

using science to create a better place

Climate change impacts and water temperature

Science Report: SC060017/SR

SCHO0707BNAG-E-E

The Environment Agency is the leading public body protecting and improving the environment in England and Wales.

It's our job to make sure that air, land and water are looked after by everyone in today's society, so that tomorrow's generations inherit a cleaner, healthier world.

Our work includes tackling flooding and pollution incidents, reducing industry's impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats.

This report is the result of research commissioned and funded by the Environment Agency's Science Programme.

Published by:

Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, BS32 4UD Tel: 01454 624400 Fax: 01454 624409 www.environment-agency.gov.uk

ISBN: 978-1-84432-802-4

© Environment Agency – July 2007

All rights reserved. This document may be reproduced with prior permission of the Environment Agency.

The views and statements expressed in this report are those of the author alone. The views or statements expressed in this publication do not necessarily represent the views of the Environment Agency and the Environment Agency cannot accept any responsibility for such views or statements.

This report is printed on Cyclus Print, a 100% recycled stock, which is 100% post consumer waste and is totally chlorine free. Water used is treated and in most cases returned to source in better condition than removed.

Further copies of this report are available from: The Environment Agency's National Customer Contact Centre by emailing: <u>enquiries@environment-agency.gov.uk</u> or by telephoning 08708 506506.

Authors:

D. Hammond and A.R. Pryce

Dissemination Status: Publicly available

Keywords:

ANOVA, archive maintenance, climate change, moving average, river typology, river water temperature, statistical analysis, thermal regime

Research Contractor:

D. Hammond and A.R. Pryce, Entec UK Ltd, 17 Angel Gate, City Road, London EC1V 2SH. Tel: 020 7843 1400

Environment Agency's Project Manager: Rob Evans, Cardiff

Science Project Number: SC060017

Product Code: SCHO0707BNAG-E-E

Science at the Environment Agency

Science underpins the work of the Environment Agency. It provides an up-to-date understanding of the world about us and helps us to develop monitoring tools and techniques to manage our environment as efficiently and effectively as possible.

The work of the Environment Agency's Science Group is a key ingredient in the partnership between research, policy and operations that enables the Environment Agency to protect and restore our environment.

The science programme focuses on five main areas of activity:

- Setting the agenda, by identifying where strategic science can inform our evidencebased policies, advisory and regulatory roles;
- **Funding science**, by supporting programmes, projects and people in response to long-term strategic needs, medium-term policy priorities and shorter-term operational requirements;
- **Managing science**, by ensuring that our programmes and projects are fit for purpose and executed according to international scientific standards;
- **Carrying out science**, by undertaking research either by contracting it out to research organisations and consultancies or by doing it ourselves;
- **Delivering information, advice, tools and techniques**, by making appropriate products available to our policy and operations staff.

Steve Killeen Head of Science

Executive Summary

Global average surface temperature has increased by 0.6°C during the twentieth century, providing clear evidence that climate change is occurring. It is likely that an increase in air temperature will result in a corresponding increase in the water temperature of rivers and lakes. However, there is an overall lack of good quality, long-term water temperature monitoring data with which to investigate such warming trends. This project aims to identify the available water temperature datasets in England and Wales, and to compile a database containing all ongoing water temperature monitoring. Statistical analysis of the database has been undertaken in order to identify any recent annual or seasonal warming trends that might be attributed to climate change. It was agreed by the project board that two examples of each Water Framework Directive (WFD) river type should be selected in each region in addition to one large river which had multiple sampling sites covering a range of WFD types between its upper and lower reaches.

In the first stage of the project, both Environment Agency and external sources of river and lake water temperature data were investigated and all freely available records obtained where possible. These were audited for length, frequency and completeness of monitoring, before selection of sites for analysis. Some quality assurance procedures were also applied, such as the removal of outlying data points. Six types of statistical analysis were performed on the selected river temperature datasets as follows:

- 1. *Regional analysis*. This analysis aims to uncover regional differences in river water temperature. One main river in each of the eight Environment Agency regions was selected to be included in the analysis.
- 2. Water Framework Directive (WFD) river type analysis within regions. This analysis aims to uncover type-related differences in river water temperature within each region. Where possible, temperature records from two of each river type within each region were included in the analysis.
- 3. *WFD river type analysis between regions*. This analysis aims to uncover region-related differences in river water temperature within types. Where possible, two temperature records from each region were included in each analysis.
- 4. *Moving average analysis*. This analysis was designed to look at any trends in mean monthly and annual temperature over time for a number of sites on the same river.
- 5. *Annual mean trend analysis.* Assessment of the annual mean temperature series for the best water temperature record in each region, including calculation of the rate of river water temperature change.
- 6. Seasonal analysis. Monthly temperature data, from a representative river in each region (with the exception of Anglian Region where two rivers were used), was split into winter, spring, summer and autumn seasons and moving average trend analysis performed to assess any changes in seasonal temperatures over time.

Significant differences in river water temperature between regions were revealed, with the highest mean monthly water temperatures being found in the Thames Region (11.98°C) and Anglian Region (11.87°C) and the lowest in the North East Region (9.51°C). Within each region, river water temperatures also differ according to the WFD river typology. However, the water temperature of all the river types included in the analysis differs between regions, suggesting that the influence of region (geographic location) on water temperature is often stronger than the influence of river type in England and Wales.

Moving average analysis and annual and decadal mean trend analysis have revealed an increase in river water temperature over the last 20–30 years. This trend is particularly apparent in the Anglian, Thames and South West Regions, but is also seen in the lower reaches of main rivers analysed in all regions. The highest water temperatures are nearly always seen in the later

part of the record, from 1990 to the present date. From the data available the analysis suggests that increases in river water temperature will be more noticeable in the south and east of the UK and in the lower reaches of rivers where increases in air temperature will be greater. However, it should be noted that no upland rivers were represented in this analysis as there was no temperature data available for them.

Seasonal analysis revealed that winter river water temperatures in the northeast and northwest of England were lower than those in the south, southeast and southwest of England. It also identified a generally upward trend in river water temperatures in all seasons. There is some evidence that upper reaches of rivers (headwaters) are warming in winter and spring, whereas lower reaches are warming in summer.

There is an overall lack of long-term, continuous, quality-assured water temperature datasets throughout England and Wales particularly for upland rivers. It is therefore recommended that existing Environment Agency water temperature monitoring be improved, with emphasis on targeted, automated, long-term monitoring at a selected number of sites in each region. The costs of setting up, maintaining and updating a water temperature database are estimated to be reasonably low. Other recommendations from the project include more detailed seasonal analysis of river water temperatures and extension of the analysis to lake and estuarine sites. The potential for the air–water temperature relationship to be used both to reproduce historical water temperatures and to predict future water temperatures under a climate change scenario should also be investigated further.

Contents

Exe	cutive	Summary	iii
1	Introd	-	1
1.1	Air	ns and objectives	1
1.2		erature review	1
	1.2.1	Introduction	1
	1.2.2	Thermal regime Water temperature models	2
	1.2.3	Water temperature models	5
	1.2.4	Lakes and climate change	6
2	Metho		9
2.1		ta collection	9 9
		Environment Agency datasets	9
		External datasets	9
		Air temperature data	10
2.2		ta processing	10
		Assessing dataset quality	10
	2.2.2	Assessing individual records	10
		Location maps and typologies	12
2.3		e selection	13
		Selection of main rivers	13
		Selection of river types	14
		Selection of daily data	15
		Selection of lake sites	16
2.4		ta analysis	16
		Analysis of monthly data	16
	2.4.2	Analysis of daily data	18
		Infilling water temperature time series	18
3		s and observations	27
3.1		alysis of monthly data	27
0.1		Regional analysis	27
		Type analysis within regions	27
		Type analysis between regions	28
		Moving average trends for each region	28
	315	Annual mean and decadal trend analys	
		Seasonal analysis	42
3.2		alysis of daily data	49
0.2	3.2.1	Regional analysis	49
3.3		illing water temperature time series	49
3.4		temperature data	52
4		sis and discussion	53
4.1	-	alysis of monthly data	53
	4.1.1	Regional analysis	53
	4.1.2	Type analysis within regions	53
	4.1.3	Type analysis between regions	54
	4.1.4	Moving average trends for each region	54
	4.1.5	Annual mean and decadal trend analys	
	4.1.6	Seasonal analysis	55
4.2		alysis of daily data	56
	4.2.1	Regional analysis	56
4.3		illing water temperature time series	56
4.4		sts of external datasets	56
4.5		intenance of the archive	57
-			•

4.6 Gap analysis	57
5 Conclusions	59
6 Recommendations	60
List of abbreviations	67
Appendix A	68
Appendix B	69
Appendix C	81

List of Figures

		_
Figure 1.1	Daily water temperature variations on the River Tyne	3
Figure 2.1	Location of temperature monitoring sites analysed in Anglian Region	19
Figure 2.2	Location of temperature monitoring sites analysed in Midlands Region	20
Figure 2.3	Location of temperature monitoring sites analysed in North East Regio	n21
Figure 2.4	Location of temperature monitoring sites analysed in North West Region	
Figure 2.5	Location of temperature monitoring sites analysed in Southern Region	23
Figure 2.6	Location of temperature monitoring sites analysed in South West Regi	
Figure 2.7	Location of temperature monitoring sites analysed in Thames Region	25
Figure 2.8	Location of temperature monitoring sites analysed in Wales Region	26
Figure 3.1		
U	Anglian Region – River Stour moving average plots – upper, middle and reaches	29
Figure 3.2	Anglian Region – River Ouse moving average plots – upper, middle and reaches	d lower 30
Figure 3.3	Midlands Region – River Severn moving average plots – upper, middle	and
- G	lower reaches	31
Figure 3.4	North East Region – River Tyne moving average plots – upper, middle	
rigare e. i	lower reaches	31
Figure 3.5	North West Region – River Ribble moving average plots – upper, middl	
rigare o.o	lower reaches	32
Figure 3.6	Southern Region – River Test moving average plots – upper, middle an	-
riguie 5.0	reaches	32
Figure 3.7	South West Region – River Tamar moving average plots – upper, midd	
0	lower reaches	34
Figure 3.8	Thames Region – River Thames moving average plots – upper, middle	and
-	lower reaches	34
Figure 3.9	Wales Region – River Dee moving average plots – upper, middle and lo	ower
U	reaches	35
Figure 3.10) Annual mean water temperature trends for benchmark sites	37
	Standard error plots for benchmark site annual temperature trends	39
•	2 Decadal temperature change at benchmark sites, 1970–1980	40
-	B Decadal temperature change at benchmark sites, 1980–1990	41
-	Decadal temperature change at benchmark sites, 1990–2000	41
-	5 Upper reach sites winter 5-year moving average trends	42
•	Cover reach sites winter 5-year moving average trends	43
	' Upper reach sites spring 5-year moving average trends	44
	B Lower reach sites spring 5-year moving average trends	44 44
-		44 46
•	O Upper reach seasonal comparisons for individual sites	
•) Lower reach seasonal comparisons for individual sites	48
Figure 3.21	Regression analysis of River Wharf at Tadcaster (Type 13 North East F	• /
- : 0.00	versus River Derwent at Little Eaton (Type 13 Midlands Region)	50
Figure 3.22	2 Regression analysis of River Irwell at Wark Weir (Type 13 North West F	
	versus River Churnet at Cheddleton Station (Type 13 Midlands Reg	
Figure 3.23	3 Regression analysis of River Thames at Abingdon (Type 8 Thames Reg	
	versus River Severn at Tewkesbury (Type 8 Midlands Region)	51
Figure 3.24	Regression analysis of River Thames at Abingdon (Type 8 Thames Reg	
	versus River Severn at Haw Bridge (Type 8 Midlands Region)	52

List of tables

Table 2.1 Water temperature record scoring system	11
Table 2.2 WFD river typology where temperature data available (from Environmen	t Agency
river typology)	13
Table 2.3 Main rivers selected by region	14
Table 2.4 River types analysed within regions	14
Table 2.5 River types analysed between regions	15
Table 2.6 Daily temperature records analysed	16
Table 3.1 ANOVA and Kruskal-Wallis test statistics – within regions	27
Table 3.2 ANOVA and Kruskal-Wallis test statistics – between regions	28
Table 3.3 Benchmark site information	36
Table 3.4 Rate of decadal temperature change	40
Table 3.5 Regression analysis results	50

1 Introduction

1.1 Aims and objectives

Eleven of the last twelve years (1995–2006) are ranked among the 12 warmest years since instrumental records of global surface temperature began in 1850 (IPCC 2007). In addition, Karoly and Stott (2006) consider that the observed warming in annual mean central England air temperature (CET) of approximately 1°C since 1950 is very unlikely to have been caused by natural variations in climate. This provides clear evidence that climate change is occurring. The UKCIP02 Climate Change scenarios indicate that, by the 2080s, the annual average temperature across the UK may rise between 1 and

5°C depending on region and emissions scenario, with the greatest warming predicted in the southeast of the country in summer and autumn (Hulme *et al.* 2002). Changes to other climate variables, such as precipitation, cloud cover, solar radiation, relative humidity and wind speed, are also predicted to occur. As a result, the Environment Agency needs to consider climate change impacts and adaptation as part of all its activities.

Although the Environment Agency holds a considerable amount of long-term hydrometric, physicochemical and biological data for air, water and land, little analysis has been undertaken to determine whether or not trends in environmental parameters can be attributed to climate change. A report commissioned by the Environment Agency and published in 2003 described an initial audit of Environment Agency datasets, listed key datasets external to the Environment Agency with the potential to detect climate change impacts, and identified gaps in the availability of monitoring data (Codling *et al.* 2003). Water temperature was identified as being an important climate change indicator, with datasets that include water temperature measurements being held both within the Environment Agency and externally.

This project aimed to identify all of the available water temperature datasets in England and Wales, and to compile a database containing all ongoing water temperature monitoring. It was not intended to be a detailed review of the effects of water temperature on ecology. The 'best' records in each Environment Agency region (generally the longest, the most frequently monitored and the most complete) were subjected to statistical analysis to detect any long-term trends in water temperature. Although water temperature datasets for both rivers and lakes are identified, freshwater river sites (excluding estuaries) are the main focus of the analysis.

The Countryside Council for Wales (CCW) has contributed both financially and practically to this project, and we thank them for their contribution.

1.2 Literature review

1.2.1 Introduction

Water temperature regimes in streams and rivers are influenced by changes in air and ground temperatures as well as by alterations to the hydrological regime, all of which occur as a result of both natural and human modification. Water temperature has a strong influence on the physical characteristics of streams and rivers, such as surface tension, density and viscosity, solubility of gases and chemical reaction rates (Webb 1996, Webb and Nobilis 2007). Changes in water temperature are therefore linked to changes in water quality (e.g. dissolved oxygen concentrations and nitrogen levels). Statistical analysis of the effects of air temperature on river

water quality have shown that biological oxygen demand and suspended solids increase and dissolved oxygen concentrations decrease in response to an increase in air temperature (Ozaki *et al.* 2003). Lake water quality is also likely to be influenced by changes in water temperature. A mathematical lake water temperature model developed by Hassan *et al.* (1998a) showed that water temperature profiles change in response to higher air temperatures, which may lead to earlier stratification and corresponding changes in lake water quality. Deterioration of the water quality in Lake Kasumigaura, Japan, has been found to correlate to increases in air temperature (Fukushima *et al.* 2000).

The ecological effects of changes in water temperature are outside the scope of this project, but should be considered briefly here. Thermal regime influences aquatic organisms in terms of growth rate, metabolism, reproduction and life history, distribution, behaviour and tolerance to parasites/diseases and pollution (Alabaster and Lloyd, 1980, Crisp 1996, Webb 1996, Caissie 2006). Most communities and species in freshwater ecosystems are cold-blooded and will therefore be sensitive to changes in the water temperature regime (Conlan *et al.* 2005). The effects of temperature change on the distribution, abundance and diversity, growth and reproduction of freshwater fishes have been particularly well documented. Davidson and Hazlewood (2005) predict that future temperature increases are likely to have significant effects on the growth rate of freshwater fish, such as trout and salmon, in UK rivers. Similarly, Webb and Walsh (2004) have predicted that higher river temperatures as a result of climate change will be detrimental to the habitat of cold water fish species such as Atlantic salmon, brown trout and grayling, although warm water species may benefit.

1.2.2 Thermal regime

Streams and rivers show both temporal and spatial variations in water temperature. Temperature at the source of a stream is generally close to that of groundwater temperature, and mean daily water temperature increases with distance downstream or with increasing stream order. This rate of increase is greater for small streams than for large rivers. Smaller scale temperature variations can be seen below the confluence with tributaries and in seepage areas in pools.

Water temperature also varies temporally on a daily and annual cycle. Over a 24-hour period, temperature is usually at a maximum in the late afternoon/early evening and at a minimum in the early morning. Figure 1.1 shows an example of the daily cycle at a site on the River Tyne, plotted from hourly measurements taken on 3 June 2005, which broadly fits this pattern. Such variations are generally smaller in cold headwater streams than in larger streams, as the groundwater influence decreases. In terms of an annual cycle, the temperature of rivers in colder regions is generally close to freezing during the winter, with a sinusoidal annual temperature cycle from spring to autumn (Caissie *et al.* 1998).

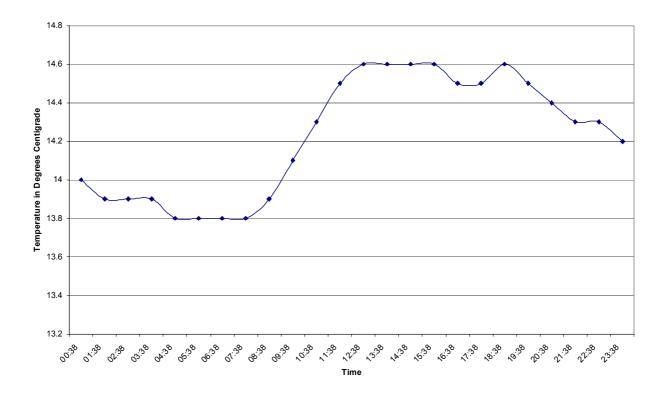


Figure 1.1 Daily water temperature variations on the River Tyne

When modelling river water temperature, heat exchange processes in the river environment should be taken into account (Caissie 2006). Changes in the water temperature of a watercourse occur as a result of changes to the energy budget and/or thermal capacity. The energy or heat budget of a stream or river reach can be expressed in terms of the following major components:

$$Qn = \pm Qr \pm Qe \pm Qh \pm Qhb + Qfc \pm Qa$$

where Q_n = total net heat exchange, Q_r = heat flux due to net radiation, Q_e = heat flux due to evaporation and condensation, Q_h = heat flux due to sensible transfer between air and water, Q_{hb} = heat flux due to bed conduction, Q_{fc} = heat flux due to friction, and Q_a = heat flux due to advective transfer in precipitation, groundwater, tributary inflows, streamflow and effluent discharge. This equation represents the amount of energy available to modify the water temperature of a stream or river. The thermal capacity of a watercourse depends on the volume of water present, with heat storage capacity increasing and sensitivity to alterations in energy budget decreasing as the water volume increases (Webb 1996).

Solar radiation is generally thought to be the dominant component of the total energy flux. Net radiation (comprising solar radiation and net longwave radiation) was found to account for 56% of the total heat gain and 49% of the total heat loss for rivers in the Exe Basin, Devon (Webb and Zhang 1997). Similarly, radiative fluxes were found to account for 85% of the total energy input and 27% of the total energy losses to two Dorset chalk watercourses, the Piddle and Bere (Webb and Zhang 1999).

Heat flux at the streambed is largely a function of geothermal heating (derived from the internal heat of the earth) through conduction and advective heat transfer from groundwater and hyporheic exchange. The majority of the total energy exchange within a river is thought to occur at the air/water interface, with a much smaller proportion occurring at the streambed/water

interface (Sinokrot and Stefan 1994, Evans *et al.* 1998). Evans *et al.* (1998) found that more than 82% of total energy transfers in the River Blithe, Staffordshire, occurred at the air/water interface whereas only 15% occurred at the channel bed. However, heat exchange at the streambed/water interface has not been extensively studied, and there is uncertainty surrounding the relative importance of these processes (Caissie 2006).

Natural and anthropogenic modifications to the river heat budget can result in changes to the thermal regime. The more common types of modification (predominantly anthropogenic) are as follows:

- 1. Land use changes. Changes in vegetation cover and land management techniques may affect hydrology and water quality and therefore potentially the water temperature of rivers and lakes. These include land drainage, agricultural soil erosion, forestry (considered separately below) and urban development (Robinson *et al.* 2000).
- 2. Forestry/removal of cover. The removal of riparian tree cover will generally result in an increase in river water temperature due to an increase in the amount of shortwave solar radiation reaching the river channel (Sinokrot and Stefan 1993). A study of the effects of afforestation on stream temperatures in southwest Scotland suggests that shading of incoming solar radiation has a strong effect on the water temperature behaviour of a forested stream (Webb and Crisp 2006). With the use of modelling, Bartholow (2000) found a net effect from clearcutting of a 4°C warming, with changes in stream shading being the largest influence on maximum daily water temperature. Over a 30-year period between 1955 and 1984, Beschta and Taylor (1988) found that average daily maximum and minimum stream temperatures have increased by 6 and 2°C, respectively.
- 3. Flow and abstraction. The effect of river flow on water temperature is dependent on channel shape and the surface area of the water. If the surface area remains similar but the flow is reduced, water temperature will increase during hot and sunny weather (Solomon 2005). Similarly, abstraction might alter the volume and/or velocity of water flowing in the channel and cause changes in water temperature by the same mechanisms (Webb 1996). However, the effect of abstraction will vary according to the river type; for example, groundwater abstractions in the upper catchment are likely to have the greatest impact on water temperature in groundwater-fed chalk streams (Solomon 2005).
- 4. Flow regulation. River regulation by upstream dams and reservoirs directly impacts the downstream water temperature regime. If the flow regime of the river is also altered on a daily basis, this might influence water temperature as a result of higher or lower flows (Webb 1996). Webb and Walling (1997) analysed 14 years of water temperature data below a reservoir in southwest England, and concluded that the main effects of regulation were to increase mean water temperature, depress summer maximum values, eliminate freezing conditions, delay the annual cycle and reduce daily fluctuation. However, these effects might vary, with a decrease in water temperature occurring if water is released from deep in the reservoir where it is coldest. Channelisation and other types of flow regulation might also have significant impacts on thermal capacity. For example, augmentation of flows by cold groundwater can bring about a reduction in river water temperature (Cowx 2000).
- 5. **Heated effluents**. A significant volume of heated effluent is returned to rivers following abstraction for cooling purposes during electrical power generation (Webb 1996) and other industrial processes. The quantity and spatial distribution of thermal effluents have changed significantly in recent years and need to be accounted for when interpreting temperature records. Thermal discharges will have a greater effect on water temperature when river discharge is low (Solomon 2005) and can increase river temperature by

several degrees, often affecting oxidation rates and the solubility of gases (Alabaster and Lloyd 1980).

6. Climate change. Water temperature is known to respond to air temperature, with a strong linear correlation between the two at temperatures greater than 0°C (Crisp and Howson 1982, Stefan and Preud'homme 1993, Mohseni and Stefan 1999, Erickson and Stefan 2000). Air temperatures are predicted to increase over the coming years as a result of global warming, and this is likely to result in a corresponding increase in water temperature. For example, analysis of a 30-year record of water temperature from Scotland suggested that mean daily maximum temperatures in winter and spring have increased with time as a result of changes in climate (Langan et al. 2001), and Webb and Nobilis (2007) found a significant increase (0.8°C) in monthly mean river water temperatures in Austrian rivers over the twentieth century, and particularly since 1970. The pattern of the North Atlantic Oscillation (NAO) is also known to influence the climate, and Webb and Nobilis (2007) found that both water and especially air temperatures in Austria showed statistically significant correlations with the NAO index. It should be noted that in comparison with the previous 130 years, the positive phase of the NAO seen during the 1990s was unprecedented and it is suggested that external forcing of the climate (e.g. solar irradiation, stratospheric ozone levels) may be responsible (Osborn 2004). Changes in water temperature as a result of climatic warming have been projected using various modelling techniques. These are described in Section 1.2.3 below.

1.2.3 Water temperature models

Water temperature can be modelled using a variety of techniques. These can be classified into three groups: regression modelling, stochastic modelling and deterministic modelling (Caissie 2006). These range in complexity from simple regression models to elaborate deterministic approaches that take into account all relevant heat fluxes at the water surface and at the sediment/water interface (Caissie *et al.* 2005).

Estimation of stream temperature from air temperature by linear regression is a popular method because only one input variable (air temperature) is required. Water temperature has been successfully predicted with simple linear regression models using weekly or monthly air temperature as the input parameter (Mackey and Berrie 1991, Stefan and Preud'homme 1993, Webb and Nobilis 1997). For example, Crisp and Howson (1982) developed a water temperature model based on a 5-day and 7-day mean water temperature that explained 86–96% of the variability in water temperature. However, Morrill *et al.* (2005) evaluated the relationship between air temperature and stream temperature for a geographically diverse set of streams and found that very few streams showed a linear air–water temperature relationship. A nonlinear model produced a better fit than a simple linear model for most of these streams.

The time lag between a change in air temperature and a corresponding change in water temperature ranges from 4 hours for shallow rivers (less than 1 metre deep) to 7 days for deeper rivers (~ 5 metres deep) (Stefan and Preud'homme 1993). These authors showed that incorporating a time lag into the regression analysis improved the estimation of daily water temperatures from air temperatures. Investigation of the air–water temperature relationship in the Exe Basin, Devon, also found that the power of a simple regression model based on hourly data was improved by the incorporation of a lag (Webb *et al.* 2003). Multiple regression models can be used to incorporate other explanatory variables, such as time lag data, river discharge, depth of water etc, into the model (Caissie 2006).

Both stochastic and deterministic models have been used to model water temperature for daily time steps and have similar modelling performances. Stochastic models often involve the separation of the water temperature time series into the long-term annual component and the

short-term component and can provide good predictions of daily water temperature (Caissie *et al.* 1998, 2001). Deterministic models aim to quantify the total energy flux of the river and then fit the total energy flux to observed changes in water temperature. They are therefore often applied to complex problems such as the impact of thermal effluent discharges on the temperature of receiving waters. However, deterministic models are more complicated than stochastic models, requiring input of all relevant meteorological data in addition to air temperature (Caissie 2006).

Different time-scales will result in different air-water temperature relationships, as will differences in stream type, such as groundwater-dominated versus non-groundwater-dominated streams (Caissie 2006). For example, the thermal regime of chalk streams is different from that of other rivers due to the stabilising influence of groundwater discharge. A study of four English chalk streams with a large groundwater component confirmed these differences and concluded that, while air temperature is a good indicator of the thermal regime of a river, groundwater-dominated streams such as chalk streams should be considered separately from other stream types (Mackey and Berrie 1991). This study also suggested that chalk streams are less likely to be affected by climatic changes than other types of river and is in agreement with previous predictions of stream water temperature on a chalk stream, the Lambourn, and the Water of Leith (Smith 1981).

Several authors have looked at the potential for using air temperature to predict stream temperatures under a global warming scenario. Mohseni and Stefan (1999) examined the validity of using linear extrapolation to project stream temperatures under a warmer climate. At moderate air temperatures of between 0 and 20°C, the air–water temperature relationship was found to be linear. However, at low air temperatures this relationship is flat and at high air temperatures it has a moderate slope with a tendency towards levelling off. The overall relationship between stream temperature and air temperature therefore resembles an S-shaped function. The study concluded that linear regression models will not accurately predict stream temperatures at high air temperatures at high air temperatures and are therefore not suitable for projecting the effects of warming due to climate change.

A four-parameter nonlinear function of weekly air temperatures was used by Mohseni *et al.* (1999) to project changes in mean weekly stream temperatures in response to global warming. Weekly air temperature data from 166 weather stations were incremented by the output of the Canadian Center of Climate Modelling (CCC) general circulation model (GCM) and applied to nonlinear stream temperature models developed for 803 gauging stations. Mean annual stream temperatures in the USA were predicted to rise by 2–5°C at 764 of these gauging stations, with no significant changes being seen at the remaining 39. Similarly, temperatures in Minnesota are projected by the CCC GCM to rise by 4.3°C during the summer season, translating to an average rise of 4.1°C in stream temperature (Pilgrim *et al.* 1998).

Good air temperature records are more readily available than good water temperature records, and have therefore frequently been used to predict river water temperatures. However, there are complications with this method as discussed, particularly associated with the projection of water temperature increases under a climate change scenario. It is difficult for any model to accurately simulate events outside the range of the calibration set, such as the extreme temperatures expected under a climate change scenario. Therefore, while the air–water temperature relationship may be useful for infilling gaps in a water temperature record, actual measured water temperature records are preferable for monitoring and estimating climate change and are required to evaluate the impact of climate change effectively.

1.2.4 Lakes and climate change

Deep lakes are considered to be good indicators of climate change (Dokulil *et al.* 2006) based on long-term changes in ice cover, surface temperature and mixing regimes (Salmaso *et al.* 2003,

Johnson and Stefan 2006). For example, Magnuson *et al.* (2000) found consistent evidence of later freezing (5.8 days per 100 years later) and earlier thaw (6.5 days per 100 years earlier) of ice on lakes and rivers in the Northern Hemisphere from 1846 to 1995. The appearance of ice on Lake Windermere is used by Defra as a climate change indicator, and in recent years high values of the NAO index have resulted in mild winters and few days with ice cover on the lake. However, it is not yet known whether or not this is an aberration or the beginning of a new trend.

Livingstone (2003) identified strong climate-related mean water temperature increases in monthly temperature profiles from Lake Zurich, Switzerland, over a 52-year period. A 20% increase in thermal stability and a 2–3-week extension in the stratification period of this lake have resulted from the high rates of warming seen between the 1950s and 1990s. Similarly, Carvalho and Kirika (2003) observed an increase in annual mean temperature in Loch Leven of approximately 1°C over a 34-year period, with greater increases occurring during winter and spring periods.

Changes in climate variables such as precipitation, wind speed, solar radiation and air temperature as a result of global climate change will have a direct influence on lake water quality, potentially resulting in changes to lake water quality (Hassan *et al.* 1998b). This effect may vary in magnitude depending on the physical character of the lake in question; for example, modelling has shown that in eutrophic lakes with long water residence times, high phosphorus concentrations and therefore high phytoplankton production may become a problem under a climate warming scenario (Malmaeus *et al.* 2006). Statistical analysis of the relationship between meteorological conditions and lake water quality over a 17-year period showed that water quality indicators such as increased chemical oxygen demand and decreased transparency corresponded to an increase in air temperature (Fukushima *et al.* 2000). Changes in air/lake water temperature and temperature stratification dynamics can therefore have a significant impact on biological and chemical processes within lakes.

The effects of global warming on lake and reservoir ecosystems have been simulated using a combined water temperature–ecological model (Hosomi *et al.* 1996). This model was applied to Lake Yunoko, Japan, and changes in the water temperature and quality were simulated in response to a 2–4°C rise in air temperature. The results indicate that in response to this air temperature increase, nutrient concentrations in the bottom water will increase, phytoplankton will increase in concentration at the beginning of autumn, and phytoplankton species composition will change. Lake water temperature has also been successfully simulated by several others (Hondzo and Stefan 1993, Rasmussen *et al.* 1995, Antonopoulos and Gianniou 2003, Fang *et al.* 2004).

Fluctuations in the NAO have a strong influence on lakes in North America and Europe (George *et al.* 2004, Dokulil *et al.* 2006, Webb and Nobilis 2007). Temperatures in the hypolimnion (the bottom waters of a thermally stratified lake) of 12 deep European lakes were observed to rise in all lakes by approximately 0.1–0.2°C per decade and were predicted most consistently by the mean NAO index for January to May (Dokulil *et al.* 2006). This temperature rise affects mixing conditions, thermal stability and oxygen concentrations within the lake. In agreement with this, George *et al.* (2004) found that air temperature and lake surface and bottom temperatures of four English Lake District lakes showed a strong positive correlation with the NAO index and also influenced winter nitrate concentrations and phytoplankton growth. This effect was particularly pronounced in smaller or shallower lakes. Again, it is difficult to distinguish whether or not the recent sequence of warm years is the beginning of a new trend or simply part of a natural cycle, but the influence on water temperatures can be significant.

2 Methods

2.1 Data collection

The first and most critical stage of the project involved the identification and acquisition of relevant freshwater temperature datasets. Potential sources were identified to be data already collected and held by the Environment Agency, or data available from external organisations such as water companies and universities. Datasets from both rivers and lakes were requested. To facilitate the process, a Data Request Form was devised and sent to all contacts with the initial data request, as reproduced in Appendix A. This asked for detailed information on the datasets held, enabling an informed decision to be made regarding suitability for inclusion in the analysis.

2.1.1 Environment Agency datasets

The Environment Agency project team acted as the main source of internal contacts for temperature data already held within the Environment Agency. Regional contacts were approached in the first instance, and the request passed on to others as appropriate. The largest single source of data was the Environment Agency's Water Information Management System (WIMS) database, which holds thousands of records for each of the eight Environment Agency regions. All freshwater temperature records from this database were passed to Entec in the form of an Access database containing tables of regional data, which was queried in order to summarise sites by length of record, sampling frequency and waterbody type (river or lake).

In addition, individual temperature records held within the Environment Agency outside WIMS (regional monitoring, the Water Information Management System Kisters (WISKI) database etc) were also listed and sourced where appropriate. Many of these had not been quality assured and therefore required a significant amount of checking before they could be used. These datasets ranged in size from single records to quite large databases containing records for many sites, such as the Tideway Information Management System (TIMS) received from the Thames Region. Regional summaries listing all water temperature data sources identified during this project can be seen in Appendix B.

2.1.2 External datasets

External sources of water temperature data were identified using Entec and Environment Agency knowledge and were contacted by Entec with a request to complete the Data Request Form. Organisations contacted included the Centre for Ecology and Hydrology (CEH), the Countryside Council for Wales (CCW), the Freshwater Biological Association (FBA), the Natural Environment Research Council (NERC) Environmental Change Network (ECN), the major water companies (Anglian Water, Thames Water, Southern Water etc), and several universities. Cost was an important consideration when considering data held by external organisations, as many will not release data without a charge. Every effort was therefore made to record the quality of datasets that were not freely available, so that their value could be accurately assessed. All known available datasets and associated costs have been recorded as part of the project output and are listed in the regional summary tables in Appendix B.

It should be noted that there are a number of 'Lake Dynamics Monitoring Stations' (LDMSs) located in the Wales and North West Regions. CEH had funding to build buoys and develop the technology to monitor water chemistry and temperature in lakes. However, the funding to deploy, run and co-ordinate the results from them, has not yet been made available. Currently a number

of different universities are collecting data from the buoys, but the co-ordination of the results has yet to occur.

2.1.3 Air temperature data

The cost of sourcing Met Office air temperature data to cover all regions was investigated. Air temperature data could potentially be used to hindcast river water temperatures to infill gaps in a temperature record, or to extend a record further back in time than the first recorded measurement. Air temperatures have also been used to predict future water temperatures in cases where air temperature data are more readily available than water temperature data.

2.2 Data processing

2.2.1 Assessing dataset quality

All WIMS river and lake records were extracted from the Access database to produce a full list of sites for each Environment Agency region including site name, grid reference, first and last sampling date, and the number of samples taken during this period. The first and last sampling dates were converted to a sampling duration (in days), which was then used to sort the records by length. This information was used to calculate an average sampling frequency by dividing the sampling duration (in days) by the total count of samples taken for that record. This calculated frequency was an average value and might also include sampling frequencies significantly higher or lower than the average, as well as gaps in the time series. However, it represented a fast and reasonably accurate method with which to reduce the number of records under consideration. Generally, any site with a sampling frequency of greater than 15 days (a fortnight) was deleted, although for regions in which the number of sites with high frequency sampling was limited (e.g. Wales) some sampling frequencies that would otherwise have been rejected were retained.

For individual records not in the WIMS database, a preliminary decision on their value was made on the basis of information given on sampling frequency and record length and completeness as stated by the respondent on the Data Request Form. All suitable records that were freely available were obtained in full, and taken to the next stage of assessment with the retained WIMS records (Section 2.2.2).

2.2.2 Assessing individual records

All records remaining after this processing were extracted in full from the WIMS database or obtained from the data owner and subjected to further analysis. Some quality assurance procedures were carried out at this stage, with outlying temperature values being removed from the time series and sites with any known artificial influences (e.g. discharges, water transfers) being excluded. However, it was not within the remit of this project to undertake detailed quality assurance. In addition, it should be noted that the rivers and sites included in the analysis will be subject to many artificial influences that could affect water temperature (e.g. discharges, water transfer schemes, regulation releases). Regional knowledge is required to identify sites that are subject to such influences.

A scoring system was applied to each record to generate a final number for comparison with other records. Each temperature measurement was given a score based on the time that had elapsed since the previous measurement, as follows:

1. a gap of 8 days or less between samples scored 10;

- 2. a gap of 9 to 17 days scored 8;
- 3. a gap of 18 to 39 days scored 6;
- 4. a gap of 40 to 59 days scored 2;
- 5. a gap of greater than 60 days scored 0.

The total score for the record was then summed to give a final score that reflected the length and completeness of the record as well as the sampling frequency. Table 2.1 shows an example of this scoring system from a site in the Anglian Region.

The final output of this process for each of the eight regions was a list of river sites and a list of lake sites, giving a total of 16 tables. These tables contained the sites short-listed in Section 2.2.1 and for each site included the river WFD typology, details of first and last sampling dates, missing data, the score as generated above, and a weighted score generated by dividing this score by the number of months of temperature data available for the site. This information was used to select sites to be included in the analysis as described below (Section 2.3).

Sample name	Sample date	Sample time	Temperature	Days to next sample	Score
R.Can Beaches Mill	21-Jan-04	0945	7.80	26	6
R.Can Beaches Mill	16-Feb-04	1135	7.16	30	6
R.Can Beaches Mill	17-Mar-04	1210	12.60	34	6
R.Can Beaches Mill	20-Apr-04	1135	9.47	42	2
R.Can Beaches Mill	01-Jun-04	1035	15.18	6	10
R.Can Beaches Mill	07-Jun-04	1100	17.84	30	6
R.Can Beaches Mill	07-Jul-04	1130	16.24	30	6
R.Can Beaches Mill	06-Aug-04	1155	20.15	45	2
R.Can Beaches Mill	20-Sep-04	1210	14.54	28	6
R.Can Beaches Mill	18-Oct-04	1120	10.55	22	6
R.Can Beaches Mill	09-Nov-04	1135	10.67	30	6
R.Can Beaches Mill	09-Dec-04	1105	7.40	49	2
R.Can Beaches Mill	27-Jan-05	1450	4.60	42	2
R.Can Beaches Mill	10-Mar-05	1200	6.20	26	6
R.Can Beaches Mill	05-Apr-05	0955	9.20	41	2

Table 2.1 Water temperature record scoring system

Sample name	Sample date	Sample time	Temperature	Days to next sample	Score
R.Can Beaches Mill	16-May-05	1205	12.75	24	6
R.Can Beaches Mill	09-Jun-05	1140	14.54	28	6
R.Can Beaches Mill	07-Jul-05	1105	5.58	33	6
R.Can Beaches Mill	09-Aug-05	1140	15.22	28	6
R.Can Beaches Mill	06-Sep-05	1134	18.27	17	8
R.Can Beaches Mill	23-Sep-05	1147	14.33	25	6
R.Can Beaches Mill	18-Oct-05	1158	12.61	24	6
R.Can Beaches Mill	11-Nov-05	1156	11.41	18	6
R.Can Beaches Mill	29-Nov-05	1254	4.35		Total 124

2.2.3 Location maps and typologies

All sites that made it through the initial selection process described in Section 2.2.1 were imported onto a GIS map, with separate maps being produced for each region. A WFD river typology was assigned to each of the mapped sites for use in the selection of river types for analysis (Section 2.3.2). Table 2.2 provides a full description of the WFD river typology (Defra 2005). This table was derived from the Water Framework Directive (WFD) ArcView GIS shapefile provided by the Environment Agency. It should be noted that there are no upland rivers (i.e. those > 800 m high) in this dataset.

Catchment altitude	Catchment geology	Catchment size	Туре
Low	Si	S	1
Low	Са	S	2
Low	Or	S	3
Low	Si	М	4
Low	Са	М	5
Low	Or	Μ	6
Low	Si	L	7
Low	Са	L	8
Mid	Si	S	10
Mid	Са	S	11
Mid	Or	S	12
Mid	Si	Μ	13
Mid	Са	Μ	14
Mid	Or	Μ	15
Mid	Si	L	16
Mid	Са	L	17
Low	Sa	S	28
Low	Si	XS	37
Mid	Si	XS	38
Low	Са	XS	40
Low	Or	XS	43

Table 2.2 WFD river typology where temperature data available (from Environment Agency river typology)

Altitude: Low < 200 m, Mid 200–800 m, High > 800 m (not represented in this dataset); Geology: Si siliceous, Ca calcareous, Or organic, Sa salt; Size: XS < 10 km², S 10–100 km², M 100–1000 km², L 1000–10,000 km²

2.3 Site selection

2.3.1 Selection of main rivers

Within each region, one main river was chosen as the focus of the analysis. Within Anglian Region, the Ouse was included in addition to the Stour, so that the pattern of temperature change within a river subject to flow modification could be explored. The rivers to be used were chosen with reference to the list of sites and scores previously created, with the aim of selecting the river within each region with the highest possible number of long-term temperature records. If daily data from a main river had been collected, wherever possible this was the river selected for the main river analysis. Following selection, the original database was revisited in order to gather all the additional temperature records for each river. Only sites at which temperature monitoring is still ongoing were included in the analysis.

The main rivers selected for each region are shown in Table 2.3. Figures 2.1 to 2.8 show the locations of all the sites analysed in each region.

Region	River	Types included*
Anglian	Stour and Ouse	2, 5, 8
Midlands	Severn	7, 8, 10, 13
North East	Lower Tyne and Tyne	2, 11, 14
North West	Ribble	11, 14, 17
Southern	Test	5, 8
South West	Tamar	1, 4
Thames	Thames	5, 8
Wales	Dee	13, 17

Table 2.3 Main rivers selected by region

* Refer to Table 2.2 for a description of typologies

2.3.2 Selection of river types

As far as possible, two examples of each river type present in each region were included in the analysis. Again, these were selected using the list of sites and scores, so that for each river type the longest and most frequently monitored sites were used. Therefore, it was not always possible to include all types in the analysis due to lack of suitable temperature datasets. Table 2.4 shows the river types selected and analysed within each region, and Figures 2.1 to 2.8 show the site locations.

Region	Types analysed*	Rivers included
Anglian	1, 2, 3, 5, 6, 8, 40	Stour, Ouse, Hundred Foot, Thurne, Whittlesey Dyke, Bevills Leam, Blackwater, Chelmer, Forty Foot, Nene, Ramsey, Spickets
Midlands	1, 2, 4, 5, 7, 8,10, 11, 13, 14, 17, 40	Strine, Rea Brook, Erewash, Camlad, Trent, Idle, Soar, Afon Clywedog, Severn, Wye, Morda, Derwent, Churnet, Dove, Marton Drain, Dimore Brook
North East	1, 2, 4, 5, 8, 10, 11, 12, 13, 14, 17	Coquet, Oak Beck, Doe Lea, Dove, Blyth, Wansbeck, Hull, Dearne, Ouse, Aire, Holme, Little Don, Don, Dibb, Lewisburn, Wharfe, Calder, Tees
North West	1, 2, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 28	Roe, Ive, Irk, Yarrow, Wyre, Darwen, Irwell, Alt, Mersey, Weaver, Esk, Ogden, Chew Brook, Etherow, Leven, Calder, Ribble, Lune, Petteril, Rookery Brook
Southern	1, 2, 4, 5, 8, 37, 40	Wallers Haven, Arun, Rother, Ouse,

Region	Types analysed*	Rivers included
		Uck, Lymington, Cuckmere, Blackwater, Test, Botley Stream, Broad Rife, Chichester Canal
South West	1, 2, 4, 5, 7, 8, 10, 11, 13	Carnon, Wolf, Brit, Tamar, Lyd, Axe, Exe, Alphin Brook, Avon, Erme, Walkham, Culm, Tavy, Plym
Thames	1, 2, 4, 5, 8, 11, 40	Boveney Ditch, Thames, Blackwater, Hogsmill, Cherwell, Wey, Lee, Colne, Eye, Churn, Beam
Wales	1, 2, 4, 5, 10, 11, 13, 14, 16, 17	Llan, Gwenfro, Clywedog, Rhymney, Cleddau, Loughor, Ely, Afan, Seiont, Afon Llwyd, Tawe, Ogmore, Alyn, Neath, Tywi, Gwili, Dee, Wye

* Refer to Table 2.2 for a description of typologies

For the analysis of river types between regions, only types found in more than one of the eight regions could be included in the analysis. These types are shown in Table 2.5, and the site locations can be seen in Figures 2.1 to 2.8.

River type	Regions analysed*
1	A, M, NE, NW, S, SW, T, W
2	A, M, NE, NW, S, SW, T, W
4	M, NE, NW, S, SW, T, W
5	A, M, NE, NW, S, SW, T, W
8	A, M, NE, NW, S, SW, T
10	M, NE, NW, SW, W
11	M, NE, NW, SW, T, W
13	M, NE, NW, SW, W
14	M, NE, NW, W
17	M, NE, NW, W
40	A, M, S, T

Table 2.5 River types analysed between regions

* Regions are labelled as follows: A = Anglian; M = Midlands; NE = North East; NW = North West; S = Southern; SW = South West; T = Thames; W = Wales

2.3.3 Selection of daily data

Daily data were received for four regions: Midlands, North East, Thames and Wales. The rivers that were included in the daily analysis are shown in Table 2.6, and are mapped in Figures 2.1 to 2.8.

Region	Sites analysed	Types included
Midlands	Afon Clywedog, Severn, Teme, Vyrnwy	7, 8, 10, 13
North East	Humber, Ouse, Tyne	2, 5, 14, 17
Thames	Kennet, Lee, Loddon, Pymmes Brook, 2, 4, 5, 8 Thames, Wey	
Wales Dee, Taff, Tywi, Wye		10, 13, 16, 17

Table 2.6 Daily temperature records analysed

The water temperature data for Thames, Wales and North East Regions was supplied as subdaily data, whereas the Midlands Region data were supplied as daily mean values. An Excel macro was used to convert sub-daily data to a mean daily time series and to infill any missing days.

2.3.4 Selection of lake sites

Due to time constraints and lack of readily available lake temperature records, the statistical analysis was limited to river water temperature data only, as described in Section 2.4 below. A list of lake temperature records identified as part of the data collection exercise can be found in Appendix B.

2.4 Data analysis

Statistical analysis of the water temperature data was carried out using SPSS software. Although the Kolmogorov-Smirnov test for normality showed that the temperature data were not normally distributed, Analysis of Variance (ANOVA) was used based on the principle that ANOVA is robust to departures from normality, particularly when sample sizes are large (Stevens 1996, Gravetter and Wallnau 2000). Similarly, although Levene's test for homogeneity of variances showed variances to be unequal, it is considered that ANOVA is robust to the violation of this assumption when group sizes are approximately equal (e.g. largest/smallest = 1.5) (Stevens 1996). Group sizes were checked for all tests, and most were approximately equal. However, any single group within a test that was smaller than the others was considered to be unsuitable for analysis and excluded from the dataset. Similarly, where any single group was considerably larger than the others, temperature records were excluded on a site by site basis to reduce the dataset size and eliminate bias.

To further verify the results, the Kruskal-Wallis test was run on the same data. This is a nonparametric test that does not assume a normal distribution or equal variances. The results of all tests in terms of significance were the same, leading to the conclusion that in this case ANOVA was robust.

Taking the above into account, post hoc analysis using Tukey's Honestly Significant Difference test (HSD) was also carried out in order to identify any differences in water temperature between groups. Although this test carries the same assumptions as ANOVA, for the reasons stated above it was considered suitable to use for the purposes of this analysis.

2.4.1 Analysis of monthly data

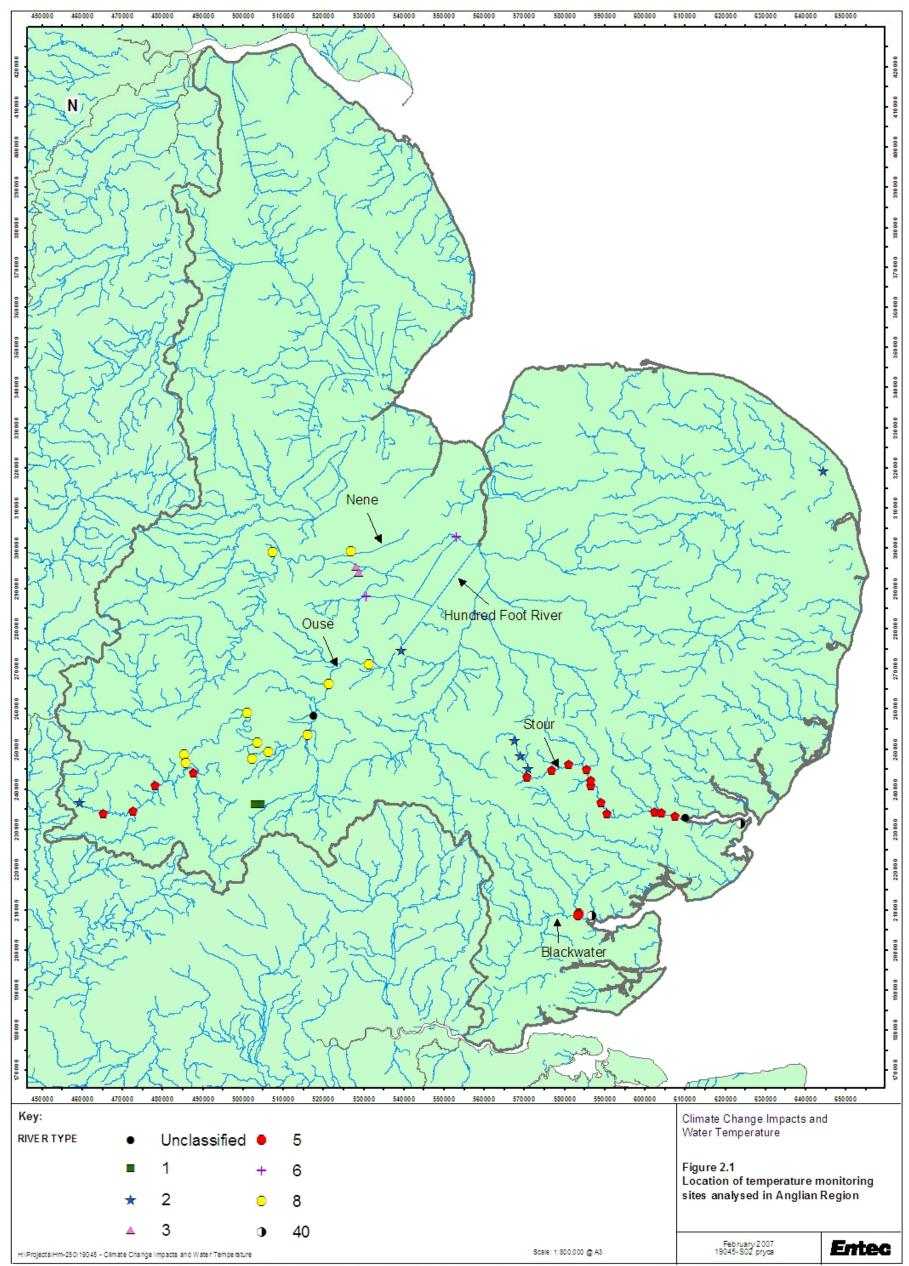
All sites monitored less frequently than daily were included in this analysis (e.g. weekly, fortnightly and monthly). All temperature records to be analysed were converted to a time series of monthly mean values, and months during which no temperature had been recorded were

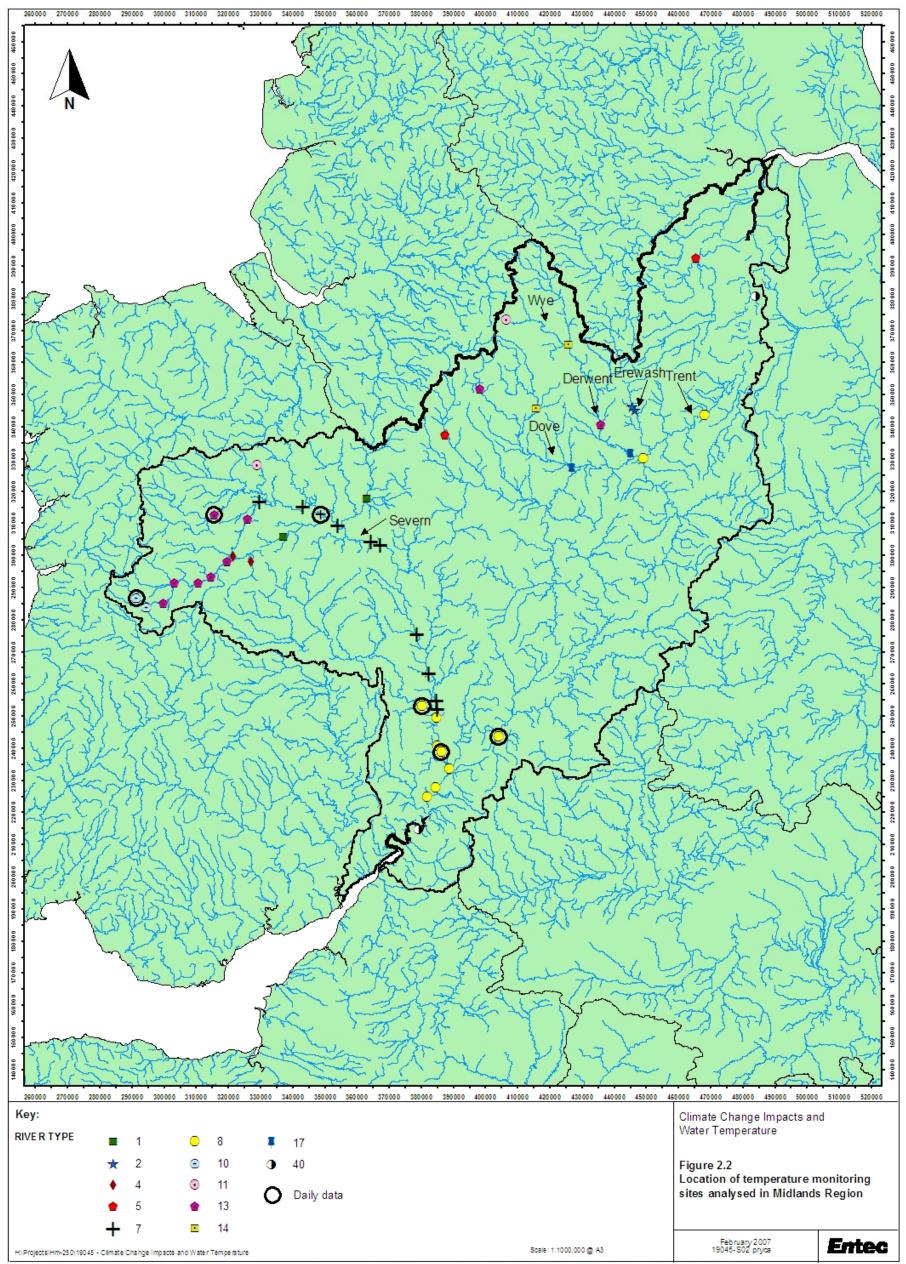
infilled with a specified value (-9999) to produce a standardised monthly time series for statistical analysis using SPSS. It should be noted that records were not audited to take account of the time of day at which temperature measurements were taken. As river water temperature varies temporally on a daily cycle, the point in the cycle at which a measurement is taken may affect weekly and monthly temperature means calculated from the data.

The locations of the monthly temperature records analysed in each region are shown in Figures 2.1 to 2.8, and a full list of all the sites included in the analysis is given in Appendix C.

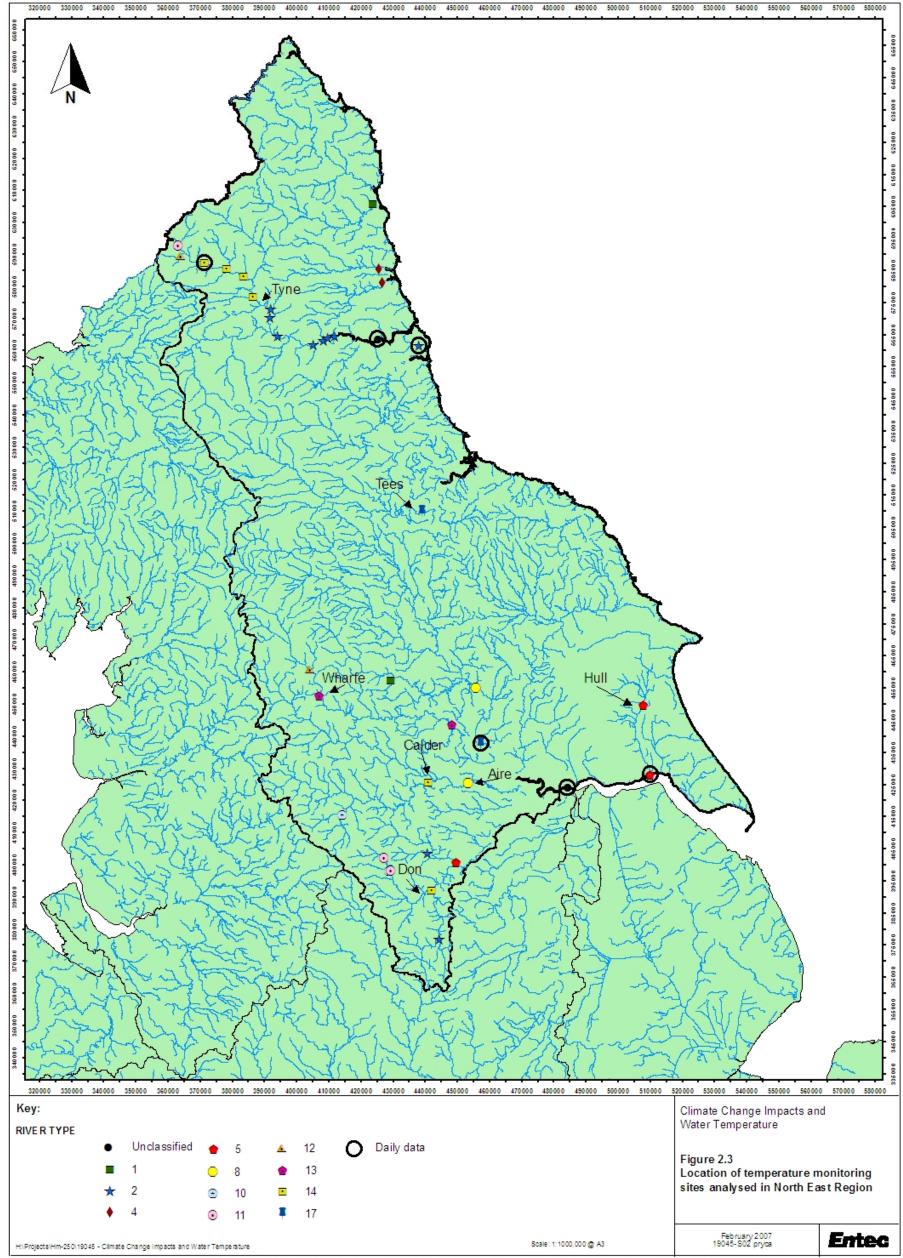
Six different analyses were carried out on the monthly data:

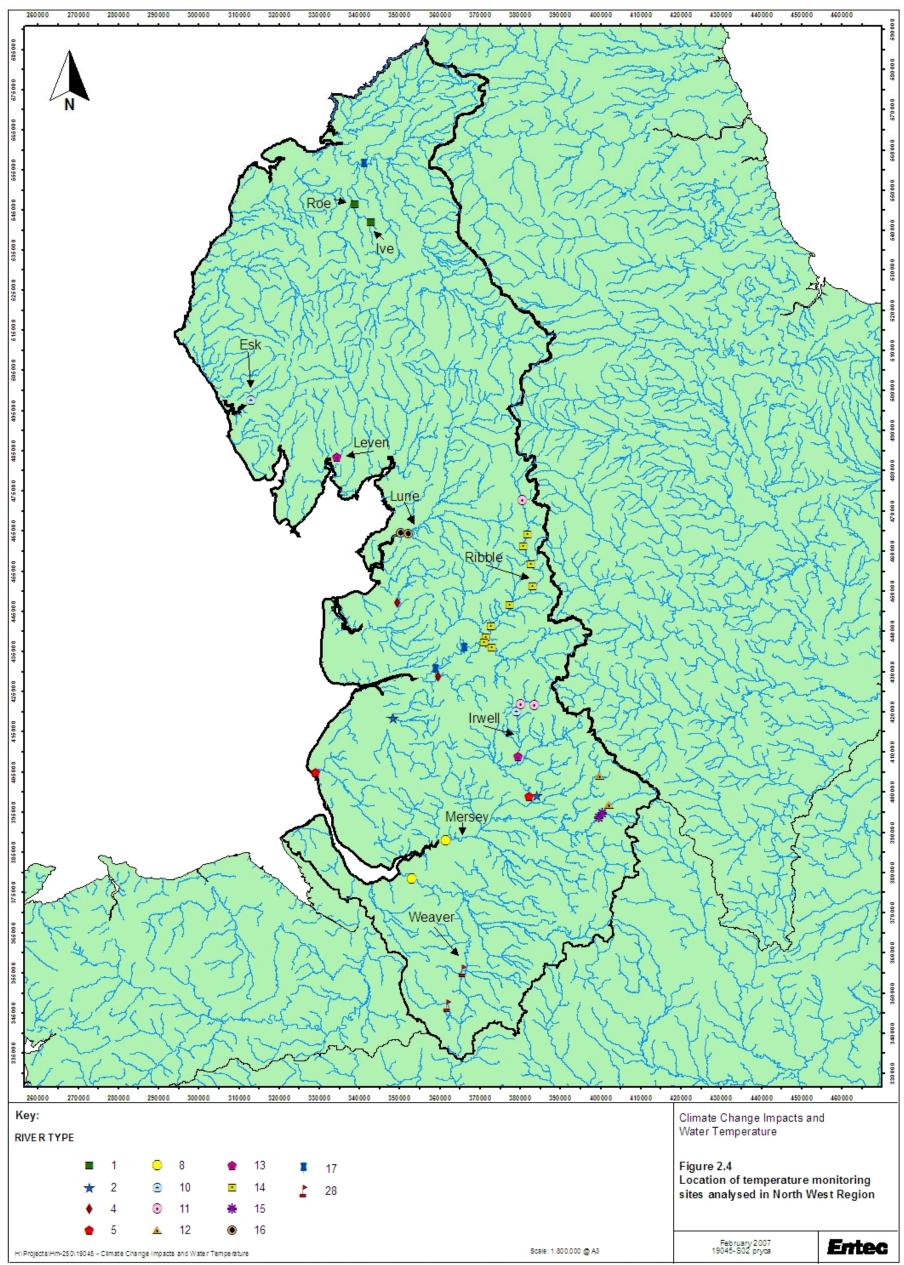
- 1. *Regional analysis.* This analysis aims to uncover regional differences in water temperature; for example, is river water temperature in Anglian Region different from river water temperature in Wales? Monthly temperature data from the main river in each of the eight regions were included in the analysis: Anglian, Midlands, North East, North West, Southern, South West, Thames and Wales.
- 2. *Type analysis within regions.* This analysis aims to uncover type-related differences in water temperature within each region; for example, is the temperature regime of a Thames Region Type 2 river different from a Thames Region Type 5 river? As far as possible, monthly temperature records from two of each river type within each region were included in this analysis.
- 3. *Type analysis between regions.* This analysis aims to uncover region-related differences in water temperature within types; for example, is the temperature regime of a Type 2 river in Thames Region different from the temperature regime of a Type 2 river in Wales? As far as possible, two monthly temperature records from each region were included in each analysis.
- 4. *Moving average analysis.* This analysis was designed to look at any trends in temperature over time for a number of sites on the same river. To achieve this, the main river sites selected for each of the regions were utilised. The monthly temperature data were plotted for all sites and moving average (12-month) trendlines were displayed for a number of selected sites on each river: one in the upper reach, one in the middle reach and one in the lower reach.
- 5. Annual mean trend analysis. Assessment of the mean annual trend in water temperature of the best site in each region. The best site was selected with regard to length and completeness of record and frequency of monitoring, as previously assessed by the scoring system in Section 2.2. The rate of annual mean river water temperature change (°C per decade) was also calculated for each selected site and compared with the rate of air temperature warming shown by the Hadley Centre Central England Temperature (HadCET) dataset (Parker *et al.* 1992).
- 6. Seasonal analysis. The monthly data were divided into seasonal data. Winter was represented by January–February–March temperatures, spring was represented by April-May-June, summer was represented by July–August–September and autumn by October–November–December. The three months of temperature data were then averaged to give a single figure for the season. The seasonal data were graphed and a 5-year moving average trendline plotted. In addition, the raw seasonal data were plotted for each of the main rivers in each region for an upper reach site and a lower reach site.

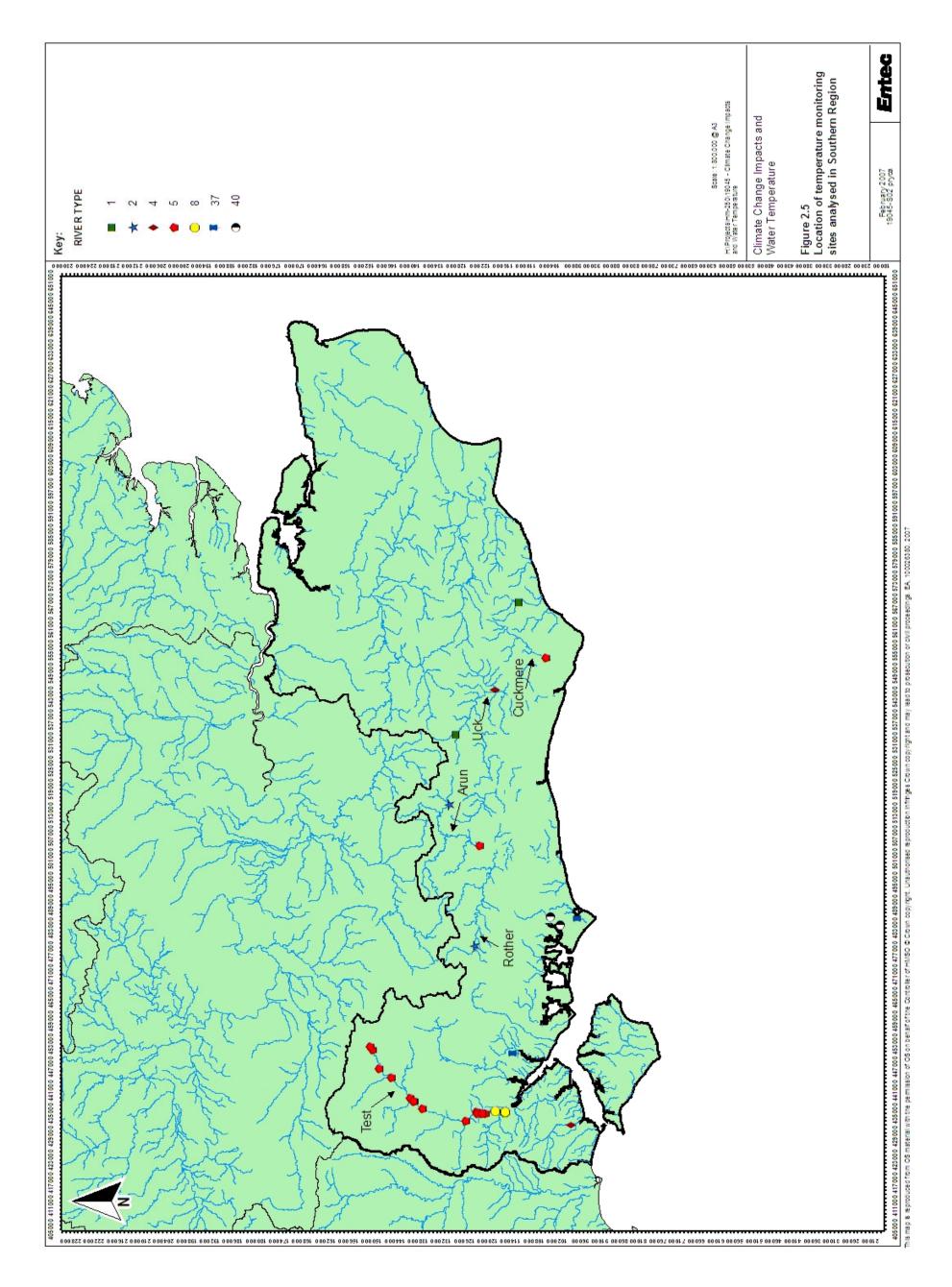

2.4.2 Analysis of daily data

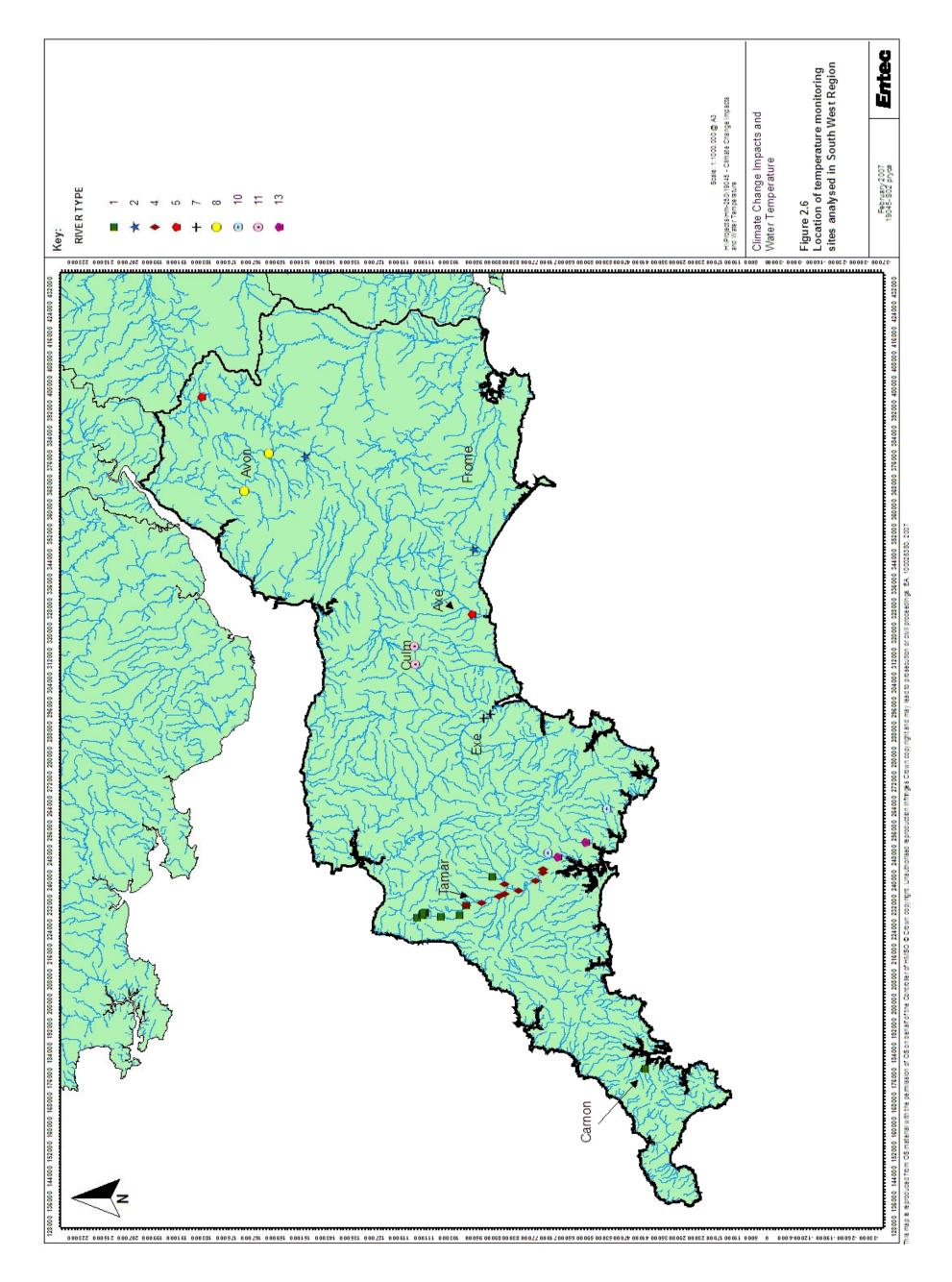

All daily and sub-daily temperature records to be analysed were converted to a time series of daily mean values, and missing days were infilled with a specified value to enable recognition of null values during the statistical analysis. This produced a standardised daily time series for entry into the SPSS statistical software.

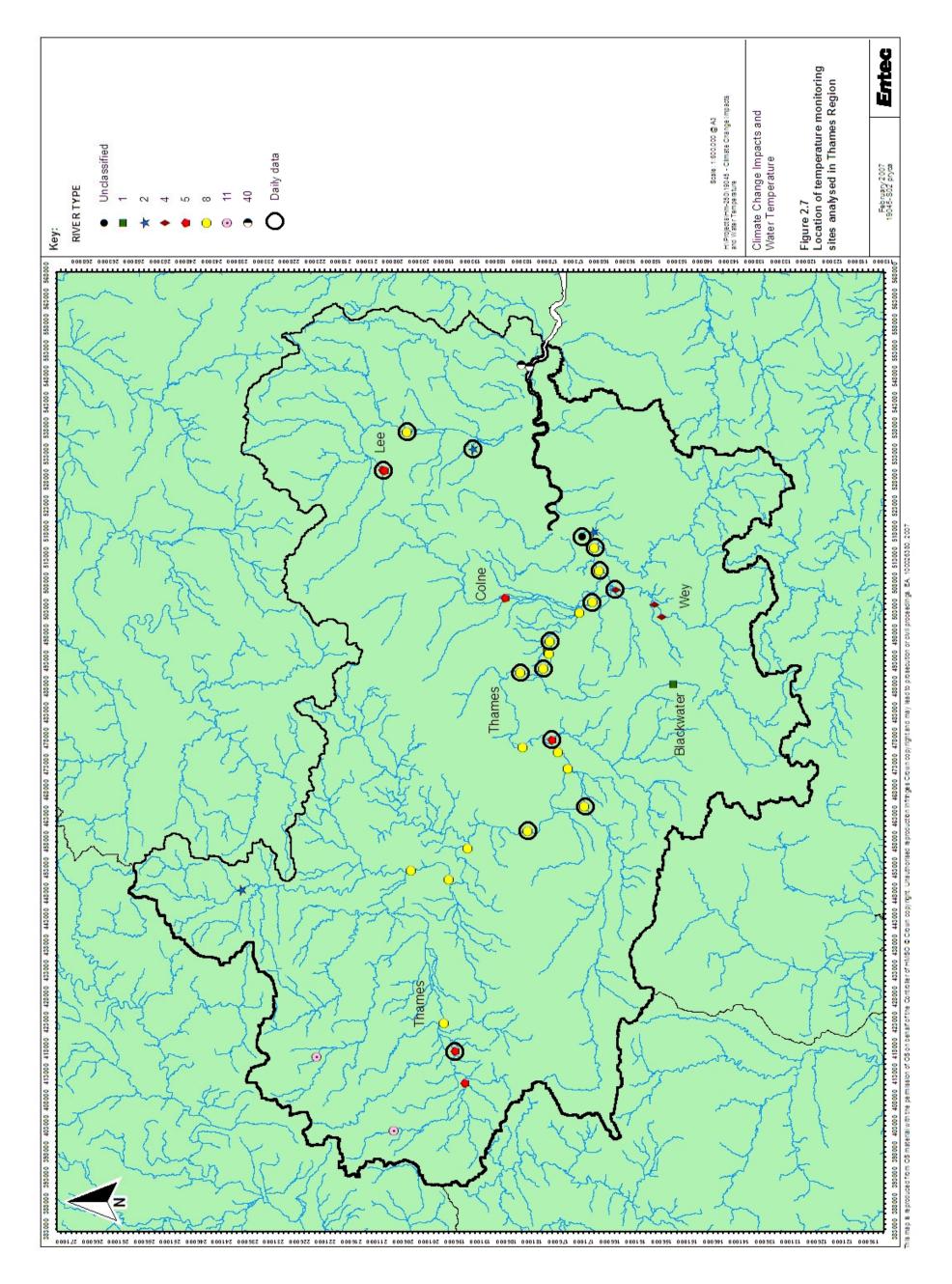
The daily temperature data were analysed for differences between regions. Daily data were only obtained for four regions: Midlands, North East, Thames and Wales. Therefore, there were not enough data available to allow for a meaningful comparison of types within or between regions. Figures 2.1 to 2.8 show the location of the daily temperature records analysed in each region, and a full list of all the sites included in the analysis for each region is given in Appendix C.

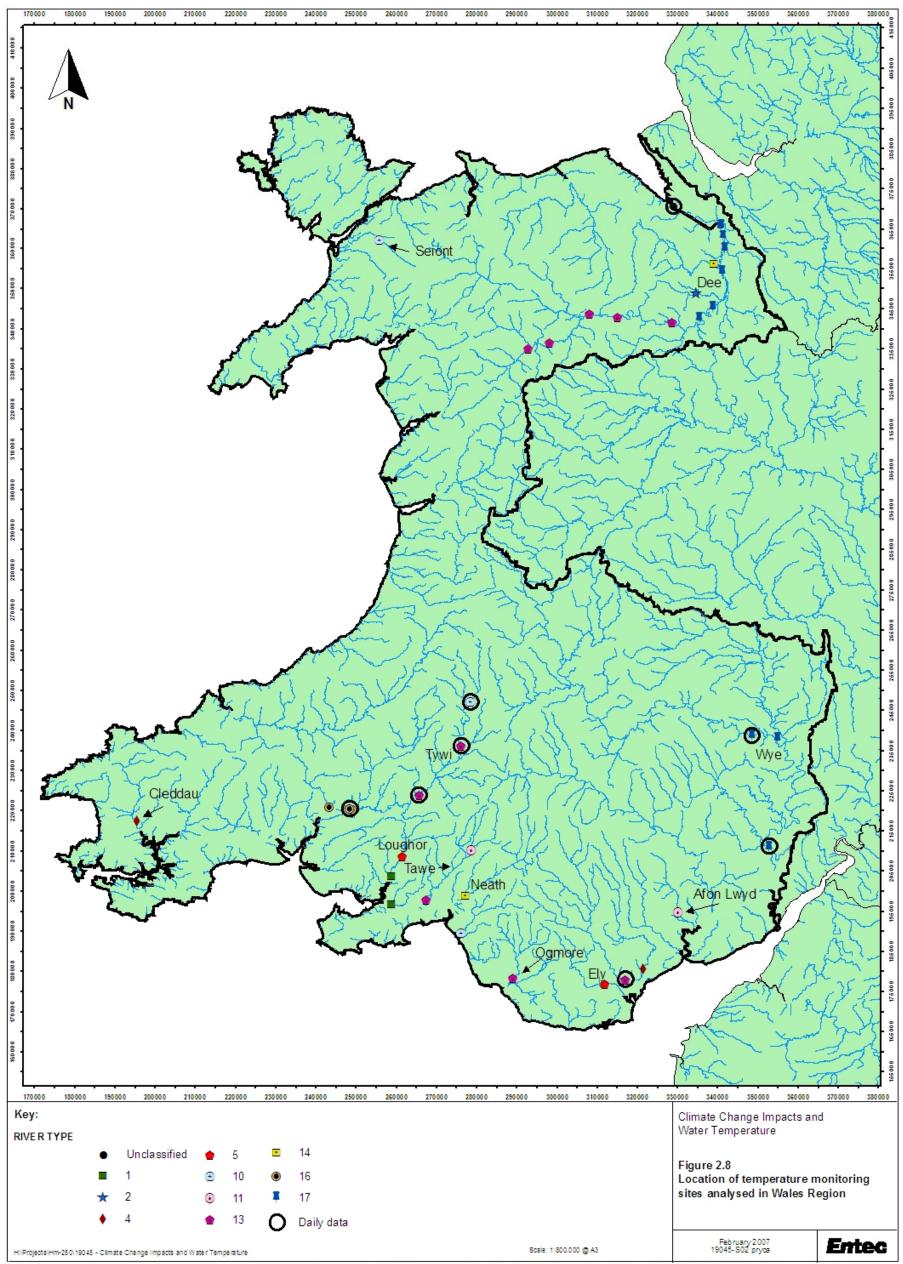

2.4.3 Infilling water temperature time series


The water temperature datasets in some regions such as Thames, North West and North East begin in the early 1970s, whereas the Midlands and Anglian monthly data do not start until the mid 1980s. Regression analysis was therefore trialled to ascertain whether or not temperature data from one region could be used to produce a historical time series for another region. Such techniques can have wide-ranging applications: for example, infilling and reconstruction techniques have previously been used to extend river flow records using rainfall data (Jones *et al.* 2006).




Science Report Climate change impacts and water temperature





Science Report Climate change impacts and water temperature

Science Report Climate change impacts and water temperature

3 Results and observations

3.1 Analysis of monthly data

3.1.1 Regional analysis

Statistical analysis using both ANOVA and the nonparametric Kruskal-Wallis test revealed there to be significant differences in river water temperature between the eight regions (p < 0.01). A significance level of p < 0.05 was used throughout the analysis. Tukey's post hoc test (used to determine where significant differences lie) revealed statistically significant differences in water temperature between most combinations of regions except for Anglian and Thames, Midlands and Southern, Midlands and South West, Midlands and Wales, and Southern and South West. Substituting the Ouse for the Stour as the main river in Anglian Region does not change this result.

The highest mean water temperatures for the whole temperature dataset were recorded in the Thames and Anglian Regions (11.98 and 11.87°C, respectively) and the lowest in the North East Region (9.51°C).

3.1.2 Type analysis within regions

ANOVA revealed significant differences in mean water temperature for the whole dataset between river types within all regions apart from Anglian Region (p < 0.01). The results of the Kruskal-Wallis test confirm these differences. Table 3.1 shows these results in addition to the results of Tukey's post hoc test.

Region	ANOVA	Kruskal-Wallis	Tukey's post hoc
Anglian	0.589	0.807	No significant differences between types*
Midlands	0.000	0.000	Significant differences between most types
North East	0.000	0.000	Significant differences between most types
North West	0.000	0.000	Significant differences between many types: type 8 is different from all others
Southern	0.000	0.000	Significant differences: type 1 and 5; 37 and 1, 2, 4; 40 and 1, 2, 4, 8
South West	0.000	0.000	Significant differences: type 1 and all others; 11 and 1, 2, 4, 5, 7, 8; 10 and 7, 8; 13 and 7, 8
Thames	0.000	0.000	Significant differences: type 4 and 5, 8, 40; 11 and 1, 2, 4, 5, 8, 40
Wales	0.000	0.004	Significant differences: type 1 and 11, 13; 5 and 11, 13; 11 and 17

*Refer to Table 2.2 for a description of typologies

3.1.3 Type analysis between regions

ANOVA revealed significant differences in water temperature of the same river type between different regions (p < 0.05). Again, the results of the Kruskal-Wallis test confirm these differences. Table 3.2 shows these results in addition to the results of Tukey's post hoc test.

The river types 12 and 16 were only present in two regions, therefore the t-test was used to analyse these types instead of ANOVA. The results showed a significant difference in Type 12 water temperature data between North East and North West Regions (p < 0.01), but no difference in Type 16 data between North West and Thames Regions.

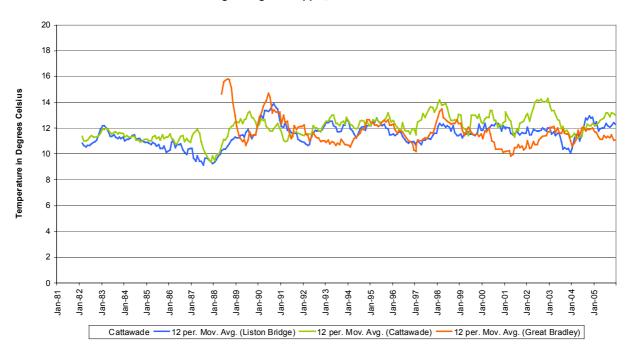

River type	ANOVA	Kruskal-Wallis	Tukey's post hoc
1	0.000	0.000	Significant differences between most regions*, especially SW and all others
2	0.000	0.000	Significant differences: A and NE, NW, S, SW, T; W and NE, NW, S, SW, T
4	0.000	0.000	Significant differences: NE and NW, S, SW, T, W; NW and SW, W
5	0.000	0.000	Significant differences: W and M, NE, NW, S, SW, T
8	0.000	0.000	Significant differences: NW and A, NE, S, SW; S and W
10	0.000	0.000	Significant differences: M and NE, SW, T; NW and NE, SW, T
11	0.000	0.000	Significant differences: NE and SW, T, W; NW and SW, T, W;
13	0.048	0.005	No significant differences between regions
14	0.000	0.000	Significant differences: NE and NW, T
17	0.002	0.004	Significant differences: NW and T
40	0.004	0.008	Significant differences: A and W

Table 3.2 ANOVA and Kruskal-Wallis test statistics – between regions

* Regions are abbreviated as follows: A = Anglian; M = Midlands; NE = North East; NW = North West; S = Southern; SW = South West; T = Thames; W = Wales

3.1.4 Moving average trends for each region

The monthly temperature data have been plotted for all the sites on the selected main river for each region. It should be noted that on some rivers such as the Thames it was not possible to plot all the sites due to the large number of available records; therefore, only sites with the longest and most complete records have been plotted. The annual temperature cycle is clearly evident in all the plots. The 12-month moving average of temperature has also been included (i.e. the mean of the previous 12 months' temperature data) to smooth out short-term fluctuations and highlight longer term trends. The data have been plotted in 'stream order' with the most upstream site first and the most downstream site last. For each river the years with the highest and lowest temperatures are noted and referred to as the warmest/hottest and coldest.

River Stour (Anglian Region) Temperature Plots with Moving Averages for Upper, Middle and Lower Reaches

Figure 3.1 Anglian Region – River Stour moving average plots – upper, middle and lower reaches

Figure 3.1 illustrates the monthly temperature data for all sites on the Stour. The coldest years were 1986 and 1991 and the hottest years were 1994, 1995 and 2005. Records were available from 1981 to 2005, although the early period of the temperature record at the Great Bradley site has a significant amount of missing data. For the upper reach site (Great Bradley) temperatures appear to have remained steady from 1989 onwards. For both the middle reach site (Liston Weir) and lower reach site (Cattawade) there has been a gradual rise in temperature of $1-2^{\circ}$ C between the early 1980s and 2005.

Figure 3.2 shows the monthly temperature data and moving average plots for the Ouse in Anglian Region. For this river the upper and middle reach sites (Brackley and Olney Weir) show a slight increase in temperature of approximately 1°C between the early 1980s and 2005, whereas at the lower reach site (Offord) there does not appear to be any overall change in temperature. At Brackley in particular, there is a distinct rise in temperature of approximately 5°C between 1990 and 2001.

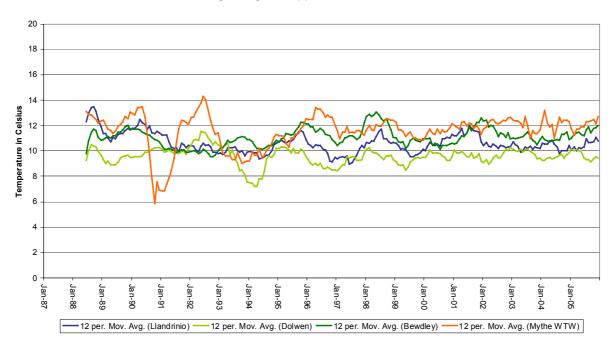

River Ouse (Anglian Region) Temperature Plots with Moving Averages for Upper, Middle and Lower Reaches

Figure 3.2 Anglian Region – River Ouse moving average plots – upper, middle and lower reaches

The River Severn moving average plots are shown in Figure 3.3. The upper reach site (Llandrinio) shows a slight overall decrease in temperature between 1987 and 2005. In the middle reach the site at Dolwen shows no change in temperature for the historical period, while Bewdley shows an upward temperature trend of approximately 1°C. The lower reach site at Mythe also shows an upward trend. The coldest years were 1997 and 2002 and the warmest years were 1995, 2003 and 2005.

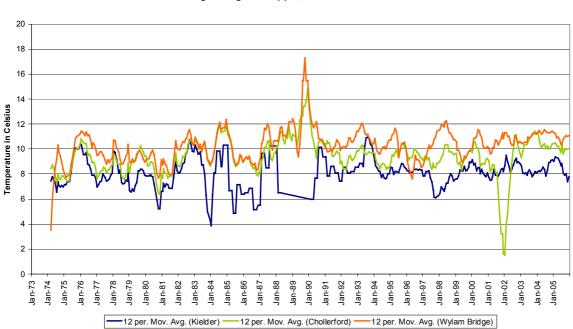

Temperature data for the River Tyne in North East Region are shown in Figure 3.4. The upper reach site at Kielder shows no change in temperature for the period of the record (1973 to 2005), whereas both the middle and lower reach sites show a slight increase in temperature (approximately 1°C). The moving average trendlines show that the lower reach site (Wylam Bridge) is generally the warmest site and the upper reach site is generally the coolest. In the early part of the record during the years 1975, 1977, 1978, 1980 and 1982, temperatures were close to zero during the winter at a number of sites. In later years, temperatures are close to zero at just one site in 1999. The hottest years of the record are 1975, 1995 and 2005.

Figure 3.5 illustrates the monthly temperature data for the River Ribble in North West Region. Records were available from 1971 to 2005. In the early years (1975 to 1990) temperatures in the upper and middle reach sites are very similar, whereas from 1990 to 2002 and in 2005 the upper reach site (Settle Weir) is cooler than the middle reach site (Sawley Bridge). The lower reach site (Samlesbury) shows a slight increase (approximately 1°C) in temperature over the historical record

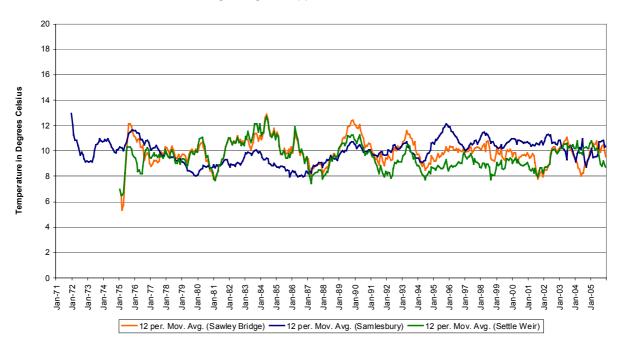

River Severn (Midlands Region) Temperature Plots with Moving Averages for Upper, Middle and Lower Reaches

Figure 3.3 Midlands Region – River Severn moving average plots – upper, middle and lower reaches

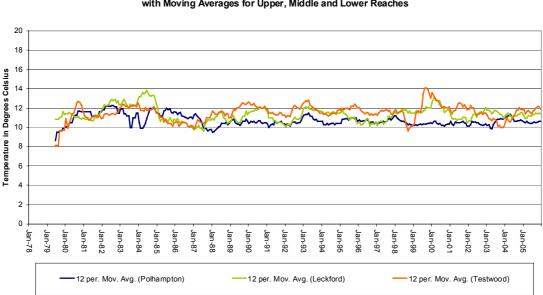

River Tyne (North East region) Temperature Plots with Moving Averages for Upper, Middle and Lower Reaches

Figure 3.4 North East Region – River Tyne moving average plots – upper, middle and lower reaches

River Ribble (North West Region) Temperature Plots with Moving Averages for Upper, Middle and Lower Reaches

Figure 3.5 North West Region – River Ribble moving average plots – upper, middle and lower reaches

River Test (Southern Region) Temperature Plots with Moving Averages for Upper, Middle and Lower Reaches

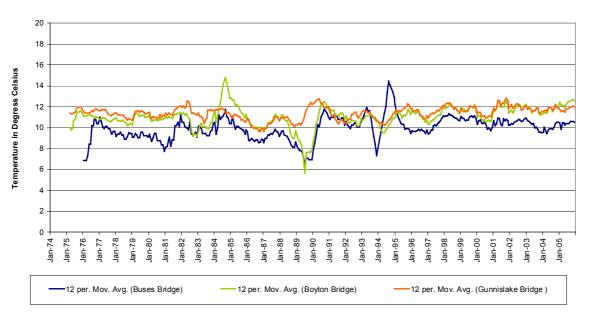
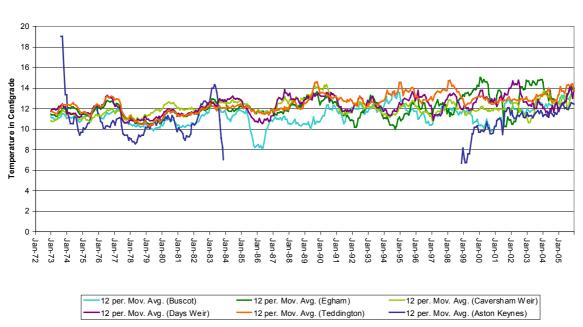

Figure 3.6 Southern Region – River Test moving average plots – upper, middle and lower reaches

Figure 3.6 shows the temperature data for the River Test in Southern Region. The temperature record runs from 1978 to 2005. The upper reach site (Polhampton) shows an overall slight decrease in temperature for this historical period, the middle reach site (Leckford) indicates that the temperature does not change over the period of the record, and the lower reach site (Testwood) shows a very small increase in temperature. The lower reach site is generally the warmest site and the upper reach site is the coolest. The coldest years are 1982 and 1986 and the warmest years are 1981, 1987, 1995 and 2005.

The Tamar temperature data are shown in Figure 3.7. All the representative reach sites show an overall increase in temperature of 1–2°C from 1974 to 2005. The coldest years are 1986, 1992 and 2000 and the hottest years are 1994, 1995, 1996, 1997 and 2003. The middle and lower reach sites (Boyton Bridge and Gunnislake Bridge, respectively) generally have a very similar temperature pattern except for 1984, 1988 and 1989 where missing data have resulted in relatively higher or lower temperatures for the 12-month moving average calculations.


For the River Thames (Thames Region), all the representative reach sites show an overall increase in temperature of 1–2°C between 1972 and 2005 (see Figure 3.8). Temperatures are lowest in the uppermost reach (Aston Keynes) and highest in the lowermost reach (Teddington). The coldest years are 1985, 1986 and 1997 and the hottest years are 1983, 1989, 1995 and 2003. For the early part of the record (1973 to 1988) the temperature profile is similar at Day's Weir, Teddington, Caversham and Egham. After 1988 the temperature profile at Egham becomes much more variable and Caversham becomes relatively cooler than the other sites. Temperatures at Buscot are lower than the other middle reach sites between 1981 and 1991 and between 1999 and 2001.

Finally, the moving average plots for the River Dee (Wales Region) are illustrated in Figure 3.9. A linear trendline shows that all three reaches increase in temperature by 1–2°C between 1974 and 2005. The coldest years are 1984, 1985 and 1996, and the warmest years are 2001, 2002, 2003 and 2005. The representative site for the upper reach (Llandderfel Bridge) is consistently cooler than the lower reach site (Iron Bridge) except in 2001, where missing data in the Iron Bridge time series causes an apparent drop in the moving average trendline. The temperature series for the middle reach (Overton Bridge) is variable, being warmer than the lower reach site in 1977, 1978, 1987 to 1991, 1997 and 2001, and cooler than the lower reach in the remaining years. Newbridge is warmer than the upper reach site except in 1991 and 1992, when missing data in the time series may again be altering the trendline.

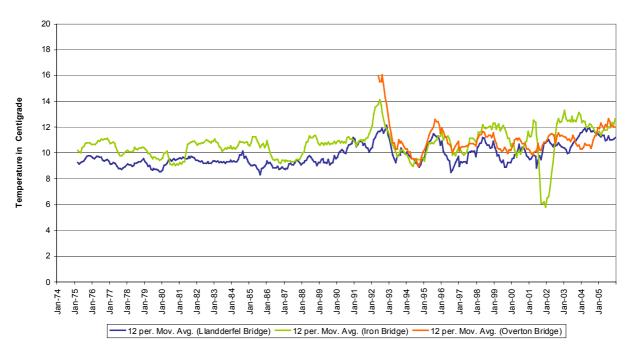

River Tamar (Southwest Region) Temperature Plots with Moving Averages for Upper, Middle and Lower Reaches

Figure 3.7 South West Region – River Tamar moving average plots – upper, middle and lower reaches

River Thames (Thames Region) Temperature Plots with Moving Averages for Upper, Middle and Lower Reaches

Figure 3.8 Thames Region – River Thames moving average plots – upper, middle and lower reaches

River Dee (Welsh Region) Temperature Plots with Moving Averages for Upper, Middle and Lower Reaches

Figure 3.9 Wales Region – River Dee moving average plots – upper, middle and lower reaches

3.1.5 Annual mean and decadal trend analysis

Figure 3.10 shows the annual mean temperature trend for the best water temperature record in each Environment Agency region, with standard error plots for each site in Figure 3.11. Details of each of the benchmark temperature monitoring sites are provided in Table 3.3. A summary of the rate of annual mean river water temperature change (°C per decade) is given for each site in Table 3.4, with these results also being represented graphically in Figures 3.12 to 3.14.

Table 3.3	Benchmark s	site information
-----------	-------------	------------------

Site name	Region	NGR	WFD type	Record start date	Record end date	Average sampling frequency (days)
R Stour Wixoe WQMS intake pier	Anglian	TL708364310 2	5	30/03/1981	15/12/2005	6.25
Severn at Saxons Lode	Midlands	SO86330390 50	8	01/06/1975	31/10/2006	1.02
River Hull at Hempholm e Lock	North East	TA079844988 5	5	01/04/1974	24/11/2005	5.17
River Calder at Whalley	North West	SD72927360 58	14	30/04/1971	15/12/2005	7.12
River Cuckmere Sherman Bridge	Souther n	TQ53200050 50	5	07/01/1976	30/11/2005	11.20
River Tamar at Gunnislake Bridge	South West	SX434937243 6	4	03/04/1974	15/12/2005	8.88
Thames at Caversham Weir	Thames	SU72135740 53	8	05/01/1972	09/12/2005	4.17
River Dee at Iron Bridge	Wales	SJ418006010 0	17	09/04/1974	29/11/2005	12.56

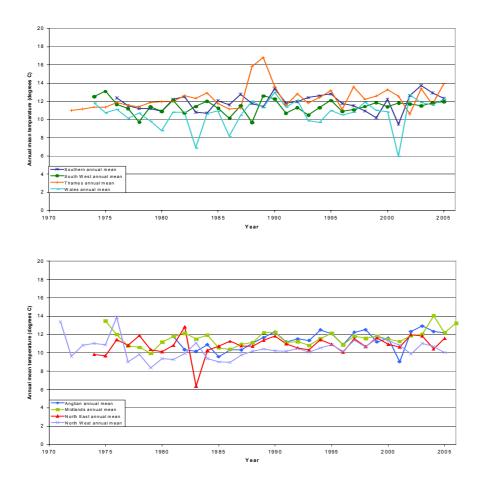
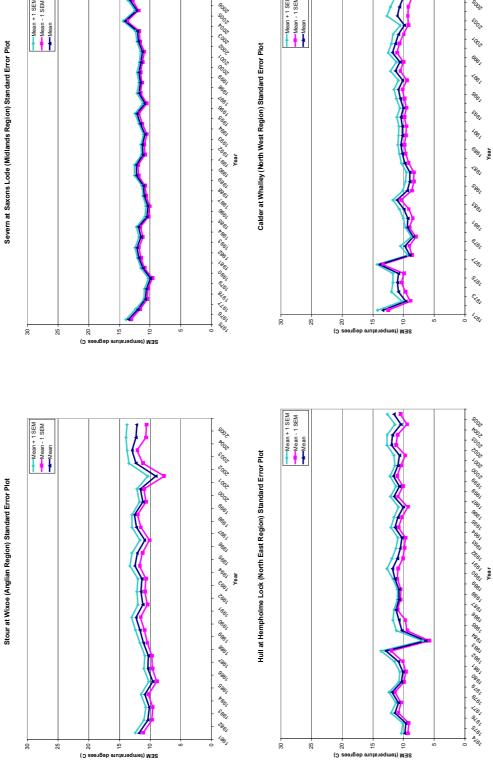
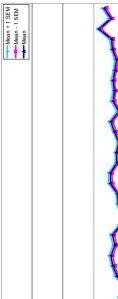
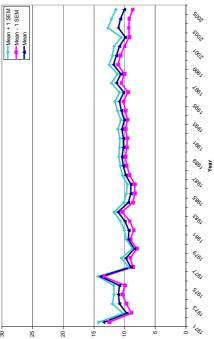
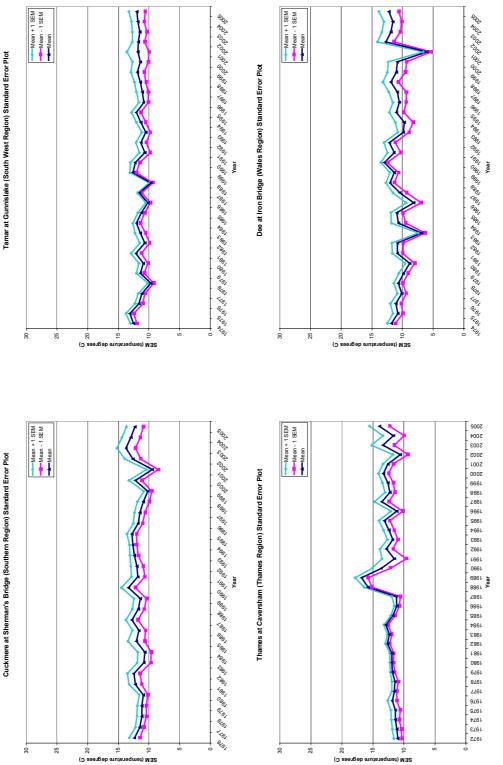




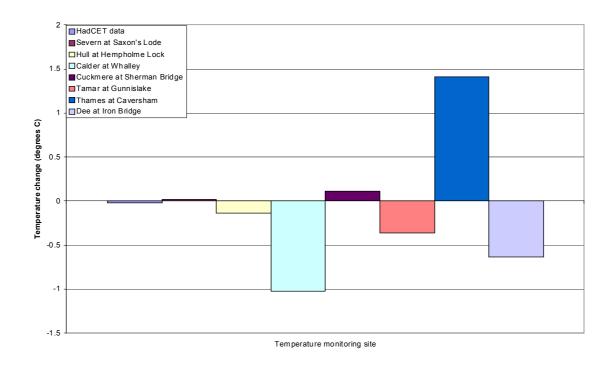
Figure 3.10 Annual mean water temperature trends for benchmark sites



) W IS



Science Report Climate change impacts and water temperature



Tamar at Gunnislake (South West Region) Standard Error Plot

Science Report Climate change impacts and water temperature

Site name	Temperature change 1970–1980 (°C)	Temperature change 1980–1990 (°C)	Temperature change 1990– 2000 (°C)
River Stour Wixoe WQMS intake pier	No data	1.10	-0.06
Severn at Saxons Lode	0.02	0.15	0.78
River Hull at Hempholme Lock	-0.14	0.46	0.23
River Calder at Whalley	-1.02	0.89	0.01
River Cuckmere Sherman Bridge	0.11	0.26	0.28
River Tamar at Gunnislake Bridge	-0.36	0.10	0.36
Thames at Caversham Weir	1.41	-0.36	0.07
River Dee at Iron Bridge	-0.64	1.04	-0.25
Air temperatures (HadCET)	-0.02	0.58	0.34

Table 3.4 Rate of decadal temperature change

Figure 3.12 Decadal temperature change at benchmark sites, 1970-1980

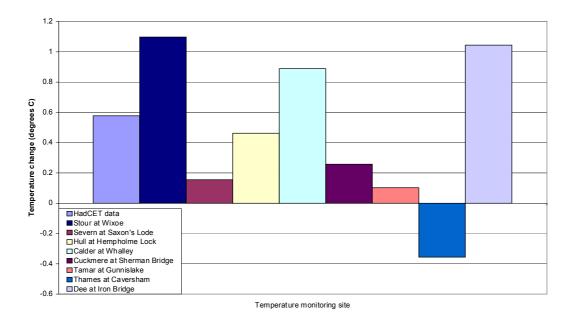
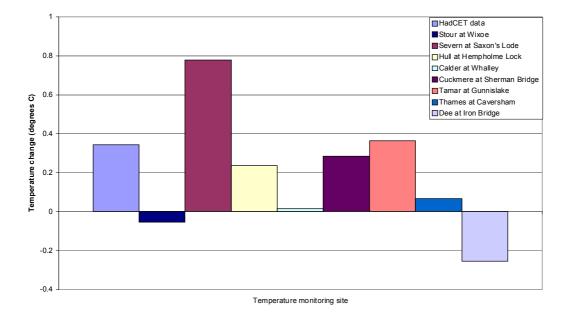
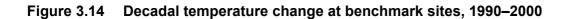




Figure 3.13 Decadal temperature change at benchmark sites, 1980–1990

3.1.6 Seasonal analysis

The seasonal analysis uses January to March as winter, April to June as spring, July to September as summer and October to December as winter (as requested by the Environment Agency). Figures 3.15 to 3.18 show the 5-year moving averages for upper and lower reach sites on the main rivers selected for each region. The Aston Keynes site on the Thames has missing data for 1984 to 1998, the River Stour at Great Bradley has missing data from 1984 to 1988, the Horton site on the River Ribble has missing data from 1984 to 1992 and the Tyne has missing data from 1988 to 1989. This missing data causes anomalous peaks and troughs in the moving average data.

Figure 3.15 indicates that all the upper reach sites show a similar trend in winter except for the Stour site, which is likely to be affected by transfers from the Ouse catchment, and the Tyne site, which may be affected by Kielder reservoir. Both the Stour and Tyne sites show a slight downward temperature trend whereas all the other sites show an upward trend.

Figure 3.16 indicates that all the lower reach sites show an upward temperature trend in winter. The Stour site (Cattawade) experienced particularly high temperatures during the early years (1980 to 1988) and the Tyne site (Wylam Bridge) experienced high temperatures between 1985 and 1991.

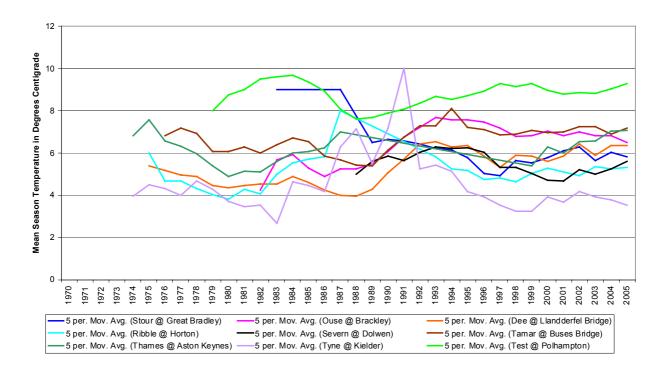
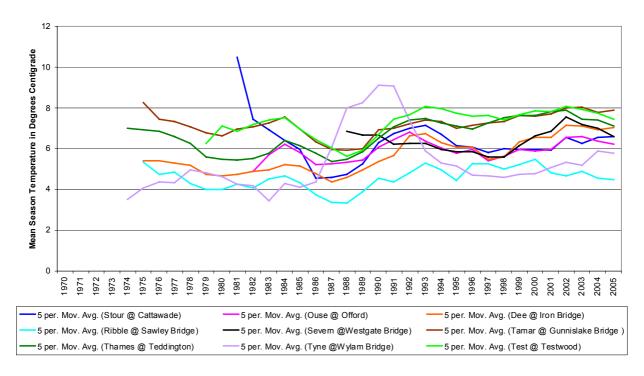



Figure 3.15 Upper reach sites winter 5-year moving average trends

Figure 3.16 Lower reach sites winter 5-year moving average trends

The upper reach spring temperatures shown in Figure 3.17 again illustrate a general upward trend in water temperatures, although the Rivers Ribble and Stour show a slight downward trend.

The lower reach spring temperatures in Figure 3.18 also show a general upward trend over time except for the Ribble, Tamar and Ouse. The River Ribble in particular shows a dip in temperatures between 2000 and 2003.

Overall, the water temperature of rivers in northern England such as the Tyne (North East Region) are cooler than rivers in southeast England such as the Thames (Thames Region) and the Ouse (Anglian Region).

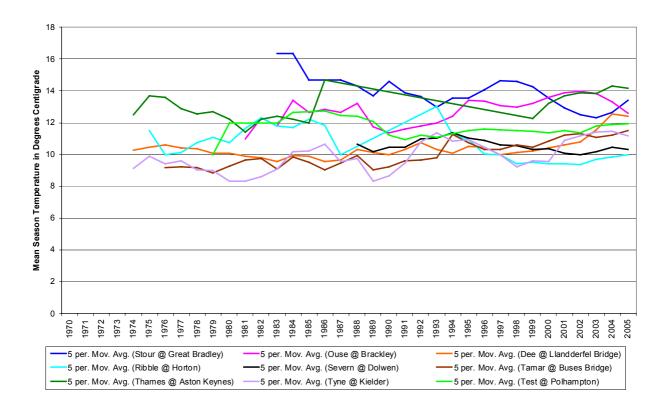


Figure 3.17 Upper reach sites spring 5-year moving average trends

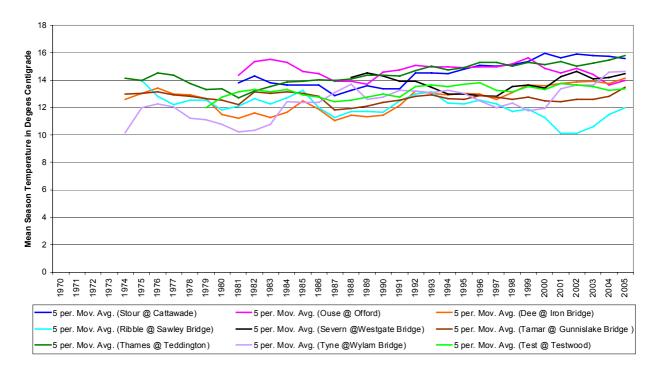
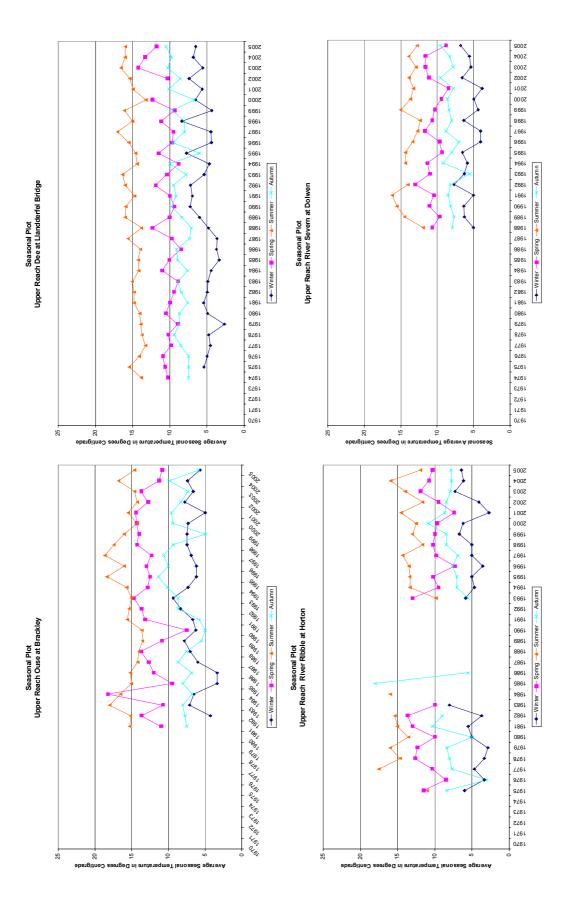



Figure 3.18 Lower reach sites spring 5-year moving average trends

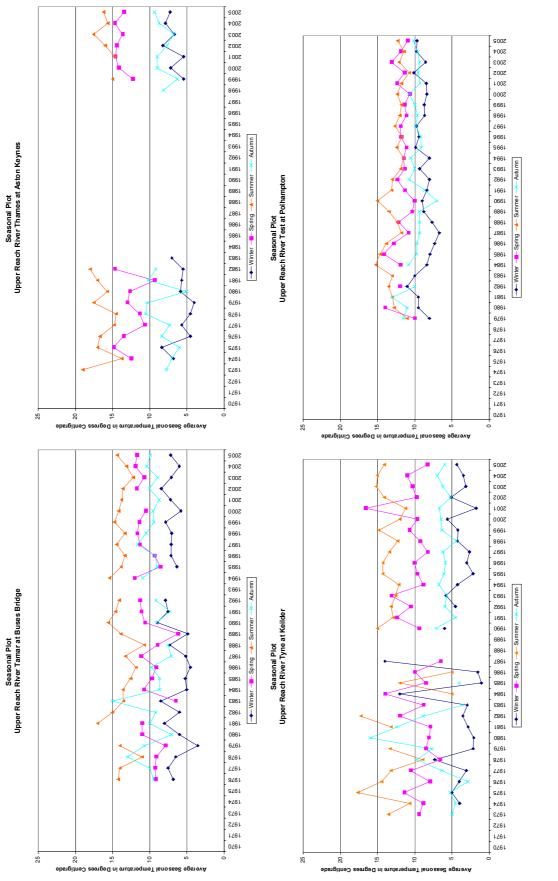
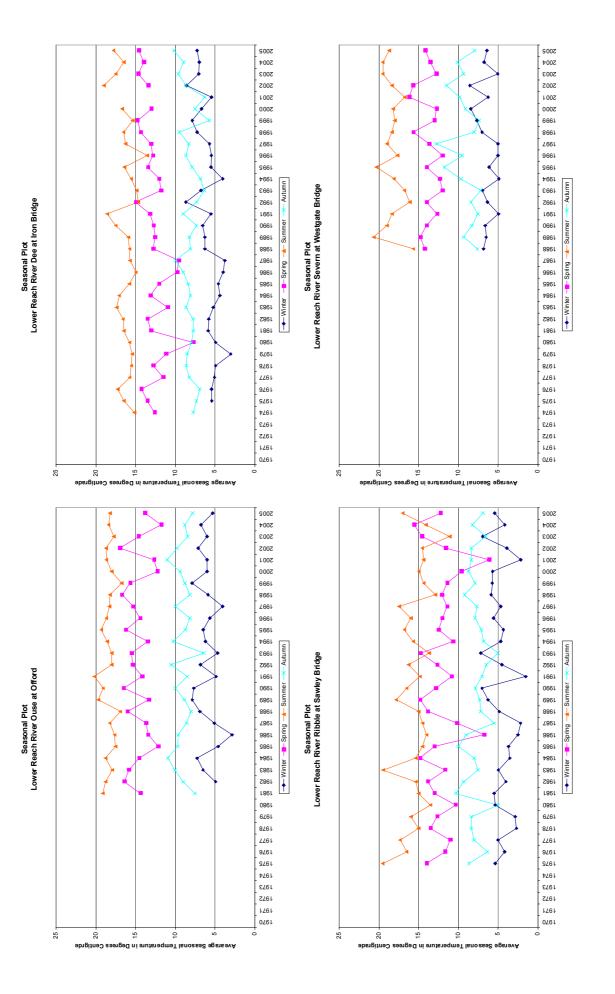



Figure 3.19 Upper reach seasonal comparisons for individual sites

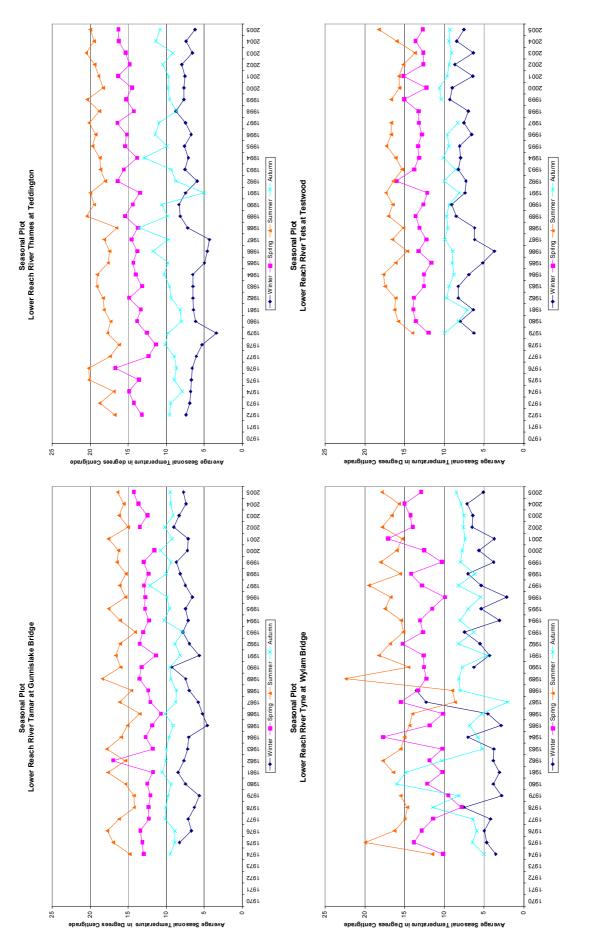


Figure 3.19 shows the seasonal temperature curves for individual upper reach sites. As expected, temperatures are lowest in winter and highest in summer. For the Ouse at Brackley there is some overlap between the winter and spring temperatures in 1989, 1990 and 1999. For the Tyne at Kielder there is overlap between autumn and spring temperatures between 1976 and 1987 and unusually warm winter temperatures in 1984 and 1987. This could be due to erroneous data or the effects of Kielder reservoir. The River Test at Polhampton shows an overlap in winter and spring temperatures in 1982 and 1990. The Rivers Tyne and Ribble have lower winter temperatures than rivers in the more southern regions.

The seasonal plots for the lower reach sites are shown on Figure 3.20. Again, rivers in the North East and North West Regions have the lowest winter temperatures. Winter and spring temperatures for the River Tyne at Wylam Bridge overlap in 1986 to 1988 and 1998 and spring and summer temperatures overlap in 1987, 1988 and 2001.

3.2 Analysis of daily data

3.2.1 Regional analysis

Daily data were obtained for four regions: Midlands, North East, Thames and Wales. ANOVA revealed significant differences in water temperature between all four regions and combinations of regions (p < 0.01). The highest mean water temperature was recorded in Thames Region (12.24°C) and the lowest in Wales (10.08°C).

3.3 Infilling water temperature time series

Table 3.5 shows the results from regression analysis between sites of the same typology from different regions. The regression was carried out to ascertain the feasibility of infilling and/or hindcasting temperature time series data using a donor site of the same type from another region. The table illustrates that the R-squared values (the amount of explained variance) from the regression analysis are high, ranging from 0.83 to 0.88. It should be noted that infilling can only be successfully accomplished by using near-neighbour donor sites. It is not appropriate to use a donor site in Southern Region to infill temperature data for a river in North West Region for example.

Figures 3.21 and 3.22 show the regression analysis of WFD Type 13 rivers at sites in the North East and North West Regions regressed against the Churnet and Derwent in the Midlands Region. Figures 3.23 and 3.24 show the regression for WFD Type 8 rivers at sites on the River Thames regressed against sites on the River Severn in Midlands Region.

Donor site	Infill site	Regression equation	R-squared
Thames Type 8	Midlands Type 8		
Thames at Buscot	Severn at Haw Bridge	y = 0.9969x + 0.1850	0.83
Thames at Abingdon	Severn at Haw Bridge	y = 0.9176x + 0.5918	0.88
Thames at Buscot	Severn at Tewkesbury	y = 1.0528x – 0.8136	0.85
Thames at Abingdon	Severn at Tewkesbury	y = 0.9481x - 0.0943	0.88
North East Type 13	Midlands Type 13		
Wharf at Tadcaster	Churnet at Cheddleton	Y = 0.8121x + 1.6165	0.85
Wharf at Tadcaster	Derwent at Little Eaton	Y = 0.7843x + 2.0885	0.85
North West Type 13	Midlands Type 13		
Irwell at Wark Weir	Churnet at Cheddleton	Y = 0.8544x + 1.4461	0.86
Irwell at Wark Weir	Derwent at Little Eaton	Y = 0.8377x + 1.7909	0.84

Table 3.5 Regression analysis results

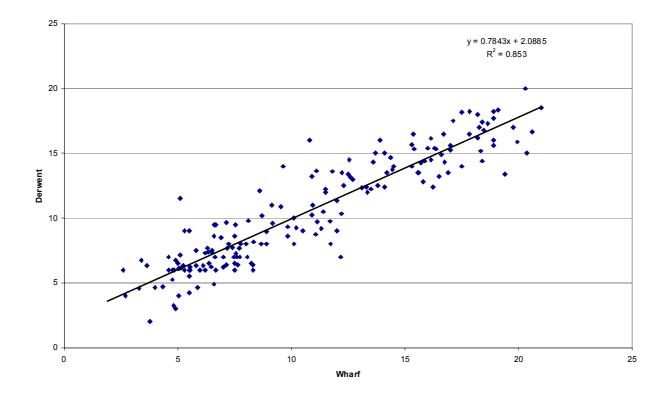


Figure 3.21 Regression analysis of River Wharf at Tadcaster (Type 13 North East Region) versus River Derwent at Little Eaton (Type 13 Midlands Region)

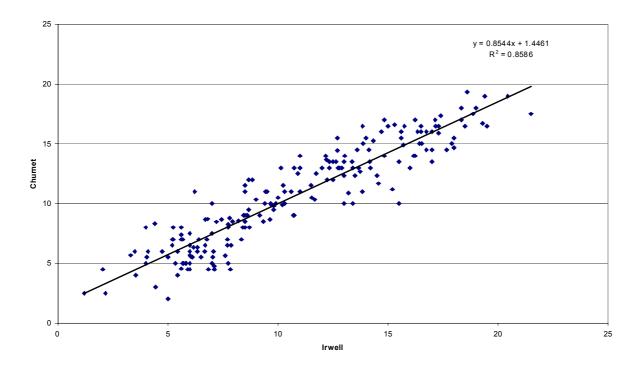


Figure 3.22 Regression analysis of River Irwell at Wark Weir (Type 13 North West Region) versus River Churnet at Cheddleton Station (Type 13 Midlands Region)

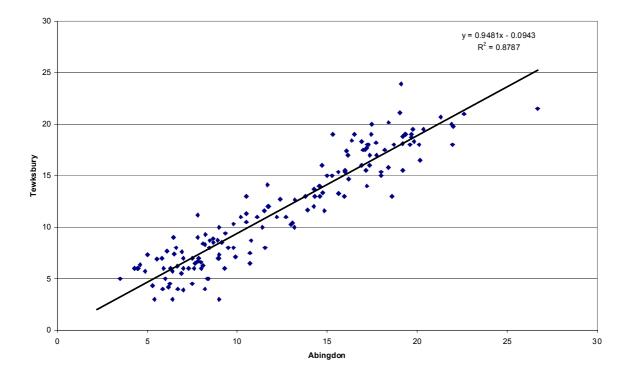


Figure 3.23 Regression analysis of River Thames at Abingdon (Type 8 Thames Region) versus River Severn at Tewkesbury (Type 8 Midlands Region)

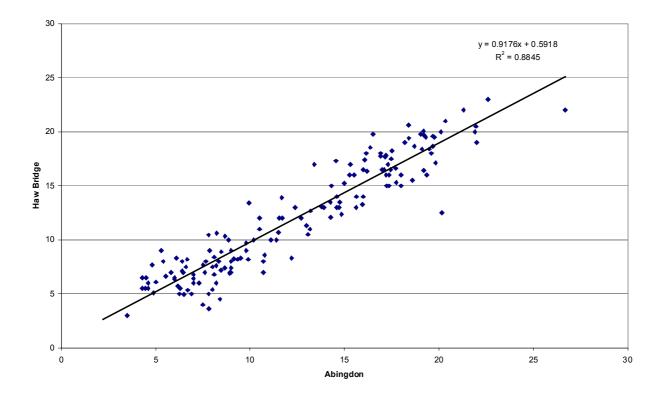


Figure 3.24 Regression analysis of River Thames at Abingdon (Type 8 Thames Region) versus River Severn at Haw Bridge (Type 8 Midlands Region)

3.4 Air temperature data

The Hadley Centre Central England Temperature (HadCET) dataset is already in the public domain, and holds monthly mean temperatures from 1659 and daily temperatures from 1772 (Parker *et al.* 1992). The HadCET area is roughly representative of a triangle enclosed by Bristol, Lancashire and London. Daily and monthly maximum and minimum temperatures have been calculated for the period beginning 1878 and monthly and annual gridded 5 x 5 km temperature datasets for the period 1961–2000 are freely available from the Met Office for research purposes. Information on the available data can be found on the Met Office website.

If additional MORECS data are required, costs for a licence have been quoted by the Met Office to be £5936.00 + VAT for weekly maximum and minimum temperatures covering all of England and Wales (130 squares) for the entire record available (1961–2006). Data for a shorter time period are also available at a reduced cost of £5147.00 + VAT for 1970–2006 and £3967.00 + VAT for 1980–2006. This licence is for a period of 5 years only and is subject to Met Office Terms and Conditions. Data should be delivered within 10 days of a request.

At a cost, the Met Office will also give consultancy advice on obtaining the most relevant data for a particular project if detailed information is provided on the aims and objectives.

4 Analysis and discussion

4.1 Analysis of monthly data

4.1.1 Regional analysis

Significant regional differences in river water temperature have been identified, with the highest values being recorded in the Thames (River Thames) and Anglian Regions (Rivers Stour and Ouse) and the lowest in the North East Region (River Tyne). While ANOVA revealed there to be significant differences in water temperature between most combinations of regions (Section 3.1.1), no significant differences were found between Anglian and Thames Regions, Midlands and Southern Regions, Midlands and South West Regions, Midlands and Wales Regions, and Southern and South West Regions. This result is not unexpected, with the more southerly regions (Anglian and Thames, Southern and South West) being more similar to each other in terms of water temperature than the northern regions (Midlands and Wales, North East and North West) and vice versa. The similarity between Midlands and Southern Regions, and Midlands and South West Regions, however, is surprising and not easily explained.

4.1.2 Type analysis within regions

River typology appears to have a significant effect on river water temperatures within regions, with ANOVA revealing significant differences in water temperature between river types for all regions apart from Anglian Region. This anomaly may be explained by lack of topographic range of the Anglian rivers, to the lack of rainfall and to the significant management of the Anglian rivers used in the analysis. In contrast within Welsh Region for example, the water temperature of Type 1 (low altitude, siliceous geology, small catchment size) rivers is different from that of Type 11 (mid altitude, calcareous, small catchment size) and Type 13 (mid altitude, siliceous, medium catchment size) rivers, but similar to all other types present in the region. As typology is derived from the combination of catchment altitude, geology and size, it is probably a combination of these factors that influences water temperature – no single factor has been identified as the major influence. For example, it is well known that the temperature regime of groundwater-fed chalk streams is relatively stable compared with that of clay or limestone rivers that receive less significant groundwater inputs (Mackey and Berrie 1991). Similarly, a large river will be less sensitive to air temperature fluctuations than a small headwater stream (Caissie *et al.* 1998).

As each region contained a different number and range of river types, meaningful comparisons cannot be made regarding which types differ most often within regions in terms of water temperature. In particular, high altitude sites were not well represented in the datasets collected and cannot be included in the conclusions. It is interesting to note that within Anglian Region there are apparently no differences in river water temperature related to type. All of the river types included in the Anglian analysis were classed as low altitude, whereas all possible geologies and sizes were covered. This might be the cause of the lack of differences in water temperature. However, similar types were included within the Thames Region analysis, which did show differences in water temperature related to type and between types of the same altitude. More detailed statistical analysis of the existing water temperature data stratified by catchment altitude, geology and size is required to further investigate the causes of the temperature differences.

4.1.3 Type analysis between regions

Statistical analysis revealed that the water temperature of all river types included in the analysis differs between regions. For example, the water temperature of a Type 2 river in Anglian Region is not the same as the water temperature of a Type 2 river in North East, North West, Southern, South West and Thames regions. Therefore, the effect of region on river water temperature revealed by the regional analysis appears to be stronger in some cases than the effects of river type (catchment altitude, geology and size).

As not all types were present in all regions, the number of regions compared for each type was not equal and conclusions cannot therefore be made regarding which types differ more often between regions in terms of water temperature. In particular, there was a lack of upland river sites suitable for inclusion in the analysis.

4.1.4 Moving average trends for each region

An upward trend in mean annual river water temperatures over the period of the temperature record was identified in all regions. In particular, all reaches of the River Thames (Thames Region) and River Tamar (South West Region) and most reaches in Anglian Region (Rivers Ouse and Stour) showed an increase in water temperature with time. The highest temperatures were more likely to be seen after 1990 and the coldest temperatures in the earlier part of the record (1970s and 1980s). Within rivers in the more northern regions such as the North East and North West Regions (Rivers Tyne and Ribble, respectively), the warming trend was less apparent and often seen only in the middle and lower reaches of the river. However, all rivers showed some evidence of a warming trend in the lower reaches, and the warmest years were again seen in the later part of the record. This confirms that river water temperatures are rising across the UK and suggests that such increases are likely to occur more often (but not exclusively) in the south and east of the country, and in the middle and lower reaches of the river.

4.1.5 Annual mean and decadal trend analysis

The trend in annual mean water temperatures for the benchmark site in each region (Figure 3.10) spans approximately 35 years (1970 to 2005). A temperature record of at least 100 years is ideally required to identify any warming trends that have occurred during the last century. However, a slight warming trend since approximately 1980 can be seen in nearly all regions, although this follows an apparent dip in annual mean temperatures during the 1970s. Annual mean temperatures from regions in the south and east of the country (e.g. Southern, Thames) tend to be higher than those in the north (e.g. North East). Mean annual temperatures in Wales and the North West are generally lower than other regions. The annual mean in Wales was notably lower in 1983 (along with that of North East Region) and 2001 when Southern Region and Anglian also exhibited significant lower annual means. It should be noted that the selection of only one benchmark site from each region might be misleading if the chosen site is not representative of the region as a whole (e.g. if artificial influences are affecting a site).

Figure 3.11 shows the mean annual temperature trend for each benchmark site individually, with the standard error of the mean (SEM) also plotted. This represents the standard deviation of the different sample means and tends to increase as the variability of the data increases and decrease as sample size increases. There is a general trend in the benchmark sites of the SEM to increase noticeably over the last 5 or 6 years of the record (since approximately 2000), particularly in Anglian, Southern and North West Regions. This might be a result of an increase in maximum water temperatures since this time, as confirmed by the slight warming trend identified in Figure 3.10.

The decadal trends in water temperature are shown in Figures 3.12 to 3.14 and Table 3.4. Between 1970 and 1980, the mean annual water temperature at most of the benchmark sites decreased, except in the Southern and Thames Regions. Between 1980 and 1990, and 1990 and 2000, mean annual water temperatures tended to increase, particularly between 1980 and 1990 (with the exception of the Thames at Caversham, which showed a slight decrease). It should be noted in Figure 3.14 that for two sites, the Dee in Welsh Region and the Stour in Anglian Region, the decadal water temperature is lower. No one region experienced consistently more rapid changes in water temperature than the others. The HadCET air temperature dataset shows a similar decadal pattern, suggesting that changes in river water temperature are comparable to changes in air temperature over a time period of several years.

4.1.6 Seasonal analysis

For the upper reach sites in Winter the River Test is significantly warmer, by 1 to 4 degrees, than the other rivers with the Tamar and Ouse generally being the next warmest. The River Tyne is generally colder, with the anomalies in 1988, 1989 and 1991 being due to missing data. For the lower reaches in winter the Rivers Test, Tamar and Thames have the highest temperatures from the late 1980s onwards. Prior to this the River Thames is significantly lower. The Rivers Ribble and Tyne have the lowest temperatures. The River Tyne has missing data in 1989.

Figures 3.17 and 3.18 show the upper and lower sites in spring. For the upper sites Aston Keynes has missing data from 1983 to 1998 and the Tyne has missing data in 1988 and 1989. The Tamar and Tyne are the coolest from the 1970s till the mid 1990s, after which it is the Tyne and Ribble which are the coolest till 2000, with the Severn and Ribble being the coldest from 2000 onwards. For the lower sites in spring the warmest rivers are the Stour, Thames and Ouse with these three rivers being noticeably warmer from the 1990s onwards with a pronounced upward trend. The coldest rivers are Tyne and Dee up until the 1990s, after which it is the Ribble and Tyne which are the coolest until 2000 when the Tyne becomes relatively warmer than the Test.

For the upper and lower reach comparisons on the Ouse, winter water temperatures are slightly higher for the upper reach site whereas spring and summer temperatures are higher for the lower reach site. Winter and autumn temperatures in the River Dee are very similar for both the upper and lower reach sites, but spring and summer water temperatures are higher at the lower reach sites. When comparing the lower and upper reach sites of the Ribble, the seasonal data are very similar from the 1970s through to the mid 1990s. From 1994 the spring and summer temperatures at the upper reach site are lower than those at the lower reach site.

For the Rivers Severn, Tyne and Tamar, winter and autumn temperatures are similar for the upper and lower reach sites whereas spring and summer temperatures are noticeably warmer at the lower reach sites. On the River Thames during the 1970s and 1980s, water temperatures are lower at the upper reach sites in the summer but similar during winter, spring and autumn. However, from 2000 onwards autumn temperatures are lower for the upper reach site and summer temperatures are 4 to 5 degrees lower at the upper reach site. The gradual rise in water temperature from 1970 to 2005, particularly during spring and summer, is very clear in the River Thames plot. For the River Test, winter temperatures are higher in the upper reach sites. Autumn temperatures for this river are similar at both sites and spring and summer temperatures are appreciably higher at the lower reach site.

For the individual river sites, as expected, the winter temperatures are generally the coolest followed by autumn and spring, with the summer being the warmest. Some inter-changeability occurs between winter and autumn temperatures on the River Ouse at Brackley, the Test at Polhampton and the Tyne at Wylam Bridge. Assessing the higher temperatures, the Rivers Test

at Polhampton (upper reach) and Ribble at Sawley Bridge (lower reach) have overlap between the spring and summer temperatures.

Analysing the lower reach sites the Rivers Tamar and Test have the least seasonal temperature range and the Ouse, Ribble and Severn have the greatest. Of the upper reach sites the River Test has the least seasonal range and the Rivers Tyne, Thames and Ribble have the greatest range.

The moving average seasonal plots show a general upward trend in water temperature for both winter and spring. As expected, spring water temperatures are higher than winter water temperatures and rivers in the south, southeast and southwest of England are warmer than those in the northwest, northeast or Wales. Overall there appears to be evidence that the upper reaches (headwaters) are warming in winter and spring, whereas the lower reaches are warming in summer.

4.2 Analysis of daily data

4.2.1 Regional analysis

A strong effect of region on daily water temperatures was revealed by ANOVA, with significant differences between all four regions and combinations of regions included in the analysis (Midlands, North East, Thames and Wales). Therefore, river water temperature in Midlands Region is significantly different from river water temperature in North East Region, Thames Region and Wales; river water temperature in North East Region is significantly different from river water temperature is significantly different from river water temperature in Midlands, Thames and Wales Regions and so on. Although water temperatures in the adjacent Midlands and Wales Regions might be expected to be similar, the results of the regional analysis are in overall support of the conclusions drawn from the monthly regional analysis; regional differences in river water temperature exist and temperatures in the southern and eastern parts of the country tend to differ from temperatures in the north and west. However, a much larger dataset of daily water temperature data from all eight regions is required before firm conclusions can be made.

4.3 Infilling water temperature time series

The R-squared results from the regression analysis suggest that there is a reasonable correlation in water temperature between sites of the same typology from different regions. However, it should be noted that this is not always the case, as demonstrated by the statistical analysis in Section 3.1.3. A good correlation in water temperature between two sites would allow infilling of missing data and the hindcasting of temperature data to simulate a water temperature time series. It is suggested that this type of regression can only be carried out for sites in adjoining regions and ideally those which are geographically close, although again it should be noted that water temperatures in adjoining regions will not necessarily be similar (see Section 3.1.1). It is also recommended that only sites of the same typology are included in this analysis.

4.4 Costs of external datasets

Many water temperature datasets held by external organisations were not freely available to the Environment Agency. The costs associated with obtaining such datasets varies according to the database size, ease of access and the number and length of records requested. Often, the charge is made for staff time to retrieve the records rather than for use of the data itself. For example, weekly river water temperature data are available from the ECN/CEH. Summary ECN

data are freely available on the website, but raw data are only made available to other users via a licensing system and with agreement from ECN sponsors. Only academic users can receive the data free of charge while private requests attract a cost both from the sponsors and for CEH staff time in extracting the data. These costs were estimated to be in the region of £150 to £500 depending on the number and type of sites required, and at least 3 weeks is required to fulfil any data requests. There is also an additional requirement for the agreement of the data owner in the case of most datasets, such as datasets from the Lowland Catchment Research programme (LOCAR) and the Catchment Hydrology And Sustainable Management (CHASM) project.

The CEH was found to be the main source of water temperature data that is not freely available and is known to hold some good long-term water temperature datasets that it would be appropriate to extract. Other organisations that will release water temperature data with a likely cost include the Freshwater Biological Association (FBA) at Windermere, and the University College London Acid Waters Monitoring Network (lake data). Details of external datasets and associated costs can be found in Appendix B.

In addition to the problem of costs, it is likely that data requests to external organisations will take several weeks to be fulfilled.

4.5 Maintenance of the archive

Maintaining a national water temperature archive for the sites and rivers identified and included in the analysis should be a relatively simple task. It would require time to be set aside to contact the data owners for regular updates with the most recent data, ideally every 6 months. The majority of the monthly sites are monitored by the Environment Agency and stored on the WIMS database, requiring a simple update at no cost other than the time required. The daily data were obtained from different sources within the Environment Agency and would require more time per site to contact the data owner and obtain the most recent monitoring data. However, there are a relatively small number of daily sites to be kept updated. Should any data in future be obtained from external organisations, these would also need to be contacted for regular updates. It should be considered that updates from external organisations might be associated with a financial cost.

4.6 Gap analysis

During the course of the project, a number of gaps have been identified in terms of data requirements and additional analyses. These are as follows:

- 1. Availability of good quality long-term temperature data (ideally, records spanning at least 100 years). For example, Webb and Nobilis (2007) analysed water temperature data collected from Austrian rivers over the period 1901 to 2001, allowing confident identification of a recent upward trend in river water temperatures. The longest temperature records included in this study ran from the early 1970s to the end of 2005, although a few sites began in the 1960s (North West and South West Regions, Wales).
- 2. *Frequency of monitoring*. Ideally, temperature should be monitored daily, but at the very least monthly.
- 3. Data quality. Regardless of the length and monitoring frequency of the dataset, the quality is extremely important. Most of the temperature records analysed in this project had gaps in the time series, with months during which no temperatures were recorded. In general, a complete monthly temperature dataset would be preferable to a daily dataset with missing months or years.
- 4. *River typology*. In order to better analyse the effects of river type on water temperature, full water temperature records for every type present in every region are required. This was not available for this study.

- 5. *Lake temperature analysis*. This project has already identified suitable lake water temperature datasets. A similar analysis could therefore be undertaken for lake temperatures, and potentially extended to other waterbody types such as estuaries.
- 6. Air temperature analysis. Local air temperatures could be regressed against river water temperatures to determine the relationship between the two. Air temperatures could then be used to hindcast water temperatures back in time before actual monitoring began, and also to model future water temperatures under climate change scenarios. This approach is advantageous because long-term air temperature data are more easily available than long-term water temperature data. Assessment of river water temperature data against local air temperature data for the same time period would be required for each site in order to assess the need for incorporation of a time lag into any model.
- 7. Specific site details. The analysis carried out on the temperature data does not account for any anthropogenic effects on the river water temperatures. In order to assess these effects specific site details need to be collated, which was not part of the brief for this project.

5 Conclusions

Mean river water temperature taken from a subset of rivers differs significantly between Environment Agency regions, with the largest difference of 2.5°C occurring between the Thames and North East Regions. In particular, the highest mean monthly water temperatures were found in the southeast of the UK (Anglian Region and Thames Region) and the lowest in the North East Region. Analysis of daily water temperatures shows the same trend, with significant temperature differences existing between all four regions included in the analysis.

Within the same region, river water temperatures also differ according to the WFD river typology. This is probably related to factors such as the catchment geology, altitude and size. However, the water temperature of all the river types included in the analysis differs between regions, suggesting that the influence of region (geographic location) on river water temperature is often stronger than the influence of river type (catchment altitude, geology and size).

Moving average plots of water temperature data from the main river in each region have revealed an upward temperature trend over the last 20 to 30 years. This trend is particularly apparent in the Anglian, Thames and South West Regions, but is also seen in the lower reaches of the main river analysed in all regions. In addition, moving average seasonal plots from each main river identified a general upward trend in water temperature in winter and spring. The plots confirm that river water temperatures have increased in recent years, and suggest that the warming trend is likely to be more noticeable in the south and east of the UK and in the lower reaches of a river. It should however be noted that no uplands rivers were analysed as there was no temperature data available for these WFD river types.

Analysis of the mean annual and mean decadal water temperature trend for one benchmark site in each region also provides evidence that water temperatures have increased in recent decades, particularly since 1980. The decadal changes in river water temperature are comparable to the changes in air temperature seen during the same period. However, since most of the records analysed began in the 1970s or later, it was not possible to evaluate water temperature trends before this time.

It is important to note that there is an overall lack of high-quality, complete, long-term water temperature monitoring datasets, which has limited the analysis to some extent. Additional long-term water temperature data can be obtained from external organisations at a financial cost, but improved Environment Agency water temperature monitoring would be preferred. The costs of maintaining and updating a water temperature database in the future should not be prohibitively high and are mostly in the form of the staff time required.

Infilling and hindcasting of temperature data is possible if sites are geographically close and of the same typology. The appropriateness of such a methodology would, however, need to be tested for each donor and recipient site pairing to ensure that the resulting R-squared values from the regression analysis were high.

The river water temperature analysis carried out in this project could be built upon and extended to other types of waterbody such as lakes and estuaries, as detailed in the Recommendations.

6 Recommendations

The following recommendations can be made following the completion of this project:

- Improve Environment Agency water temperature monitoring in terms of frequency, completeness of the time series and quality control. Consideration should also be given to equal representation of sites with regard to river type (catchment size, geology and altitude). High altitude sites in particular are currently not represented. The assessment of future indicator site monitoring requirements for river temperature data needs to be clearly quantified and qualified as the initial step for the next phase of the climate change impact on river temperature programme, particularly in the light of local influences such as significant abstractions and discharges.
- 2. Obtain urgently any relevant long-term water temperature datasets from external organisations such as CEH. This could be achieved by the establishment of an agreement with research councils and other organisations to share data for the use of non-profit-making projects and reports. Collate any further existing data which reportedly exists, such as daily data for Anglian Region.
- 3. Maintain a water temperature archive to include regular updates of the best sites identified by this project (as a website or database). This will produce long-term water temperature records for future analysis, and the costs and time required should be relatively small.
- 4. Undertake more detailed analysis of river water temperature in terms of seasonal trends in warming, to determine whether warming is occurring at a greater rate in summer or winter.
- 5. Complete the water temperature analysis for lakes using similar analysis techniques to those used for rivers, although the amount of available lake temperature data is smaller. Follow up proposed co-ordination of results from LDMS.
- 6. Extend the project to cover estuarine and tidal sites.
- 7. Further investigate the potential of air temperature analysis. Air temperatures could potentially be used to hindcast river water temperatures to create a longer time series, and for modelling of future water temperatures under a climate change scenario. The majority of the air temperature data required for such modelling is likely to be freely available from the Met Office.
- 8. Specific details for each site need to be collated in order to identify any anthropogenic effects on water temperatures.
- 9. Assess the effect of temperature changes on ecology. The effects of increased water temperatures on ecology was not part of the current study, but would logically be part of the next phase of work. This would include links to growing seasons, thermal refugia and lethal thresholds.
- 10. Consideration of adaptive measures. If climate change is significantly affecting water temperature, what can be done to reduce any detrimental effects? What are the costs and benefits of such actions? The effects of land use on water temperature also need to be assessed.

References and bibliography

Alabaster J D and Lloyd R, 1980 Water Quality Criteria for Freshwater Fish. Butterworths.

Antonopoulos V Z and Gianniou S K, 2003 Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. *Ecological Modelling*, **160**, 39–53.

Bartholow J M, 2000 Estimating cumulative effects of clearcutting on stream temperatures. *Rivers*, **7** (4), 284-297.

Beschta R L and Taylor R L, 1988 Stream temperature increases and land use in a forested Oregon watershed. *Water Resource Bulletin*, **24**, 19–25.

Bower D, Hannah D M and McGregor G R, 2004 Techniques for assessing the climatic sensitivity of river flow regimes. *Hydrological Processes*, **18**, 2515–2543.

Caissie D, 2006 The thermal regime of rivers: a review. Freshwater Biology, 51, 1389–1406.

Caissie D, El-Jabi N and St-Hilaire A, 1998 Stochastic modelling of water temperature in a small stream using air to water relations. *Canadian Journal of Civil Engineering*, **25**, 250–260.

Caissie D, El-Jabi N and Satish M G, 2001 Modelling of maximum daily water temperatures in a small stream using air temperatures. *Journal of Hydrology*, **251**, 14–28.

Caissie D, Satish M G and El-Jabi N, 2005 Predicting river water temperatures using the equilibrium temperature concept with application on the Miramichi River catchments (New Brunswick, Canada). *Hydrological Processes*, **19**, 2137–2159.

Carvalho L and Kirika A, 2003 Changes in shallow lake functioning: response to climate change and nutrient reduction. *Hydrobiologia – The Hague*, **506**, 789–796.

Christensen N S, Wood A W, Voisin N, Lettenmaier D P and Palmer R N, 2004 The effects of climate change on the hydrology and water resources of the Colorado River Basin. *Climatic Change*, **62**, 337–363.

Codling I D, Thorne J and Langford T E L, 2003 *Evaluation of Long-Term Data Sets for Climate Change Detection and Monitoring*. Technical Report, WRc plc and PISCES Conservation Ltd. 40 pp.

Conlan K, Lane S, Ormerod S, Wade T, 2005 *Preparing for Climate Change Impacts on Freshwater Ecosystems (PRINCE)*. Environment Agency Science Report. 156 pp.

Cowx I G, 2000 Potential impact of groundwater augmentation of river flows on fisheries: a case study from the River Ouse, Yorkshire, England. *Fisheries Management and Ecology*, **7**, 85–96.

Crisp D T, 1996 Environmental requirements of common riverine European salmonid fish species in fresh water with particular reference to physical and chemical aspects. *Hydrobiologia*, **323**, 201–221.

Crisp D T and Howson G, 1982 Effect of air temperature upon mean water temperature in streams in the north Pennines and English Lake District. *Freshwater Biology*, **12**, 359–367. Davidson I C and Hazlewood M S, 2005 *Effect of Climate Change on Salmon Fisheries*. Environment Agency Science Report. 52 pp.

Defra, 2005 *Water Framework Directive* [online]. Available from: http://www.defra.gov.uk/environment/water/wfd/article5/index.htm [Accessed January 2007].

Dokulil M T, Jagsch A, George G D, Anneville O, Jankowski T, Wahl B, Lenhart B, Blenckner T and Teubner K, 2006 Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. *Limnology and Oceanography*, **51**, 2787–2793.

Dymond J, 1984 Water temperature change caused by abstraction. *ASCE, Journal of Hydraulic Engineering*, **110**, 987–991.

Erickson T R and Stefan H G, 2000 Linear air/water temperature correlations for streams during open water periods. *Journal of Hydrologic Engineering*, **5**, 317–322.

Evans E C, McGregor G R and Petts G E, 1998 River energy budgets with special reference to river bed processes. *Hydrological Processes*, **12**, 575–595.

Fang X, Stefan H G, Eaton J G, McCormick J H and Alam S R, 2004 Simulation of thermal/dissolved oxygen habitat for fishes in lakes under different climate scenarios. *Ecological Modelling*, **24**, 211–221.

Fukushima T, Ozaki N, Kaminishi H, Harasawa H and Matsushige K, 2000 Forecasting the changes in lake water quality in response to climate changes, using past relationships between meteorological conditions and water quality. *Hydrological Processes*, **14**, 593–604.

Gardner B, Sullivan P J and Lembo A J, 2003 Predicting stream temperatures: geostatistical model comparison using alternative distance metrics. *Canadian Journal of Fisheries and Aquatic Sciences*, **60**, 344–351.

George D G, Maberly S C and Hewitt D P, 2004 The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. *Freshwater Biology*, **49**, 760–774.

Gooseff M N, Strzepek K and Chapra S C, 2005 Modelling the potential effects of climate change on water temperature downstream of a shallow reservoir, Lower Madison River, MT. *Climatic Change*, **68**, 331–353.

Gravetter F J and Wallnau L B, 2000 *Statistics for the Behavioural Sciences* (5th edition). Belmont, CA: Wadsworth.

Hannah D M, Malcolm I A, Soulsby C and Youngson A F, 2004 Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: seasonal and subseasonal dynamics. *River Research and Applications*, **20**, 635–652.

Hassan H, Aramaki T, Hanaki K, Matsuo T and Wilby R L, 1998a Lake stratification and temperature profiles simulated using downscaled GCM output. *Journal of Water Science and Technology*, **38**, 217–226.

Hassan H, Hanaki K and Matsuo T, 1998b A modeling approach to simulate impact of climate change in lake water quality: phytoplankton growth rate assessment. *Water Science and Technology*, **37**, 177–185.

Hockey J B, Owens I F and Tapper N J, 1982 Empirical and theoretical models to isolate the effect of discharge on summer water temperatures in the Hurunui River. *Journal of Hydrology* (*New Zealand*), **21**, 1–12.

Hondzo M and Stefan H G, 1993 Lake water temperature simulation model. *Journal of Hydraulic Engineering*, **119**, 1251–1273.

Hosomi M, Saigusa T, Yabunaka K, Okubo T and Murakami A, 1996 Development of a water temperature–ecological model to stimulate global warming effects on lake ecosystem. *Water Science and Technology Water Quality International '96: Part 4*, **34**, 237–244.

Hostetler S W, 1991 Analysis and modelling of longterm stream temperatures on the Steamboat Creek basin, Oregon: implication for land use and fish habitat. *Water Resources Bulletin*, **27**, 637–647.

Hulme M, Jenkins G J, Lu X, Turnpenny J R, Mitchell T D, Jones R G, Lowe J, Murphy J M, Hassell D, Boorman P, McDonald R and Hill S, 2002 *Climate Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report*. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK. 120 pp.

Intergovernmental Panel on Climate Change (IPCC), 2007 Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. WMO, Switzerland. 21 pp.

Johnson S L and Stefan H G, 2006 Indicators of climate warming in Minnesota: Lake ice covers and snowmelt runoff. *Climatic Change*, **75**, 421–453.

Jones P D, Lister D H, Wilby R L and Kostopoulou E, 2006 Extended river flow reconstructions for England and Wales, 1865–2002. *International Journal of Climatology*, **26**, 219–231.

Karoly D J and Stott P A, 2006 Anthropogenic warming of central England temperature. *Atmospheric Science Letters*, **7** (4), 81–85.

Kim K S and Chapra S C, 1997 Temperature model for highly transient shallow streams. *ASCE, Journal of Hydraulic Engineering*, **123**, 30–40.

Langan S J, Johnston L, Donaghy M J, Youngson A F, Hay D W and Soulsby C, 2001 Variation in river water temperatures in an upland stream over a 30-year period. *The Science of the Total Environment*, **265**, 195–207.

Lehmkuhl D, 1972 Change in thermal regime as a cause of reduction of benthic fauna downstream of a reservoir. *Journal of the Fisheries Research Board of Canada*, **29**, 1329–1332.

Liu B, Yang D, Ye B and Berezovskaya S, 2005 Long-term open-water season stream temperature variations and changes over Lena River Basin in Siberia. *Global and Planetary Change*, **48**, 96–111.

Livingstone D M, 2003 Impact of secular climate change on the thermal structure of a large temperate Central European lake. *Climatic Change*, **57**, 205–225.

Mackey A P and Berrie A D, 1991 The prediction of water temperatures in chalk streams from air temperatures. *Hydrobiologia*, **210**, 183–189.

Magnuson J J, Robertson D M, Benson B J, Wynne R H, Livingstone D M, Arai T, Assel R A, Barry R G, Card V, Kuusisto E, Granin N G, Prowse T D, Stewart K M and Vuglinski V S, 2000 Historical trends in lake and river ice-cover in the Northern Hemisphere. *Science*, **289**, 1743–1746.

Malmaeus J M, Blenckner T, Markensten H and Persson I, 2006 Lake phosphorus dynamics and climate warming: a mechanistic model approach. *Ecological Modelling*, **190**, 1–14.

Mohseni O and Stefan H G, 1999 Stream temperature/air temperature relationship: a physical interpretation. *Journal of Hydrology*, **218**, 128–141.

Mohseni O, Erickson T R and Stefan H G, 1999 Sensitivity of stream temperatures in the United States to air temperatures projected under a global warming scenario. *Water Resources Research*, **35**, 3723–3733.

Morrill J C, Bales R C and Conklin M H, 2005 Estimating stream temperature from air temperature: implications for future water quality. *Journal of Environmental Engineering*, **131**, 139–146.

Mulholland P J, Best G R, Coutant C C, Hornberger G M, Meyer J L, Robinson P J, Stenberg J R, Turner R E, Vera-Herrera F and Wetzel R G, 1997 Effects of climate change on freshwater ecosystems of the south-eastern United States and the Gulf Coast of Mexico. *Hydrological Processes*, **11**, 949–970.

Murdoch P S, Baron J S and Miller T L, 2000 Potential effects of climate change on surfacewater quality in North America. *Journal of the American Water Resources Association*, **36**, 347–366.

Osborn T J, 2004 Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. *Climate Dynamics*, **22**, 605–623.

Ozaki N, Fukushima T, Harasawa H, Kojiri T, Kawashima K and Ono M, 2003 Statistical analyses on the effects of air temperature fluctuations on river water qualities. *Hydrological Processes*, **17**, 2837–2853.

Parker D E, Legg T P and Folland C K, 1992 A new daily Central England temperature series, 1772–1991. *International Journal of Climatology*, **12**, 317–342.

Pilgrim J M, Fang X and Stefan H G, 1998 Stream temperature correlations with air temperature in Minnesota: implications for climatic warming. *Journal of the American Water Resources Association*, **34**, 1109–1121.

Preece R M and Jones H A, 2002 The effect of Keepit Dam on the temperature regime of the Namoi River, Australia. *River Research and Applications*, **18**, 397–414.

Rasmussen A H, Hondzo M and Stefan H G, 1995 Test of several evaporation equations for water temperature simulations in lakes. *Water Resources Bulletin*, **31**, 1023–1028.

Robinson M, Boardman J, Evans R, Heppell K, Packman J and Leeks G, 2000 Land use change. In: *The Hydrology of the UK: A Study of Change*, edited by M Acreman, 30–54. London: Routledge.

Rouse W R, Douglas M S V, Hecky R E, Hershey A E, Kling G W, Lesack L, Marsh P, Mcdonald M, Nicholson B J, Roulet N T and Smol J P, 1997 Effects of climate change on the freshwaters of Arctic and Subarctic North America. *Hydrological Processes*, **11**, 873–902.

Salmaso N, Morello R, Garibaldi L, Decet F, Brizzio M C and Cordella P, 2003 Vertical mixing as a determinant of trophic status in deep lakes: a case study of two lakes south of the Alps (Lake Garda and Lake Iseo). *Journal of Limnology*, **62**, 33–41.

Sinokrot B A and Stefan H G, 1993 Stream temperature dynamics: measurements and modelling. *Water Resources Research*, **29**, 2299–2312.

Sinokrot B A and Stefan H G, 1994 Stream water temperature sensitivity to weather and bed parameters. *ASCE, Journal of Hydraulic Engineering*, **120**, 722–736.

Smith K, 1981 The prediction of river water temperatures. *Hydrological Sciences – Bulletin des Sciences Hydrologiques*, **26**, 19–32.

Solomon D J, 2005 *Anthropogenic Influences on the Temperature Regime in a Chalk River*. Environment Agency Science Report. 48 pp.

Solomon D J and Sambrook H T, 2004 Effects of hot dry summers on the loss of Atlantic salmon, Salmo salar, from estuaries in South West England. *Fisheries Management and Ecology*, **11**, 353–363.

Stefan H G and Preud'homme E B, 1993 Stream temperature estimation from air temperature. *Water Resources Bulletin*, **29**, 27–45.

Stevens J, 1996 *Applied Multivariate Statistics for the Social Sciences* (3rd edition). Mahway, NJ: Lawrence Erlbaum.

Turnpenny A, Coughlan K and Liney K, 2006 *Review of Temperature and Dissolved Oxygen Effects on Fish in Transitional Waters*. Jacobs Babtie. 89 pp.

Ward J V, 1985 Thermal characteristics of running waters. Hydrobiologia, 125, 31-46.

Webb B W, 1996 Trends in stream and river temperature. *Hydrological Processes*, **10**, 205–226.

Webb B W and Crisp D T, 2006 Afforestation and stream temperature in a temperate maritime environment. *Hydrological Processes*, **20**, 51–66.

Webb B W and Nobilis F, 1994 Water temperature behaviour in the River Danube during the twentieth century. *Hydrobiologia*, **291**, 105–113.

Webb B W and Nobilis F, 1997 A long-term perspective on the nature of the air–water temperature relationship: a case study. *Hydrological Processes*, **11**, 137–147.

Webb B W and Nobilis F, 2007 Long-term changes in river temperature and the influence of climatic and hydrological factors. *Hydrological Sciences*, **52**, 74–85.

Webb B W and Walling D E, 1988 Modification of temperature behaviour through regulation of a British river system. *Regulated Rivers: Research and Management*, **2**, 103–116.

Webb B W and Walling D E, 1993a Longer-term water temperature behaviour in an upland stream. *Hydrological Processes*, **7**, 19–32.

Webb B W and Walling D E, 1993b Temporal variability in the impact of river regulation on thermal regime and some biological implications. *Freshwater Biology*, **29**, 167–182.

Webb B W and Walling D E, 1996 Long-term variability in the thermal impact of river impoundment and regulation. *Applied Geography*, **16**, 211–227.

Webb B W and Walling D E, 1997 Complex summer water temperature behaviour below a UK regulating reservoir. *Regulated Rivers: Research and Management*, **13**, 463–477.

Webb B W and Walsh A J, 2004 Changing UK river temperatures and their impact on fish populations. *Hydrology: Science and Practice for the 21st Century*. Volume II 177–191.

Webb B W and Zhang Y, 1997 Spatial and seasonal variability in the components of the river heat budget. *Hydrological Processes*, **11**, 79–101.

Webb B W and Zhang Y, 1999 Water temperatures and heat budgets in Dorset chalk water courses. *Hydrological Processes*, **13**, 309–321.

Webb B W, Clack P D and Walling D E, 2003 Water–air temperature relationships in a Devon river system and the role of flow. *Hydrological Processes*, **17**, 3069–3084.

Wright S A, Holly, F M Jr, Bradley A A and Krajewski W, 1999 Long-term simulation of thermal regime of Missouri River. *ASCE, Journal of Hydraulic Engineering*, **125**, 242–252.

Xu Z X, Chen Y N and Li J Y, 2004 Impact of climate change on water resources in the Tarim River Basin. *Water Resources Management – Dordrecht*, **18**, 439–458.

List of abbreviations

Appendix A

Pro forma for data collection

TEMPERATURE I	RECORD PRO FORMA
A. General information	
Region name	River/lake name
Site name	Grid reference
Contact details (name, phone, email)	
B. Sample information	
Sampling frequency	Length of record (dates)
Is the record continuous? If not, where do	gaps of > 1 month exist?
Has any Quality Assurance been done?	
Reason for data collection	
Other data recorded at site	
C. Data availability	
Storage medium (electronic/paper) and for	mat. Please provide a sample if possible.
Storage location (central database, local h	ard drive etc)
Is the dataset easily accessible? If not, ple	ase indicate why.
Are the data in the public domain or is ther	e a cost? Please indicate any likely costs
D. Information to be completed for lakes	s only
Sampling depth	

List of river and lake water temperature monitoring sites Appendix B

Data source	Region	Site name	Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage location	Accessibility	Cost
EA Twerton	Anglian	3479 sites	Included	AN	Varies	1981–2005	Varies	Yes – MIDAS	Multiple	Electronic – Oracle downloaded as Access	Twerton	Good	None
Anglian Water Services Ltd	Anglian	Approx 3 sites	Unknown	Unknown	Weekly	Very long	Yes	Unknown	Water company monitoring	Excel or other MS Office	Anglian Water	Good	Unknown
Anglian Lake	lke												
Data source	Region	Site name	Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage location Accessibility	Accessibility	Cost
EA Twerton	Anglian	263 sites	Included	Unknown	Varies	1981–2005	Varies	Yes – MIDAS	Multiple	Electronic – Oracle	Twerton	Good	None

0.051	None
Accessionity	Good
SIOLAGE IOCALIOI	Twerton
Storage meaning Storage location Accessioning Cost	Electronic – Oracle downloaded as Access
rurpose	Multiple
	Yes – MIDAS Multiple
continuous record?	Varies
record	1981–2005
frequency	Varies
amping deput admining (m) frequency	Unknown
	Included

Anglian River

EA Twerton Midlands EA Midlands EA Midlands EA Midlands	lds 3334 sites	וחמו	1	frequency)			-			f illencopper	
Midlan Midlan Midlan Midlan		וומממת	NA	Varies	1987–2005	Varies	Yes – MIDAS	Multiple	Electronic – Oracle downloaded to us as Access	Twerton	Good	None
Midlan Midlan Midlan	lds Severn – Abermule	SO16469579	NA	Daily means	1975-present	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel	National Fisheries Technical Team	Good	None
Midlan Midlan	ids Severn – Bewdley	SO78157622	AN	Daily means	1975-present	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel	National Fisheries Technical Team	Good	None
Midlan	lds Teme – Bransford	SO80385324	AN	Daily means	1975-present	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel	National Fisheries Technical Team	Good	None
	lds Clywedog – Bryntail	SN91368678	AN	Daily means	1989-present	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel	National Fisheries Technical Team	Good	None
Midlands	lds Avon – Evesham	am SP04014376	NA	Daily means	1975-present	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel	National Fisheries Technical Team	Good	None
Midlands	lds Vyrnwy – Meifod	od SJ15631292	NA	Daily means	1975-present	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel		Good	None
Midlands	lds Severn – Montford	SJ41191445	NA	Daily means	1975–2002	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel	National Fisheries Technical Team	Good	None
Midlands	lds Severn – Saxon's Lode	n's SO86333905	NA	Daily means	1975-present	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel	National Fisheries Technical Team	Good	None
Midlands	Ids Severn – Shelton (not in use since 1988)	ton SJ48881273 Se	AN	Daily means	1975–1988	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel	National Fisheries Technical Team	Good	None
Midlands	lds Severn – Welsh Bridge	.h SJ48881273	NA	Daily means	1989-present	No – small gaps due to breakdown	Unknown	Fisheries	Electronic – Excel	National Fisheries Technical Team	Good	None
ECN website Midlands	ids Bradgate Brook	k 452200 3099	NA	Weekly	1988–2003	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£150 to extract all
bsite	ids Lathkill	422000 364700	NA	Weekly	1987–2003	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£150 to extract all
	lds Coal Brook – Market Drayton		NA	15 min	15/10/2002– 08/2006	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
LOCAR Midlands	Tern –		NA	15 min	19/10/2002– 08/2006	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
Midlands			NA	15 min	09/10/2002- 08/2006	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
Midlands			NA	15 min	15/10/2002– 08/2006	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
			NA	15 min	16/10/2002– 08/2006	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
LOCAR Midlands		362800 331500	А	15 min	19/10/2002– 08/2006	Yes	0 Z	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
s Lak			:	:		:		1	:			
0		Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage location	Accessibility	Cost
EA Twerton Midlands	rds 78 sites	Included	Unknown	Varies	1999–2005	Varies	Yes – MIDAS	Multiple	Electronic – Oracle downloaded to us	Twerton	Good	None

Cost	None	
Accessibility	Good	
Storage location	Twerton	
Storage medium	Electronic – Oracle downloaded to us as Access	
Purpose	Multiple	
QA/QC	Yes – MIDAS	
Continuous record?	Varies	
Length of record	1999–2005	
Sampling frequency	Varies	
Sampling depth (m)	Unknown	
Grid ref	Included	

Midlands River

Data source	Region	Site name	Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage location	Accessibility	Cost
EA Twerton	North East	3652 sites	Included	NA	Varies	1965–2005	Varies	Yes – MIDAS	Multiple	Electronic – Oracle downloaded to us as Access	Twerton	Good	None
EA Northumbria	North East	River Tyne – Ugly Dub, Bywell, Haydon Bridge	NA	AA	Daily mean	1993–present	Unknown	Unknown	Monitoring	pdfs	EA Northumbria	Good	None
EA	North East	River Tees – Tees Barrage	NZ 463190	NA	Hourly	1995-present	Some gaps due to logger failure	No	Water temp/fish arowth studv	Excel	Local and central database	Reasonable	None
EA	North East	River Tees – Yarm	NZ 417132	NA	Hourly	1995-present	Some gaps due to lodger failure	No	Water temp/fish growth study	Excel	Local and central database	Reasonable	None
EA	North East	River Tees – Low Worsall	NZ 392103	NA	Hourly	1995-present	Some gaps due to lodger failure	No	Water temp/fish growth study	Excel	Local and central database	Reasonable	None
EA	North East	River Tees – Low Moor	NZ 365105	NA	Hourly	1995-present	Some gaps due to lodger failure	No	Water temp/fish arowth study	Excel	Local and central database	Good	None
EA	North East	River Tees – Croft	NZ 290098	NA	Hourly	1995-present	Some gaps due to lodder failure	No	Water temp/fish arowth study	Excel	Local and central database	Reasonable	None
EA	North East	River Tees – Barnard Castle	NZ 045167	NA	Hourly	1995-present	Some gaps due to logger failure	No	Water temp/fish growth study	Excel	Local and central database	Good	None
EA	North East	River Tees – Middleton In Teesdale	NY 948251	AA	Hourly	1995-present	Some gaps due to logger failure	No	Water temp/fish growth study	Excel	Local and central database	Good	None
EA	North East	River Humber – Corporation Pier	TA 100 282	ΨN	30 mins	19/12/1991– present	13/09/1994– 23/07/1995 and 17/8/2000– 19/9/2000	Yes	Monitoring oxygen sag	Electronic – WISKI	WISKI	Good	None
EA	North East	River Ouse – Cawood Bridge	SE 574 378	ΨN	30 mins	06/07/1992– present	15/12/1994– 12/2/1995 and 25/10/2001– 11/01/2002	Yes	Monitoring oxygen sag	Electronic – WISKI	WISKI	Good	None
EA	North East	River Humber – Blacktoft Jetty	SE 843 242	NA	30 mins	10/09/1991– present		Yes	Monitoring oxygen sag	Electronic – WISKI	WISKI	Good	None
EA	North East	River Tyne – Swing Bridge	NZ 25228 63717	ΨN	30 mins	1995-present	14/11/1997– 18/5/1998 and 2/10/1998– 1/4/1999	Yes	Monitoring oxygen sag	Electronic – WISKI	WISKI	Good	None
ECN website	North East	Coquet	4236 6050	NA	Weekly	1992–2005	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£150 to extract all
ECN website	North East	Esk	48685 50816	NA	Weekly	1994–2005	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£150 to extract all
ECN website	North East	Trout Beck	3758 5335	NA	Continuous hourly	1997–2004	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£250 + VAT
CEH (UKEDI)	North East	Tees	3 sites	NA	Sampling frequency unknown	1991–1998	Unknown	Unknown	Effect of barrage on coarse fish	Excel	Hard disk CEH Dorset	Raw data not accessible	Unknown
CEH Land Ocean Interaction Study (LOIS)	North East	Hundreds of sites, Humber Basin	NA	AN	15 min to monthly	1980s onwards	No – random intervals	QC'd	FOIS	Central Oracle database	CEH Wallingford	Visit required	Possible charge for staff time
North East Lake	Lake												
Data source	Region	Site name	Grid ref	Sampling depth (m)	th Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage location	Accessibility	Cost

Grid ref	Sampling depth Sampling (m) frequency	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage medium Storage location Accessibility Cost	Accessibility	Cost
Included	Unknown	Varies	1979–2005	Varies	Yes – MIDAS Multiple	Multiple	Electronic – Oracle downloaded to us as Access	Twerton o us	Good	None

33 sites

North East

EA Twerton

North East River

Cost	None	None	None	None	None	None	£150 to extract all	Not available yet	Not available yet	Not available yet	Not available yet	Not available yet
Accessibility	Good	Good	Yes	Good	Good	Good	3 weeks	Not available yet	Not available yet	Not available yet	Not available yet	Not available yet
Storage location	Twerton	Local hard drive	Local external drive	WISKI	WISKI	WISKI	CEH Lancaster	Database	Database	Database	Database	Database
Storage medium	Electronic – Oracle downloaded to us as Access	Excel	Mostly electronic excel	Electronic – WISKI	Electronic – WISKI	Electronic – WISKI	Central Oracle database	Electronic csv	Electronic csv	Electronic csv	Electronic csv	Electronic csv
Purpose	Multiple	Not known	Fish movement	Water quality	Water quality	Water quality	Monitoring	CHASM	CHASM	CHASM	CHASM	CHASM
QA/QC	Yes – MIDAS	Not known	Probe calibrated every 3–6 months	Not for temp. – poor condition	Not for temp. – poor condition	Not for temp. – poor condition	Yes	No	No	No	No	No
Continuous record?	Varies	No	Some gaps > 1 month (2000 and 2004)	Some gaps	Some gaps	Some gaps	No – 2001 missing	Yes apart from equipment failure	Yes apart from equipment failure			
Length of record	1960–2005	Feb 80–Dec 99 (may be available after this date)	1999–present	15/11/1989– 26/11/2004	20/11/1994- 09/11/2004	07/01/1992 onwards	1995–2005	Not in use yet	Data not yet available	Data not yet available	Not in use yet	Not in use yet
Sampling frequency	Varies	Variable	Hourly	15-minute	15-minute	15-minute	Weekly	15 min	15 min	15 min	15 min	15 min
Sampling depth (m)	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA
Grid ref	Included	SD 5815 6971	SD 51342 64716	SD 13100 97770	SD 19560 89570	SJ 6283 8835	3604 5282	371400 501100	375300 513000	369900 576600	375400 513100	368200 520300
Site name	3073 sites	River Lune – Lyon Bridge	River Lune – Forge Weir	River Esk – Cropple How	River Duddon – Duddon Hall	River Mersey – Westy	Eden	Eden – Artlegarth Beck, Gais Gil	Eden – Smithfield farm	Eden – The Flothers	Eden – Blind Beck, G. Musgrave	Eden – Appleby
Region	North West	North West	North West	North West	North West	North West	North West	North West	North West	North West	North West	North West
Data source	EA Twerton	EA	EA	EA	EA	EA	ECN website	CHASM	CHASM	CHASM	CHASM	CHASM

Region	Site name	Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QAQC	Purpose	Storage medium	Storage location	Accessibility	Cost
North West	190 sites	Included	Unknown	Varies	1978–2005	Varies	Yes – MIDAS	Multiple	Electronic – Oracle downloaded to us as Access	Twerton	Good	None
North West	Bassenthwaite	NY 21304 29604	2	Hourly	1994–2005 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None
North West	Brotherswater	NY 40234 12571	£-	Hourly	2002–2005 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None
North West	Buttermere	NY 18500 15000	4-	Hourly	1997–2003 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None
North West	Elterwater	NY 32969 04186	2	Hourly	1994–2005 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None
North West	Ennerdale	NY 12331 14451	4-	Hourly	1997–2005 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None
North West	Grasmere	NY 33619 06671	2	Hourly	1994–2005 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None
North West	Loweswater	NY 12687 21616	2	Hourly	1996–2005 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None
North West	Ullswater North Basin	NY 44431 20458	2	Hourly	1997–2005 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None

eΓ
Š
st R
ζê,
<u>ح</u>
To
ž

North West Lake

Data source	Region	Site name	Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage location	Accessibility	Cost
EA Warrington	North West	Ullswater South Basin	NY 38987 17544	2	Hourly	1997–2005 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None
EA Warrington	North West	Coniston	SD 30807 95940	-	Hourly	2002–2005 (ongoing)	No – some months missing	No – not calibrated for temp	Monitoring	Electronic – Excel	EA Warrington	Good	None
ECN website	North West	Esthwaite	3360 4972	Unknown	Fortnightly	1994–2004	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£250 + VAT
ECN website	North West	Scoat Tarn	3159 5104	Unknown	Fortnightly	1989–1999	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£150 to extract all
ECN website	North West	Windermere North and South	3382 5007	Unknown	Fortnightly	1994–2004	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£500 + VAT
CEH (UKEDI)	North West	Windermere	Unknown	Unknown	Daily	1985 onwards	Unknown	Unknown	Background environmental data	Unknown	Unknown	Raw data not accessible	Unknown
CEH (UKEDI)	North West	Bassenthwaite, Derwent, Blelham Tarn, Esthwaite, Grasmere	Unknown	Unknown	Fortnightly	1990 onwards	Unknown	Unknown	Routine lakes monitoring	Oracle	Hard disk CEH Lancaster	Raw data accessible	Unknown
CEH (UKEDI)	North West	Windermere	Unknown	Unknown	Monthly	1992–1998	Unknown	Unknown	Survey of cladophora in Windermere	Excel	Julie Parker network drive	Raw data not accessible	Unknown
CEH (UKEDI)	North West	Esthwaite	Unknown	Unknown	15-min	1992–1998	Unknown	Unknown	Study of Esthwaite Water	Unknown	Unknown	Raw data not accessible	Unknown
CEH (UKEDI)	North West	Windermere – Wray Castle and Back Bav	Unknown	Unknown	Daily	1930–1933	Unknown	Unknown	Study of Windermere	Unknown	Unknown	Raw data not accessible	Unknown
FBA	North West	Windermere – Wrays Castle and Ferry House	Unknown	Unknown	Daily/working days	1933 onwards (2 sites overlap, continuous record with both)	Yes	Yes – some already published	Monitoring	Excel	FBA Cumbria	Legal agreement not in place but theoretically possible	Likely but cost unknown
СЕН	North West	Windermere North and South Basins, Esthwaite Water, Blelham Tarn	Unknown	Profiles	Weekly or fortnightly	1947 onwards	Generally OK	Unknown	Cumbrian Lakes monitoring	Unknown	Unknown	Unknown	Unknown
CEH	North West	Grasmere	Unknown	Profiles	Weekly or fortnightly	1969 onwards	Generally OK	Unknown	Cumbrian Lakes monitoring	Unknown	Unknown	Unknown	Unknown
СЕН	North West	Derwent Water, Bassenthwaite Lake	Unknown	Profiles	Weekly or fortnightly	July 1990 onwards	Generally OK	Unknown	Cumbrian Lakes monitoring	Unknown	Unknown	Unknown	Unknown
СЕН	North West	Windermere Back Bay (Mitchell Wyke)	Unknown	Surface	Daily	1933 onwards	Gaps especially at weekends/holidays	Unknown	Cumbrian Lakes monitoring	Unknown	Unknown	Unknown	Unknown
CEH	North West	Esthwaite	Unknown	Surface	15-min	November 1992 onwards	Generally OK	Unknown	Cumbrian Lakes monitoring	Unknown	Unknown	Unknown	Unknown
University Colege London (UCL), Environmental Change Research Centre (ECRC), Acid Waters Monitoring	Various, upland	Approx. 10 lakes	Unknown		1 2-hourly	7-yrs	Unknown	Unknown	Acid Waters Monitoring Network	Access	ncr	Reasonable	Yes, but cost unknown

			extract	£150 to extract all	Ŋ
Cost	None	None	£150 to extract all	£150 to all	Unknown
Accessibility	Good	Good	3 weeks	3 weeks	Raw data not accessible
Storage location	Twerton	EA Kent water quality teams	CEH Lancaster	CEH Lancaster	Unknown
Storage medium Storage location Accessibility	Electronic – Oracle downloaded to us as Access	Electronic	Central Oracle database	Central Oracle database	Unknown
Purpose	Multiple	Monitoring	Monitoring	Monitoring	Ecological study of chalk streams
QA/QC	Yes – MIDAS	Unknown	Yes	Yes	Unknown
Continuous record?	Varies	Unknown	Yes	Yes	Unknown
Length of record	1974–2005	Varies but some back to 1976	1998–2005	1988–2003	03/1979– 03/1980
Sampling frequency	Varies	Mostly monthly	Weekly	Weekly	Variable
Sampling depth (m)	NA	NA	NA	NA	NA
Grid ref	Included	NA	5520 1438	5457 1294	Unknown
Site name	1305 sites	100s of sites	Eden	Old Lodge	Rivers Test, Itchen and Meon
Region	Southern	Southern	Southern	Southern	Southern
Data source	EA Twerton	EA Kent	ECN website	ECN website	CEH (UKEDI)

Cost	None
Accessibility Cost	Good
Storage location	Twerton
Storage medium	Electronic – Oracle downloaded to us as Access
Purpose	Multiple
QA/QC	Yes – MIDAS
Continuous record?	Varies
Length of record	1982–2005
Sampling frequency	Varies
Sampling depth (m)	Unknown
Grid ref	Included
Site name	22 sites
Region	Southern
Data source	EA Twerton

Southern River

Southern Lake

		extract	extract	equires	equires ion	equires on	equires on	equires on	equires on	equires	equires	equires on	equires ion	equires on	Ę	Ē	E	Ę	Ę		Ę							
Cost	None	£150 to extract all	£150 to extract all	No but requires permission	No but requires permission	No but requires permission	No but requires permission	No but requires permission	No but requires permission	No but requires permission	No but requires permission	No but requires permission	No but requires permission	No but requires permission	Unknown	Unknown	Unknown	Unknown	Unknown	N/A	Unknown	None	None	None	None	None	None	None
Accessibility	Good	3 weeks	3 weeks	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Raw data not accessible	Raw data accessible	Raw data not accessible	Raw data accessible	Raw data not accessible	Will not pass onto third parties	Unknown	Good	Good	Good	Good	Good	Good	Good
Storage location	Twerton	CEH Lancaster	CEH Lancaster	CEH Wallingford	CEH Wallingford	CEH Wallingford	CEH Wallingford	CEH Wallingford	CEH Wallingford	CEH Wallingford	CEH Wallingford	CEH Wallingford	CEH Wallingford	CEH Wallingford	Hard disk CEH Dorset	Network Drive CEH Dorset	Unknown	Hard disk CEH Dorset	Unknown	Exeter	Unknown	WISKI	WISKI	WISKI	WISKI	WISKI	WISKI	WISKI
Storage medium	Electronic – Oracle downloaded to us as Access	Central Oracle database	Central Oracle database	Oracle csv	Oracle csv	Oracle csv	Oracle csv	Oracle csv	Oracle csv	Oracle csv	Oracle csv	Oracle csv	Oracle csv	Oracle csv	Access/Excel	Excel	Unknown	Excel	Unknown	Electronic	Unknown	Electronic	Electronic	Electronic	Electronic	Electronic	Electronic	Electronic
Purpose	Multiple	Monitoring	Monitoring	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	Grayling population study	Chemical samoling	River Frome environmental data	River Frome salmon counter	Ecological recovery of Gussade Stream	Research	Water company monitoring	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
QA/QC	Yes – MIDAS	Yes	Yes	No	No	No	No	No	No	No	No	No	No	No	Unknown	Unknown	Unknown	Unknown	Unknown	Not all	Checked by Environment Agency	No	No	No	No	Unknown	Unknown	Unknown
Continuous record?	Varies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Unknown	Unknown	Unknown	Unknown	Unknown	No	Unknown	Unknown	Unknown	Unknown	Unknown	Some gaps (missing months)	Occasional missing months	Occasional missing months
Length of record	1965-2005	1994–2005	1994–2005	13/11/2002- 09/2006	01/10/2002– 09/2006	23/11/2002– 09/2006	30/08/2002– 09/2006	02/10/2002– 09/2006	03/02/2003- 09/2006	30/10/2003– 09/2006	23/11/2002– 09/2006	31/10/2002– 09/2006	23/12/2002– 09/2006	05/03/2003- 09/2006	10/1996 onwards	1991–1997	1973–1989	1995-present	1973–1976	1976/1977 onwards	2004–present	13/02/2004– present	18/05/2004– present	24/03/2004– present	24/05/2000– present	20/04/1999– present	08/01/1986- present	09/01/1986– present
Sampling frequency	Varies	Weekly	Weekly	15 minutes	15 minutes	15 minutes	15 minutes	15 minutes	15 minutes	15 minutes	15 minutes	15 minutes	15 minutes	15 minutes	Annually	Weekly	Daily max and min	15 minutes	Variable, not frequent	15 minutes to hourly	15 minutes	15 minutes	15 minutes	15 minutes	15 minutes	Approx monthly	Variable (every 3 days to monthly)	Variable (weekly to monthly)
Sampling depth (m)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Grid ref	Included	2936 1016	3891 8670	385575, 092975	384175, 087800	377800, 098500	386725, 086850	370850, 090475	359050, 099125	391325, 087600	382125, 093450	371850, 096450	363225, 099900	359475, 097600	Unknown	Unknown	Unknown	Unknown	Unknown	NA	Unknown	SU 151413	SU 158144	Unknown	Unknown	SX4380061000	SX4349372436	SX4750065038
Site name	5706 sites	Exe	Frome	Bere Stream – Snatford Bridge	Bovington Stream – Blindmans Wood	Devils Brook – Dewlish village	Frome – East Stoke	Frome – Loudsmill	Frome – Chilfrome	Piddle – Baggs Mill	Piddle – Briantspuddle	Piddle – Little Puddle	Sydling Water – Sydling St. Nicholas	Hooke – Maiden Newton	River Wylye	Mill Stream	East Stoke Flume, River Frome	River Frome, East Stoke	Gussage Stream	17 tributaries	Knapp Mill	Hampshire Avon – Amesbury	Hampshire Avon – East Mills	River Stour – Hammoon	River Stour – Throop	River Tamar shellfish	Rlver Tamar – Gunnislake Bridge	River Tavy- Lopwell Dam
Region	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West	South West
Data source	EA Twerton	ECN website	ECN website	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	LOCAR	CEH (UKEDI)	CEH (UKEDI)	CEH (UKEDI)	CEH (UKEDI)	CEH (UKEDI)	University of Exeter	Bournemouth and West Hants Water	EA	EA	EA	EA	EA	EA	EA

South West River

Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage location	Accessibility Cost	Cost
SU15871430	NA	15 minutes	18/05/04– present	Gaps	Yes	Fisheries	Electronic	WISKI	Good	None
SZ11309580	NA	15 minutes	24/05/00– present	Gaps	Yes	Fisheries	Electronic	WISKI	Good	None

Data source	Region	Site name	Grid
EA	South West	Hampshire Avon	SU1
		 East Mills 	
EA	South West	River Stour –	SZ1
		Throop	

South West Lake

Thames River	iver												
Data source	Region	Site name	Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage location	Accessibility	Cost
EA Twerton	Thames	2086 sites	Included	NA	Varies	1972–2005	Varies	Yes – MIDAS	Multiple	Electronic – Oracle	Twerton	Good	None
EA Thames	Thames	70 sites, Thames and tribs (Tideway Information Management System)	AN	NA	15 mins-1 hour	10 + years back	Some downtimes	No – raw data, health warning!	Monitoring	Excel	Reading	Good	None
EA	Thames	River Thames – Teddington	TQ 1670 7150	AN	Up to 24 hourly readings per day (automatic)	June 86-Dec 2000 (may be available after this date)	OctDec 1986; AprMay 1988; Jan-Dec 1991; Apr 1992; Feb May 1995; Aug Dec 2000	Not known	Not known	Excel	Local hard drive	Good	None
ECN website	Thames	Coln	4204 1988	NA	Weekly	1998–2005	No – 2001 missing	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£150 to extract all
ECN website	Thames	Lambourn	4453 1691	NA	Weekly	1998–2005	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£150 to extract all
LOCAR	Thames	Lambourn – East Shefford	438950, 174550	NA	15 min	03/08/2003	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
LOCAR	Thames	Lambourn – Shaw	447000, 168200	NA	15 min	04/11/2003	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
LOCAR	Thames	Pang – Bucklebury	455300, 171000	NA	15 min	30/10/2002– 31/08/2006	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
LOCAR	Thames	Pang – Frilsham (Parsonage)	453750, 173000	NA	15 min	14/10/2002	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
LOCAR	Thames	Pang – Tidmarsh Mill	463600, 174775	NA	15 min	30/10/2002	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
LOCAR	Thames	Pang – below Blue Pool	458675, 171850	NA	15 min	03/08/2003 29/08/2006	Yes	No	LOCAR	Oracle csv	CEH Wallingford	Good	No but requires permission
CEH (UKEDI)	Thames	Lambourn	Unknown	NA	Monthly	03/1994-03/1997	Unknown	Unknown	Ecological study of chalk streams	Unknown	Unknown	Raw data not accessible	Unknown
CEH (UKEDI)	Thames	Coln	Unknown	NA	Monthly	03/1978-03/1979	Unknown	Unknown	Ecological study of chalk streams	Unknown	Unknown	Raw data not accessible	Unknown
Thomas													

Cost	None
Accessibility	Good
Storage medium Storage location Accessibility Cost	Twerton us
Storage medium	Electronic – Oracle downloaded to us as Access
Purpose	Multiple
QA/QC	Yes – MIDAS Multiple
Continuous record?	Varies
Length of record	1979–2005
Sampling frequency	Varies
Sampling depth (m)	Unknown
Grid ref	Included
Site name	106 sites
Region	Thames
Data source	EA Twerton

Thames Lake

Data source	Region	Site name	Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage location	Accessibility	Cost
EA Twerton	Wales	1436 sites	Included	NA	Varies	1962–2005	Varies	Yes – MIDAS	Multiple	Electronic – Oracle downloaded to us as Access		Good	None
ECN website	Wales	Wye	3536 2099	NA	Weekly	1994–2005	Yes	Yes	Monitoring	Central Oracle database	CEH Lancaster	3 weeks	£150 to extract all
CEH (UKEDI)	Wales	Afon Hore, Afon Haffren, Afon Cwm	Unknown	AN	Sampling frequency unknown	Dates unknown	Unknown	Unknown	Afon Cwm fish counter	Excel	Hard disk CEH Dorset	Raw data not accessible	Unknown
CHASM	Wales	Severn – Dulas at Cenarth Mill	29755 27767	AN	15 min	14/03/2003– present	Yes apart from equipment failure	N	CHASM	Electronic csv	Database	Good	Permission required, possible charge
CHASM	Wales	Severn – Dulas – Nant Waun-fach	29660 27790	NA	15 min	14/03/2003– present	Yes apart from equipment failure	N	CHASM	Electronic csv	Database	Good	Permission required, possible charge
CHASM	Wales	Severn – Dulas – Nant y Saeson	29490 27685	NA	15 min	14/03/2005– present	Yes apart from equipment failure	N	CHASM	Electronic csv	Database	Good	Permission required, possible charge
CHASM	Wales	Severn – Lower Hafren	28430 28780	AA	15 min	8/3/05-28/9/05	Yes apart from equipment failure	N	CHASM	Electronic csv	Database	Good	Permission required, possible charge
CHASM	Wales	Severn – Tanllwyth	28400 28770	AN	15 min	8/3/05-28/9/05	Yes apart from equipment failure	Q	CHASM	Electronic csv	Database	Good	Permission required, possible charge
CHASM	Wales	Severn – Upper Hafren	28280 28930	NA	15 min	8/3/05-10/8/05	Yes apart from equipment failure	N	CHASM	Electronic csv	Database	Good	Permission required, possible charge
EA	Wales	River Tryweryn downstream Llyn Celyn (Dee)	SH 880 399	AA	Daily max/min (continuous chart) 1979–2000	Jul 1979–Jan 2000	Apr 1990–June 1995 – gaps > 1 month	Checked 2003 onwards	Post-regulation monitoring programme	Excel	Local hard drive	Good	None
EA	Wales	River Tryweryn downstream Llyn Celvn (Dee)	SH 880 399	AN	15-min readings (automatic) 2003-present	Oct 2003– present	Apr 1990–June 1995 – gaps > 1 month	Checked 2003 onwards	Post-regulation monitoring programme	Excel	Local hard drive	Good	None
EA	Wales	River Dee – Bala sluices	SH 936 356	AN	Daily max/min (continuous chart)	1990-2000	1990–2000	Checked 2003 onwards	Post-regulation monitoring programme	Excel	Local hard drive	Good	None
EA	Wales	River Dee – Bala sluices	SH 936 356	NA	15-min readings (automatic)		2003-present	Checked 2003 onwards	Post-regulation monitoring programme	Excel	Local hard drive	Good	None
EA	Wales	River Dee – Manley Hall	SJ 3481 4146	NA	Daily max/min (continuous chart) 1965–1999	2003-present	Feb–May 2005 – gaps > 1 month	Checked 2002 onwards	Post-regulation monitoring programme	Excel	Local hard drive	Good	None
EA	Wales	River Dee – Manley Hall	SJ 3481 4146	AN	15-min readings (automatic) 2002–present	June 2002– present	Feb–May 2005 – gaps > 1 month	Checked 2002 onwards	Post-regulation monitoring programme	Excel	Local hard drive	Good	None
EA	Wales	River Wye – Redbrook	SO 5286 1108	AA	Daily 9am	Jan 96–Dec 2000 (may be data available after this date)	Oct–Nov 2000 – gaps > 1 month	Some checking for spurious readings	Not known	Excel	Local hard drive	Good	None
EA	Wales	River Taff – Blackweir	ST17060 78053	АА	30 min – hourly	1993–present	1996 monthly means only, 1997 missing Aug–Dec	Some cross checking	Cardiff Bay fisheries monitoring project	Electronic – Excel	Local G drive	Good	None
EA	Wales	Wye – Belmont	SO 48500 38799	NA	15-minute	14/01/1997– present	Oct-Dec 1997	Up to 2000	Unknown	Electronic	WISKI	Good	None
EA	Wales	Usk – Trallong	SN 94726 29547	NA	15-minute	June 2004– present	Yes	No	Unknown	Electronic	WISKI	Good but not in public domain	None
EA	Wales	Wye – Llandewi	SO 10458 68284	NA	15-minute	Nov 2001-date	Jan–May 2004	No	Unknown	Electronic	WISKI	Good but not in public domain	None
EA	Wales	Wye – Redbrook	SO 52769 11077	NA	15-minute	Jan 1993– present	June-October 1993, May- September 1995	Up to 2001	Unknown	Electronic	WISKI	Good	None
EA	Wales	Wye – Erwood	SO 07580 44490	NA	15-minute	June 1993–Sept 1995	October 2000– July 2001	Up to 2001	Unknown	Electronic	WISKI	Good but not in public domain	None
EA	Wales	Tywi – Capel Dewi, Felin Mynachdy, Manoravon, Dolauhirion, Vetradfin	Various	NA	15-minute	01/06/1997- present	Yes	Q	Unknown	Electronic	WISKI	Good	None
EA	Wales	Dee	SH 88077 39939	NA	15-minute	11/03date	Unknown	Some	Unknown	Electronic	Unknown	Good	None

<u> </u>
Φ
>
2
S
Φ
g
_
~
_

Data source	Region	Site name	Grid ref	Sampling	Sampling	Length of record	Continuous	QA/QC	Purpose	Storage medium	Storage	Accessibility	Cost
				depth (m)	frequency		record?				location		
EA	Wales	Dee	SH 74087 35721	NA	15-minute	11/03-date	Unknown	Some	Unknown	Electronic	Unknown	Good	None
EA	Wales	Dee	SJ 34822 41459	NA	15-minute	06/02-date	Unknown	Some	Unknown	Electronic	Unknown	Good	None
EA	Wales	Dee	SJ 41764 60023	NA	15-minute	11/03-date	Unknown	Some	Unknown	Electronic	Unknown	Good	None
EA	Wales	Dee	SJ 29046 70696	NA	15-minute	12/95-date	Unknown	Some	Unknown	Electronic	Unknown	Good	None

Data source	Region	Site name	Grid ref	Sampling depth (m)	Sampling frequency	Length of record	Continuous record?	QA/QC	Purpose	Storage medium	Storage medium Storage location Accessibility Cost	Accessibility	Cost
EA Twerton	Wales	60 sites	Included	Unknown	Varies	1978–2005	Varies	Yes – MIDAS Multiple	Multiple	Electronic – Oracle downloaded to us as Access	Twerton	Good	None
ECN website	Wales	Llyn Llagi	2648 3484	Unknown	Fortnightly	1990–2005	No – 1991–1994 and 1996–1999 missing	Yes	Monitoring	Central Oracle database	CEH Lancaster 3 weeks	3 weeks	£150 to extract all

Wales Lake

Appendix C

List of river sites analysed

Anglian Region

Site	NGR	Typolog y	Start date	End date	Missing data points
Monthly data					•
R.Stour Gt.Bradley Hall Bridge	TL675505232 8	2	15/03/198 3	05/12/200 5	94
R.Stour Gt.Wratting Ford	TL691254842 4	2	15/04/198 1	05/12/200 5	29
R.Stour Kedington GS	TL709214523 4	2	15/04/198 1	05/12/200 5	24
R.Stour Ashen Road Bridge Clare	TL768004489 9	5	22/07/198 1	07/12/200 5	82
R.Stour Ballingdon Br.	TL867174098 8	5	30/03/198 1	02/12/200 5	18
R.Stour Brundon Mill	TL865244227 5	5	22/04/198 1	02/12/200 5	91
R.Stour Bures Br.	TL906143406 2	5	15/04/198 1	02/12/200 5	24
R.Stour Flatford Mill Footbridge	TM07543333 48	5	02/09/198 1	14/12/200 5	83
R.Stour Langham Intake	TM02608345 23	5	30/03/198 1	30/11/200 5	5
R.Stour Liston Weir	TL856604499 2	5	15/04/198 1	02/12/200 5	30
R.Stour Pentlow Br.	TL810954641 0	5	15/04/198 1	07/12/200 5	24
R.Stour Pitmere Railway Bridge	TL890713691 5	5	21/07/198 1	02/12/200 5	78
R.Stour Stratford St Mary Intake	TM04225342 70	5	30/03/198 1	15/12/200 5	14
R.Stour Wixoe Wqms Intake Pier	TL708364310 2	5	30/03/198 1	15/12/200 5	7
R.Stour Cattawade Intake	TM10030330 44	0	30/03/198 1	14/12/200 5	19
R.Ouse A422 Rd.Br.Brackley	SP594273681 9	2	23/04/198 1	14/11/200 5	30
R.Ouse A5 Rd.Br.Old Stratford	SP781304096 2	5	21/05/198 1	29/11/200 5	39
R.Ouse B526	SP877874420	5	14/04/198	29/11/200	45

Site	NGR	Typolog y	Start date	End date	Missing data points
Rd.Br.Newport Pagnell	9		1	5	
R.Ouse Water Stratford Rd.Br.	SP652053406 7	5	29/11/199 4	14/11/200 5	8
R.Ouse Wqms Foxcote Intake	SP727553463 6	5	03/01/198 6	14/11/200 5	32
R.Ouse Clapham Intake	TL036005160 0	8	30/11/198 8	14/12/200 5	34
R.Ouse Kempston Mill	TL024004770 0	8	07/05/198 1	13/12/200 5	31
R.Ouse Newnham Ft.Fb.	TL063724929 4	8	12/05/198 1	13/12/200 5	38
R.Ouse Offord Intake	TL214006620 0	8	14/04/198 1	17/11/200 5	20
R.Ouse Ravenstone Mill	SP854004860 0	8	07/05/198 1	01/12/200 5	88
R.Ouse Roxton Lock	TL160005350 0	8	14/04/198 1	13/12/200 5	23
R.Ouse Sharnbrook Mill	TL011005900 0	8	14/04/198 1	01/12/200 5	30
R.Ouse St Ives Rd.Br.	TL313007120 0	8	21/04/198 1	12/12/200 5	58
R.Ouse Tyringham Bridge	SP858004650 0	8	19/07/198 4	05/12/200 5	68
R.Ouse Eaton Socon Mill	TL175005850 0	0	12/05/198 1	06/12/200 5	83
Running Waters Ruxox Bridge	TL044003640 0	1	23/06/198 1	08/12/200 5	80
Running Waters A5120 Rd.Br.Flitwick	TL029003640 0	1	23/06/198 1	08/12/200 5	133
Hundred Foot River Earith Rd.Br.	TL394007470 0	2	21/04/198 1	28/11/200 5	27
R.Thurne Martham Ferry	TG44500195 00	2	20/01/198 3	12/12/200 5	10
Whittlesey Dyke Turning Tree Bridge	TL282009560 0	3	17/11/198 1	30/11/200 5	80
Bevills Leam Chapel Bridge	TL289009410 0	3	25/06/198 1	30/11/200 5	90
R.Blackwater Langford Intake	TL836450917 9	5	30/03/198 1	01/12/200 5	10
R.Chelmer Langford Intake	TL834110862 4	5	30/03/198 1	01/12/200 5	12
Middle Level MDMullicourt Priory Sluice	TF531000290 0	6	21/04/198 1	17/11/200 5	23

Site	NGR	Typolog y	Start date	End date	Missing data points		
Forty Foot R.	TL308008810	6	14/05/198	14/12/200	47		
Forty Foot Br.Ramsey	0		1	5			
R.Nene	TL075009910	8	07/04/198	24/11/200	17		
Wansford Old Rd.Br.	0		1	5			
R.Nene Dog in	TL269999925	8	14/04/198	24/11/200	32		
a Doublet Sluice	7		1	5			
Ramsey River	TM23821316	40	02/04/198	22/11/200	26		
Parkeston	10		1	5			
Rd.Br.							
Spickets Bk.inlet	TL868060857	40	04/04/198	06/12/200	17		
to the Mere	1		4	5			
Daily data							
NB: Daily data rep this report	NB: Daily data reportedly do exist for Anglian but were not made available to Entec for						

Midlands Region

Site	NGR	Typology	Start date	End date	Gaps
Monthly data					
R.Severn at Atcham	SJ540000930 0	7	08/02/1988	08/12/2005	12
R.Severn at Bewdley	SO78750754 50	7	04/01/1988	12/12/2005	9
R.Severn at Buildwas	SJ645000440 0	7	16/02/1988	08/12/2005	16
R.Severn at Caerhowel Bridge	SO19670981 50	13	29/06/1993	29/12/2005	11
R.Severn at Cil Gwran Bridge Aberbechan	SO14500935 00	13	10/02/1988	21/12/2005	4
R.Severn at Dolwen	SN99700852 00	13	02/03/1988	22/12/2005	13
R.Severn at Llandrinio	SJ298001690 0	7	10/02/1988	01/12/2005	9
R.Severn at Llanidloes Felindre Bridge	SN94400839 01	10	02/03/1988	22/12/2005	5
R.Severn at Maginnis Bridge	SJ258901151 0	13	10/02/1988	09/12/2005	
R.Severn at	SJ432001530	7	18/02/1988	12/12/2005	9

Site	NGR	Typology	Start date	End date	Gaps
Montford Bridge	0				
R.Severn Foot Bridge Back Lane CP NTON	SO10520916 40	13	07/07/1988	09/12/2005	4
River Severn at Holt Fleet Meadows, Holt Fleet	SO82450633 50	7	04/01/1988	12/12/2005	9
R Severn (Lower) Haw Bridge	SO84550278 50	8	04/01/1988	08/12/2005	17
R Severn (Upper) Kempsey (Mid)	SO84650495 00	8	09/07/1989	05/12/2005	24
R Severn (Upper) Tewkesbury	SO88870337 20	8	12/01/1988	05/12/2005	16
R Severn – Upton on Severn	SO85160407 50	8	04/01/1988	05/12/2005	14
R Severn – Caersws	SO03200917 00	13	10/02/1988	21/12/2005	10
R Severn – rear of oil depot Bath Rd Worcester	SO85100523 20	7	20/06/1990	12/12/2005	26
R Severn – the Ironbridge at Ironbridge	SJ672500340 0	7	02/08/1993	08/12/2005	12
R Severn – Worcester Bridge	SO84650547 50	7	19/01/1988	12/12/2005	12
R Severn (Lower) Ashleworth	SO81900250 60	8	15/01/1988	08/12/2005	22
R.Strine at Crudgington	SJ630001780 0	1	25/02/1988	07/12/2005	13
Rea Brook at Horse Bridge	SJ371000590 0	1	09/02/1988	15/12/2005	22
River Erewash at Shipley Gate	SK463374544 0	2	04/12/1987	08/12/2005	12
River Erewash upstream of Milnhay STW	SK455514658 7	2	04/12/1987	08/12/2005	14
River Camlad at Gaer Bridge	SO21400999 00	4	10/02/1988	29/12/2005	45
R.Camlad at Chirbury	SO27100983 00	4	10/02/1988	29/12/2005	51
Non-tidal River Trent – Tittensor	SJ875003770 0	5	22/02/1988	21/12/2005	4

Site NGR Typology Start date End date Ga	ps
River Idle SK655909268 5 08/12/1987 16/12/2005 11	
(Maun) – at 0	
Bawtry	
Non-tidal River SK682104375 8 31/12/1987 21/12/2005 1	
Trent at 7	
Gunthorpe	
River Soar at SK492003020 8 09/02/1988 24/11/2005 9	
Red Hill Lock 0	
Afon Clywedog SN91300868 10 02/03/1988 22/12/2005 10	
– new gauging 00	
weir at	
Clywedog	
R.Severn at SN94400839 10 02/03/1988 22/12/2005 5	
Llanidloes 01	
Felindre Bridge	
River Wye at SK063967354 11 11/03/1988 19/12/2005 17	
Ashwood Park 4	
Buxton	
R.Morda at theSJ2880028101117/02/198809/12/200536	
A483 Bridge 0	
River Derwent SK359364077 13 01/03/1988 28/12/2005 26	
– intake to 0	
Little Eaton	
WTW	
River Churnet SJ982005210 13 03/03/1988 17/11/2005 7	
– Cheddleton 0	
Station	
River Wye at SK257016568 14 11/03/1988 29/12/2005 21	
Rowsley 4	
River Dove SK158004580 14 03/03/1988 30/11/2005 16	
Mayfield 0	
River Dove, SK268002700 17 02/03/1988 23/11/2005 21	
Monk's Bridge 0	
River Derwent SK452023145 17 25/02/1988 06/12/2005 18	
at Wilne 9	
Marton Drain SK841608098 40 15/12/1987 12/12/2005 46	
at A156 Bridge 0	
at Brampton	
Grange	
Dimore Brook SO79280148 40 22/01/1988 09/12/2005 53	
Elmore 10	
Daily data	
Severn SO86330390 8 01/01/1975 31/10/2006 332	2
Saxon's Lode 50	
Severn Welsh SJ488801273 7 01/01/1989 31/10/2006 337	79
Bridge 0	
Teme at SO80380532 8 01/01/1976 31/10/2006 200)1
Bransford 40	
Clywedog at SN91360867 10 07/09/2000 31/10/2006 202	2
Bryntail 80	
Avon at SP040104376 8 01/01/1978 31/10/2006 134 Evesham 0	14

Site	NGR	Typology	Start date	End date	Gaps
Vyrnwy at	SJ156301292	13	01/01/1975	31/10/2006	1349
Meifod	0				

North East Region

Site	NGR	Typology	Start date	End date	Gaps
Monthly data	a				•
North Tyne at Barrasford Intake	NY92000732 00	2	30/08/1990	29/11/2005	47
North Tyne at Bellingham	NY83400832 50	14	03/02/1981	08/12/2005	144
North Tyne at Chollerford	NY91800705 00	2	03/04/1973	12/12/2005	57
North Tyne at Tarset	NY78200856 00	14	03/04/1973	08/12/2005	39
North Tyne at Wark	NY86300770 00	14	15/01/1974	08/12/2005	109
North Tyne u/s Kielder	NY63200928 00	11	03/04/1973	28/11/2005	123
Tyne at Bywell	NZ052006200 0	2	03/04/1973	05/12/2005	56
Tyne at Hexham	NY94100646 00	2	03/04/1973	05/12/2005	60
Tyne at Ovingham	NZ084006340 0	2	13/03/1989	05/12/2005	34
Tyne at Ovingham Intake	NZ096806424 0	2	29/08/1990	24/05/2005	81
Tyne at Wylam Bridge	NZ119006460 0	2	13/03/1974	05/12/2005	43
Coquet at Warkworth Dam	NU23701060 65	1	05/04/1973	05/12/2005	40
Oak Beck at A61 road bridge	SE292005760 0	1	14/05/1974	01/12/2005	60
River Doe Lea at Renishaw	SK443007700 0	2	28/05/1974	17/11/2005	36
River Dove at Darfield (Low Valley)	SE407000380 0	2	01/04/1974	02/12/2005	76
Blyth at Bedlington Bridge	NZ266008140 0	4	05/04/1973	05/12/2005	30
Wansbeck at Sheepwash Dam	NZ257008570 0	4	05/04/1973	29/11/2005	41

Site	NGR	Typology	Start date	End date	Gaps
at	5				
Hempholme					
Lock					
Dearne at	SE498000080	5	01/04/1974	28/11/2005	25
Pastures	0				
Bridge	05550005540		00/04/4074	0.4/4.4/00.05	
River Ouse	SE558005510	8	03/04/1974	24/11/2005	30
at Nether	0				
Poppleton					
(Skelton) River Aire	SE532862555	8	30/06/1972	08/12/2005	43
at Beal	3E002002000	0	30/00/1972	00/12/2003	43
River		10	04/04/1974	01/12/2005	34
Holme at	2	10	04/04/19/4	01/12/2003	54
Queens Mill	2				
Little Don at	SK289009810	10	29/11/1974	08/11/2005	68
Deepcar	0	10	20, 11, 10, 4	00,11,2000	
River Don	SK292009810	11	05/04/1974	08/11/2005	54
at Deepcar	0			00,11,2000	01
River Don	SE273000210	11	29/11/1974	18/11/2005	71
at Oxspring	0				
Bridge	-				
River Dibb	SE040006090	12	03/04/1974	29/11/2005	52
at	0				
Hartlington					
Bridge					
Lewisburn	NY63650896	12	03/04/1973	28/11/2005	126
u/s Kielder	50				
River	SE485004370	13	03/04/1974	18/11/2005	18
Wharfe	0				
above					
Tadcaster					
Weir	0503005000		00/04/4074	00/10/0005	
River	SE072005280	13	03/04/1974	06/12/2005	39
Wharfe at	0				
Bolton					
Bridge River	SE409682581	14	04/04/1974	30/11/2005	28
Calder at	SE409082581	14	04/04/19/4	30/11/2003	20
Methley	0				
Bridge					
River Don	SK421009220	14	05/04/1974	05/12/2005	47
at BSC	0	14		00,12,2000	τı
Rotherham	5				
Gate 14					
River Ouse	SE574003780	17	03/04/1974	05/12/2005	60
at Cawood	0				
Tees at	NZ391001020	17	26/04/1973	02/12/2005	64
Low	0				
Worsall					
Daily data					
Tyne at	NY71300875	14	28/04/1993	22/11/2006	676
Ugly Dub	00				

Site	NGR	Typology	Start date	End date	Gaps
Tyne at Bywell	NZ380006170 0	2	17/03/1993	22/11/2006	601
Tyne at Swing Bridge	NZ252286371 7	0	09/06/1995	10/10/2006	405
Ouse at Cawood Bridge	SE574003780 0	17	06/07/1992	02/10/2006	514
Humber at Blacktoft Jetty	SE843002420 0	0	10/09/1991	02/10/2006	339
Humber at Corporation Pier	TA100002820 0	5	19/12/1991	02/10/2006	650

North West Region

Site	NGR	Typology	Start date	End date	Gaps
Monthly data		<i></i>			
River Ribble at Cleatop Barns	SD80776613 90	14	03/05/1971	13/12/2005	64
River Ribble at Cow Bridge	SD82671569 68	14	18/01/1993	13/12/2005	18
River Ribble at Eddisford Bridge	SD72658414 41	14	05/12/1985	07/12/2005	110
River Ribble at Horton in Ribblesdale	SD80693727 07	11	14/01/1975	15/12/2005	155
River Ribble at Mitton Bridge	SD71560387 24	14	30/04/1971	16/12/2005	10
River Ribble at Mitton Wood PTCRiver Calder	SD71038374 00	14	08/06/1976	02/12/2005	47
River Ribble at Paythorn Bridge	SD83130512 92	14	14/01/1975	13/12/2005	92
River Ribble at Ribchester Bridge	SD66194356 00	17	14/01/1975	16/11/2005	43
River Ribble at Samlesbury PGS	SD58888304 33	17	30/04/1971	15/12/2005	11
River Ribble at Sawley Bridge	SD77491466 24	14	14/01/1975	06/12/2005	37
River Ribble at Settle Weir	SD81787642 21	14	14/01/1975	15/12/2005	42
River Roe at Gaitsgill	NY38794465 90	1	28/09/1976	28/11/2005	98
River Ive at Low Braithwaite Bridge	NY42803421 85	1	28/01/1981	28/11/2005	49
River Irk at Red Bank above Scotland Weir	SJ841999917 1	2	23/04/1974	01/11/2005	16
River Yarrow at Fishery Bridge Croston	SD48426185 66	2	26/04/1972	12/12/2005	37
River Wyre at Gubberford Bridge Scorton	SD49522473 99	4	03/12/1974	05/12/2005	68
River Darwen at Roach Bridge	SD59574288 20	4	02/06/1975	08/12/2005	97
River Irwell at foot bridge at Salford University	SJ822589902 0	5	01/10/1974	29/12/2005	5
River Alt above	SD29211050	5	28/08/1974	16/12/2005	16
					-

05 1
05 1
05 4
05 56
05 100
05 189
05 133
05 140
05 61
05 87
50 01
05 12
05 138
05 7
55 1
05 10
05 93
05 405
05 185
05 108
05 146

Site	NGR	Typology	Start date	End date	Gaps
River Ribble at Samlesbury PGS	SD58888304 33	17	30/04/1971	15/12/2005	11
River Petteril at Stonyholme	NY41146564 39	17	12/01/1976	02/12/2005	52
River Weaver at Sandford Bridge	SJ619704705 7	28	10/08/1976	13/12/2005	90
Rookery Brook above confluence with River Weaver	SJ657485572 9	28	23/03/1977	13/12/2005	178

Southern Region

Site	NGR	Typology	Start date	End date	Gaps
Monthly data					
River Test at	SU51360497	5	22/01/1979	10/12/2005	32
Bridge Street Overton	95				
River Test at	SU44343448	5	30/06/1980	10/12/2005	77
East Aston	82	C C		10/12/2000	
Common	-				
River Test at	SU35266228	5	03/07/1978	14/12/2005	8
Greatbridge	84				
River Test at	SU35499178	8	10/07/1978	14/12/2005	32
Longbridge	47				
River Test at	SU38173389	5	22/01/1979	10/12/2005	48
Mayfly Inn	74				
River Test at	SU34928206	5	14/07/1988	14/12/2005	14
Middlebridge	75				
Romsey					
River Test at	SU52375504	5	22/01/1979	10/12/2005	56
Polhampton	93				
River Test at	SU35294153	8	26/01/1979	09/12/2005	25
Testwood	30				
River Test at	SU38945401	5	19/07/1978	10/12/2005	10
Wherwell	31				
River Test	SU36134368	5	19/07/1978	10/12/2005	27
Longstock at	89				
Leckford					
River Test	SU38195392	5	15/04/1997	10/12/2005	15
upstream	16				
Andover STW					
River Test	SU33030257	5	25/01/1979	14/12/2005	39
upstream of	81				
Meadow Fish					
Farm	01105000000		04/04/4070	4.4.4.0.0005	
River Test	SU35032226	5	24/01/1979	14/12/2005	26
upstream of	81				
Test Valley					
Trout Farm River Test	SU124950245	F	25/01/1070	14/12/2005	27
	SU34850215 77	5	25/01/1979	14/12/2005	37
upstream Romsey Trout	11				
Farm					
Town Mill,	SU46680480	5	11/03/1981	10/12/2005	67
Whitchurch,	70	5	11/00/1901	10/12/2000	01
	TQ67610120	1	06/01/1976	12/12/2005	18
		I	00/01/10/0	12,12,2000	
	TQ33200283	1	05/01/1977	21/12/2005	25
Coy at Ardingly					
River Test Wallers Haven Boreham Bridge Abstraction point on Ouseby MSW	TQ67610120 00 TQ33200283 20	1	06/01/1976 05/01/1977	12/12/2005 21/12/2005	18 25

Site	NGR	Typology	Start date	End date	Gaps
River Arun at footbridge downstream of Horsham Bypass (A24)	TQ15056299 87	2	10/08/1977	16/12/2005	79
River Rother Durford Bridge	SU78250233 00	2	27/01/1976	01/12/2005	20
River Uck at Isfield Mill	TQ44800180 30	4	15/01/1976	28/11/2005	31
River Lymington at Boldre Bridge	SZ319909844 1	4	03/04/1979	01/12/2005	19
River Arun at Pallingham Manor	TQ04400222 00	5	07/01/1976	16/12/2005	19
River Cuckmere Sherman Bridge	TQ53200050 50	5	07/01/1976	30/11/2005	10
River Blackwater at Nutsey Bridge	SU35130152 40	8	10/07/1978	12/12/2005	12
River Test at Testwood	SU35294153 30	8	26/01/1979	09/12/2005	25
Broad Rife Ferry Sluice, Pagham Harbour	SZ856309628 0	37	08/01/1976	15/12/2005	32
Botley Stream at Broadoak	SU50625130 53	37	08/01/1979	06/12/2005	64
Chichester Canal Bypass Bridge – A27	SU85910037 10	40	09/02/1977	14/12/2005	38
Chichester Canal below Birdham Weir	SU83760010 70	40	18/05/1976	07/12/2005	50

South West Region

Site	NGR	Typolog y	Start date	End date	Gaps
Monthly data		,			
River Tamar at Boyton Bridge below Boyton Stw	SX328259225 7	4	02/07/197 4	15/12/200 5	39
River Tamar at Buses Bridge	SS280801338 0	1	05/01/197 6	14/12/200 5	90
River Tamar at Crowford Bridge	SX287209942 5	1	05/01/197 6	15/12/200 5	82
River Tamar at footbridge below Lower Tamar Lake	SS295601070 0	1	21/05/198 5	14/12/200 5	20
River Tamar at Greystone Bridge	SX368388036 3	4	05/01/197 6	15/12/200 5	66
River Tamar at Gunnislake Bridge	SX434937243 6	4	03/04/197 4	15/12/200 5	14
River Tamar at Gunnislake Gauging Station	SX426507250 0	4	12/05/199 5	15/12/200 5	10
River Tamar at Horsebridge	SX400017488 9	4	05/01/197 6	15/12/200 5	69
River Tamar at Lower Tamar Lake Surface	SS296001080 0	1	29/08/199 1	14/12/200 5	13
River Tamar at Netherbridge	SX348788670 3	4	05/01/197 6	15/12/200 5	78
River Tamar at Polson Bridge Below St Leonard's STW	SX355848494 4	4	05/01/197 6	15/12/200 5	76
River Tamar at Tamarstone Bridge	SS283280550 3	1	05/01/197 6	15/12/200 5	79
River Tamar at Tamerton Bridge below North Tamerton STW	SX318229740 5	1	05/01/197 6	15/12/200 5	78
River Tamar at Upper Tamar Lake Dam surface	SS288001180 0	1	29/08/199 1	14/12/200 5	18
River Tamar below confluence with River Deer	SX319189725 7	4	23/01/199 0	15/12/200 5	17
River Tamar upstream Lower Tamar Lake	SS293001140 0	1	24/02/199 2	14/12/200 5	50
Carnon River at Devoran Bridge below Carnon Downs STW	SW79087394 36	1	01/04/197 4	29/11/200 5	16
River Wolf at Rexon Br. below Broadwoodwidger	SX413308885 0	1	20/04/197 6	02/12/200 5	59

Site	NGR	Typolog y	Start date	End date	Gaps
STW					
Dolphin Bridge d/s	ST772464958	2	11/03/196	30/11/200	119
Frome SW	9		9	5	
River Brit at Watford	SY472269495	2	17/01/197	08/12/200	42
Bridge Pymore	2		7	5	
River Tamar at	SX434937243	4	03/04/197	15/12/200	17
Gunnislake Bridge	6		4	5	
River Lyd at Lifton	SX389118483	4	03/04/197	02/12/200	19
Bridge	8		4	5	
Great Somerford	ST965118319	5	06/01/196	15/12/200	104
Bridge u/s gauging station	3		6	5	
River Axe at Whitford	SY262259542	5	22/04/197	01/12/200	41
Bridge	0		4	5	
River Exe at Trews	SX925469150	7	08/05/197	17/11/200	55
Weir Exeter	6		4	5	
Alphin Brook at	SX939838938	7	29/04/197	17/11/200	152
Countess Wear	6		4	5	
Bridge					
Avon Limpley Stoke	ST782366124	8	12/08/197	17/11/200	63
	4		5	5	
Avon Keynsham	ST661636900	8	28/08/196	21/11/200	49
	0		8	5	
River Erme at	SX632105188	10	15/07/197	03/12/200	107
Sequer's Bridge	0		4	5	
River Walkham at	SX490077097	10	03/04/197	28/11/200	40
Grenofen Bridge	2		4	5	
River Culm at	ST159921408	11	12/08/197	07/12/200	82
Bridgehouse Bridge	7		4	5	
Clayhidon					
River Culm at	ST101151377	11	02/12/197	07/12/200	81
Culmstock Above	3		4	5	
Culmstock STW					
River Tavy at	SX476906776	13	25/06/197	28/11/200	19
Denham Bridge	0		3	5	
River Plym at Plym	SX523665873	13	03/04/197	01/12/200	14
Bridge	2		4	5	

Thames Region

Site	NGR	Typology	Start date	End date	Gaps
Monthly data					
Thames Above Nswc Intake, Egham	TQ02250718 20	8	05/01/1972	01/12/2005	46
Thames at Abingdon Weir	SU50676971 28	8	04/01/1972	21/12/2005	50
Thames at Boveney Weir	SU94400777 00	8	12/04/1976	15/12/2005	42
Thames at Caversham Weir	SU72135740 53	8	05/01/1972	09/12/2005	13
Thames at Days Lock	SU56760934 98	8	04/01/1972	25/11/2005	34
Thames at Donnington Bridge, Oxford	SP52459043 68	8	06/06/1989	21/12/2005	26
Thames at Eysey	SU11287940 56	5	03/05/1973	19/12/2005	40
Thames at Henley Bridge	SU76319828 13	8	11/01/1972	09/12/2005	35
Thames at Sonning Weir	SU75334758 95	8	05/01/1972	09/12/2005	69
Thames at water intake, Buscot	SU22900981 00	8	05/01/1972	19/12/2005	38
Thames at Teddington Weir	TQ17020713 70	0	05/01/1972	02/12/2005	16
Boveney Ditch above Thames	SU94860781 20	1	20/01/1972	29/11/2005	66
Blackwater at Lynchford Bridge, Ash Vale	SU88520537 70	1	09/02/1972	25/11/2005	33
Hogsmill above Thames	TQ17850691 00	2	27/01/1972	02/12/2005	41
Cherwell at Roadbridge, Twyford	SP48691372 22	2	12/01/1972	22/11/2005	37
Wey at Cartbridge, Send	TQ01520559 20	4	05/02/1975	02/12/2005	33
Wey at Newark Lane, Pyrford	TQ03900573 70	4	05/02/1975	02/12/2005	35

Waterhall 0 Colne at TQ05200863 5 25/01/1972 06/12/2005 19 Gauging 00 0 5 25/01/1972 06/12/2005 13 Denham Thames at SU72135740 8 05/01/1972 09/12/2005 13 Caversham 53 Surget 01/12/2005 46 above 20 NSWCIntake, Egham Egham Eye at Lower SP16400226 11 05/01/1976 28/11/2005 93 Slaughter Mill 00 0 01/12/2005 143 North Cerney 00 05/04/1978 01/12/2005 74 Havering 56 Sluice 11 17/03/1977 01/12/2005 74 Daily data - - - - - - Pymmes TQ33985925 2 01/02/1997 30/06/2006 172 - Thames Bray SU96800775 8 03/06/1986 05/06/2006 732 -<	Site	NGR	Typology	Start date	End date	Gaps
Gauging Station, Denham 00 Thames at Caversham SU72135740 8 05/01/1972 09/12/2005 13 Thames at S3 SU72135740 8 05/01/1972 01/12/2005 13 Weir Thames TQ02250718 8 05/01/1972 01/12/2005 46 above 20 NSWCIntake, Egham Eye at Lower SP16400226 11 05/01/1976 28/11/2005 93 Slaughter Mill 00 11 17/03/1977 01/12/2005 143 North Cerney 00 11 17/03/1978 01/12/2005 74 Beam at TQ49919815 40 05/04/1978 01/12/2005 74 Brok Angel 38 5 5 01/02/1997 30/06/2006 1218 Brok Angel 38 03/06/1986 03/06/1986 05/06/2006 732 Wey TQ06800649 4 03/06/1986 03/06/2006 866 Thames SU96800775 8 03/06/1986 03/06/2006 865 <td>Waterhall</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	Waterhall	-				
Station, Denham Station, Denham Operation Thames at Caversham SU72135740 8 05/01/1972 09/12/2005 13 Weir Thames TQ02250718 8 05/01/1972 01/12/2005 46 above 20 NSWCIntake, Egham E 28/11/2005 93 53 Churn at SP02000078 11 17/03/1977 01/12/2005 143 Noth Cerney 00 00 11 17/03/1977 01/12/2005 74 Havering 56 56 50 51 51 51 Beam at TQ49919815 40 05/04/1978 01/12/2005 74 Havering 56 50 50 51 51 Bridge 00 00 112/2005 74 51 Daily data Pymmes TQ33985925 2 01/02/1997 30/06/2006 172 Thames Sub6800775 8 03/06/1986 05/06/2006 732 Weybridge 00	Colne at	TQ05200863	5	25/01/1972	06/12/2005	19
Denham Immes at SU72135740 8 05/01/1972 09/12/2005 13 Thames at SU72135740 8 05/01/1972 01/12/2005 13 Weir Thames TQ02250718 8 05/01/1972 01/12/2005 46 above 20 NSWCIntake, Egham E E 53 53 53 54 Eye at Lower SP16400226 11 05/01/1976 28/11/2005 93 53 Slaughter Mill 00 00 11 17/03/1977 01/12/2005 74 Beam at TQ49919815 40 05/04/1978 01/12/2005 74 53 Bridge 00 Daily data Pymmes TQ33985925 2 01/02/1997 30/06/2006 172 Thames Bray SU91478788 8 03/06/1986 23/03/2006 1445 Romney 00 - 03/06/1986 23/03/2006 1445 Romney 00 - 03/06/1986 30/06/2006 72 Weybridge 00 - - 72 - 72 <t< td=""><td></td><td>00</td><td></td><td></td><td></td><td></td></t<>		00				
Thames at Caversham SU72135740 8 05/01/1972 09/12/2005 13 Thames TQ02250718 8 05/01/1972 01/12/2005 46 above 20 NSWCIntake, Egham 20 NSWCIntake, Egham 28/11/2005 93 Eye at Lower SP16400226 11 05/01/1976 28/11/2005 93 Slaughter Mill 00 0 11 17/03/1977 01/12/2005 74 Beam at TQ49919815 40 05/04/1978 01/12/2005 74 Havering 56 51 00 56 51 01/12/2005 74 Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 Pymmes TQ33985925 2 01/02/1997 30/06/2006 1218 Brook Angel 38 01/02/1997 30/06/2006 1445 Romney 00 30/06/1986 05/06/2006 732 Wey TQ06800649 4 03/06/1986 05/06/2006 732 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>	-					
Caversham Weir 53 Weir Thames TQ02250718 8 05/01/1972 01/12/2005 46 above 20 NSWCIntake, Egham 53 05/01/1976 28/11/2005 93 Eye at Lower SP16400226 11 05/01/1976 28/11/2005 93 Churn at SP02000078 11 17/03/1977 01/12/2005 143 Noth Cerney 00 0 05/04/1978 01/12/2005 74 Beam at TQ49919815 40 05/04/1978 01/12/2005 74 Broke Daily data 00 Daily data 00 0 0 Pymmes TQ33985925 2 01/02/1997 30/06/2006 172 Thames SU91478788 8 01/02/1997 30/06/2006 1445 Romney 00 0 0 0 1445 Mey TQ06800649 4 03/06/1986 05/06/2006 732 Wey TQ06800649 4 03/06/1986 00/06/2006	-					
Weir Thames TQ02250718 8 05/01/1972 01/12/2005 46 above 20 NSWCIntake, Egham 5 Eye at Lower SP16400226 11 05/01/1976 28/11/2005 93 Slaughter Mill 00 1 17/03/1977 01/12/2005 143 North Cerney 00 0 1 17/03/1977 01/12/2005 74 Beam at TQ49919815 40 05/04/1978 01/12/2005 74 Brokering 56 Sluice - - - - Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 Daily data - - - - - - Pymmes TQ33985925 2 01/02/1997 30/06/2006 172 - Thames SU96800775 8 03/06/1986 23/03/2006 1445 Romney 00 - - - - -			8	05/01/1972	09/12/2005	13
Thames TQ02250718 8 05/01/1972 01/12/2005 46 above 20 NSWCIntake, Egham 5 28/11/2005 93 Slaughter Mill 00 11 05/01/1976 28/11/2005 93 Churn at SP02000078 11 17/03/1977 01/12/2005 143 North Cerney 00 0 05/04/1978 01/12/2005 74 Havering 56 5 05/04/1978 01/12/2005 74 Beam at TQ49919815 40 05/04/1978 01/12/2005 74 Broit Cerney 00 0 01/12/2005 74 01/12/2005 74 Bridge 00 0 01/02/1997 30/06/2006 1218 12 Thames SU96800775 8 03/06/1986 03/06/2006 1445 Romney 00 0 14/02/2006 1322 0 Wey TQ06800649 4 03/06/1986 30/06/2006 886		53				
above 20 NSWCIntake, Egham	-					
NSWCIntake, Egham Egham Eye at Lower SP16400226 11 05/01/1976 28/11/2005 93 Slaughter Mill 00 11 17/03/1977 01/12/2005 143 North Cerney 00 00 05/04/1978 01/12/2005 74 Beam at TG49919815 40 05/04/1978 01/12/2005 74 Beam at A13 TG50300831 40 05/04/1978 01/12/2005 74 bridge 00 0 0 0 0 74 Beam at A13 TG50300831 40 05/04/1978 01/12/2005 74 bridge 00 0 0 0 1218 0 Brook Angel 38 01/02/1997 30/06/2006 172 77 Thames SU96800775 8 03/06/1986 05/06/2006 732 Wey TQ06800649 4 03/06/1986 30/06/2006 886 Theale 0 0 1445 0 1445			8	05/01/1972	01/12/2005	46
Egham Eye at Lower SP16400226 11 05/01/1976 28/11/2005 93 Slaughter Mill 00 11 17/03/1977 01/12/2005 143 North Cerney 00 05/04/1978 01/12/2005 74 Beam at TQ49919815 40 05/04/1978 01/12/2005 74 Havering 56 5 5 5 5 5 74 Beam at TQ50300831 40 05/04/1978 01/12/2005 74 Daily data		20				
Eye at Lower SP16400226 11 05/01/1976 28/11/2005 93 Slaughter Mill 00 11 17/03/1977 01/12/2005 143 North Cerney 00 11 17/03/1977 01/12/2005 74 Beam at TQ49919815 40 05/04/1978 01/12/2005 74 Havering 56 5 01/02/1997 01/02/1907 74 01/02/2005 Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 Didge 00 0 01/02/1997 30/06/2006 1218 01/02/1997 Brock Angel 38 01/02/1997 30/06/2006 172 77 Thames SU96800775 8 03/06/1986 05/06/2006 732 Wey TQ06800649 4 03/06/1986 30/06/2006 886 Theale 00 0 14/02/2006 1322 0 Chames TQ10400680 8 12/08/1989 21/04/2006 535						
Slaughter Mill 00 Churn at North Cerney SP02000078 11 17/03/1977 01/12/2005 143 North Cerney 00 0 05/04/1978 01/12/2005 74 Beam at Havering 56 0 01/12/2005 74 Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 Daily data 00 0 0 0 1218 Brook Angel 38 01/02/1997 30/06/2006 1218 Thames Bray SU91478788 8 01/02/1997 30/06/2006 172 T7 77 7 7 7 7 7 Thames SU996800775 8 03/06/1986 05/06/2006 732 Wey TQ06800649 4 03/06/1986 05/06/2006 732 Wey TQ06800708 8 03/06/1986 01/02/2006 1322 Lee Waterhall TL29800970 5 03/06/1986 01/07/2005 545 Sunbury		001010000				
Chum at North Cerney SP02000078 11 17/03/1977 01/12/2005 143 Beam at Havering 56 05/04/1978 01/12/2005 74 Havering 56 01/12/2005 74 Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 Daily data Pymmes TQ33985925 2 01/02/1997 30/06/2006 1218 Brook Angel 38 77 30/06/2006 172 77 Thames Bray SU91478788 8 01/02/1997 30/06/2006 1445 Romney 00 77 7 7 7 7 Thames SU96800775 8 03/06/1986 05/06/2006 732 Wey TQ06800649 4 03/06/1986 05/06/2006 732 Wey TQ16800708 8 03/06/1986 14/02/2006 1322 0 0 74 72 7 7 Thames TQ10400680 8 12/08/1989			11	05/01/1976	28/11/2005	93
North Cerney 00 Beam at Havering TQ49919815 40 05/04/1978 01/12/2005 74 Havering 56 5 5 5 5 5 5 5 Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 Daily data						
Beam at Havering TQ49919815 56 40 05/04/1978 01/12/2005 74 Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 bridge 00 00 01/12/2005 74 01/12/2005 74 bridge 00 00 01/02/1997 01/02/1997 30/06/2006 1218 Brook Angel 38 01/02/1997 30/06/2006 172 77 Thames Bray SU91478788 8 01/02/1997 30/06/2006 172 Tr 77 8 03/06/1986 23/03/2006 1445 Romney 00 4 03/06/1986 05/06/2006 732 Wey TQ06800649 4 03/06/1986 30/06/2006 886 Theale 00 0 14/02/2006 1322 0 Lee Waterhall TL298000970 5 03/06/1986 14/02/2006 535 Sunbury 00 0 12/08/1989 21/04/2006 535 L			11	17/03/1977	01/12/2005	143
Havering Sluice 56 Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 Daily data Pymmes TQ33985925 2 01/02/1997 30/06/2006 1218 Brook Angel 38						
Sluice Sluice Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 bridge 00 00 01/02/1997 30/06/2006 1218 Brook Angel 38 01/02/1997 30/06/2006 172 Thames Bray SU91478788 8 01/02/1997 30/06/2006 172 Thames Bray SU96800775 8 03/06/1986 23/03/2006 1445 Romney 00 00 0 1445 0 Wey TQ06800649 4 03/06/1986 05/06/2006 732 Weybridge 00 00 1420 1420 1420 Lee Waterhall TL298000970 5 03/06/1986 14/02/2006 1322 0 11298000970 5 03/06/1986 14/02/2006 535 Sunbury 00 1218 14/02/2006 535 Lee Kings TL373000520 8 17/03/1987 30/06/2006 824 Weir 0			40	05/04/1978	01/12/2005	74
Beam at A13 TQ50300831 40 05/04/1978 01/12/2005 74 Daily data	-	56				
bridge 00 Daily data						
Daily data Pymmes TQ33985925 2 01/02/1997 30/06/2006 1218 Brook Angel 38 77 30/06/2006 172 Thames Bray SU91478788 8 01/02/1997 30/06/2006 172 Thames SU96800775 8 03/06/1986 23/03/2006 1445 Romney 00 90 90 90 90 Wey TQ06800649 4 03/06/1986 05/06/2006 732 Wey TQ06800649 4 03/06/1986 30/06/2006 886 Theale 00 90 90 90 90 90 Lee Waterhall TL298000970 5 03/06/1986 14/02/2006 535 Sunbury 00 90 90 90 90 90 Lee Kings TL373000520 8 17/03/1987 30/06/2006 824 Weir 0 0 16/06/1986 30/06/2006 1637 Teddington 50			40	05/04/1978	01/12/2005	74
Pymmes TQ33985925 2 01/02/1997 30/06/2006 1218 Brook Angel 38 38 38 1 1218 1218 Thames Bray SU91478788 8 01/02/1997 30/06/2006 172 Thames SU96800775 8 03/06/1986 23/03/2006 1445 Romney 00 0 732 1445 1445 Wey TQ06800649 4 03/06/1986 05/06/2006 732 Weybridge 00 0 1445 1402 1405 Kennet SU64800708 8 03/06/1986 30/06/2006 886 Theale 00 0 14/02/2006 1322 128 O 0 0 14/02/2006 535 14/02/2006 535 Sunbury 00 0 128 14/02/2006 535 Sunbury 00 14/02/2006 535 16/06/1986 01/07/2005 945 Cleave 00 1		00				
Brook Angel 38 Thames Bray SU91478788 8 01/02/1997 30/06/2006 172 Thames SU96800775 8 03/06/1986 23/03/2006 1445 Romney 00 00 1445 1445 Wey TQ06800649 4 03/06/1986 05/06/2006 732 Weybridge 00 00 1445 1445 Kennet SU64800708 8 03/06/1986 05/06/2006 886 Theale 00 1422 142 142 142 Lee Waterhall TL298000970 5 03/06/1986 14/02/2006 1322 0 1445 140040680 8 12/08/1989 21/04/2006 535 Sunbury 00 1445 14002/2006 535 14002/2006 535 Sunbury 00 12/08/1989 21/04/2006 535 14001/1986 14/02/2006 535 Cleave 0 0 16/06/1986 01/07/2005						
Thames Bray SU91478788 77 8 01/02/1997 30/06/2006 172 Thames SU96800775 8 03/06/1986 23/03/2006 1445 Romney 00 0 0 1445 Wey TQ06800649 4 03/06/1986 05/06/2006 732 Weybridge 00 0 0 1445 Kennet SU64800708 8 03/06/1986 05/06/2006 886 Thames SU64800708 8 03/06/1986 30/06/2006 886 Lee Waterhall TL298000970 5 03/06/1986 14/02/2006 535 Sunbury 00 1 1208/1989 21/04/2006 535 Sunbury 00 1 1703/1987 30/06/2006 824 Weir 0 1 1703/1987 30/06/2006 1637 Teddington 50 1 16/06/1986 30/06/2006 1637 Teddington 50 1 1 16/06/1986 30/06/			2	01/02/1997	30/06/2006	1218
77 Thames SU96800775 8 03/06/1986 23/03/2006 1445 Romney 00 00 1445 145 Wey TQ06800649 4 03/06/1986 05/06/2006 732 Weybridge 00 0 1445 1402 1445 Kennet SU64800708 8 03/06/1986 30/06/2006 886 Theale 00 122 1400 1402/2006 1322 0 0 14/02/2006 1322 1400 14000 14000 14000						
Thames SU96800775 8 03/06/1986 23/03/2006 1445 Romney 00	Thames Bray	SU91478788	8	01/02/1997	30/06/2006	172
Romney 00 Wey TQ06800649 4 03/06/1986 05/06/2006 732 Weybridge 00						
Wey TQ06800649 4 03/06/1986 05/06/2006 732 Weybridge 00 8 03/06/1986 30/06/2006 886 Theale 00 5 03/06/1986 14/02/2006 1322 Lee Waterhall TL298000970 5 03/06/1986 14/02/2006 1322 0 0 1 0 1 122 0 0 1 1322 0 Thames TQ10400680 8 12/08/1989 21/04/2006 535 Sunbury 00 0 1 <td>Thames</td> <td></td> <td>8</td> <td>03/06/1986</td> <td>23/03/2006</td> <td>1445</td>	Thames		8	03/06/1986	23/03/2006	1445
Weybridge 00 Kennet SU64800708 8 03/06/1986 30/06/2006 886 Theale 00 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Kennet SU64800708 8 03/06/1986 30/06/2006 886 Theale 00 5 03/06/1986 14/02/2006 1322 Lee Waterhall TL298000970 5 03/06/1986 14/02/2006 1322 O 0 1 14/02/2006 535 1322 O 0 1 14/02/2006 535 Sunbury 00 1 14/02/2006 535 Lee Kings TL373000520 8 17/03/1987 30/06/2006 824 Weir 0 0 1	2		4	03/06/1986	05/06/2006	732
Theale 00 Lee Waterhall TL298000970 5 03/06/1986 14/02/2006 1322 Thames TQ10400680 8 12/08/1989 21/04/2006 535 Sunbury 00 0						
Lee Waterhall TL298000970 0 5 03/06/1986 14/02/2006 1322 Thames TQ10400680 8 12/08/1989 21/04/2006 535 Sunbury 00 0 1 <td< td=""><td></td><td></td><td>8</td><td>03/06/1986</td><td>30/06/2006</td><td>886</td></td<>			8	03/06/1986	30/06/2006	886
0 Thames TQ10400680 8 12/08/1989 21/04/2006 535 Sunbury 00 2 <th2< th=""> 2 <th2< th=""> 2</th2<></th2<>						
Thames TQ10400680 8 12/08/1989 21/04/2006 535 Sunbury 00 8 17/03/1987 30/06/2006 824 Weir 0 8 03/06/1986 01/07/2005 945 Cleave 00 16/06/1986 01/07/2005 945 Cleave 00 16/06/1986 30/06/2006 1637 Teddington 50 16/06/1986 30/06/2006 1637 Thames SU17500960 5 23/06/1986 23/04/2004 852 Hannington 00 16/06/1989 30/06/2006 678 Penton Hook 00 00 1 100/1/1989 31/05/2006 683 Molsey 00 00 1 100/1/1989 31/03/2005 231 Thames TQ14900689 8 21/07/1989 31/03/2005 231 Taplow 21 1 1 1 1	Lee Waterhall		5	03/06/1986	14/02/2006	1322
Sunbury 00 Lee Kings TL373000520 8 17/03/1987 30/06/2006 824 Weir 0 0 0 0 0 0 Thames SU60100818 8 03/06/1986 01/07/2005 945 Cleave 00 0 0 0 0 0 Thames TQ17000713 0 16/06/1986 30/06/2006 1637 Teddington 50 5 23/06/1986 23/04/2004 852 Hannington 00 - - - - Thames TQ04300693 8 25/07/1989 30/06/2006 678 Penton Hook 00 - - - - Thames TQ14900689 8 21/07/1989 31/05/2006 683 Molsey 00 - - - - Thames SU90628832 8 10/01/1997 31/03/2005 231 Taplow 21 -						
Lee Kings TL373000520 8 17/03/1987 30/06/2006 824 Weir 0 0 1			8	12/08/1989	21/04/2006	535
Weir 0 Thames SU60100818 8 03/06/1986 01/07/2005 945 Cleave 00 0 16/06/1986 30/06/2006 1637 Teddington 50 0 16/06/1986 23/04/2004 852 Thames SU17500960 5 23/06/1986 23/04/2004 852 Hannington 00 00 00 00 00 00 Thames TQ04300693 8 25/07/1989 30/06/2006 678 Penton Hook 00 00 00 00 00 00 Thames TQ14900689 8 21/07/1989 31/05/2006 683 Molsey 00 00 00 00 00 00 Thames SU90628832 8 10/01/1997 31/03/2005 231 Taplow 21 1 1 1 1						
Thames SU60100818 8 03/06/1986 01/07/2005 945 Cleave 00 0 16/06/1986 30/06/2006 1637 Thames TQ17000713 0 16/06/1986 30/06/2006 1637 Teddington 50		_	8	17/03/1987	30/06/2006	824
Cleave 00 Thames TQ17000713 0 16/06/1986 30/06/2006 1637 Teddington 50 23/06/1986 23/04/2004 852 Thames SU17500960 5 23/06/1986 23/04/2004 852 Hannington 00		-				
Thames TQ17000713 0 16/06/1986 30/06/2006 1637 Teddington 50 5 23/06/1986 23/04/2004 852 Thames SU17500960 5 23/06/1986 23/04/2004 852 Hannington 00 00			8	03/06/1986	01/07/2005	945
Teddington 50 Thames SU17500960 5 23/06/1986 23/04/2004 852 Hannington 00 00 5 23/06/1989 30/06/2006 678 Thames TQ04300693 8 25/07/1989 30/06/2006 678 Penton Hook 00 0						
Thames SU17500960 5 23/06/1986 23/04/2004 852 Hannington 00 00 30/06/2006 678 Thames TQ04300693 8 25/07/1989 30/06/2006 678 Penton Hook 00 00 100 100 100 100 Thames TQ14900689 8 21/07/1989 31/05/2006 683 Molsey 00 00 100 100 100 100 Thames SU90628832 8 10/01/1997 31/03/2005 231 Taplow 21 100 100 100 100 636			0	16/06/1986	30/06/2006	1637
Hannington 00 Thames TQ04300693 8 25/07/1989 30/06/2006 678 Penton Hook 00						
Thames TQ04300693 8 25/07/1989 30/06/2006 678 Penton Hook 00 00 1000000000000000000000000000000000000			5	23/06/1986	23/04/2004	852
Penton Hook 00 Thames TQ14900689 8 21/07/1989 31/05/2006 683 Molsey 00 31/03/2005 231 Thames SU90628832 8 10/01/1997 31/03/2005 231 Taplow 21 5 01/01/1997 05/02/2006 636						
Thames TQ14900689 8 21/07/1989 31/05/2006 683 Molsey 00 00 31/03/2005 231 Thames SU90628832 8 10/01/1997 31/03/2005 231 Taplow 21 21 5 01/01/1997 05/02/2006 636			8	25/07/1989	30/06/2006	678
Molsey 00 Thames SU90628832 8 10/01/1997 31/03/2005 231 Taplow 21 5 01/01/1997 05/02/2006 636	Penton Hook					
Thames SU90628832 8 10/01/1997 31/03/2005 231 Taplow 21 21 5 01/01/1997 05/02/2006 636		TQ14900689	8	21/07/1989	31/05/2006	683
Taplow 21 Loddon SU77700773 5 01/01/1997 05/02/2006 636	Molsey	00				
Loddon SU77700773 5 01/01/1997 05/02/2006 636		SU90628832	8	10/01/1997	31/03/2005	231
			5	01/01/1997	05/02/2006	636
Wargrave 00	Wargrave	00				

Wales Region

Site	NGR	Typolog y	Start date	End date	Gaps
Monthly data					
River Dee at B5437	SJ082004390	13	01/05/199	29/11/200	16
near Corwen	0		2	5	
River Dee at Chester	SJ408406585	17	06/04/198	25/05/200	201
Weir	0		1	5	
River Dee at	SJ411705437	17	01/05/197	02/12/200	32
Farndon Bridge	0		9	5	
River Dee at	SJ151004305	13	01/05/197	29/11/200	72
Glyndyfrdwy	0		9	5	
River Dee at Iron	SJ418006010	17	09/04/197	29/11/200	25
Bridge	0		4	5	
River Dee at	SH982003661	13	09/04/197	01/12/200	26
Llandderfel Bridge	0		4	5	
River Dee at	SJ287304180	13	04/04/197	29/11/200	23
Newbridge	0		9	5	
River Dee at Old	SJ388004542	17	28/04/199	21/11/200	8
Bangor Bridge	0		2	5	
River Dee at Overton	SJ354204270	17	21/05/199	21/11/200	9
Bridge	0		2	5	
River Dee at Pont	SH929593513	13	12/09/197	01/12/200	76
Mwnwgl y Llyn	4		9	5	
River Dee at	SJ410306601	17	30/04/199	12/12/200	13
Queenspark	0		2	5	
Suspension Bridge					
River Dee,at Chester	SJ414216336	17	27/04/198	22/12/200	87
southerly by-pass	3		0	5	
River Llan at	SS589009680	1	03/05/197	09/12/200	78
Gowerton	0		7	5	
Pontardulais Road	SN588000380	1	06/05/197	25/11/200	82
Bridge	0		5	5	
River Gwenfro u/s of	SJ347204914	2	17/04/197	06/12/200	55
River Clywedog	0		9	5	
River Clywedog u/s	SJ347004911	2	08/06/197	06/12/200	61
of River Gwenfro	0		9	5	
R Rhymney at	ST214098075	4	27/09/197	13/12/200	79
Llanrumney	5		4	5	
W Cleddau	SM95400177	4	02/06/197	29/11/200	39
Prendergast	00		6	5	
Gauging Station					
Loughor above Ynys	SN614610876	5	28/03/197	06/12/200	42
Llwchwr Gauging	4		4	5	
Station					
R Ely at St Fagans	ST119407696	5	27/09/197	12/12/200	20
(u/s St Fagans	0		4	5	
Gauging Station)					
R Afan at Dock	SS760608974	10	18/04/197	21/11/200	77
Intake Weir	0	-	7	5	
River Seiont, Pont	SH559306233	10	04/06/197	07/12/200	103
Pen-y-Llyn, Llanberis	0		9	5	
	-		0	0	

Site	NGR	Typolog y	Start date	End date	Gaps
Afon Lwyd, Llanyravon	ST301849464 4	11	16/02/197 7	17/11/200 5	58
River Tawe Ystradgynlais Road Bridge, Ystradgynlais, Powys	SN786001010 0	11	19/04/197 7	23/11/200 5	82
River Tawe at Morriston Road Bridge	SS674009790 0	13	15/03/197 4	06/12/200 5	51
R Ogmore at Merthyrmawr, Dipping Bridge	SS891007840 0	13	27/09/197 4	05/12/200 5	45
River Alyn at Ithels Bridge	SJ390205623 0	14	09/04/197 4	14/12/200 5	46
R Neath d/s Aberdulais Gauging Station	SS771509891 0	14	27/09/197 4	05/12/200 5	77
Towy Nantgaredig, nr Carmarthen,Dyfed	SN491002040 0	16	22/03/197 4	02/12/200 5	86
Gwili at Abergwili Road Bridge, nr Carmarthen, Dyfed	SN433502104 0	16	21/04/197 7	08/12/200 5	85
River Dee at Iron Bridge	SJ418006010 0	17	09/04/197 4	29/11/200 5	29
R Wye at Carrots Pool, Hampton Bishop	SO54970381 90	17	02/11/196 5	12/12/200 5	75
Daily data					
Taff Blackweir	ST170607805 3	13	14/12/199 <u>3</u>	01/11/200 6	1003
Wye Belmont	SO48500387 99	17	13/01/199 7	09/12/200 6	190
Wye Redbrook	SO52769110 77	17	01/01/199 6	09/12/200 6	166
Tywi Capel Dywi	SN485192058 2	16	01/09/199 7	04/01/200 7	476
Tywi Manoravon	SN657412398 7	13	01/09/199 7	03/01/200 7	463
Tywi Dolau Hirion	SN761893624 2	13	01/09/199 7	03/01/200 7	445
Tywi Ystradffin	SN785594724 1	10	01/09/199 7	04/01/200 7	879
Dee Summers Jetty	SJ290467069 6	0	08/11/199 5	15/01/200 7	234

We are The Environment Agency. It's our job to look after your environment and make it **a better place** – for you, and for future generations.

Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are making your environment cleaner and healthier.

The Environment Agency. Out there, making your environment a better place.

Published by:

Environment Agency Rio House Waterside Drive, Aztec West Almondsbury, Bristol BS32 4UD Tel: 0870 8506506 Email: enquiries@environment-agency.gov.uk www.environment-agency.gov.uk

© Environment Agency

All rights reserved. This document may be reproduced with prior permission of the Environment Agency.