified then this should be incorporated into the
conceptual model.  Only after such patterns and trends have been identified, and the decision
made as to whether the data refer to a single population, should we proceed with the
derivation of a PDF.

An example of each of these is presented in the boxes below.

Box 4.1  Example of data trends

Time-dependent measurements of chloride concentration in leachate have been taken for a
period of five years from a single sump.  A histogram of the data could be plotted and might
show a roughly Uniform distribution with a mean of 1000 mg/l ranging from 1500 mg/l to
500 mg/l.  However, when the data are plotted as a graph against time, it is clear that the
strength was 1500 mg/l five years ago and declines at about 200 mg/l per year.

It would be wrong to categorise this parameter as uniform.  The observed decline in leachate
strength with time must be incorporated into the conceptual model.  This could be done as a
linear or exponential decline in strength.  Uncertainty is included by inspection of the scatter
on the plotted graph and including the uncertainty in defining the two new parameters
(starting strength and decline rate) as PDFs.

Box 4.2  Example of pattern in data (see Figure 4.1)

Four boreholes have been drilled (Figure 4.1).  Slug tests conducted on each of the boreholes
have given three different values of hydraulic conductivity.  The geometric mean is 10-8 m/s.
However, the geologist has noticed that the geology consists of alternating sand and clay
layers and that the conductivities measured seem to depend on the proportion of the two
materials.  He also knows from laboratory tests that the clay generally has a hydraulic
conductivity of approximately 10-9 m/s and the sand an hydraulic conductivity of
approximately 10-7 m/s.  He recognises that transport depends on whether the sand lenses are
continuous (Model 2) or not (Model 1).  If they are, then the effective conductivity of the
entire horizontal flow path would be approximately 10-7 m/s and if they are not, it would be
approximately 10-8 m/s (i.e. midway between the values of hydraulic conductivity for the sand
and clay lithologies).  After further research into the sedimentology of the area he decides that
they are probably, but not certainly, continuous (i.e. Model 2).

Possible approaches include:

1. Assume the hydraulic conductivity of the formation is described by a Log-normal
distribution with a mean of 10-7 m/s (sand) to determine if there is likely to be a
breakthrough at the receptor, as this is likely to represent a worst case.

2. Check the assessment using a Log-normal distribution with a mean of 10-9 m/s (clay), as
this may, for example, explain the absence of any observed breakthrough of a contaminant
at a monitoring borehole.

3. An alternative approach would be to assume that a special two-valued PDF is appropriate
which has a 80% probability of being Log-normal around 10-7 m/s (sand) and a 20%
probability of being Log-normal around 10-9 m/s (clay).  The modeller incorporates this
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into the spreadsheet by defining the hydraulic conductivity as the product of a Log-normal
PDF around 10-7 m/s and a conditional statement based on a Uniform distribution that
takes the value 1 (sand) or 0.01 (clay) e.g. for ExcelTM, IF(UNIFORM(0,1)<0.2, 0.01,1)].
This approach introduces another uncertain parameter which needs to be estimated; the
relative likelihood of the two distributions.

This example shows a number of different approaches that could be used. The important
conclusion is to determine what the results of the analysis show, and is our uncertainty
important to any decision making process, or is the degree of uncertainty unacceptable and
therefore further data are needed?

This example also introduces the concept of upscaling.  The important conductivity is not the
distribution at any one point but the distribution of the average of the entire flowpath.

In general, if a pattern is discerned that shows that the data come from two or more separate
populations, then the data should be divided up and a PDF then derived for each population
according to the procedures described in Section 4.3.2.

4.3.2 PDF selection - sufficient data
The process of selecting a PDF is:

i) Check the characteristics of the data for patterns, trends, bias, time-dependence etc as
described previously. This will usually involve constructing a graph against time, or
plotting maps and sections.  Incorporate the understanding gained into the conceptual
model. Only proceed when the data-points come from a single population.

ii) Plot the data as a histogram, frequency plot, or cumulative frequency plot (e.g. use
the Histogram function in ExcelTM). If the curve has more than one mode, this is an
indicator that the samples may be from more than one population and (i) above
should be revisited.  However if there is no other indicator that identifies the two
populations, then it may be appropriate to devise a bimodal PDF.

The preparation of probability plots (involving plotting the data in order according to
its percentile) is a useful graphical method of identifying the PDF.  If the data form a
straight line on normal graph paper, then this is a reasonable justification for
assuming normality without formal proof.

iii) If there are fewer than 30 data points, it will probably be necessary to assume the
type of PDF as it may not be possible to prove the distribution with a high degree of
statistical certainty. This will be the typical case for most site investigations such that
the choice of a PDF will involve some expert judgement, however, guidance on some
of the factors to be considered is given in Sections 4.3.3 and 4.3.4.

iv) Choose the distribution type most likely to fit the data from the shape of the
histogram and knowledge of the property.  Probability plots are also useful if the
distribution is uncertain.  The PDF chosen should not be more complex than
necessary.  With a small number of data points, an uneven histogram does not
necessarily indicate a complicated PDF - the variability of the system and the small
sample both have an influence.  For example, if there are two peaks on the histogram
for 5 measurements, this does not necessarily mean the PDF has two peaks.  If there
are still two peaks after 5000 measurements, then it probably has and you may wish
to see if the data come from two separate populations. The key is always to think



NGWCLC report NC/99/38/3 Page 35

about what the data are telling us about the system, what we know and what we are
uncertain about.  Other information about the system should be incorporated in
thinking about system behaviour, for example inspection of geological exposures
may tell us something about the layering of different lithologies.

If the curve is skewed then Log or Gamma distributions may be most appropriate.

If the data range over more than one order of magnitude then a Log distribution
function (e.g. Log-normal, Log-triangular) should be considered.

v) Estimate the parameters of the PDF from the data (Table 3.2, Table 4.1).  Some
commercial packages have the option to fit PDFs to data; alternatively, most
spreadsheets include statistical analysis packages. The estimation of the PDF
parameters should be made using the data.  For example, the parameter µ, the
population mean, in a Normal distribution is estimated by the sample mean
(arithmetic) and the parameter σ2 is estimated by the sample variance (see Table 4.1).

However, very occasionally, there may be a good reason to use a different estimator
to determine parameters.  For example, if there are outliers where the measurement
accuracy is compromised, using the median to estimate the parameter µ eliminates
the influence of such outliers (Gilbert, 1987).

In chemical data, dealing with NDs (non-detects) or LTs (less thans) is an important
issue.  The most common approaches are to set the LTs at half the detection limit, or
to use the median as an estimator of the sample mean. The NDs or LTs should not be
set as zero.  In general these methods should be adequate but, if not, consideration
should be given to an alternative testing method with a lower detection limit.

Table 4.1 Estimator statistics

Distribution
Population
Parameter of
Distribution

Recommended
Estimator

Notes

Normal µ Arithmetic mean of sample Use median if suspect outliers or exclude
outliers from data set

σ Standard deviation of
sample

Use difference between the 84% and 16%
percentile values if suspect outliers, σ =
(84%ile-16%ile)/2

Log-normal µ Natural logarithm of
geometric mean or
arithmetic mean of the logs
of the data of sample

A number of software packages require the
arithmetic mean and standard deviation of the
data. See Section 3.4.3.

σ Standard deviation of
natural logarithms of the
data of sample

Note: “Log” in the table above means natural log, or log to the base e, or ln.  Refer also to Section 3.4.1 and
3.4.3.
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vi) Use a statistical test procedure to determine if the selected distribution fits the data,
i.e. is it statistically valid?  For example, if a Normal distribution is proposed then a
statistical test for normality (Box 4.3) should be undertaken.  Such procedures
include Chi-squared, Kolmogorov-Smirnov, Shapiro-Wilks and D’Agostino (Gilbert,
1987).  The details to follow for the Chi-squared test are given in Box 4.3 and a
worked example is included in Appendix A.  The Chi-squared test can be used to test
the fit of any selected distribution.  The Shapiro-Wilks and D’Agostine tests are
better tests but are specific for Normal distributions (less effort and more reliable).

Box 4.3  Use of Chi-squared to investigate normality

One statistical test for whether a sample fits a certain distribution is the Chi-squared
procedure/test (p70-73, Till, 1974).  This method can be used for any distribution but the
example here checks the data against the Normal distribution (an example is given in
Appendix A):

1) Calculate mean (x̄ ) and variance (SD)2  of sample measurements (x) (these will be
estimators of the population).

2) Form a histogram of z = (x -  x̄)/SD with equal intervals.  The size of interval and the end
intervals should be selected to ensure that there are at least 5 values in each interval.  This
histogram should be normal with mean equal to zero and variance of 1. z is a standardised
value which expresses the deviation of each x value about the mean in units of standard
deviation.

3) Calculate the expected frequency (EF) for each interval if the distribution were normal
with mean zero and variance 1, where:

Where EF = probability of the z-value occurring in that class interval × total number of
readings.

The probability can be derived using look up tables that define the area under a normal
curve mean zero and variance 1 (alternatively the ExcelTM function NORMSDIST can be
used).

4) Calculate χ2 (the Chi-squared statistic) using

χ2 = Σ (OF-EF)2/EF

where the sum is over all the intervals, OF is the observed frequency and EF is the
expected frequency.

5) Look up the Chi-squared function (from a table, or alternatively use the ExcelTM function
CHIINV(level of confidence, m-3) with m-3 degrees of freedom at the desired level of
confidence, e.g. 0.05 (5% confidence); where m is the number of intervals.

6) If the χ2 statistic is larger than the Chi-squared function then reject the hypothesis of
normality at 5% confidence.  There is a less than 5% chance of this sample representing a
Normal distribution.

This method can also be applied to other distributions in a similar way.
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If the test (e.g. Chi-squared) fails, then try other possible distributions until it
succeeds.  If none of the distributions fits well, then the alternative is to define your
own distribution based on the data (which is possible in most software packages).

An alternative method for testing whether the measurements fit a distribution is the
Kolmogorov-Smirnov test. There is a good account of this in Vose (1996).

Most modern software packages favour the Shapiro-Wilks test to test for normality
or log-normality. This test is described briefly in Box 4.4; and more detail is
provided by Gilbert (1987). A worked example is included in Appendix A.  For data
sets that comprise more than 50 measurements then the D’Agostino test is the
recommended method (Gilbert, 1987).

vii) Run the model.

viii) Reality Check.  The results of the modelling must be examined critically against any
field data that exist (refer to Chapter 7).

Box 4.4  Use of Shapiro-Wilks to prove normality

This method tests specifically for normality and is described in Gilbert, 1987 (p159).  An
example of this method is illustrated in Appendix A.

1) Calculate  k = n/2 if n is even or (n-1)/2 if n is odd (where n = number of samples);

2) Look up in a table (Table A6, Gilbert, 1987) the coefficients a1, a2, …ak for the relevant n;

3) Order the data so that x1 < x2<…<xn

4) Calculate W (the Shapiro-Wilks statistic) according to:
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5) Look up the Shapiro-Wilks function from a table (Table A7, Gilbert, 1987) at the desired
level of confidence, e.g. 0.05 (5% confidence);

6) If the W statistic is less than the Shapiro-Wilks function then reject the hypothesis of
normality at 5% confidence.

4.3.3 PDF Selection - Limited Data
When there are only few site-specific data some assumptions must be made about the likely
distribution of the parameter values whilst still taking into account the measured values.
Experience suggests that certain parameters commonly exhibit certain types of distributions
and that there are other preferred distributions based on the number of data points available.
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Some recommendations are listed below:

i) The recommended default distribution for hydraulic conductivity is Log-normal
(BGS/ Environment Agency, 1997). In all cases where data spans an order of
magnitude a log-based distribution should be used. If sufficient data are available to
define that distribution, a PDF other than Log-normal may be more applicable.

ii) Distances are often best estimated as uniform ranging between the maximum and
minimum plausible values.  For example, in the case of distance from a landfill to a
compliance borehole, the PDF for the distance should be uniform between the
distance from the front and back of the landfill site to the borehole.

iii) Normal distributions are recommended for other parameters (e.g. porosity,
infiltration), if there are more than 10 readings where the histogram suggests
normality. The distribution should be checked to ensure that negative values are not
assigned to a parameter which cannot be negative e.g. porosity. Also the mean value
should be at least three standard deviations from zero. Some software packages (e.g.
ConSim and LandSim) will automatically set the minimum value as zero, if the
specified distribution results in negative values; it should be noted that this will skew
the distribution slightly.

iv) Triangular or Log-triangular distributions are generally recommended if there are
fewer than 10 readings since they are intuitive to estimate.  Table 2.1 gives suggested
distributions for different parameters.  However, they can be over constrained - it is
unlikely that a set of 10 measurements will include either the lowest or highest real
measurement.  There are a number of alternative methods that can be used where
limited information are available, such as Maximum Entropy (Kapur, 1989).

v) For parameters where there is greater than one order of magnitude variation, then a
logarithmic distribution should be considered.

Table 2.1 provides examples of PDFs used for different parameters.  However, good practice
should be to test that the selected PDF fits the data (Section 4.3.4 point VI).  Figure 3.1 shows
the shape of different PDF’s and a useful check is to see if the selected PDF looks right when
compared to the data.

The estimation of the PDF parameters should be made using site-specific data wherever
possible.  For example, the parameter µ in a Normal distribution is estimated by the sample
mean and the parameter σ2 is estimated by the sample variance.  Similarly, for the Log-
normal distribution, the parameter µ is estimated by the geometric sample mean (i.e. loge(µ) is
estimated by the mean of the logarithms) and the parameter loge(σ2) is estimated by the
variance of the logarithms of the sample data (Table 4.1).

4.3.4 PDF selection - insufficient data
Where there are few or no site-specific data, some method of defining PDFs is required if
modelling is to be undertaken. This approach should be limited to initial assessments or where
no data exist for some of the parameters.  If analysis shows that the missing data are critical to
the decision-making process, then more data must be obtained, i.e. the process should be
iterative. It is emphasised that the best response to this situation is to obtain more data.
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The most common methods of dealing with a lack of data (where it is not possible to obtain
more) are to use expert opinion (elicitation) or values derived from literature sources.

i) Elicitation of Expert Opinion

A potential error is to define a range of parameter values that is too narrow.  The
likelihood of doing this can be minimised by starting with the definition of maximum
and minimum values, rather than starting with the most likely.  When estimating a
parameter distribution, it is also more sensible to define minimum and maximum
values, owing to the difficulty in estimating the standard deviation of a population,
which is not intuitive to most people. Maxima and minima should always be justified
with reasons why they cannot be exceeded.

‘Expert’ opinion can be used to define PDFs, but a common problem is that ‘experts’
can give very different distributions for the same parameter.  It is also essential that
expert opinion should be used to determine what is not known about a parameter.
Care should be taken for PDFs derived by expert opinion, as this will only represent
an educated ‘guess’, and should not be viewed with certainty.  A number of
techniques have been developed to overcome this including the ‘Delphi’ method,
originally developed by the Rand Corporation (Dalkey & Helmer, 1963). The
procedure follows the lines of:

1. Judgements along with their rationales are obtained independently from each
member of an expert panel.

2. The summarised results are fed back to those experts in a manner that is
carefully controlled so as to eliminate the pressures associated with group
meetings.

3. The process is then iterated and a convergence of opinion occurs under most
circumstances.

It is normally found that initial (individual) parameter ranges are unrealistically
narrow and only partly overlapping.  During the iteration procedure, the experts tend
to broaden their uncertainty range and revise their best estimate towards the panel
mean to an extent dependent on their confidence in their knowledge.

The Delphi method forms part of a broader probability assessment process developed
by the Decision Analysis Department of SRI International (Speltzler et al, 1975,
Stael von Holstein & Matheson 1979, Merkhover 1987).

Alternatively, a consensus approach may be used, taking into account the views and
experience of the Environment Agency as well as others.

The tendency to make overly precise estimates can be reduced by training the expert
panel in concepts of degree of belief.

These procedures have been extensively used in relation to the disposal of
radioactive waste (e.g. Davis et al,. 1983).  It is important that the thinking behind
elicited parameter distribution is documented.

ii) Literature sources
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Parameter values can be obtained from the literature if site-specific data are not
available or need to be supplemented. Text books and journals may provide case
studies with examples of parameter values for specific locations but these are
unlikely to be directly relevant to the site for which data are required.  Other
literature sources include compilations of data from a number of references and may
provide parameter ranges that are more statistically valid.  The BGS/Agency Major
and Minor Aquifer Properties Manuals, for example, provides a significant data base
of measurements of the aquifer properties (hydraulic conductivity, porosity) for
aquifers in England and Wales. If literature values are used they should be
relevant to site conditions and justified in the relevant reports/documentation. If
subsequent analysis indicates that these values are critical to the assessment then site
-specific data should be obtained.

Caution is required when using literature values and the relevance and validity
of the data should be checked. The data must be appropriate to the scenario
being modelled.

Two approaches that can be applied where there are limited data are the Bayesian method and
the principle of Maximum Entropy.  The Bayesian method (Appendix C) permits re-assessing
the PDF as a result of the acquisition of new data.  For example, the expected range of
hydraulic conductivity of a material (derived from the literature) can be combined with a very
small number of site-specific measurements.  (If all the original data are available, they can be
combined in the usual way, but this is often not possible).  The principle of Maximum
Entropy (Kapur, 1989) is a theoretical method of optimising the form of the PDF assuming
only the facts known (such as the mean and the fact that the parameter is positive).

4.3.5 Reality check
The results from a probabilistic model should be compared with field observations, wherever
possible, to determine if the model results are plausible (see Chapter 7). For example, a model
may have predicted no impact at the 95-percentile, whereas field data may show clear
evidence of an impact.  In this case, the model needs to be re-examined. This comparison will
be subjective, as the model results will be described by a range of values or outcomes and
these are being compared with single measurements. For sites which are well defined by
monitoring data, then consideration should be given to a deterministic approach, as by
modifying the input parameters to obtain a best fit to the observed data, the range of
parameter values can be constrained (refer to Environment Agency, 2001b).

4.4 Relationship between heterogeneity and uncertainty (upscaling)

For some contaminant problems, the ‘average’ parameter value may best describe the system
behaviour. In this case, measurements of a parameter at one scale (e.g. laboratory
measurements) can be used to define the parameter at a larger scale.  This approach of using
sample measurements to define the ‘average’ system behaviour is described as upscaling.
Where the system is believed to be heterogeneous, then upscaling should be used with care.

For example, a number of measurements may have been made on clay content, and these
measurements could be described by the mean and standard deviation of the data set. The
conceptual model of the system may have concluded that the migration of a contaminant is
controlled by the total clay content along the pathway.  In this case, the key parameter would
be the average or mean clay content, rather than the measured range in values.
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In calculating the mean of the sample data, there will be some uncertainty as to how far away
this will be from the mean of the population (e.g. if every possible measurement of clay
content could be made).  This uncertainty may decrease as more measurements are obtained.
In Appendix B, a methodology is presented to determine a PDF to describe the uncertainty of
the mean of a set of measurements, i.e. how likely is it that this value corresponds to the
population mean.

It is essential that there should be a clear understanding of whether upscaling is appropriate to
a problem and that this approach can be justified. Parameter values should only be upscaled
with extreme care where heterogeneity in the system behaviour is considered important in
controlling the migration of contaminants.  This is illustrated by Models 1 and 2 in Figure 4.1.
For Model 1, the use of an ‘average’ value of hydraulic property to describe the movement of
contaminants would be appropriate.  Whilst for Model 2, where continuous layers of sand and
gravel are present, then upscaling would be inappropriate unless the structure of the
heterogeneity and associated parameter variability is well understood. Upscaling will result in
a distribution with a narrower range. In most cases it is unlikely that understanding will be
sufficient to perform upscaling in a meaningful manner.

In most analytical expressions for describing contaminant transport, the parameter in the
equation represents a sort of ‘average’ value representative of the entire flow path.  This is not
necessarily an arithmetic mean although it is intuitive that it would be some value between the
largest and the smallest encountered.

4.5 Summary of Procedure for Selecting a PDF

The overall procedure for choosing a PDF is as follows (Section 4.3.2):

i) Review the data, check for problems etc;

ii) Plot data (e.g. histograms, frequency plots);

iii) Select PDF which best describes the data (based on statistical analysis of the data set,
expert judgement based on knowledge of the parameter);

iv) Estimate parameters of the distribution (Table 3.2, Table 4.1);

v) Test if selected distribution fits the data through the use of statistical methods
(e.g. Box 4.3, Box 4.4) and/or comparison of the distribution with the data set.

This procedure assumes sufficient data are available, Sections 4.3.3 and 4.3.4 give guidance
on the approach to be adopted for PDF selection where data are limited or insufficient.
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5. Methods of modelling

5.1 Probability space
When using probabilistic models, it is also essential to consider parameter space. This concept
is illustrated by Figure 5.1 which shows the boundary of possible values for two
hydrogeological variables based on their PDFs. On the assumption that the PDFs have been
selected conservatively (i.e. the uncertainty in these variables has been taken into account),
then the actual system should fall within this bounded area. In practice, the system will be
defined by more than two variables, and the definition of parameter space will be more
complex.

All possible outcomes of a probabilistic analysis will fall within this parameter space.  An
initial check that can be used, before undertaking an extensive series of probabilistic
realisations, is to calculate the model results based on hydrogeological parameter values taken
at the boundaries of the parameter space.  This analysis may show that all of the results are
outside the area of concern (e.g. below a remedial target defined for a receptor) and, therefore,
that further work is unnecessary.  The latter approach is also useful in providing an
independent check of the probabilistic analysis.

The benefit from considering parameter space is that the plausible parameter space may be
smaller than the space defined by the extreme values, and consequently the range of possible
outcomes is smaller.  An example of this is a space defined by porosity and hydraulic
conductivity.  For most rocks, high hydraulic conductivities are associated with high rather
than low porosities, and vice versa.  Thus it may be possible to eliminate areas of the
parameter space based on knowledge of the dependency of different parameters, as illustrated
by Figure 5.1.  A second example is where values of hydraulic conductivity and gradient
could be constrained by comparing the flow for a groundwater catchment calculated from
Darcy’s Law with the groundwater water recharge over the catchment.

This concept of parameter space may, therefore, prove useful in interpreting and refining the
results of probabilistic runs, by eliminating results from highly improbable areas of the
parameter space where evidence shows the answer cannot lie. This may reduce the range of
estimated risk.

5.2 Monte Carlo method
Monte Carlo simulation is the most widely used method of uncertainty analysis (refer also to
Section 3.5).  The basic method involves:

i) Definition of the probability distribution for each model parameter;

ii) Repeated running of the model with parameter sets chosen from these distributions.
The result from each run (referred to in this report as a realisation) is recorded to
build up a picture of the possible outcomes from combining different parameter
values;

iii) Analysis of the results from each model calculation or realisation to obtain a
probability distribution (as illustrated by Figure 2.2) of the possible outcomes from
combining the parameter values.  The results are typically expressed in terms of the
likelihood that a given value will be exceeded (Figure 5.2).
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Data input values to the model will either be randomly selected from their defined parameter
distribution, or an algorithm used to select the parameter value.  An example of the latter is
the Latin Hypercube method.  In this technique, the probability distribution is divided into
intervals of equal probability and data are then picked from each interval as a way of ensuring
that values are taken from the entire probability distribution.  This decreases the number of
realisations required to achieve convergence.

The accuracy or repeatability of a probabilistic simulation will be dependent on the number of
realisations.  This is illustrated by Figure 5.3, which shows the cumulative frequency
distribution for the output from a Monte Carlo run at different points during the simulation.
At the start of the simulation, the distribution curve describing the model results is very
variable, but with an increasing number of simulations the smoothness of the distribution
increases.

Care needs to be taken in selecting an appropriate number of realisations. For some fate and
transport models, running a Monte Carlo simulation can be extremely time consuming.
Conversely if too few realisations are undertaken then the results will not be repeatable,
particularly at the high or low range.  This is illustrated in Table 5.1, where the output from
three different LandSim model runs are compared for different numbers of realisations. This
table shows that the repeatability of the model results improves with the number of
realisations.

Table 5.1 Influence of Realisations on Predicted Leakage (using LandSim v.1.08
Model)

Number of Simulations Predicted Leakage (m3/d) at the 90%ile value
1st Run 2nd Run 3rd Run Range

200 36.6 32.4 32.9 4.2
500 33.8 37.9 37.6 4.1
3000 31.9 32.2 32.9 1.0

For some models, an element of trial and error will be required to determine the minimum
number of realisations required to obtain model convergence i.e. repeatable results. In
general, 500 realisations are recommended for initial model runs (to minimise run times) to
check the model, and 2000 to 3000 for final model runs.  This may be determined by
comparison of the model results from one run to the next, or examination of the distribution
curve of the results (irregularities in the distribution curve suggest that further model
realisations are required).

The greater the number of realisations the more likely that combinations of parameters from
the higher and lower ends of their probability distributions will be trialed and consequently
the confidence in the result of the Monte-Carlo simulation will increase, i.e. the resulting
probability distribution reflects the range of possible results.  For example, LandSim
recommends that a minimum of 1001 realisations should be run to give 99% confidence
(i.e. how certain we are of the result) for the 95%ile result; but that good practice is to run the
maximum number of realisations (3000) for the final model run. Further discussion of
confidence is given in Gilbert, 1987).
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5.3 Sensitivity analysis
Sensitivity analyses are used primarily to understand which parameters have the largest effect
on the outcome, i.e. it is done to understand how the model works and identify which are the
critical parameters. A sensitivity analysis comprises modifying parameter values or parameter
distributions and examining the effect of this change on the model results. The results of this
analysis should then be used to determine whether further data are needed to define sensitive
parameters, i.e. those parameters which have the greatest influence on the model result.
Further discussion of sensitivity analyses is given in Environment Agency (2001b).

It is important to note that further data collection may not necessarily result in a narrower or
tighter distribution of parameter values (i.e. justification for excluding extreme values from
the data set).

The results of the sensitivity analysis can be compared against field observations to check that
the results fall within a credible range. They may allow some constraints to be put on the
possible values for uncertain parameters.  However, because most models will have ten or
more parameters, the ‘acceptable’ parameter space will be very complex indeed, and is
unlikely to be fully explorable by a sensitivity analysis.

The assessment should also consider the influence of the type of PDF used to describe the
variation in a parameter value, e.g. does the distribution give greater significance to maximum
and minimum values.

5.4 Models
A number of probabilistic models have been developed for subsurface contaminant fate and
transport modelling, including two Agency codes, LandSim and ConSim.

LandSim is a modelling tool developed for the Agency to assist in the assessment of risk to
water quality from landfill sites. The model uses the Monte Carlo approach.  Different values
can be entered for each input parameter, but the model has pre-assigned distribution1 (either
Triangular, Log-triangular, Normal or Uniform) for each parameter.

ConSim is a modelling tool developed for the Agency to assist in the assessment of the impact
of contaminated soils on groundwater quality.  The model uses the Monte Carlo approach,
and allows the user to choose one of the following PDF distributions for each model
parameter (including Uniform, Log-uniform, Triangular, Log-triangular, Normal, Log-
normal, Poisson, Binomial and Exponential). For the Normal and Exponential distributions,
the package automatically constrains the minimum value as zero and sets the maximum value
as infinity.

Other probabilistic modelling tools that are widely available include CrystalBall and @Risk.
These packages are linked to a spreadsheet model (Microsoft ExcelTM) and provide the option
of undertaking Monte Carlo analysis.  The user is required to input the necessary calculation
in the spreadsheet. A range of distribution functions are provided, and the user can constrain
some distributions (such as Log-normal), by entering a minimum and maximum value as well
as the mean and standard deviation.  This has the advantage of removing extreme values that
may be generated by the distribution function. This should be done only after a thorough

                                                  
1 LandSim release 2 (Environment Agency, 2001c) requires PDFs to be specified for a number of parameter
distributions.
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consideration of the values and the evidence against them. Extremeness is in itself no
justification for removal.

It should be emphasised that the modelling approach and any software adopted should be
appropriate within the UK policy/legislative framework, and described in accompanying
reports such that the modelling is auditable. The use of in-house spreadsheets and/or code will
need to be fully described in submissions to the Agency in order to allow a review to be
performed, and should be supported by evidence of quality assurance procedures and
independent (non-Agency) model verfication.
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6. Worked example of probabilistic transport model

This section examines the use of probabilistic analysis in fate and transport modelling. It also
examines the influence of different PDF distributions (Normal, Triangular, Uniform etc) on
the output from the Ogata & Banks (Bear, 1979) analytical transport equation on the
calculated contaminant concentration at a compliance point. For the purposes of this example
the compliance point is taken at a point 600 m down hydraulic gradient of the source.

The parameter values used in this evaluation are given in Table 6.1.  To simplify this exercise,
PDFs are applied to hydraulic conductivity and dispersivity only and the remaining
parameters are defined by a single value, i.e. deterministically.

To provide an initial indication of the likely range in predicted concentrations at the receptor,
minimum and maximum values (Table 6.1) for hydraulic conductivity and dispersivity have
been combined.  The calculated values range from 0 to 98 mg/l (these provide an initial
indication of parameter space), and indicate the potential for a breakthrough (defined as
concentration greater than 0 mg/l) at the receptor (Table 6.2).

Table 6.1 Parameter values

ValueParameter
Median Minimum Maximum

Hydraulic conductivity (m/d)† 25 ‡  0.4 124‡

Hydraulic gradient 0.004
Effective porosity 0.1
Longitudinal dispersivity (m) 30 20 40
Retardation factor, Rf 1.5
Degradation rate (d-1) No decay

Entered as zero
Distance to receptor (m) 600
Time since contaminant release (d) 200
Initial concentration (mg/l) 100

Note (†) The measured values of hydraulic conductivity are 0.4, 4, 13, 14, 16, 21, 25, 34, 35, 41, 48, 71 and 124
m/d and relate to a sand and gravel aquifer where borehole logs indicate a variable sequence of sands, gravels
and silty clays. (These values were taken from a larger synthetic set that had a Log-normal distribution).
Note (‡) Based on measured values.
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Table 6.2 Initial calculation of contaminant concentrations at the receptor based on
minimum, median and maximum assumed values

Hydraulic conductivity
m/d

Dispersivity m Concentration mg/l
At receptor after 200 days

0.4 20 0.0
0.4 30 0.0
0.4 40 0.0
25 20 0.0
25 30 0.02
25 40 0.1

124 20 97.9
124 30 95.7
124 40 93.7

In this example, two different conceptual models have been developed to describe how the
measurements of hydraulic conductivity could be used to describe the aquifer system, and the
effect of these models on the predicted contaminant concentrations. The cases considered are:

Conceptual Model 1
In the first model, it is assumed that any of the measurements of hydraulic conductivity could
describe the flowpath to the receptor. That is, it is considered that the values of hydraulic
conductivity are an uncertain measurement of a uniform parameter. A probabilistic analysis
has been undertaken to consider this uncertainty.

In addition, the influence of assuming different probability distributions to describe the
hydraulic conductivity data has also been considered as part of the analysis. The distributions
used are:

• Uniform: where minimum and maximum values are based on the observed data set. These
maximum and minimum values are likely to underestimate the actual range in values of
hydraulic conductivity;

• Triangular: where the minimum, most likely and maximum values are based on the
observed data set, and are thus also likely to underestimate the actual range in values of
hydraulic conductivity;

• Normal: The arithmetic mean and standard deviation of the data set have been calculated
(Table 4.1);

• Log-normal: The arithmetic and standard deviation of the logarithms of the data values
have been calculated (Table 4.1).

As noted in Section 4.3.3, a Log-normal distribution would usually be used to describe the
variation in hydraulic conductivity.

The predicted concentrations are given in Table 6.3, in terms of the 50 and 95%ile values, and
illustrated by Figure 6.1.
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Figure 6.2 compares these distributions to the original data set and the following observations
are made:

• The Uniform distribution provides the poorest match to the data set.

• The Normal distribution needs to be curtailed (to prevent negative values) and provides
poor fit in the middle of the observed range, but reasonable match at the upper end of the
range.

• The Log-normal and Triangular distributions provides the best match at the lower end of
the data range, but overestimate values at the higher end.

It is emphasised that this comparison is only in relation to a limited set of data.

These matches are reflected in the predicted calculations as follows:

• The Uniform distribution gives highest 50%ile concentrations;

• The Log-normal distribution gives the highest concentration at the 95%ile.

The spread of these results is an indication of conceptual uncertainty in the model.

It is important to think about selected distribution (does it over or underestimate values within
the data range), and how it affects the predicted results.  The modeller may decide to select
the Log-normal distribution, but needs to be confident that the one high value of hydraulic
conductivity does not reflect part of the system characterised by a high permeability.



NGWCLC report NC/99/38/3 Page 54

Figure 6.1  Influence of Different PDFs on the Model Results (Conceptual Model 1)
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Figure 6.2  Comparison of Probability Distribution Functions for Hydraulic 
Conductivity (see Table 6.1)
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Table 6.3 Influence of different assumed PDF’s on predicted concentrations

Predicted Concentration mg/lDistribution Input Parameters
Hydraulic
conductivity (m/d)

50%ile 95%ile

Uniform Min  = 0.4
Max  = 124

29 84

Triangular Min  = 0.4
Most likely = 25
Max  = 124

5.5 70

Normal1 Mean  = 34
Standard dev.  = 33

2.4 94

Log-normal2 Mean of logs= 2.95
Stdev of logs = 1.45

0 100

Note (1) For this distribution, the equivalent minimum and maximum values (i.e. within three standard
deviations) are 0.1 m/d and 133 m/d. The minimum value has been truncated as the Normal distribution gives
negative values at the lower end of the distribution.

Note (2) For this distribution, the equivalent minimum and maximum values (i.e. within three standard
deviations) are 0.25 m/d and 1480 m/d.



NGWCLC report NC/99/38/3 Page 56

Nevertheless the predicted results show that, irrespective of the distribution used in the
analysis, contaminant breakthrough would be expected at the 95%ile level (i.e. ≥ 1 in 20
chance of contamination at the receptor). The results show a wider range at the 50%ile,
although it is more likely that any decision to implement remedial measures would be based
on the 95%ile results and in this case the 95%ile results point to a risk to the receptor.

Conceptual Model 2
In the second conceptual model, it is considered that the values of hydraulic conductivity
represent a more random system, i.e. the measurements relate to discontinuous lenses of sand,
gravel and silty clay, such that the mean value of the measurements of hydraulic conductivity
is more likely to describe the flowpath. The uncertainty lies in whether this mean hydraulic
conductivity of the data set is the same as the actual population mean. A probability
distribution was calculated to describe the variation in the mean (taken as the geometric mean
of the data plus a calculated factor to describe its variance) as described in Appendix B. The
resultant distribution is described by a Log-normal distribution (mean = 2.95, standard
deviation = 1.45).

The predicted contaminant concentrations are depicted in Figure 6.3 and compared with the
Log-normal distribution for conceptual model 1. This predicted contaminant profile is
markedly different from those calculated under the first conceptual model, but still shows a
contaminant breakthrough at the 95 %ile level, albeit at a lower concentration (about
12 mg/l). This observation may provide added support to the decision to undertake remedial
action. In other cases, the difference in results obtained from different conceptual models may
demonstrate that more information is required about the system (e.g. whether the gravel
horizons are laterally continuous), if both conceptual models have equal merit.

It should be noted that other conceptual models of the data may also be valid, for example the
deposit may comprise an alternating sequence of sands, gravels and silty clays and that the
measurements of hydraulic conductivity relate to the different horizons. In this case, the
important parameter may be the higher value of hydraulic conductivity, particularly if this is
the only measurement of the hydraulic conductivity of the gravel layer. In this case additional
information may need to be incorporated in defining the probability distribution. For example,
information from comparable sites on the distribution of hydraulic conductivity values for
gravel deposits.

Discussion

This example illustrates that useful results can be obtained by considering different
conceptual models to describe the system behaviour.  By examining the data in different
ways, the possible sensitivity of conclusions to these assumptions can be seen, often leading
to greater confidence in decisions, even if this is to obtain further information about the
system behaviour.  It also serves to illustrate the importance of the conceptual model, and of
considering different possible interpretations of the data.

In this particular case, where there is a possibility of no significant risk, it may be worthwhile
to collect more data to refine the conceptual model, before embarking on a protracted
remediation exercise.  However, using a number of conceptual models indicated the
possibility at the 5% confidence level of a contaminant breakthrough, and therefore if a 95%
confidence in no pollution is needed, the decision to take remedial action is robust and
unaffected by conceptual uncertainty.
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Figure 6.3  Influence of Different Conceptual Models of the Variation of Hydraulic Conductivity on the 
Model Results (Conceptual Model 2)
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7. Interpretation of results and reality check

7.1 Introduction
This section provides guidance on how the results from a probabilistic model simulation
should be interpreted, including:

• checking that the model results are valid when compared with field observations;

• understanding what factors or distributions have had the greatest influence on the model
output.

7.2 What do the results mean?

In a fate and transport probabilistic model simulation, a distribution of possible outcomes is
calculated, based on the PDF distributions that have been defined for each model input.  The
results are typically presented (Figure 5.2) as a:

• probability distribution (PDF);

• cumulative distribution (CDF);

• reverse or complementary cumulative distribution (CCDF).

These plots show the percentage chance or likelihood that the result will be greater or less
than a given value.  For example, using Figure 5.2b (cumulative frequency distribution
graph), the 95%ile value of 1.2 mg/l (for the calculated contaminant concentration at an
identified receptor), means that for the possible combinations of input parameters, there is a
95% chance (19 in 20) that the possible outcomes will be less than this value, or a 5% chance
(1 in 20) of this value being exceeded.  In effect we are saying that we can be 95% certain that
the contaminant concentration at the receptor will not exceed 1.2 mg/l.  This is still dependent
on our defined parameter distributions, and whether these truly describe the site conditions.  It
is important to recognise that incorporating uncertainty into the assessment does not mean
that we can be certain about the predicted result. It will also be dependent on whether the
conceptual model is correct and whether an appropriate mathematical model has been used
(refer to Environment Agency, 2001a).

The model results at the higher and lower end of the probability range will be most sensitive
to the extreme values in the data set and to the number of simulations.

Care needs to be taken when recording the results to ensure that the plot is read in the correct
way.  An easy error is to misread cumulative and reverse cumulative distribution plots.  For
example, the 95%ile value on a cumulative graph may mistakenly be recorded as having a
95% chance of being exceeded, when in fact the opposite is true.

The slope of a cumulative frequency graph will reflect the variability in the parameter
definition: the steeper the graph, the smaller the range in values that have been used to define
each parameter input distribution (this does not necessarily imply that more confidence can be
attached to the results).

It is important to recognise that by combining the possible range of values for a number of
different parameters (particularly if extreme values have been used in defining the PDF), that
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there is a potential for a wide range of possible outcomes.  In some cases these may not be
credible when compared with site characteristics (refer to Section 5.3).

A temptation in undertaking risk assessments is to take, say, the 95%ile value from a number
of different parameter distributions and to combine them in a deterministic model run (refer to
Box 3.1).  Although this may be seen as a method of determining a worst case scenario, the
resulting answer, if say the 95%ile value had been taken from three distributions, would be
approximately equivalent to the 99.99%ile value and as a consequence may not represent a
reasonable solution.

The results from a fate and transport model are usually compared with a standard, for
example, a remedial target to protect a groundwater or surface water receptor (Environment
Agency, 1999a). Where a probabilistic analysis has been undertaken, the criterion for
deciding whether the model results comply with or exceed the standard needs to be
determined, i.e. what percentage of the model results exceed the standard. For example, if the
90%ile is chosen, then we are 90% certain that the identified standard will not be exceeded.
Typically the 95%ile is used as the criterion for assessing acceptable risks of water pollution
against an environmental standard, although this should be determined based on the nature
and significance of the hazard and the sensitivity of the receptor.  It will be also dependent on
the input data being realistic, i.e. the parameter distribution is not unduly conservative or
optimistic.

It is important to understand whether the combinations of parameter values that contribute to
the tail of the distribution are realistic - especially if dependence was not incorporated into the
uncertainty analysis.  For example, certain combinations of high hydraulic conductivity, low
porosity and a steep hydraulic gradient may not be realistic. Data collection should be targeted
to parameters that have been found to have the greatest influence on the modelled impact.

7.3 Constraining the analysis
In interpreting the results, it is essential that they should be reviewed in the context of what is
credible and consistent with field observations.  This recognises that:

• a probabilistic analysis will result in the combination of maximum and minimum values
from the parameter distributions, giving a wide range of possible outcomes.  Consequently
extreme values can have a significant influence on the model results.  The real system is
unlikely (by definition) to contain a large number of extreme values;

• parameters may be dependent, such that combining the extreme ends of different parameter
distributions may be unrealistic.  However, any parameter combinations that are excluded
must be excluded for defensible reasons and be documented.

It may be appropriate to back-substitute the values producing these realisations, to check the
hydraulics are reasonable.  It is important to consider dependent values, as well as the one of
immediate interest.  For example, the immediate interest may be the concentration of a
contaminant at a particular point and time.  Associated with this calculation will be a
calculation of groundwater flow. For example, the model may have predicted that as a
consequence of combining the range of parameter values for hydraulic conductivity, hydraulic
gradient, aquifer thickness and aquifer width that the range of possible groundwater flows is
10 to 3000 m3/d.  However, consideration of the groundwater catchment area, and aquifer
recharge rate, may indicate that the groundwater flow could only realistically fall in the range
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400 to 1200 m3/d.  In this case the larger range of calculated model flows may be a result of
including extreme values for hydraulic conductivity and/or  that no account was given of the
dependency of hydraulic gradient on hydraulic conductivity.  In the latter case, more detailed
examination of the field data may have shown that the steeper hydraulic gradients may have
been a local feature of the site and were associated with zones of lower hydraulic
conductivity.

Some commercial modelling packages provide the option of constraining components of the
analysis; for example, a maximum groundwater flow could be specified. This illustrates the
need to revise the model input parameter distributions, based on field observations, and that
typically, the overall procedure will be iterative.  The development of a model should be an
iterative exercise, with the model being continually refined through reference to field
observations.

Conversely, it is also important to recognise that the model results may identify limitations in
the definition of the site.  For example, field monitoring may have shown no evidence for
contamination downgradient of a site, whereas model predictions (using parameter values
derived from field investigations) may have indicated that groundwater contamination would
be expected.  This could indicate an inadequate monitoring network, such as inappropriately
constructed or placed boreholes, rather than errors in the selected parameter distributions, and
the need to undertake further investigation.

7.4 Review of model results

In assessing the results, the following factors should be considered:

i) How confident are we in the conceptual model?

ii) Are the model results consistent with field observations and the conceptual model,
i.e. is the observed system behaviour within the range of behaviours predicted by the
model? (remember that reality is a single realisation, probably different from any of
those used in the probabilistic simulation).  The criteria for deciding whether a
mathematical model provides an acceptable representation should be determined as
part of the model conceptualisation (refer to Environment Agency, 2000a). Where the
model fails to represent the system, then consideration should be given to whether:

• the conceptual model is valid or needs reassessing (for example, the validity of
excluding high values of hydraulic conductivity from the data set, when field
observations suggests that the system behaviour is determined by very permeable
pathways). It is important to recognise that an incorrect conceptual model will
invalidate the results of the study;

• the system is sufficiently well defined by the site investigation;

• data values used to define the PDF are valid, particularly where extreme values
have been excluded or included in this analysis.  For example, hydraulic
conductivity testing of a sand and gravel aquifer may have given the following set
of measurements for hydraulic conductivity:

1, 2.1, 2.7, 4.3, 7.8, 8.2, 9.1, 11.2, 150 m/d

In defining the parameter distribution, a decision will need to have been made as
to whether to include the value of 150 m/d in the dataset.  Is it an incorrect result
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or does it indicate the presence of a permeable gravel lens within the deposit, and
which may represent a highly permeable pathway?  Comparison of the model
results with field observations may provide a basis for including or excluding this
high value. Gilbert (1987) provides further discussion on the handling of outliers
in the data set;

• the PDF distribution is appropriate (e.g. does it adequately describe the data set);

• the applicability of the mathematical solution and the possible influence of its
assumptions and limitations.

iii) To what degree are the results affected by the variability of the system and
uncertainty in defining the system?

iv) To what degree have the results been influenced by the assumptions and limitations
of the conceptual model and the model/method used to represent the problem?

v) Is the analysis sensitive to certain parameter distributions?  If so, are these
adequately constrained by measurement or observations of system behaviour?

vi) Have extreme values in the data set biased the results?

vii) Was it valid to exclude some of the data values or combinations of data values from
the analysis (e.g. are apparently extreme data values a true representation of the
system)?

viii) Have sufficient realisations been made such that the model results are repeatable?

ix) Is there a conceptual understanding of the data and do these adequately describe the
system behaviour. For example, values of hydraulic conductivity may be combined
from tests undertaken in different layers of a multi-layered aquifer, whereas
contaminant migration was only occurring through one of the layers and this is
characterised by a smaller variation in hydraulic conductivity when compared with
the entire data set.

x) Are the tails in a predicted parameter distribution realistic, in terms of what are
credible combinations of extreme parameter values?

xi) If analysis shows that the missing data are critical to the decision-making process,
then more data must be obtained.

A potential danger in using PDFs is to be over-certain that the results are right, when in
reality limited information was available to define the parameter distribution.

Depending on the review of the model results, one of the following will be appropriate:

• the results from the analysis can be used in the decision making process;

• further data are required to define the system;

• the conceptual model and method of analysis should be reviewed.

It is essential that the conceptual model and modelling approach should be challenged
continually and reassessed, i.e. how confident are we in our understanding and representation
of the system behaviour.
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7.5 Summary
In certain circumstances, probabilistic models provide a tool to allow uncertainty in the
definition of parameter values and/or the heterogeneity of the system to be taken into account
in contaminant fate and transport modelling.  However, they should not be used as an
alternative to obtaining site-specific data or to the development of a defensible conceptual
model of the system behaviour (Environment Agency 2001a), particularly as this is often the
main uncertainty in any contaminant fate and transport modelling exercise.
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Appendix A

Example derivation of a probability distribution function

Field measurements of hydraulic conductivity were obtained as part of an investigation of a
sand and gravel aquifer. The values of hydraulic conductivity are 0.1, 0.4, 0.4, 1, 23, 26, 45,
60 m/d.  This example describes an approach to deriving a PDF.

As only 8 measurements are available, it is inappropriate to undertake a detailed statistical
analysis of the data set to derive the form of the PDF, instead a distribution needs to be
assumed.  Since the parameter is hydraulic conductivity, and the spread of values is more than
an order of magnitude, a Log-normal distribution is assumed (refer to Sections 4.3 and 4.3.3).

The estimator for µ for a Log-normal distribution is the arithmetic mean of the logarithms of
the sample and for σ the estimator is the standard deviation of the logarithms of the sample
(from Table 4.1, Section 4). These estimators are calculated in Table A1.

Table A1 – Data analysis

Hydraulic Conductivity
m/d

Natural Log of Measurement (Ln)

0.1 -2.30

0.4 -0.91

0.4 -0.91

1 0

23 3.13

26 3.25

45 3.80

60 4.09

Mean of samples Arithmetic mean of  logarithms µ =
[ln(0.1)+ln(0.4)+ln(0.4)+ln(1)+ln(23)+ln(26)+ln(45)+ln(60)]/8 =

1.27
Variance Variance of  logarithms σ2 =

[(ln(0.1)-ln(1.27))2+(ln(0.4)-ln(1.27))2+(ln(0.4)-ln(1.27))2+(ln(1)-
ln(1.27))2+(ln(23)-ln(1.27))2+(ln(26)-ln(1.27))2+(ln(45)-

ln(1.27))2+(ln(60)-ln(1.27))2]/7 = 6.54
Standard deviation Standard deviation (σ) =  √6.54 = 2.56

The mean (µ) of the logarithms of the data values is 1.27 and the standard deviation (σ) of the
logarithms of the data values is 2.56.  The geometric mean of the data is 3.56 m/d
(=exp(1.27)).

This analysis indicates that if the data follow a Log-normal distribution, then the distribution
can be described by the following estimators:
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µ = mean of logarithms = 1.27

σ = standard deviation of logarithms = 2.56

This implies that 68% of samples are between 0.28 m/d and 46 m/d (i.e. these values occur
within one standard deviation). Checking back to the original data shows that 6 of the eight
measurements fall within this range, which is about right.  As a final check the PDF should be
compared with the original data set to check that it adequately describes the data (Figure A1).
Good practice should be to check whether other distributions (e.g. Log-triangular) provide a
better fit, i.e. we have assumed in this example that the data are log-normally distributed.

In using Log-normal distributions in software packages it is important to check in what form
do the values of mean and standard deviation need to be entered, for example the default
option in Crystal Ball is that the arithmetic mean and the standard deviation of the data set
should be entered.  For the data set in Table A1, these values are 19 m/d and 23 m/d
respectively.  For a Log-normal distribution the arithmetic and standard deviation are related
to the mean of the logarithms and standard deviation of the logarithms by the following
expressions (i.e. one can be calculated from the other):

µ = exp (µn + ½ σn
2)

σ = µ2 (exp (σn
2) - 1)

or

σn = ln(µ)-½ ln(σ2/µ2 + 1)

σn = ln(σ2/µ2 + 1)

where;

µn = mean of natural log or geometric mean of the data set

σn = standard deviation of natural logs

µ = arithmetic mean of the data set

σ = standard deviation of the data set.

However, if the data set are not Log-normally distributed, then these equations will not hold
and will provide different answers and different distributions (as shown on Figure A1).

For many problems there will be insufficient data to determine whether a data set follow a
given distribution, and consequently may be more appropriate to determine which distribution
provides the closest fit to the data. In this case, it is worthwhile calculating a Log-normal
distribution using both the arithmetic mean and standard deviation as well as the geometric
mean and standard deviation (if the data are from a Log-normal distribution then the
calculated PDF curves will be the same).
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Figure A1 Comparison of Distributions
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Example of Chi-squared test to investigate normality

A total of 30 measurements of porosity have been obtained as given below:

Porosity
Measurements

z value Porosity
Measurements

z value

0.06 -2.01 0.21 0.13
0.07 -1.86 0.22 0.27
0.1 -1.44 0.23 0.41
0.1 -1.44 0.23 0.41
0.12 -1.15 0.24 0.56
0.13 -1.01 0.24 0.56
0.15 -0.72 0.24 0.56
0.15 -0.72 0.25 0.70
0.16 -0.58 0.25 0.70
0.17 -0.44 0.27 0.98
0.17 -0.44 0.28 1.12
0.18 -0.30 0.28 1.12
0.19 -0.16 0.3 1.41
0.19 -0.16 0.31 1.55
0.2 -0.01 0.34 1.98
0.2 -0.01

1. Calculate arithmetic mean (x̄)  and variance (σ2)  of sample measurements (x)

Mean = 0.2

Variance = 0.0049

Standard deviation = 0.07

2. Form a histogram of z = (x -  x̄)/σ with equal intervals. The calculated values of z are
given in the above table and these have been divided into four classes as shown below.
The size of interval and the end intervals should be selected to ensure that there are at
least 5 values in each interval (if necessary class intervals can be combined).

z- class Frequency

<-1 6

-1 to 0 10

0 to 1 11

> 1 5

3. Calculate the expected frequency (EF) for each interval if the distribution were normal
with mean zero and variance 1 as given in the table below.
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EF = probability of the z-value occurring in that class interval × total number of readings.

z- class Observed
Frequency (OF)

Probability of a Z-
value falling in this

range1

Expected Frequency
(EF)2

<-1 6 0.1587 0.237

-1 to 0 10 0.3413 0.032

0 to 1 11 0.3413 0.017

> 1 5 0.1587 0.001
(1) The probability can be derived using look up tables that define the area under a normal curve mean zero
and variance 1 (alternatively the ExcelTM function NORMSDIST can be used, e.g. NORMSDIST(-1) gives a
value of 0.1587.

(2) EF = probability of the z-value occurring in that class interval × total number of readings

4. Calculate χ2 (the Chi-squared statistic) using:

χ2 = Σ (OF-EF)2 / EF

=[((6 - 0.237)2/0.237) + ((10 - 0.032)2/0.032) + ((11 – 0.017)2/0.017) + ((5 - 0.001)2/0.001))]

= 0.287

where the sum is over intervals, OF is the observed frequency and EF is the expected
frequency.

5. The Chi-squared statistic (0.287) should then be compared with the Chi-squared function.
This can be derived from look up tables or alternatively calculated using the ExcelTM function
CHIINV for m-3 degrees of freedom at the desired level of confidence, e.g. 0.05 (5%
confidence); where m is the number of intervals. If the ExcelTM function is used then:

Chi-squared function = CHIINV(0.05,1) = 3.84

(4 intervals ⇒ m-3 degrees of freedom = 1)

In this case the Chi-squared statistic (0.287) is smaller than the Chi-squared function (3.84)
and, therefore, the hypothesis of normality can not be rejected at 5% confidence (i.e. there is a
greater than 5% chance of this sample representing a Normal distribution).  If the calculated
Chi-squared statistic is greater than the Chi-squared function then less than 5% of the sample
comes from a Normal distribution, and consequently it can be concluded this data set is not
normally distributed.  A final useful check is see to whether the histogram looks normal.
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Use of Shapiro-Wilks to investigate normality

This statistical test is described in Gilbert, 1987 (p159).  This method can only be used for the
Normal distribution (or the Log-normal by taking logarithms)

Values of hydraulic conductivity have been obtained from field testing, and the assumption
that these can be represented by a Log-normal distribution needs to be checked.

The data values are:

Hydraulic conductivity m/d Natural logarithm

0.5 -0.69

1 0.00

5 1.61

10 2.30

18 2.89

27 3.30

38 3.64

40 3.69

55 4.01

65 4.17

1. Calculate  k = n/2 if n is even or (n-1)/2 if n is odd (where n = number of samples = 10).

Therefore k = 5  (i.e. n = 10 values / 2 = 5)

2. Look up in a table (Table A6, Gilbert, 1987) the coefficients a1, a2, …ak. These values are:

a1 = 0.5739

a2 = 0.3291

a3 = 0.2141

a4 = 0.1224

a5 = 0.0399

3. Order the data (as above) so that x1 < x2<…<xn

4. Calculate W (the Shapiro-Wilks statistic) according to
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W = (0.5739(4.17--0.69+0.3291(4.01-0)+0.2141(3.69-1.61)+0.1224(3.64-2.30)+0.0399(3.3-2.89))2/5.78

W = 0.87

The  Shapiro-Wilks function at a 5% confidence level is 0.84 (Table A7, Gilbert, 1987). Since
the calculated Shapiro-Wilks statistic of 0.87 is greater than this value, the hypothesis that the
data are from a Log-normal distribution can not be rejected at the 5% confidence level
i.e. there is less than 5% confidence the data is normally distributed.
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Appendix B

Converting heterogeneous variability to uncertainty (upscaling)
For some cases, the key information may be the mean parameter value (or some other
‘average’) rather than the distribution in parameter values (that describe the heterogeneity of
the system). Assessment of which is the relevant parameter describing the system behaviour
should form part of the conceptual model.

For example, a number of measurements may have been made on clay content, and these
measurements could be described by the mean and standard deviation of the data set.  The
conceptual model of the system may have indicated that the migration of a contaminant is a
function of the total clay content along the pathway.  In this case, the key parameter would be
the total clay content in the entire volume of material.  This is equivalent to the mean clay
content per unit volume multiplied by the volume of the block of ground.  The calculation
needs the average clay content in this volume of rock, but the available measurements are
from small core plugs.  A process of upscaling is needed to derive the needed large scale
value from the available small scale value.  In this particular case, the arithmetic mean is a
good estimator of the large scale value needed, so the upscaling process becomes that of
determining this arithmetic mean.  However, the mean estimated from a small number of
samples is only an estimate of the actual mean.

In the clay content example, each clay analysis carried out by a laboratory assesses about
0.001 m3 of material, so, for a 1 m unsaturated zone under a hectare of landfill, the total
amount of clay that we want to estimate involves the equivalent of 107 analyses.  This large
number of potential samples may be treated as the population itself in this case

The source of the uncertainty is, therefore, the difference between our estimator of the
population mean (the mean of the 20 or so analyses we have carried out) and the actual
population mean of the whole block of ground. This difference would decrease as more
measurements were obtained.  It is important to note that more samples do not materially
change the variance on the sample distribution.  The uncertainty in the estimate of the
population mean, estimated by the sample mean can be calculated from the sample variance.
More samples do reduce the uncertainty of the population mean.

The mean total clay content of the volume of ground will be determined by a distribution very
close to normal.  This is because of the Central Limit Theorem (see Box B1) and the fact that
n is very large.

Box B1. Central Limit Theorem.

Consider the arithmetic mean of a large number of independent measurements from a single
distribution with population mean µ and variance σ2.  It can be proven mathematically that
this mean is normally distributed with mean µ and variance σ2/n as n tends to infinity –
whatever the original distribution of measurements is.  This is a powerful result and
illustrates why the Normal distribution has been given the name ‘Normal’.

The statistical theory for the uncertainty between our estimated mean and the true population
mean is well established.  The distribution of the mean of a set of n readings from a Normal
distribution is the Students-t distribution with n-1 degrees of freedom.  If n is greater than
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about 30, this distribution is close to normal.  This allows us to specify uncertainty bounds on
where the true population mean might be as described in Box B2.

Box B2 Example of estimation of the uncertainty on population mean

The uncertainty  in the population mean can be estimated using the following equation:

M ± f(1- a/2) σ/√n

Where

M = mean

σ = standard deviation

n = number of samples

f(1- a/2)  = value that cuts off a/2 of the upper tail of a Normal distribution

a = confidence limit (e.g. 95%)

Suppose we have 16 clay samples, assumed to be normally distributed, with mean (M) and
standard deviation (σ).  To obtain the 95-percentile confidence level on the population mean,
we look up the 2.5 percent value from a Students-t table with 15 (n-1) degrees of freedom
(Appendix D), which is 2.131 (the alternative is to use the ExcelTM function TINV(0.05,15))
We select 2.5 percent because we require a two-tailed confidence.  The 95-percent confidence
range on the population mean is therefore:

M ± 2.131 SD/√n = M ± 0.533 SD

This calculation illustrates that there is considerably less uncertainty on the population mean
than the equivalent 95-percentile spread on the actual sample data where M ± 1.96 SD. (for a
Normal distribution 95% of values will fall within 1.96 SD).

The Students-t distribution is commonly not included in software packages and an alternative
approach using the standard deviation of the sample data set to determine the uncertainty in
the population mean is set out below, and is based on a conversion to a Normal distribution
using the 95-percentile. The Students-t distribution is the recommended approach as given in
Box B2.

The approach is:

1. Calculate the arithmetic mean of the samples (alternative approach is given for hydraulic
conductivity below)

2. Determine the uncertainty in the estimator of the population mean using Table B1, as
follows:

• For fewer than 3 samples use Triangular distribution with minimum and maximum values
based on observed measurements (for the majority of problems this number of readings is
insufficient and more data should be obtained);

• For more than 3 readings multiply the standard deviation by the factors given in Table B1
(i.e. uncertainty in the mean = M ± factor σ).
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Table B1 Conversion of sample standard deviation to standard deviation of population
mean

No of
readings

Action No of
Readings

Action

1 Elicit max & min and use Triangular 9 Multiply SD by 0.39
2 Elicit max & min and use Triangular 10 Multiply SD by 0.36
3 Elicit max & min and use Triangular 11 Multiply SD by 0.34
4 Multiply SD by 0.81 12 Multiply SD by 0.32
5 Multiply SD by 0.63 13 Multiply SD by 0.31

6 Multiply SD by 0.54 14 Multiply SD by 0.29
7 Multiply SD by 0.47 15 Multiply SD by 0.28
8 Multiply SD by 0.43 16+ Multiply SD by 1/√n

Note:  SD is the standard deviation of the measurements

It is emphasised that upscaling by averaging should be used only where it can be shown that
the average value of a parameter is the controlling factor in contaminant transport. If the
system behaviour is controlled by a small heterogeneous part of the system, it should not be
used as the upscaling is only describing the uncertainty in the mean, not the heterogeneity of
the system.

Most parameters may be upscaled using the arithmetic mean of the data.  The main exception
is hydraulic conductivity.  This is a much more complicated subject than it may appear and
there is a large volume of literature on the subject.  A good overview of upscaling hydraulic
conductivity is given by Wen & Gómez-Hernández (1996) and in the text-book by Gelhar
(1993). Some authors refer to the reduction in uncertainty that occurs with upscaling as
variance reduction. It is mentioned in books by de Marsily (1986) and Vanmarcke (1983).
Vanmarcke (1983) and Journel and Huijbregts (1978) also provide formulae and type curves
for upscaling.

Upscaling the transport porosity is even more difficult.  Transport porosity determines the
relationship of Darcy velocity (as defined by the hydraulic conductivity) and the actual
contaminant velocity.  It is complicated by the need to decide whether it is the first arrival that
is important or the mode of the arrival concentration (i.e. maximum concentration at the
receptor).

A pragmatic approach is clearly appropriate. The statements below are based on simple
analytic considerations of combining two blocks of different properties together and take no
account of dispersion.

1. For variation parallel to the direction of flow, hydraulic conductivity is upscaled using the
harmonic mean of the data and porosity with the arithmetic mean (to get travel time).

2. For variation perpendicular to the direction of flow, then hydraulic conductivity is
upscaled using the arithmetic mean.  Porosity is upscaled differently according to whether
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it is the first arrival that counts or the mode of arrival time.  For first arrival, the minimum
porosity counts and for the mode of arrival time it is the arithmetic mean.

3. For variation in both directions in two dimensions (a quasi-random variability - the usual
situation) it is generally considered that the hydraulic conductivity can be upscaled using
the geometric mean of the data set (first shown for 2-D situations by Matheron, 1967) and
the porosity using the arithmetic mean.

4. For variation in three dimensions, Gelhar (1993), has shown that the effective hydraulic
conductivity is the geometric mean multiplied by the term exp(σ2/6), where σ2 is the
variance of the distribution of the logarithm of the values of hydraulic conductivity.

If hydraulic conductivity is assumed to have a Log-normal distribution, then the factors given
in Table B2 apply to the standard deviation of the logarithms.  If Gelhar’s formula is used to
increase the geometric mean, then the original SD of the logarithms should be used

The assessment of whether and how data values need to be upscaled should form part of the
conceptual model.



NGWCLC report NC/99/38/3 Page 78

Appendix C

Bayesian Method

The Bayes Theorem provides a method of updating an initial probability distribution
(referred to as a ‘prior distribution’), using additional data (obtained from further field testing)
to produce a revised distribution (referred to as a ‘posterior distribution’). For example, a PDF
for effective porosity might have been obtained from expert opinion and then a tracer test
performed giving a single value of that effective porosity.  We can update the ‘prior
distribution’ to obtain a ‘posterior distribution’ by using Bayes’ probability theorem:

P(y|x)=P(x|y) P(y) / P(x).

where P(y|x) is the revised probability of the parameter y after the data x have been taken
into account,

P(x|y) is the conditional probability of the data x given the prior distribution, y

P(y) is the (prior) probability of the parameter before any data are collected

P(x) is the probability of the data (this normalises the function).

An example of the Bayes Method is given below:

EXAMPLE: Bayes’ theorem applied to establishing a transmissivity distribution

Suppose we wish to establish a probability distribution for transmissivity in an area.  Based on
information on aquifer characteristics from an adjacent catchment, we choose to assume that
the logarithm of transmissivity is normally distributed and that the prior mean (M) and
variance (S2) of this parameter can be described as follows:

• Prior Mean (M) = log (1000) = 3

• Prior Variance (S2) = 1

Three pumping tests (n =3) are performed in the study area and, the mean (m) and variance
(s2) of the logarithms of this sample have been estimated assuming a Normal distribution for
the logarithms as follows:

• Sample mean (m) = log (10000) = 4

• Sample variance (s2) = 3

These two sets of information can be combined to give a revised or posterior probability
estimate using the following formulae:

Posterior mean = 5.3
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In summary the transmissivity distribution can be described by Log-normal(µ=3.5, σ2=0.5)
which  has the geometric mean 3162 m2/d and 68% of data between 621 and 16 106 m2/d.

The change in the calculated mean and variance as a result of applying the Bayes
methodology is summarised below:

Mean Transmissivity
(m2/d)

Variance

Initial or prior parameters Log(1000) =3 1

Parameters of test data Log(10000) = 4 3

Revised or posterior parameters Log(3162) = 3.5 0.5

Note that, as expected, the revised distribution has a mean that is intermediate between the
prior mean and the mean of the measurements and a variance that is smaller than either the
prior or measured values.

The decision as to how to incorporate additional data will be dependent on our conceptual
model, and the importance that should be attached to the original distribution which may take
more account of our conceptual understanding of the system behaviour.

Further examples of the Bayes Method are given in Gilbert, 1987.


