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Science at the  
Environment Agency 
Science underpins the work of the Environment Agency. It provides an up-to-date 
understanding of the world about us and helps us to develop monitoring tools and 
techniques to manage our environment as efficiently and effectively as possible.  

The work of the Environment Agency’s Science Group is a key ingredient in the 
partnership between research, policy and operations that enables the Environment 
Agency to protect and restore our environment. 

The science programme focuses on five main areas of activity: 

• Setting the agenda, by identifying where strategic science can inform our 
evidence-based policies, advisory and regulatory roles; 

• Funding science, by supporting programmes, projects and people in 
response to long-term strategic needs, medium-term policy priorities and 
shorter-term operational requirements; 

• Managing science, by ensuring that our programmes and projects are fit 
for purpose and executed according to international scientific standards; 

• Carrying out science, by undertaking research – either by contracting it 
out to research organisations and consultancies or by doing it ourselves; 

• Delivering information, advice, tools and techniques, by making 
appropriate products available to our policy and operations staff. 

 

Steve Killeen 

Head of Science 
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Executive summary 
 
Through three case studies, the Tyndall Centre for Climate Change Research 
at the University of Oxford has demonstrated the added value of using large 
climate model ensembles when assessing climate change impacts on water 
resources and river ecology and exploring possible adaptation pathways.  
 
The majority of climate change impact and adaptation studies to date have 
been based on just a few realisations of future climate, using for example one 
or a few different Global Climate Models and one or more different emissions 
scenarios. Large ensembles of climate models are currently available either 
as ensembles of opportunity or perturbed physics ensembles, providing a 
wealth of additional data that is potentially useful for improving adaptation 
strategies to climate change by presenting a wider envelope of possible 
futures. 
 
With the release of the UK Climate Projections by the UK Climate Impacts 
Programme in spring 2009, users from different sectors will have access to 
probabilistic projections of climate change for the UK. Due to the novelty of 
this ensemble-like climate change information, there is little previous 
experience of practical applications or of the added value of this information 
for impact and adaptation decision-making. In our work we describe a 
methodology to perform a top-down approach to impacts assessment using 
large ensembles of climate change information. 
 
This report presents three case studies which explore the use of the largest 
perturbed physics ensemble publicly available to date, ClimatePrediction.net. 
These case studies are: 

• Water resources in the Thames River. 
• Water supply-demand interaction in the Wimbleball water resource 

zone. 
• River ecology in the River Itchen. 
 
In the River Thames case study, the implications of a probabilistic end-to-end 
risk-based framework for climate impacts assessment were explored.  A 
probabilistic approach was shown to provide more informative results than if a 
single realisation of future climate was used, and enabled the potential risk of 
impacts to be quantified.  However, details of the risks are dependent on the 
approach used in the analysis. 
 
In the Wimbleball water resource zone, river flows simulated using a rainfall-
runoff model were used to run a water resource system model designed to 
analyse the interactions between water supply and demand. This model 
allows for the exploration of various adaptation paths given the climate 
change information available. The response of the water resource system 
when driven by the climate model ensemble data, and operating under 
different scenarios of demand and supply management, was analysed. 
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Existing environmental flow thresholds in the River Itchen were assessed in 
light of the new climate data and showed the limitations of using such tools for 
climate change impacts assessments.  We developed a novel ecological 
impacts matrix which enables expert opinion and flow statistics to be 
combined in a way that can be understood by a multi-disciplinary audience, 
thus facilitating the decision-making process. 
 
Our research shows that the additional information contained in the climate 
model ensemble provides a better understanding of the possible ranges of 
future conditions, compared to the use of single model scenarios. 
Furthermore, with careful presentation, decision-makers will find the results 
from large ensembles of models more accessible and be able to compare the 
merits of different management options and the timing of different adaptation 
measures more easily. The overhead in additional time and expertise needed 
to carry out the impacts analysis will therefore be justified by the increased 
quality of the decision-making. 
 
Even though we have focused our study on water resources and river ecology 
in the UK, our conclusions regarding the added value of climate model 
ensembles in guiding adaptation decisions can be generalised to other 
sectors and geographical regions. 
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1. Introduction 
As part of ongoing work on climate change, the Environment Agency’s Climate Change 
Adaptation Strategy (2008-2011) sets out a systematic approach for embedding 
climate change adaptation into its core activities. The assessment of risk and 
adaptation options is key to this strategy, a large component of which involves 
developing methodological frameworks for the assessment of risk of climate change 
impacts.   

In the past decade, a lot of effort has been placed on water resource and water quality 
modelling, using a range of climate scenarios. This often resulted in one global climate 
model (GCM) and a small number of emissions scenarios.  However, in order to 
provide some indication of the uncertainty in the climate modelling, scientists are 
turning towards multi-model datasets.  Recent work in the climate modelling community 
has included attempts to address the uncertainties inherent in the methodologies for 
modelling future climate. There has been a move towards large ensembles of climate 
models in the ClimatePrediction.net (CPDN) experiment, and probabilistic frameworks 
providing projections of climate change as probability density functions in the UK 
Climate Impacts Programme’s UK Climate Projections project.  However, ideas as to 
how to use the data have been preliminary at best. 

In this project, the objective has been to develop a risk-based framework to handle 
probabilistic climate change information and estimate uncertainties inherent within 
impact assessments performed by the Environment Agency for strategic planning.  The 
work presented in this report has been carried out in anticipation of the release of the 
UK Climate Projections (UKCP) later in 2009, and it is hoped that the case studies will 
provide a basis for the development, uptake and delivery of probabilistic climate 
change information in the Environment Agency and the wider climate impacts 
community. 

The first of the studies presented in this report attempts to assess the uncertainties 
associated with climate models using CPDN and how this percolates through to an 
impacts model, such as a rainfall-runoff model.  This work is explored further in two 
case studies that attempt to develop a methodological framework to use the 
information from this new large climate model ensemble.  The studies have been 
chosen to reflect some of the core activities carried out by the Environment Agency that 
are amenable for modelling with large climate ensembles.  This includes a water supply 
case study in the Wimbleball Water Resource Zone and a river ecology case study on 
the River Itchen. 

The report comprises a description of the large ensemble of climate data used (CPDN), 
and a  summary of the key findings in each case study, followed by a closing section 
summarising the relevance of the case studies to the Environment Agency and 
possible avenues for future work. Detailed technical descriptions of each of the case 
studies are given in the appendices: a published paper on the water resources case 
study in Appendix I (New et al., 2007), a preprint of the water supply case study in 
Appendix II (Lopez, 2009) and a summary of the results of the river ecology case study 
in Appendix III (for a paper in preparation (Fung et al., 2009). 

It is highly important to note here that the case studies that have been presented 
provide a basis to discuss the opportunities that lie in probabilistic climate change 
information for use in the Environment Agency’s portfolio.  It will be emphasised 
throughout the report that the results are by no means predictions of future climate 
change.  The methodologies that have been described indicate how probabilistic 
information can be used within the context of management of water resources for water 
supply and river ecology.  They are for illustrative purposes only. 
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2.    Large climate model 
ensembles 

Global climate models (GCMs) are our best tools for investigating how the global 
climate system will respond to future green house gas emissions. We use future 
scenarios of emissions  (Intergovernmental Panel on Climate Change (IPCC), 2000) to 
drive these GCMs. Most GCMs predict significant changes in the Earth's climate within 
this century.  However, the range in the projections is in some cases very large, in 
particular at the regional and local scales relevant for the analysis of impacts and 
adaptation options in the face of climate change. To deal with this problem we need to 
be able to quantify the uncertainty in GCM projections. Several sources of uncertainty 
are present in GCM simulations, including uncertainties in the projections of 
greenhouse gas concentrations that will force change in the climate system in the 
future, uncertainties in the initial conditions used to initialise the climate model 
simulations, and uncertainties in the formulation of the climate models themselves. 
Climate processes that are poorly known or that operate at spatial and temporal scales 
not resolved by the climate models can be formulated (or parameterised) in a range of 
plausible ways.  Recently, perturbed physics ensembles (PPEs) have been developed 
in an attempt to quantify initial condition and model formulation uncertainty (Murphy et 
al., 2004; Stainforth et al., 2005) . These ensembles comprise a large number of runs 
of a state of the art climate model. Each individual run uses a configuration of the 
climate model with parameters representing various physical processes set to different 
values within their acceptable range, as defined by the experts in the relevant 
parameterisation scheme. For each combination of parameter values an initial 
condition ensemble is used. PPEs provide a new approach for exploring a wide range 
of future climates and using this information to assess potential impacts of climate 
change. 

Examples of such experiments are ClimatePrediction.net (CPDN) and the climate 
change scenarios currently being developed by UK Climate Impacts Programme 
(UKCIP) (Murphy et al., 2004; Stainforth et al., 2005). 

2.1  ClimatePrediction.net 
ClimatePrediction.net is a perturbed physics ensemble (PPE) and ongoing experiment 
in which individual model simulations are carried out using idle processing capacity on 
personal computers volunteered by members of the general public. In what follows we 
describe the two sets of data generated by CPDN that have been used in our case 
studies. 

CPDN first experiment: CO2 doubling experiment 

In this experiment, the PPE is generated by running the Met Office Hadley Centre 
model HadSM3 with different values for seven of the model parameters. The HadSM3 
model consists of an atmospheric model coupled to the simplest possible ocean, a slab 
ocean model that basically provides the boundary conditions for the atmospheric model 
(Stainforth et al., 2005).  

The data from the experiment represent 2,700 individual simulations with the HadSM3 
climate model; each simulation comprises three 15-year periods: a calibration phase, 
followed by a 15-year 1xCO2 ‘control’ simulation, and a 2xCO2 simulation. In the 1xCO2 
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control simulation the model is run with pre-industrial concentrations of carbon dioxide. 
In the 2xCO2 phase, the carbon dioxide atmospheric concentration is instantaneously 
doubled at the beginning of the simulation and kept fixed afterwards.  Therefore, after a 
period of time during which  all the climate variables change as a response to the 
instantaneous change in atmospheric carbon dioxide concentration, the model moves 
towards a stationary or equilibrium state since after the initial instantaneous doubling 
the external forcing (carbon dioxide concentration) remains constant.  Thus the goal of 
this experiment is to investigate the characteristics of the equilibrium state reached by 
the atmosphere after a sudden doubling of carbon dioxide concentration. 

Within the subset of 2,700 individual simulations of the full first experiment, seven 
physics parameter values are perturbed and there are 449 unique combinations of 
perturbations. For most perturbations, there is more than one simulation, with each 
simulation differing only in initial conditions (IC). The total number of simulations in the 
449 IC ensembles adds up to 2,700 simulations in the ‘grand ensemble’. The ensemble 
is therefore large, but limited in a number of ways: it comprises a sampling of only 
some of the uncertain physics parameters in the HadSM3, and it only samples from a 
single ‘parent’ model structure, ignoring uncertainties arising from alternative GCM 
model structures. More importantly, it only aims to study the equilibrium response of 
the climate system to an instantaneous doubling of carbon dioxide concentration. Even 
though it might be useful to quantify the sensitivity of the climate system to large 
changes in atmospheric forcings, this experiment clearly represents an artificial 
situation that it is very unlikely to occur in the real world.  A similar 2xCO2 experiment is 
one of the components that are used to generate the probabilistic UK climate 
projections currently being developed by UKCIP (Murphy et al., 2004). 

Seasonal means from the last eight years of the control and 2xCO2 runs have been 
returned by client machines for archival in ClimatePrediction.net data servers, but only 
for a limited number of variables. We use precipitation, temperature and cloud fraction 
data to calculate future daily precipitation and potential evaporation to input into the 
hydrological model used in the first case study. 

CPDN second experiment: Transient experiment 

The climate data used in our analysis for the second and third case studies has been 
generated by the second CPDN experiment, launched in February 2006. The GCM 
used in this case is the HADCM3L, a version of the UK Met Office Unified Model 
comprising a standard resolution atmospheric model coupled to a lower resolution 
ocean model. The lower resolution ocean has the same resolution as the atmospheric 
model, while in the standard HadCM3 model the ocean runs at a higher resolution than 
the atmospheric model, particularly near the equator. 

Contrary to the first CPDN experiment, this is what is known as a transient experiment:  
an experiment where a comprehensive atmosphere–ocean model such as those 
contributing to the last IPCC report (Solomon et al., 2007) is forced by greenhouse gas 
concentrations that vary in time following some prescribed scenario and do not reach 
an equilibrium or stationary state.  

The second CPDN experiment explores the effects of perturbing 26 parameters that 
are relevant to the way radiation, large scale clouds formation, ocean circulation, 
sulphate cycle, sea ice formation, the land surface and convection are simulated by the 
GCM. 

Each simulation involves a 160-year control run with constant forcing at pre-industrial 
concentrations and a 160-year transient run. The transient simulations include two 
phases. In the historical phase from 1920 until 2000, the experiment is forced with 
historical records of carbon dioxide, volcanic and anthropogenic emissions, and solar 
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forcing.  In the second phase, a range of possible future scenarios are used to force 
the model response between 2000 and 2080.   

In our study, we concentrate on a subset of 246 transient simulations first completed, 
which is now part of the much larger ensemble available to date. Within this subset, all 
model runs were subjected to the A1B SRES greenhouse gas forcing scenario, which 
is one of the scenarios described in the Intergovernmental Panel on Climate Change’s 
(IPCC) Special Report on Emissions Scenarios (IPCC, 2000).  A1B is a ‘middle of the 
road’ emissions scenario, representing a world in the twenty-first century with very 
rapid economic growth, rapid introduction of new and more efficient technologies and a 
world that does not rely too heavily on one particular energy source.   

The CPDN experiment archives a variety of climate variables at different temporal 
(monthly to decadal means), and spatial scales (grid points to continental averages).  
Monthly time series are available for several variables, as the global mean, the area 
average over 22 continental to sub continental regions similar to those defined by 
Giorgi and Francisco 1 (Giorgi and Francisco, 2000), for six ocean “basins” and for 
eight individual grid boxes over the United Kingdom. We use monthly time series of 
temperature, precipitation, and relative humidity for the grid boxes corresponding to the 
South West of England (48.75N, 5.625W – 51.25N, 1.875W) in the second case study, 
and the South and South East of England (48.75N, 1.875W – 51.25N, 1.875E) in the 
third case study. 

In our work, we use all ensemble members “as is”, without any previous evaluation of 
their relative skill in simulating the climate system, considering all stable model runs as 
members of our sample. 

 

 

Figure 0.1  Global mean temperature time series for CPDN model runs (blue), IPCC 
model runs (red) and observations (black). The runs that show rapid cooling in the 
twenty-first century are unstable and have been discarded from the ensemble. 
                                                           
1 These regions are defined as rectangles covering the same land area as the Giorgi regions 
but including the adjacent oceans, and follow the naming convention of  the IPCC 4AR (IPCC, 
2007; Solomon et al, 2007). 
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The HadCM3 model generates climate variables at a 2.5° x 3.75° (latitude by longitude) 
spatial resolution. However, any typical river runoff model needs daily time series of 
precipitation and potential evaporation at a given location. Therefore, in order to use 
the climate model information it is necessary to downscale the monthly and spatially 
averaged time series to daily local time series. Moreover, the model data has biases 
over the period that observations are available. Details about the downscaling and bias 
correction techniques used in our work are provided in Appendix II. 
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3. Case study 1: Water resources 
in the Thames River 

3.1  Introduction 
In this case study we explore the implications of this new generation of probabilistic 
climate information for end-to-end uncertainty analysis in impacts modelling.  For a 
detailed technical description of the work see New et al. (2007) in Appendix I. 

Data from the carbon dioxide doubling CPDN experiment was used. Even though this 
is an equilibrium experiment that does not take into account the transient nature of the 
forced climate system, it allows for an exploration of the relative importance of climate 
model and impact model uncertainty. We focus on the Thames River in the UK, and 
use a water balance model (CATCHMOD) to simulate river flows and obtain 
probabilistic projections of future flow statistics in the Thames.  

3.2  Simulated flows: climate model and impact model  
uncertainties. 

CATCHMOD was used to simulate daily discharge in the Thames at Teddington, 
London. CATCHMOD is a rainfall-runoff model used by the Environment Agency for 
water resource planning and abstraction licence allocation in England and Wales. It 
uses daily rainfall (PPT) and potential evapotranspiration (PET) data for input at sub-
catchments represented in the model. This requires downscaling of the coarser 
resolution seasonal mean GCM data. As the archived GCM data do not support either 
dynamical or statistical downscaling, we use a simple change factor (CF) downscaling 
approach to produce input for CATCHMOD. 

CATCHMOD was set up with three ‘sub-catchments’, each representing the area of the 
catchment with a similar hydrological runoff response: urban areas, clay geology and 
chalk geology. For each sub-catchment, five parameters for CATCHMOD are 
determined through calibration against observed discharge. This research explores the 
effects of uncertainty in these parameters by running CATCHMOD with 100 different 
combinations of parameter values, all of which produce calibration results within 
predefined goodness of fit limits. The underlying rationale for exploration of parameter 
uncertainty is similar to the ClimatePrediction.net project; however, unlike 
ClimatePrediction.net, the set of parameter values used for CATCHMOD is preselected 
by evaluation against observed discharge. 

Figure 0.1 summarises the relative effect of ClimatePredcition.net and CATCHMOD 
parameter uncertainty on changes in simulated flows. Here, we calculate flow statistics 
for 44,900 simulations with CATCHMOD, each simulation a unique combination of one 
of the 449 ClimatePrediction.net IC outputs and one of the 100 CATCHMOD 
parameterisations. If the standard HadSM3 (the HasSM3 model run with standard 
values for the parameters) model projections are run through all versions of 
CATCHMOD (light blue curve), the range of responses in median daily flow (Q50)  is -
15 to +20 per cent. Similar ranges, with a different central value, arise from combining 
any one ClimatePrediction.net IC with the 100 CATCHMOD versions (black curves). 
Thus, the wide spread of ClimatePrediction.net outputs dominate the spread in 
simulated changes, with different versions of CATCHMOD modulating the 
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ClimatePrediction.net signal. Nonetheless, if one compares the range of changes in 
Q50 when using only the standard CATCHMOD (the version of CATCHMOD with 
parameters as used by the Environment Agency) to those using the full ensemble, 
CATCHMOD parameter uncertainty adds an additional 23 per cent to the range for 
Q50. 

 

Figure 0.1  Changes in CATCHMOD simulated Q50 (2xCO2 minus 1xCO2) when 
uncertainties in CATCHMOD parameters are combined with the ClimatePrediction.net 
ensemble. Each black curve is a smoothed frequency histogram obtained by combining 
one ClimatePrediction.net IC ensemble with 100 CATCHMOD model versions. Green 
curves show the response of each CATCHMOD version when driven by all 
ClimatePrediction.net results. The red curve is the frequency distribution from all 
possible ClimatePrediction.net–CATCHMOD combinations. For reference, the results 
from (i) the standard HadSM3 model with all CATCHMOD versions (light blue) and (ii) 
Environment Agency CATCHMOD with all ClimatePrediction.net ICs (dark blue) are also 
shown. The red cross shows the result of the singular combination of the standard 
HadSM3 and Environment Agency CATCHMOD. 

 

This example illustrates the potentially rich information that can be obtained by using 
large perturbed-physics ensemble outputs in a climate change impact assessment. The 
approach can clearly provide more information than a scenario-based impact 
assessment which will only provide the information given by the red cross in Figure 0.1 
when using one single GCM, or a series of crosses (one for each model) when using a 
set of GCMs as those used in the IPCC Fourth assessment report. 

On the other hand, with probabilistic climate change information a frequency 
distribution can be estimated, and the risks of an adverse impact can be calculated and 
used to make a risk-based judgement.  

The following case study moves from this illustrative example to a more complete 
analysis by using the transient ClimatePrediction.net ensemble. This assesses a wider 
range of physics perturbations and simulates the transient response to past and future 
greenhouse gas forcing with a coupled ocean–atmosphere model, and by using a 
water resource systems model that enables the assessment of the interplay of demand 
and supply under different socioeconomic and water infrastructure scenarios. 
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4. Case study 2: Water resources 
in the South West of England 

4.1  Introduction 
In this case study the CPDN projections are applied to the Wimbleball water resource 
zone in the South West of England. This zone has a variety of water sources, which 
allows some flexibility in the choice of adaptation measures, but at the same time is 
simple enough to make the analysis transparent. We make use of CATCHMOD and 
LANCMOD, generic rainfall-runoff and water resource system models used by the 
Environment Agency for behavioural analysis of water resource supply systems. 

The analysis shows that there are basically two advantages in using large ensembles 
like ClimatePrediction.net data over other sources that provide just change factors at 
different time slices in the future, or single model scenarios.  Firstly, CPDN stores time 
series of climate variables from each ensemble member, providing time dependent 
information that is extremely valuable for water resource management. As this time 
dependent information has been generated by a fully dynamical climate model, we can 
assume that it provides a range of future possible evolutions of the climate system 
consistent with current state-of-the-art climate science. This means that we can look at 
relative changes in time in the frequency of occurrence of different events of interest. 
This is an important issue given that we are trying to quantify the impacts on water 
supply infrastructure and management of changes in a non-stationary system.  

Secondly, we will see that the use of just one realisation of future climate can give a 
false sense of security and does not provide the rich picture that the ensemble does.  
Moreover, our results strongly indicate that the practice of using a single model run, or 
for that matter ensemble means instead of the individual model runs, can be 
misleading when analysing impacts of climate change.  For a detailed technical 
description of the work, see Lopez et al. (2009) in Appendix II. 

4.2  River flows 
CATCHMOD is set up to simulate river runoff for the Exe River at Thorverton. The 
effective catchment area consists of approximately 600km2 underlain by sandstone. 
Five hydrological model parameters are determined through calibration against 
observed discharge. Since in this work we only explore climate model uncertainty, we 
ran CATCHMOD as calibrated for operational use by the Environment Agency. 

We ran the 246 downscaled and bias-corrected precipitation and PET time series 
through CATCHMOD and obtained an ensemble of flows for the Exe at Thorverton.  A 
large proportion of model runs show substantial reductions in the mean flows during 
the summer months, 82 per cent, 93 per cent and 91 per cent of runs for June, July 
and August respectively. This produces large reductions in low flows, illustrated in 
Figure 0.1, where flow duration curves for daily flows over the period 1961-1990 and 
over 2020-2039 are shown.  

The spread in the range of simulated flows increases with time as members of the PPE 
diverge in their response to the A1B forcing scenario. For instance, the ensemble 
range in the simulated flow exceeded 90 per cent of the time (Q90) increases by about 
50 per cent between the baseline period (Figure 4.1, top) and 2020-2039 (Figure 4.1, 
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bottom). However, some changes are common to most of the PPE: for instance, driven 
by a general decrease in summer precipitation, low flows decrease relative to the 
baseline period as can be seen by the change in the relative position of CPDN low 
flows with respect to the observed low flows.  

Analogously, driven by a general increase in winter precipitation, high flows increase 
relative to the baseline period except for the highest flows (Q02 and beyond). In this 
case, simulated peak flows are always smaller than baseline peak observed flows, 
perhaps due to the fact that CATCHMOD was not calibrated for high flows. Further 
work is required to confirm whether this is a real result or a consequence of the 
hydrological model or downscaling errors. 

 

 

 

Figure 0.1  Flow duration curve for daily flows at Thorverton over the period 1961-1990 
(top) and 2020-2039 (bottom). The blue lines correspond to observed flows, green dashed 
lines to simulated flows using observed precipitation and PET, black dashed to CPDN 
model runs, and the red lines to the CPDN model run with standard values of the 
physical parameters. The blue and green lines are included for reference in the bottom 
panel. 
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4.3  Water resource management system 
The Wimbleball water resource zone is situated in South West England and supplies 
water to the counties of Devon and Somerset.  In our simplified version of the zone 
simulated using LANCMOD (see Figure 5 in Appendix II), water is supplied by two 
reservoirs (Wimbleball and Clatworthy), the river Exe (at two abstraction points, 
Exebridge and Thorverton,) and from a sandstone groundwater source. The largest 
demands are East Devon (which includes the city of Exeter), Somerset and Peak.  The 
latter two represent transfers out of the catchment to a neighbouring water utility, 
Wessex Water.  There is also “pumped storage”, which is water that is available to be 
transferred from the river Exe at Exebridge to Wimbleball to refill the reservoir during 
the winter months. 

Using the transient climate change information provided by CPDN we can explore how 
the reservoir storage level across the ensemble changes over time under a business 
as usual scenario, for example under current demand profiles . Figure 0.2 represents 
the storage level for a single month as a function of time between 1960 and 2079 - we 
show September as one crucial month towards the end of the summer, when the 
reservoir level becomes particularly low. This figure shows that the storage levels 
associated with any fraction of the ClimatePrediction.net ensemble decrease slowly 
from the present to about the 2020s, and more rapidly later on. For instance, the 50th 
percentile goes from nearly 60 per cent of full capacity to about 50 per cent by the 
2020s, and ends up at nearly 30 per cent by the end of the simulation period.  Notice 
that individual model runs have large variability (red crosses for instance), while 
percentiles across the ensemble are smooth curves.  The fraction of model runs that 
fall below the critical reservoir level in any one year increases from around 4 per cent in 
the present day to 25 per cent by 2080. Thus, the evolving risk of the reservoir 
reaching critically low levels under current operating rules and for this particular climate 
model ensemble can be quantified. 

 



 

12  Science Report – Applying probabilistic climate change information to strategic resource assessment  

 

Figure 0.2  Mean monthly fraction of maximum storage level for September between 
1960 and 2079. The black lines represent from top to bottom: maximum values (solid), 
97.5% (dotted-dashed), 75% (dashed), 50% (dotted), 25% (dashed), 2.5% (dotted-dashed), 
minimum values (solid), across the climate model ensemble. The thick solid line 
corresponds to the control rule described in the text. Blue and green crosses indicate 
storage levels simulated by LANCMOD using observed flows and simulated historical 
flows respectively. Red crosses correspond to storage levels for the CPDN model run 
with standard values of the physical parameters. 

4.4  Adaptation and management options under climate 
change 
Various changes can be made to the water resource model set-up to explore how 
different adaptation strategies can decrease the risk of supply failure in the future, and 
thus make the system more resilient to climate change.  Options include reducing 
demands to comply with water saving policies, increasing the volume of water available 
in the reservoirs, reducing the transfer of water outside the catchment, increasing the 
pumping rate to the reservoir, and changing the control rules that govern the river 
abstractions reducing the flows maintained for the environment.   

The above is simply a list of changes that could be simulated given our water resource 
model. In a real situation, the path chosen to adapt to possible impacts of climate 
change will depend on many factors that include, but are not limited to, the climate 
information.  In particular, issues such as the cost of the different options, their impacts 
on the environment, public response, technical feasibility, as well as demographic and 
water use changes, will play important roles in the decision.  

Here we show the results for two different scenarios that can be simulated by making 
minor changes to LANCMOD set-up, one based on consumption reduction, one on 
increasing supply. Other management possibilities are discussed in the paper by Lopez 
et al. (2009) in Appendix II. 
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For the purposes of this study, we have assumed that the baseline household demand 
in the area is 150 l/h/d, the current average for England and Wales.  The recent UK 
government water strategy (Defra (Department for Environment, Food and Rural 
Affairs), 2008) aims for this to reduce to 130l/h/d, suggesting that a reasonable 
scenario for demand reduction would be about 15 per cent less than the current 
figures. In this scenario, we are implicitly assuming that non-household and other 
demands also fall by the same proportion. 

Since the two most significant demands through the year are East Devon and 
Somerset combined with Peak demand, we devise a scenario in which these are 
reduced by 15 per cent, amounting to an annual average reduction of about 28Ml/d. 
This approach assumes that a water saving strategy is put in place, and other factors, 
such as population changes, remain constant. 

If demand reduction alone is implemented, much of the effect of drier summers can be 
alleviated: many more models exceed any given storage threshold compared to the 
business as usual scenario. For example, the storage level exceeded by half the 
models in the 2070s shifts from 30 per cent under business as usual to 40 per cent 
when the demand reduction is implemented.  Furthermore, the risk of occurrence of 
very low reservoir levels across the ensemble, as indicated by the 2.5 percentile, is 
delayed from the 2030s under business as usual until the 2070s under demand 
reduction. 

An alternative to reducing demand is to add another source of water.  One way to do 
this in LANCMOD is to increase the size of the reservoir. Although this may not be 
feasible in practice for Wimbleball, increasing reservoir size is often an option, as it is 
relatively uncontroversial and often cost-effective. It is also an easy way to represent 
an additional source of water within the current model set-up. Increasing the depth of 
the reservoir by one metre augments the storage from 21,320Ml to 25,075Ml, an 
increase of 18 per cent in the volume of water stored. Since we do not change any 
other parameter in the model, such as link capacities or control rules, the limitations in 
the amount of water that can be released into the system will still be controlled by these 
factors. However, the fact that the reservoir can store more water during the periods of 
high flows changes the behaviour of the reservoir in relation to other scenarios. 

When the reservoir capacity is increased without reducing demand, we see that the 
behaviour of the 50th percentile is similar to the demand reduction case (Figure 0.3 top), 
improving the chances of having the reservoir half full as compared with the business 
as usual scenario. However, the risk of very low reservoir levels as indicated by the 2.5 
percentile does not change significantly compared to the demand reduction scenario, 
suggesting that even though there is more storage capacity within the system, river 
flows across the ensemble are not enough to make use of this greater capacity in the 
driest years. 
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Figure 0.3  Wimbleball storage levels as a function of time (September) for main 
demands reduced by 15% (top), and Wimbleball storage increased by 18%(bottom) 
management scenarios. The black lines represent from top to bottom: maximum values 
(solid), 97.5% (dotted-dashed), 75% (dashed), 50% (dotted), 25% (dashed), 2.5% (dotted-
dashed), minimum values (solid), across the climate model ensemble. The thick solid line 
corresponds to Wimbleball control rule. Blue and green crosses indicate storage levels 
simulated by LANCMOD using observed flows and simulated historical flows 
respectively, and are included here for reference. Red crosses correspond to storage 
levels for the CPDN model run with standard values of the physical parameters. 
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The scenarios proposed here are simple options that can be easily implemented with 
LANCMOD, and allow us to describe how the system responds and whether there are 
any physical limitations imposed by, for instance, lack of water available to be stored in 
the system. In a more realistic situation the path chosen to adapt to possible impacts of 
climate change will depend on many other factors that include the climate information, 
but are not limited to that. This will require an integrated assessment of possible 
adaptation strategies, taking into account issues such as the cost of the different 
options, their impacts on the environment, public response, technical feasibility, 
population and water use changes. 

This study demonstrates the value added by the use of large climate model ensembles 
as opposed to a small number of scenarios used in impact studies to date. It is clear 
that a single HADCM3 model run fails to capture the full range of climate possibilities 
and might lead to false confidence, suggesting in our case that there is no need for 
intervention while the full ensemble indicates the need for adaptive management. 
Moreover, the ensemble information provides a particularly effective way to consider 
the benefit of different management options in a way that a limited number of scenarios 
would not.  We expect that the overhead in additional time and expertise needed to 
carry out the impact analyses will be justified by the increased quality of the decision 
making process. 

It is clear that adaptation to climate change is often context-specific. Different sectors 
will have different climate information needs and more or less sophisticated 
approaches to using this information for impact analysis.  In this sense, the UK water 
sector is perhaps better prepared than other industries to undertake the challenge of 
using large ensembles of climate models since it already possesses hydrological and 
water resource management models potentially adaptable to the novel climate data. 
However, even though our case study is specific to the water sector, the key 
conclusions regarding the value added by the use of large climate model ensembles in 
impacts studies can be generalised to other sectors. 
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5. Case study 3: The role of 
climate model ensemble 
information in river ecology 
management 

5.1 Introduction 
This case study attempts to use tools that already exist within the Environment Agency 
to provide some indication on how probabilistic climate scenarios can be used in the 
realm of river ecology. The River Itchen was chosen as the case study catchment on 
the strength of having a relatively long-term ecological and flow dataset (from 1978 to 
2002) and having been an area of intensive study in the past.  It is a chalk stream 
located in the south of England and a candidate Special Area of Conservation (SAC). It 
has also been designated a Site of Special Scientific Interest (SSSI), achieved due to 
the number of rare species and the richness of the macro-invertebrate community in 
the river catchment.   

The same transient ClimatePrediction.net simulations desrcibed in the Wimbleball case 
study, were used to drive CATCHMOD and test the effect on LIFE score thresholds 
(Extence et al., 1999). Environmental thresholds had previously been derived during 
the development of the Catchment Abstraction Management Strategy (CAMS). A new 
form of representing the results is presented that allows expert opinion to be 
canvassed, and adaptation measures have been explored. 

5.2  CAMS ecological threshold tests 
One of the CAMS targets is based on the observed long-term averaged summer Q95  
averaged over the period of 1970 to 2002.  In Figure 0.1, the grey lines represent the 
mean summer Q95 averaged over the previous 30 years and each line is calculated 
from the flow generated by a single CATCHMOD run using climate data from one 
member of the CPDN climate ensemble.  Therefore the grey plume represents the 
whole 246 member ensemble of CATCHMOD runs.  The black lines summarise the 
distribution across the ensemble: the bottom line is the 95th percentile, indicating the 
flow which 95 per cent of all runs exceed. To demonstrate the added-value of the 
information provided by the ensemble, the standard run is represented by the green 
line.  This is the run that uses climate parameters from the GCM model that has an 
unperturbed parameter set analogous to using one GCM and one emissions scenario.  

Approximately 25 per cent of runs show a rise in the summer Q95 up to the 2030s, and 
thereafter all runs show a decreasing mean summer Q95.  The width of the plume of 
values for each year also increases through time, representing increasing uncertainty 
as the GCM attempts to predict further into the future. 

This ecological target flow was set at a conservative level (Exley, 2006) and such that 
the breaching of this threshold was not expected.  However, according to the 
ensemble, 25 per cent of the runs will have a long-term summer Q95 at a level where 
the invertebrate community will be changing by the late 2070s.  
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Ecological Thresholds

Figure 0.1 Mean summer Q95 with moving 30-year window for naturalised flows. 

5.3  Ecological matrix 
To provide a richer story, a matrix is proposed for analysing the effects of the river on 
biodiversity which combines both the thresholds described in detail in Appendix I and 
expert opinion on how the ecology of the River Itchen will react to climate change.  On 
one axis of the matrix is the duration of the low flow (or the number of consecutive 
years of low flow). On the other axis is the extent (or the value of the annual Q98).  In 
each of the matrix cells is a qualitative description of the ecological status of the river 
(see Table 1).  

The matrix has been used to analyse the percentage of ensemble members that 
experience each of the river ecology impacts at selected time horizons, colour coded 
into five categories representing the percentage of runs that fall into each part of the 
matrix. 

The figure shows that in the 2020s, in more than 50 per cent of runs, there is a high 
risk of the invertebrate community being harmed, followed by a chance that recovery 
may not occur once higher flows return.  By the 2070s, over 25 per cent of runs show 
high risk of damage to the invertebrate community with an equal percentage of runs 
showing that there will be either recovery or a permanent change in the community.  As 
the twenty-first century progresses, the colours towards the top left of the matrix 
become bluer, and the middle to bottom right change towards orange, representing a 
growing risk of the invertebrates being harmed.  However, in this set of simulations, the 
risk of a highly modified community remains less than five per cent. 
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Ecological 
Impacts 
Matrix

1 year only 2-4 consecutive 
years > 5 consecutive years

Upper flow 
warning band
(198 - 262Ml/day)

No adverse impacts 
on invertebrates and 
overall ecology of river
remains healthy

Some risk of 
invertebrate 
community being 
harmed but 
recovery possible

High risk of community 
changing with some 
chance of recovery

Lower flow 
warning band
(157 - 198Ml/day)

Some risk of 
invertebrate 
community being 
harmed but recovery 
possible

High risk of 
invertebrate 
community 
changing but with 
high chance of 
recovery

High risk of community 
changing with some 
species remaining

Below  flow 
warning band 
and RAM 
threshold
(< 157Ml/day)

Invertebrate 
community harmed 
and some risk that 
recovery is not 
possible

High risk of 
invertebrate 
community 
changing 
permanently to 
slow flow-type 
communities

Highly modified 
community more typical of 
arid environments could 
develop, including species 
with adaptive strategies 
enabling survival over 
extended periods of 
drought. Iconic species 
such as salmon, lamprey, 
otter no longer present

Figure 0.2 Matrices of climate change impacts on ecology of River Itchen through the 
twenty-first century. 

5.4  Adaptation through river support 
The annual augmented flow required each year to sustain daily flow such that it does 
not reach the flow threshold of a value of 262 Ml/day is plotted in Figure 0.3. Each grey 
dot represents the total augmented flow for each year for each CATCHMOD run.  For 
years where there is no augmentation, a dot is not plotted, hence the broken lines for 
the percentile plots, for example the 25th percentile shows one value for 2026 and 
2030 but no values in between, meaning that no augmentation was required for at least 
25 per cent of the runs during this period. 

The results show that up to the mid-2020s, only 5 per cent of the runs require 
augmentation. However by the 2060s, 50 per cent of the runs need additional flow and 
as time progresses, the amount of flow increases. For example in the mid-2040s the 
flow required by 50 per cent of runs is of the order of 10Ml/year, however by the 2070s 
this increases by one order of magnitude to over 100Ml/year. 
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Maintaining Healthy Ecological Status

 

Figure 0.3 Time series of volume of annual augmented flows required to maintain healthy 
ecological status. Individual grey dots represent total augmented flow in one year for one 
CATCHMOD run. Green diamonds mark the results for the standard run.  The black, red 
and blue lines represent the total annual augmented flow that 5%, 25% and 50% of the 
ensemble exceeds respectively.  
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6. Discussion 
In this section, a number of the problems that were encountered in the study are 
identified and suggestions for improvements to the whole process are proposed. 

6.1  Case studies and UKCIP 
In anticipation of new probabilistic scenarios for the UK from UKCIP in the spring of 
2009, there is great interest in how probabilistic information can be used in decision-
making; indeed, this is one of the motives for this study.  Any direct comparisons 
between these projections and the information used in the case studies in this report 
should be made with caution, as the methodologies in producing the climate change 
projections are very different.  The UKCIP methodology provides the projections as 
probability density functions (PDF) whereas the frequency distributions arising from the 
ClimatePrediction.net ensembles for the case studies presented in this report are not 
PDFs. 

A key feature of the UK Climate Projections (UKCP) is that the future climates are 
presented as probabilities. Instead of a single best estimate of the change for each 
emission scenario, users are provided with a range of possible climates, each variant 
of which has a measure of the relative strength of evidence that supports it (interpreted 
as probabilities).  These probabilities are not predictions of the real climate 
probabilities, but rather statements of the extent to which various possible future 
climates are consistent with the evidence considered.   

The way the probabilistic projections have been established is described in the UKCP 
science reports.  The approach combined outputs from the Met Office Hadley Centre 
(MOHC) climate models (HadCM3 and HadRM3) and outputs from climate models 
produced by other modelling centres.   This involved running alternative simulations of 
the MOHC climate model in which a number of the parameters that represent physical 
processes within the model are varied within physically plausible limits (the perturbed 
physics ensemble described previously).  The introduction of the outputs from climate 
models produced by other modelling centres (multi-model ensemble) brought into the 
projections consideration of uncertainties as a result of different model structures. 

In addition to the probabilistic enhancement of the projections, UKCP will also have a 
number of other changes from UKCIP02 (UKCP, 2009) .  The spatial resolution of the 
projections is 25km (whereas UKCIP02 is 50km) and in terms of the temporal 
resolution, although the projections are still presented as 30-year monthly, seasonal 
and annual averages, there are seven 30-year time periods covering the period from 
2010 to 2100.  Additionally, projections are presented for three emission scenarios.  
The emission scenarios labelled ‘high’ and ‘low’ in UKCP09 are the same as those 
used in UKCIP02.  The ‘medium-low’ and ‘medium-high’ emission scenarios used in 
UKCIP02 have been replaced by a single ‘medium’ emission scenario (SRES A1B). A 
further enhancement is the availability of a user interface through which users will be 
able to interactively access and download the available projections and produce 
graphics.   

An additional functionality included as part of UKCP09 is a weather generator that can 
be used to produce daily and hourly time series consistent with the probabilistic climate 
projections.  Access to this weather generator and its accompanying threshold 
detector, as well as downloading the resulting time series, is achieved through the 
previously mentioned user interface. 
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In order to obtain the multi-year time series of daily of precipitation and potential 
evaporation necessary to run the hydrological and water resource models described in 
our case studies, the weather generator in UKCIP09 will have to be used to generate 
daily data.  It is clear from our work that it is very important to understand long-term 
variability correctly for water resource management and ecological impacts, since both 
systems would be sensitive to, for instance, a run of two or three consecutive drier than 
average seasons. 

However, the weather generator is programmed to randomly generate daily (or sub-
daily) series conditional on the statistics of each individual month, and cannot produce 
information regarding changes in variability on time scales larger than a few weeks 
(Kilsby et al., 2007). Therefore any time series generated by the weather generator will 
not have information about the long-term inter-annual variability of the climate 
variables, seriously limiting the applicability of this approach to the study of climate 
change impacts on water resource systems. 

6.2  Links with other Environment Agency projects 
A number of studies commissioned by the Environment Agency are particularly 
relevant to this project, including: 

• Climate change and river flows in the 2050s (conducted by the Centre for 
Ecology and Hydrology). Using UKCIP02 climate scenarios the impacts of climate 
change on UK rivers was investigated.  These used high, medium and low scenario 
results from regional climate models.  The river flows predicted by the Environment 
Agency using CATCHMOD and Hydrosolutions appear to be very different and are 
currently being considered by the Environment Agency.  Note that the procedure 
concentrated on ungauged sites. 

• DRIED-UP 1 and 2. As mentioned throughout the ecology case study, the recent 
work carried out by Dunbar et al. (2006) and Dunbar and Mould (2008) show that 
the sensitivity and uncertainty in the statistical models built to relate river flow and 
LIFE score is highly relevant and could change the sensitivity of the study.  
However, the conclusions in terms of the usability of probabilistic scenarios remain 
unchanged. 

• Probabilistic information to inform Environment Agency decision-making on 
climate change impacts. The UKCIP will be released later in 2009 and the 
Environment Agency has commissioned a project related to how UKCIP can be 
used to look at the impacts of climate change on its activities.  The case studies 
presented in this report will inform the Environment Agency’s UKCIP project. 

• Water temperature archive (SC070035). The archive of water temperature data 
across England and Wales may be used to develop better ecological response 
models that can be used in future climate change impact studies.  

• Ecoforesight (SC080009).  This ongoing project looks at Environment Agency 
biological data across England and Wales to see whether there has been any 
response to recent climate changes. The datasets and methods used may also 
help us develop better ecological models and support future impact studies. 
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6.3  Lessons learned and future challenges 

Overall comments 

This study has required a multi-disciplinary approach, involving climate, hydrological 
and ecological scientists.  At the project start-up meeting, many members of the 
ecological and water resources community in the Environment Agency were consulted.  
This was an extremely useful process which helped raise relevant issues and allowed 
stakeholders to become familiar with probabilistic approaches.  However, with a major 
topic such as climate change, this case study can only address a small number of 
issues, not just because of resource constraints but also the type of work possible 
given the type of information that is available from climate scenarios.  It appears that a 
key message needs to be conveyed about the limits of climate change impacts 
assessments:  impacts can only be assessed if models exist that can be related to 
climate variables.  Moreover, for large climate model ensembles, these impacts models 
must be able to run several hundreds, if not thousands, of times. 

However, this work has shown that where a suitable impacts model exists and 
sufficient understanding is available on ecological responses to changing local flow 
conditions, then taking an ensemble approach to assessing future conditions does 
provide a richer picture of potential future impacts than single GCM applications. In 
particular, this approach provides a better indication of potential future risk.  

It should be noted that the river ecology study was focused on future climate impacts 
on flows and low flows in particular.  However, there could also be high flow impacts 
arising from climate change, for example washout of invertebrates with increase in 
spate flows or increased mobilisation of sediments related to intense rainfall events. 
Such events may become more frequent and could be particularly problematic in the 
summer, when mobilised sediments may “stick” in the river if flood events are followed 
by normal or reduced summer discharge patterns.  Although suitable models of 
temperature changes would be particularly useful in helping assess the combined 
effects of changing temperatures and water quality impacts, these models are yet to be 
developed  

Ecological data and modelling 

In the UK, there is a lack of good long-term coupled flow and ecology datasets and 
most modelling efforts so far have used statistical methods. A problem encountered in 
this study was the projection of scenarios which have no precedence in the observed 
dataset, which brought difficulties when trying to interpret the implications on taxa.  
There appears to be some efforts in the DRIED-UP 2 project to couple long-term 
ecological datasets with model output from continuous estimation of river flows 
(CERF), which will hopefully fill in some of the knowledge gaps, for example for multi-
year droughts. There is also the potential to look at ecological impacts from historic 
power station outflows to understand the effects of much higher temperatures.  

Although uncertainty was explored in this study, the focus was mainly on the range of 
possible climate futures, and although confidence limits were used to establish the flow 
warning band to provide a range of possible flows that indicate community change, no 
formal assessment of the uncertainty in the relationships developed in the statistical 
modelling was performed.  Future work should attempt to address these matters too. 
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Ecological impacts 

Unfortunately, the lack of data on ecological response to climate shifts or extreme 
events also presents difficulties in the assessment of adaptation options as little 
quantitative data is available in determining the effects of different measures on river 
ecology.  However, the DRIED-UP projects commissioned by the Environment Agency 
suggest that looking at the response and sensitivity of LIFE scores with river 
modification may provide some new quantitative tools to assess the impact of various 
adaptation pathways.     

River flow modelling 

Although CATCHMOD was used in this study, the Environment Agency has provided 
considerable resources to set up a model, MODFLOW, which captures groundwater 
processes in a more sophisticated manner.  The model contains 50,000 cells and is 
computationally intensive, requiring several hours to complete a run (CATCHMOD 
takes several seconds).  The climate data available is sourced from one GCM box and 
downscaling procedures to convert this information to finer resolutions in both time and 
space is still a very new science.  With the limited climate information and the computer 
resources available, CATCHMOD was deemed more appropriate for the task.  
However, the available parameterised CATCHMOD model for the Itchen was not set 
up with abstraction information.  Although this was not essential in this study, it is 
envisaged that when a more predictive tool is required by the Environment Agency 
abstractions may become important.  But whether a more sophisticated model, like 
MODFLOW, will be a more suitable tool for this type of analysis is unclear. 
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Glossary 
 

A1B One of the scenarios described in the IPCC’s Special 
Report on Emissions Scenarios (IPCC, 2000).  It 
represents a world in the twenty-first century with very 
rapid economic growth, rapid introduction of new and 
more efficient technologies and a world that does not rely 
too heavily on one particular energy source. 

CPDN ClimatePrediction.net. 

Emissions scenarios Future levels of global greenhouse gas (GHG) 
emissions, and by association future climate, are a 
product of very complex, ill-understood dynamic systems, 
driven by forces such as population growth, socio-
economic development and technological progress. 
Scenarios are images of the future, or alternative futures. 
They are neither predictions nor forecasts. Rather, each 
scenario is one alternative image of how the future might 
unfold.  

Equilibrium experiment In the 1xCO2 control simulation the model is run with pre-
industrial concentrations of carbon dioxide. In the 2xCO2 
phase, the carbon dioxide atmospheric concentration is 
instantaneously doubled and after a transient or time 
dependent phase where all the climate variables change 
in time as a response to the instantaneous change in 
atmospheric carbon dioxide concentration, the model 
moves towards reaching a stationary or time independent 
phase. In other words, the climate variables reach 
equilibrium. This experiment is designed to investigate 
the characteristics of the equilibrium state reached by the 
atmosphere after a sudden doubling of carbon dioxide 
concentrations. 

GCM Global climate models 

HadCM3L A version of the UK Met Office Unified Model comprising 
a standard resolution atmospheric model coupled to a 
lower resolution ocean model. A lower resolution ocean 
has the same resolution as the atmospheric model, while 
in the standard HadCM3 model the ocean runs at a 
higher resolution than the atmospheric model, particularly 
near the equator. 

HadSM3 This version of the model always uses a global domain, 
and usually includes a sea ice submodel as part of the 
slab ocean. It is primarily used for short climate 
sensitivity experiments, and for examination of 
equilibrium climate change responses in comparison to 
transient responses from the full model.  

IC Ensemble Initial conditions ensemble. 

IPCC Intergovernmental Panel on Climate Change.  
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PPE Perturbed physics ensemble. 

SRES scenarios Scenarios from the “Special Report on Emissions 
Scenarios” (IPCC, 2000). 

Transient experiment An experiment where a comprehensive atmosphere–
ocean model such as those contributing to the last IPCC 
report is forced by greenhouse gas concentrations that 
vary in time. 

UKCIP UK Climate Impacts Programme. 

UKCP UK Climate Projections. 

 



  

Appendix I: Water resources case 
study  



From climate model ensembles to climate change impacts: A case 
study of water resource management in the South West of England. 

 
Ana Lopez*, Fai Fung, Mark New  
Climate Systems and Policy Group, School of Geography and Environment 
Oxford University Centre for the Environment,  
South Parks Rd, Oxford, OX1 3QY, U.K. 
 
Glenn Watts 
Environment Agency, Science Department, Government Buildings, 
Westbury-on-Trym, BS10 6BF, UK 
 
Alan Weston 
Environment Agency, Manley House, Kestrel Way, Exeter EX2 7LQ, UK 
 
Rob Wilby 
Lancaster Environment Centre, Farrer Avenue, Lancaster, LA1 4YQ, UK 
 
 

                                                 
• Email:ana.lopez@ouce.ox.ac.uk 



Abstract: 
 
The majority of climate change impacts and adaptation studies so far have been based 
on at most a few deterministic realisations of future climate, usually representing 
different emissions scenarios. Large ensembles of climate models are currently available 
either as ensembles of opportunity, or perturbed physics ensembles, providing a wealth 
of additional data that is potentially useful for improving adaptation strategies to climate 
change. With the release of the UK 21st Century Climate Scenarios (2008), UKCIP08, 
users from different sectors will have access to probabilistic projections of climate 
change for the UK. Due to the novelty of this ensemble-like climate change information, 
there is little previous experience of practical applications or of the added value of this 
information for impacts and adaptation decision-making. Here we describe a 
methodology to perform a top-down approach to impacts assessment using large 
ensembles of climate change information. We use as a case study a water resource 
system in the South West of England. The climate data are obtained from the largest 
perturbed physics ensemble publicly available to date, climateprediction.net. River flows 
are simulated using a rainfall runoff model and feed into the water resource system 
model. This model is designed to analyse the interactions between water supply and 
demand for the water supply zone of interest, allowing for the exploration of various 
adaptation paths given the climate change information available. We analyse the 
response of the water resource system when driven by the climate model ensemble data, 
and operating under different scenarios of demand and supply management.  Our 
research shows that the additional information contained in the climate model ensemble 
provides a better understanding of the possible ranges of future conditions, compared to 
the use of single model scenarios. Furthermore, with careful presentation, decision-
makers will find the results from large ensembles of models more accessible and be able 
to more easily compare the merits of different management options and the timing of 
different adaptation. The overhead in additional time and expertise for carrying out the 
impacts analysis will be justified by the increased quality of the decision making process.  
We remark that even though we have focused our study in a water resource system in 
the UK, our conclusions about the added-value of climate model ensembles in guiding 
adaptation decisions can be generalized to other sectors and geographical regions.  
 



 
1 Introduction 
Global climate models (GCMs) forced by scenarios of greenhouse gases predict 
significant changes in Earth's climate in this century (Solomon et al. 2007).  However, 
the range in the projections is in some cases very large, in particular at the regional and 
local scales relevant for the analysis of impacts and adaptation options in the face of 
climate change. To deal with this problem we need to be able to quantify the uncertainty 
in GCM projections. Several sources of uncertainty are present in GCM’s simulations, 
including forcing, initial conditions, model formulation and model inadequacy (Stainforth 
et al. 2007). Recently, perturbed physics ensembles (PPEs) have been developed in an 
attempt to quantify initial condition and model formulation uncertainty (Murphy et al. 2007; 
Murphy et al. 2004; Stainforth et al. 2005) . These ensembles comprise a large number 
of runs of a state of the art climate model. Each individual run uses a model with 
parameters representing various physical processes set to different values within their 
acceptable range, as defined by the experts in each particular area of physics 
parameterisation. For each combination of parameter values an initial condition 
ensemble is used. PPEs provide a new approach for exploring a wide range of future 
climates and use this information to assess potential impacts of climate change.  In this 
work we concentrate on climate model uncertainty, discussing the use of a large PPE to 
provide information for the study of impacts and adaptation to climate change in a water 
resource system. 
 
The PPE is part of the climateprediction.net (CPDN) project, the largest PPE experiment 
to date, here comprising a set of model runs obtained by perturbing twenty-six 
parameters in a version of the Hadley Centre GCM, HADCM3L. We apply the CPDN 
projections to the Wimbleball water resource zone in the South West of England. This 
zone has a variety of sources of water, which allows some flexibility in the choice of 
adaptation measures, but at the same time is simple enough to make the analysis 
transparent. We make use of CATCHMOD and LANCMOD, generic rainfall-runoff and 
water resource system models used by the Environment Agency of England and Wales 
for behavioural analysis of water resources supply systems. 
 
In the process of translating the climate model outputs into the appropriate inputs for the 
hydrological and water resource models, we make some simplifying assumptions. Firstly, 
we consider a PPE based on only one “parent” GCM, ignoring any model formulation 
uncertainty (commonly termed model structure uncertainty). Secondly, we use the 
individual model runs in the PPE without any prior evaluation of skill or adequacy of each 
run in representing the climate system (i.e., an un-weighted assessment).  We also use 
a relatively simple procedure to downscale GCM-resolution data over the South West of 
England to the spatial and temporal scales appropriate for the hydrological system, 
ignoring possible additional sources of uncertainty in the downscaling process. 
 
Our choice of these simple methodologies is justified because our goal is to explore in 
what sense, if any, information from a PPE is useful and represents an improvement 
compared to the use of a single/few model scenarios. Our exploratory analysis does not 
therefore represent a robust prediction of climate change or impacts, but illustrates the 
potential for using large PPEs in adaptation decision-making. 
 
We will see that there are basically two advantages in using large ensembles like 
climateprediction.net data over other sources that provide just change factors at different 
time slices in the future, or single model scenarios.  In the first case, CPDN stores time 



series of climate variables from each ensemble member, providing time dependent 
information extremely valuable for water resources management. As this time dependent 
information has been generated by a fully dynamical climate model, we can assume that 
it provides a range of future possible evolutions of the climate system consistent with the 
current state of the art climate science. This means that we can look at relative changes 
in time in the frequency of occurrence of different events of interest. This is an important 
issue given that we are trying to quantify the impacts on water supply infrastructure and 
management of changes in a non-stationary system.  
 
In the second case, we will see that the use of just one realization of future climate can 
give a false sense of security and does not provide the rich picture that the ensemble 
does.  Moreover, our results strongly indicate that the practice of using a single model 
run, or for that matter ensemble means instead of the individual model runs, can be 
misleading when analysing impacts of climate change.  
 
The paper is organised as follows. In section 2 we introduce the PPE climate model data 
and describe how we use it to simulate the catchment river flows using the hydrological 
model CATCHMOD. We also describe the basic features of the water resource 
management model LANCMOD. In section 3 we discuss the results obtained when 
LANCMOD is run into the future with climate change projections under a “business as 
usual” demand and supply-infrastructure scenario. In section 4 we analyse how these 
results change under different scenarios of demand and supply infrastructure that could 
be implemented to adapt or manage the effects of climate change in the future. In 
section 5 we summarize our results and discuss their implications for impacts studies 
beyond this particular case study. 
 

2 Data and methods 
The water resources system LANCMOD requires daily time series of river flows at 
different water abstraction points. In this section we firstly describe the CPDN 
experiment and the downscaling and bias correction techniques that we utilize to adjust 
GCM monthly time series to the appropriate daily input for the CATCHMOD rainfall-
runoff model.  We then describe CATCHMOD and the main characteristics of the 
simulated river flows.  Finally, we describe the main features of LANCMOD when set up 
to simulate Wimbleball water resource zone. 
 
2.1 CPDN and climate data:  
The climate data used in our analysis has been generated by CPDN second experiment 
launched in February 2006. The GCM used is the HADCM3L, a version of the UK Met 
Office Unified Model comprising a standard resolution atmospheric model coupled to a 
lower resolution ocean model. The experiment explores the effects of perturbing twenty-
six parameters that are relevant to the way radiation, large scale clouds formation, ocean 
circulation, sulphate cycle, sea ice formation, the land surface and convection are 
simulated by the GCM1. 
 
Each simulation involves a 160-year control run with constant forcing at pre-industrial 
concentrations and a 160-year transient run. The transient simulations include two 
phases. In the first phase from 1920 until 2000 the experiment is forced with historical 
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records of CO2, volcanic and anthropogenic emission, and solar forcing.  In the second 
phase, a range of possible future scenarios are used to force the model response 
between 2000 and 2080.   
 
Climateprediction.net is an ongoing experiment in which individual model simulations are 
carried out using idle processing capacity on personal computers volunteered by 
members of the general public. In our study, we concentrate on the first 246 transient 
simulations that were completed, and which are now part of the much larger ensemble of 
completed simulations. Within this subset, all model runs were subjected to the A1B 
SRES forcing scenario.  One member of the ensemble has the standard (un-perturbed) 
values of the model parameters used in earlier single model scenario simulations by the 
UK Met Office. In the rest of the paper this particular model run is termed the “standard 
version” of HADCM3L. 
 
The CPDN experiment archives a variety of climate variables at different temporal 
(monthly to decadal means), and spatial scales (grid points to continental averages).  
Monthly time series are available, for several variables, as the global mean, the area 
average over 22 continental to sub continental regions similar to those defined by Giorgi 
and Francisco 2 (Giorgi; Francisco 2000), for six ocean “basins” and for eight individual 
grid boxes over the United Kingdom. We use monthly time series of temperature, 
precipitation, and relative humidity for the grid box corresponding to the South West of 
England (48.75N ,5.625W – 51.25N  1.875W). 
 
We also make use of observed data, which comprises daily time series of precipitation, 
potential evaporation (PET) and naturalised river flows. These data were provided by the 
Environment Agency of England and Wales and are used in the operation of existing 
operational hydrological and water resources models. Precipitation data are the area 
average over the Thorverton catchment derived using three groups of rain gauges for 
the period 1930-1984. Potential evaporation is an area average over the catchment, 
estimated based on a regression with Central England temperature record for 1930-
1960, and MOSES v2 data for 1961-1984. River Exe flows at Thorverton are naturalized 
flow sequences from 1957-2005. 
 
The hydrological model that we use to simulate daily discharge in the River Exe at 
Thorverton is CATCHMOD which requires daily time series of precipitation and potential 
evaporation to simulate runoff. Thus we describe in detail these time series before 
concentrating on the simulation of river flows. 
 
Precipitation:  
Area-average monthly precipitation for the GCM grid box over SW England is available 
directly from the CPDN model runs.  The simulated precipitation shows a seasonally 
varying bias when compared to the observed rainfall (Figure 1), underestimating the 
mean monthly values for all model runs, especially during the summer months.  This is 
not a surprising result, as strong biases are often found in climate model simulations, 
particularly when looking at individual grid boxes rather than larger regions or continents. 
As the hydrological model is parameterised to simulate river flows when driven by 
observed rainfall, any large biases in simulated precipitation will force the model to work 
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outside the range for which it has been calibrated producing meaningless results (Ebi et 
al. 2007; Wilby et al. 2000; Wood et al. 2004; Wood et al. 2002). 
 
To correct the biases in simulated precipitation and simultaneously downscale in time to 
generate daily precipitation, we adapt a standard methodology based on a gamma 
transform (or quantile-quantile mapping) that preserves the monthly precipitation 
distribution (Hay et al. 2002; Panofsky; Brier 1968; Wood et al. 2004). For the period in 
which observed precipitation is available (1930-1984), a gamma distribution is fitted 
(using maximum likelihood estimation) to the observed monthly precipitation and to each 
monthly precipitation from the model run.  To correct for GCM bias in the period with 
observations the quantile for any GCM monthly precipitation value is determined, after 
which that model monthly value is replaced with the amount corresponding to the closest 
quantile in the observed distribution.  At the same time, the corresponding daily data for 
that particular month in the observations are used, which produces a daily series that is 
both bias corrected and has a realistic day-to-day structure. For the rest of the analysis 
period (1985-2079), the model 1934-1984 distribution is used to compute the quartiles 
associated to each monthly value from the model in that period (1985-2079), and each 
model value is then replaced with the observation value closest to the mapped quantile, 
including the corresponding daily structure. 
 
The effect of this approach on model bias is shown in Figure 1. After correction, the long-
term mean monthly precipitation of each model is very similar to the observed mean, and 
represents a reasonable bias-corrected estimate of precipitation over the catchment. 
 
Since the Gamma transform method is based on mapping observed and simulated 
quantiles of their corresponding Gamma distributions, the methodology preserves the 
model intra-annual variability in the sense that the sequence of wet and dry months in 
the raw model data is replicated in the bias corrected data, by sampling the wettest or 
driest quantiles in the observed distribution. However, since the model monthly values 
are effectively replaced by observed monthly values, the methodology is conservative in 
the sense that it is impossible to obtain daily or monthly precipitation totals that are larger 
or smaller that those in the observations. This will affect particularly the distribution of the 
extreme monthly precipitation within the ensemble, since they are all mapped onto the 
extreme values that appear in the climatology. 
 
Previous work using ensembles of opportunity (including combinations of global and 
regional climate models) to analyse impacts of climate change on hydrological systems, 
indicates that the results depend in part on the downscaling methodology (Fowler et al. 
2008; Manning et al. 2008; Salathe et al. 2007). However, the downscaling uncertainty is 
typically a smaller component of the total uncertainty compared with that associated with 
parent climate models. Therefore, while acknowledging that alternative downscaling 
techniques will produce results that differ from our approach, we concentrate here on the 
influence of a large PPE on impacts and adaptation, and will address the issue of 
alternative downscaling approaches in forthcoming work. 
 
Potential evaporation (PET):  
The procedure to obtain potential evaporation is more involved since this variable is not 
available directly from CPDN. We use temperature, and relative humidity from CPDN 
model runs, and observed wind speed and percentage of sunshine to estimate monthly 
time series of PET using Penman formulation (Penman 1948).  To simplify the 
calculations we assume that wind speed and percentage of sunshine do not change in 



the future. Furthermore, since large scale PET correlates fairly well with local PET we 
assume that the potential evaporation calculated with the SW England grid box data is a 
good representation of the catchment PET, and that monthly mean values approximate 
reasonably well daily values. 
 
When compared with the historical PET monthly means over 1930-1984 (Figure 2), 
CPDN model runs overestimate PET throughout the year, primarily due to the GCMs 
temperature being overestimated (not shown). In order to correct for these biases, the 
simulated PET monthly means were scaled by a factor that makes the simulated long 
term monthly mean equal to the observed long term monthly mean over 1930-1984 
(Durman et al. 2001). Thus, after bias correction, model monthly means end up 
superimposed with the observed ones (Figure 2). Note that this methodology only 
adjusts the long term mean, and does not incorporate additional corrections to the 
variability as in the precipitation bias correction methodology. Since PET is 
overestimated through the year, the simulated monthly values will be multiplied by 
monthly scales that are smaller than one, therefore reducing the range of simulated PET 
distributions compared with the raw model data. 
 
2.2 CATCHMOD and river flows: 
CATCHMOD is a rainfall-runoff model used by the EA for water resource planning and 
abstraction licence allocation. The model is described in detail by Wilby et al. (1994). It 
uses daily time series of precipitation and potential evaporation for the river catchment to 
simulate daily time series of runoff. 
 
For our case study CATCHMOD is set up to simulate river runoff for the Exe River at 
Thorverton. The effective catchment area consists of approximately 600 km2 underlain 
by sandstone. Five hydrological model parameters are determined through calibration 
against observed discharge. Since in this work we only explore climate model 
uncertainty, we run CATCHMOD as calibrated for operational use by the Environment 
Agency. 
 
We run the 246 downscaled and bias-corrected precipitation and PET time series 
through CATCHMOD and obtain an ensemble of flows for the Exe at Thorverton.  Figure 
3 illustrates the percentage change of mean monthly flow between 2020-2039 and 1961-
1990. A large proportion of model runs show substantial reductions in the mean flows 
during the summer months, 82%, 93% and 91% in June, July and August respectively. 
This produces large reductions in low flows, illustrated in Figure 4, where flow duration 
curves for daily flows over the period 1961-1990 and over 2020-2039 are illustrated. The 
fact that the simulated low flows using observed data are larger than the observed flows 
is a consequence of the inability of CATCHMOD to simulate low flows precisely when it 
is calibrated to reduce errors in the whole range of flows. Consistently, low flows across 
the model ensemble are larger than observed.  Moreover, the fact that the observed 
highest flows are about twice as large as the simulated highest flows (Figure 4a) 
indicates that CATCHMOD is not specifically designed to simulate peak flows (Wilby et 
al. 1994). 
 
The spread in the range of simulated flows increases with time as members of the PPE 

diverge in their response to the A1B forcing scenario. For instance the ensemble range 
in the simulated flow exceeded 90% of the time (Q90) increases by about 50% between 
the baseline period (Fig 4a) and 2020-2039 (Fig 4b). However, some changes are 
common to most of the PPE: for instance, driven by a general decrease in summer 



precipitation, low flows decrease relative to the baseline period as can be seen by the 
change in the relative position of CPDN low flows with respect to the observed low flows.  
Analogously, driven by a general increase in winter precipitation, high flows increase 
relative to the baseline period except for the highest flows (Q02 and beyond). In this 
case simulated peak flows are always smaller than baseline peak observed flows, 
perhaps due to the fact that CATCHMOD was not calibrated for high flows. Further work 
is required to confirm whether this is a real result or a consequence of the hydrological 
model or downscaling errors. 
 
In what follows we assume that the simulated flows described in this section provide 
information on the spread of plausible future natural flows of the river Exe at Thorverton, 
and consequently a range of future water availability in that catchment. In order to 
assess the implications of this spread of future flows for water resources, we use these 
simulated river flows to run the water resources model which is described next. 
 
To end this section we comment briefly on the hydrological model uncertainty.  As with 
any hydrological model, when CATCHMOD is parameterized, there is a range of values 
of the parameters for which the simulated flows are close enough to the observed one 
according to an objective function such as the Nash-Sutcliffe measure (Wilby; Harris 
2006). This range of parameters translates into a range of flows all consistent with the 
observed flow according to a set of tolerances for this measure. Even though this 
uncertainty is not negligible, previous work has shown that in CATCHMOD it is small 
compared to the climate model uncertainty (New et al. 2007; Wilby; Harris 2006). As we 
wish to focus on uncertainty associated with the climate model PPE, we do not explore 
this aspect of uncertainty in this work. 
  
2.3 Water resource management system.  
The Wimbleball water resource zone is situated in SW England and supplies water to the 
counties of Devon and Somerset.  In our simplified version of the zone simulated using 
LANCMOD (Figure 5), water is supplied by two reservoirs (Wimbleball and Clatworthy), 
the river Exe (at two abstraction points, Exebridge and Thorverton,) and from a 
sandstone groundwater source. The largest demands are East Devon, which includes 
the city of Exeter, Somerset and “Peak”.  The latter two represent transfers out of the 
catchment to a neighbouring water utility, Wessex Water.  There is also a “pumped 
storage”, which is water that is available to be transferred from the river Exe at 
Exebridge to Wimbleball to refill the reservoir during the winter months.  
 
The main reservoir within the catchment is Wimbleball. It was built in 1979 on Exmoor, 
and impounds water from the river Haddeo, a tributary of the Exe, with net storage of 
21320Ml and a surface area of 150 hectares. It supplies Exeter and parts of East Devon 
by releasing water into the river Exe to support abstraction at Tiverton and Exeter. 
 
LANCMOD requires as inputs daily time series of river Exe flows at Thorverton and 
Exebridge, and daily inflows into Wimbleball and Clatworthy. Thorverton flow is 
simulated by CATCHMOD as described in the previous section. The other three flow 
time series are calculate by scaling the Thorverton flows by a factor that ensures that the 
long term mean flows coincide with those calculated using the flow estimation software, 
Low Flows 2000 (Young et al. 2003).  This simplification has been demonstrated by the 
Environment Agency to be effective in modelling current operation of the Wimbleball 
system. It is important to note that we assume that the scaling factors will remain the 
same under climate change. Thus the effects of changes in the reservoir inflows due to 



climate change are taken into account by representing them as scaled versions of flows 
of Exe at Thoverton. 
 
LANCMOD is set up to simulate the functioning of the system when different demand 
profiles, and control rules for river abstractions and functioning of the reservoirs are 
stipulated.  The current figures used by LANCMOD as demand profiles (Table 1) are 
based on present values of water consumption within the catchment. These are mean 
monthly demands that do not include inter-annual and intra-month variability, concealing 
the fact that, for instance during summer hot spells peak demands can be much higher. 
Indeed, our simplified water resource model is not suitable for assessing the impact of 
peak demands since more information about the structure of the demand and much 
more detail about the system’s constraints would be required. Solutions to guarantee 
peak demands usually include improving local storage (service reservoirs), larger pumps, 
pressure reduction, etc., which Lancmod, in common with other simplified models, can 
not simulate. However models such as LANCMOD are widely used because they 
represent an efficient way to explore how climate change will affect water supply. They 
constitute one step in a tiered approach to supply system design where detailed design 
and day-to-day operational modelling would require complex models that could not 
easily simulate the impacts of a hundred years of climate data. 
 
The pumped storage is modelled as a demand, and represents the water pumped from 
the Exe at Exebridge that is available to be transferred to Wimbleball reservoir to ensure 
the refilling of the reservoir during the winter. It is set up to transfer 150Ml/d from 
November to March when required by the control rules governing the reservoir, up to an 
annual maximum of 13633Ml. The fisheries bank only takes up 150Ml/d on August 2 to 4 
and September 2 to 4. 
 
In the following section we will concentrate on East Devon and the two demands 
representing the water transferred to Wessex Water (Peak demand and Somerset), 
since these are the most significant ones.  Notice that here Peak demand is just the 
name of a demand and does not represent a peak demand in the operational sense. 
 
To illustrate how the functioning of Wimbleball reservoir is simulated, Figure 6 shows 
reservoir storage levels for each month of the year over the period 1930-2005, simulated 
using CATCHMOD river flows between 1930 and 1957, and observed naturalized flows 
between 1957 and 2005. We also show selected percentiles from the distribution of 
monthly historical reservoir levels, along with the only time dependent operating control 
rule for the reservoir. The other control rules (not shown) are constants at 21320 Ml, 
1100Ml and 0Ml (100%, 5% and 0% of capacity).  The operation of the reservoir by 
LANCMOD is as follows:  

• When the storage level is between the maximum capacity (21320Ml) and the time 
varying control rule, water is released into the system at a rate of 350Ml/d and there 
is no transfer from the pumped storage.  

• When the reservoir storage falls under the time varying control level, the transfer of 
water from the pumped storage is triggered at a rate of 150Ml/d up to a maximum of 
13633 Ml per annum, but only between November and March.  

• The same rule applies if the storage level falls under 1100Ml.  

• For any storage level there is a compensation flow released back into the river of 
9.1Ml/d.  

 



Clearly this system is demand driven, as its priority is to satisfy the different demands. 
One consequence of these rules is that water from the reservoir is always released into 
the system at a maximum rate of 350Ml/d, limited only by the volume of water left in the 
reservoir, even when its level is so low that it would in practice be inappropriate to 
operate in this way. In other words, in our simulation the only role of the control rules is 
to determine when water is pumped into Wimbleball. The volume supplied by the 
pumped storage is limited by what can be extracted at Exbridge, where the flow has to 
exceed 400 Ml/day (4.62 m3/sec) to be able to supply 150 Ml/day (1.73 m3/sec) to the 
pumped storage.  When the flows fall under 340 Ml/day, 280 Ml/day, 220 Ml/day, 160 
Ml/day, 130 Ml/day, and 120 Ml/day, water is supplied to the pumped storage at a rate of 
120 Ml/day, 90 Ml/day, 60 Ml/day, 30 Ml/day, 15 Ml/day, and 10 Ml/day respectively. 
 

3  Water resources model under business as usual demand scenario 
In this section we describe the response of the water resource system when run into the 
future with current reservoir capacities and demand profiles, and under the same 
operational rules; this is termed the “business as usual “(BAU) scenario. 
 
We will present our results as monthly averages for the different variables of interest, as 
the daily structure of precipitation that we used to generate the river flows was borrowed 
from the observations. In doing the bias correction and simultaneously the temporal 
downscaling, we have assigned to each model month a daily structure taken from the 
observed month with the closest quantile in its Gamma distribution. Therefore any 
property that depends closely on daily structure will be partly reflecting characteristics of 
the observed climate and not necessarily of model data. On the other hand, we expect 
monthly averages to be more faithful indicators of model behaviour. 
 
3.1 Wimbleball reservoir:  
A natural question to ask is whether the management of the reservoir would need 
changing under future climatic conditions. To this end, we assume that our ensemble of 
climate model runs provides a sample of what might happen at any chosen time slice in 
the future. Figure 7 is similar to Figure 6 except we now show the distribution of 
Wimbleball reservoir levels for a single year in the future, as simulated using the 246 
members of the PPE. A similar diagram could be constructed for any year in the future. 
The different percentiles in Figure 7 represent the storage level exceeded by a given 
fraction of models in each month in 2040. This figure suggest that if one uses the climate 
model ensemble as practitioners usually look at historical records, the existing operating 
control rule designed following historical records might need some adjustment in the 
future. To illustrate this we look at the driest period of the year, August to October. In the 
case of reservoir capacity simulated with the historical records, in half of the years 
reservoir levels are above 55% capacity, and in three quarters of the years are above 
40% capacity.  In the case of the ensemble simulations in the 2040s, the reservoir level 
exceeded by half the models is lower, at 40% while that exceeded by three quarters of 
the models drops to 25% of capacity.  Assuming that the percentiles in the climate 
change simulations can be interpreted in a similar way to the percentiles in Figure 6, this 
comparison suggests that changes in the control rules must be introduced in order to 
guarantee that the reservoir operates at safe levels. 
 
More interestingly, we can explore how the reservoir storage level across the ensemble 
changes over time. Figure 8 represents the storage level for a single month as a function 
of time between 1960 and 2079 - we show September as one crucial month towards the 
end of the summer, when the reservoir level becomes particularly low. This figure shows 



that the storage levels associated with each percentile decrease slowly from the present 
to about the 2020s, and more rapidly later on. For instance the 50th percentile goes from 
nearly 60% of full capacity to about 50% by the 2020s, and ends up at nearly 30%by the 
end of the simulation period.  Thus, the evolving risk of the reservoir reaching critically 
low levels under current operating rules and for this particular climate model ensemble 
can be quantified. 
 
3.2 East Devon and Somerset demands: 
LANCMOD is designed so that different priorities can be assigned for the order in which 
demands are supplied from different sources. For instance Peak demand is only 
supplied from Wimbleball reservoir, while Somerset demand is satisfied first by 
Wimbleball and, if not enough water is available from this reservoir, the rest will be taken 
from Clatworthy. In the case of East Devon, the demand is supplied firstly from the 
ground water source, then from river Exe at Thorverton, and finally from Wimbleball. This 
priority order is important when analysing how demands are satisfied under different 
scenarios. For instance East Devon has priority over the other demands on the 
groundwater source. Since in the present configuration groundwater supply is fixed to be 
50Ml/d, nearly half of East Devon annual mean (120Ml/d) is guaranteed by this source, 
imposing a lower bound on the possible deficit even under climate change. 
 
When LANCMOD is run using historical flows between 1930 and 2005, the only time that 

East Devon demand cannot be satisfied is September 1976, representing a ~1% risk of 
failure. On the other hand, when run using the CPDN ensemble, between zero and 3 
models fail for any given year during the baseline period, 1960-1989 (Figure 9), 
representing a risk of failure not larger than 1.2% across the ensemble. This is 
consistent with reservoir levels shown in Figure 8, where fewer than 2.5% of the models 
have storage levels below the control rule line in September. Of course, the fact that the 
storage is less than the control rule value does not imply automatically that a demand 
will not be satisfied, since LANCMOD is set up to try to satisfy all the demands as its first 
priority. Therefore, before failing, LANCMOD will try to exhaust all possibilities including 
depleting the reservoirs and looking for alternative sources of water within the system. In 
particular, in the case of East Devon, it will be supplied first by the ground water source 
and Exe at Thorverton, and ultimately by Wimbleball. Recall that in our simplified version 
of the system, the ground water source guarantees a constant supply of 50Ml/d 
unaffected by climate change. This correlates with the fact that even though about 2.5% 
of the models have very low reservoir level in September 1960-1990, only a small 
fraction of them actually fails to satisfy East Devon demand.  
Looking to the future, the ensemble shows that the fraction of simulations failing to 
supply East Devon demand in September for any decade beyond 2030 is at least three 
times that in the baseline period (~0.6%), and reaches about 5% of the models in the 
2070s (Figure 9). The bottom panel in Figure 9 shows analogous information for October. 
A higher fraction of models fail in this month at any time compared to September, 
suggesting that the critical period for satisfying demand will shift towards the autumn, 
according to our climate model ensemble. The pattern of failures in November (not 
shown) is similar to the one in September, and there are even fewer failures from 
December through the rest of the winter. 
 
At Somerset BAU demand is roughly half East Devon and can also be satisfied by 
Clatworthy. Therefore, even though the fraction of models failing in the baseline period is 
similar to East Devon (about 0.2% on average), the increase in the future is lower, with 
only about 2% of simulations failing by the 2070s (Figure 10).  For Somerset, there is 



also an increment in the fraction of models failing in October (bottom panel) and similarly 
in November (not shown) compared to September. 
 
To finish this section we discuss briefly what happens if instead of having the climate 
model ensemble that we have used, there was a single model simulation, such as the 
standard version of HADCM3 model. This is analogous to the information that would 
have been available with the 2002 UK climate change scenarios (Hulme et al. 2002), or 
a single one of the GCMs used in the IPCC 4AR (Solomon et al. 2007; Wiley; Palmer 
2008). In this case, we have to use this simulation in the same way that we use historical 
records, for instance by looking at how many times in a specific time period demand was 
not satisfied in a particular month of the year. The only time the standard model 
simulation fails to satisfy East Devon demand between 1960 and 2079 is in October and 
November of 2078, and it never fails to satisfy Somerset demand. This information is 
clearly very limited compared with the climate model ensemble information: it tells us 
about just one possible future path consistent with the current climate knowledge; it will 
depend on the period of time we look at within the time series; and it does not tell us 
anything about how the risk of failure will change in time as the climate models are 
forced into the future. Clearly, this one realization of future climate gives a false sense of 
security and does not provide the rich picture that the ensemble does. If a single 
simulation had produced an extreme drying in the future, an equally false sense of alarm 
might have been created. 
 
Arguably the use of a single model run (or several from an ensemble of opportunity) to 
analyse impacts of climate change would not be appropriate from the dynamical point of 
view. Due to the non-linearity of the system, a more reasonable approach, ignoring 
model uncertainty, would be to analyse an initial-condition ensemble, where an 
ensemble is generated by running the same climate model starting from slightly different 
initial conditions. Studies carried out with a slab version of the Hadley centre model 
where larger initial conditions ensembles for each model run were available (Stainforth et 
al. 2007), have shown that initial conditions uncertainty can be comparable to the model 
parameter uncertainty. Unfortunately our ensemble does not contain initial condition 
ensembles large enough to confirm this finding in the case of the fully coupled climate 
model used to generate the PPE used for our case study. 
 
Our results strongly indicate that the practice of using a single model run, or for that 
matter ensemble means instead of the individual model runs, can be misleading when 
analysing impacts of climate change. In the case of the use of the ensemble mean, it will 
clearly suppress the ensemble variability and all the information contained in it, 
particularly that related to extremes. 
 

4 Adaptation and management options under climate change. 
Up to this point we have described the simulated changes in water availability under a 
business as usual scenario, assuming that demand patterns and reservoir maximum 
storage will not change in the future. We will discuss next how the system responds 
under different scenarios for supply and demand management options. 
 
Various changes can be made to the water resource model set up to explore how 
different adaptation strategies can decrease the risk of supply failure in the future, 
making the system more resilient to climate change.  Options include reducing demands 
to comply with water saving policies, increasing the volume of water available in the 
reservoirs, reducing the transfer of water outside the catchment, increasing the pumping 



rate to the reservoir, and changing the control rules that govern the river abstractions 
reducing the flows maintained for the environment.  The above is simply a list of the 
changes that could be simulated given our water resource model. 
 
In a real situation the path chosen to adapt to possible impacts of climate change will 
depend on many factors that include, but are not limited to, the climate information.  In 
particular issues such as the cost of the different options, their impacts on the 
environment, public response, technical feasibility, as well as demographic and water 
use changes, will play important roles in the decision.  
 
In this case study we will concentrate on four different scenarios that can be simulated 
by making minor changes to LANCMOD set up. Two scenarios are based on 
consumption reduction, one on increasing supply and one on combined increased 
supply and reduced demand. Our goal here is to analyse how the climate model 
information can be used to help inform these management options.  An integrated 
assessment of possible adaptation strategies, taking into account the full range of socio-
economic factors and their uncertainties, will be the focus of future work. 
 
4.1 Demand reduction options: 
For the purposes of this study, we have assumed that the baseline household demand in 
the area is 150 l/h/d, the current average for England and Wales.  The recent UK 
government water strategy (DEFRA 2008) aims for this to reduce to 130l/h/d, suggesting 
that a reasonable scenario for demand reduction would be about 15% less than the 
current figures. In this scenario, we are implicitly assuming that non-household and other 
demands also fall by the same proportion. 
 
Since the two most significant demands through the year are East Devon and Somerset 
combined with Peak demand, we devise two different scenarios involving them. The 
other demands are either very small (less than 2% of East Devon or Somerset), or 
operate only a few days during the year (Fisheries bank), having relatively little impact 
on the whole system, therefore we leave these unaltered. 
 
In the first demand management scenario, labelled EDred, we assume that only the 
annual East Devon profile is reduced by 15%. East Devon is the largest demand in the 
system with a yearly figure of 120 Ml/d, and EDred results in a reduction of 18 Ml/d. This 
illustrative scenario could be seen as representing, for example, a demand management 
programme targeted on part of the resource zone, and addressing long-term water 
consumption as opposed to peak demands. 
In the second scenario, labelled ALLred, we reduce by 15% all main demands: East 
Devon, Peak and Somerset, amounting to an annual average reduction of about 28 Ml/d. 
Both scenarios assume that a water saving strategy is put in place, and other factors, 
such as population changes, remain constant. 
 
4.1.1 Somerset and East Devon demand response: 
Since one of our goals is to understand how different management options affect the 
response of the water resource model in the future compared with the current operation 
of the system, we compute changes in the proportion of models failing to supply any 
given demand relative to the proportions in both the baseline period and under the BAU 
scenario. Results for Somerset and East Devon are listed in Table 2. 
 



If the BAU management scenario is maintained through the future, the fraction of models 
that fail to supply both Somerset and East Devon increases markedly in the future. For 
example single month failures occur 1-4 times as frequently by the 2030s, and 9-10 
times more often in the 2070s.  The EDred scenario significantly reduces the number of 
models failing to supply demand in the future, by up to two thirds compared to the BAU 
in 2070s.  Compared to the present day BAU, EDred still produces more failures but the 
increase is much lower than under BAU. The ALLred scenario does not affect East Devon 
significantly, but is more effective at Somerset, as this scenario involves a reduction in 
Somerset demand on top of the East Devon reduction. 
 
From the water resource management point of view, it is important not only to know 
whether there will be a failure, but also the frequency of occurrence of any number of 
consecutive monthly or annual failures. For instance, we might be interested in knowing 
how the occurrence of one monthly failure will change in the 2030s compared with the 
baseline across the climate model ensemble. Or the analogous change for failures that 
occur in two or more consecutives months, and how these changes depend on the 
demand scenario proposed. An important advantage of working with the CPDN 
ensemble is that climate time series of inputs for any given model run are available. 
Therefore we can compute how frequencies of occurrence of consecutive events change 
in time as the climate models are run into the future.  
 
In Table 2 we show the results for the number of models that fail to satisfy Somerset and 
East Devon demand during a single month, and from two to six consecutive months, 
over seven decades in the future. We show both the total number of models that fail to 
satisfy the demand, and the total number of failures. For more than six consecutive 
monthly failures (not shown) there are no failures, except for one single model failing in 
the last decade. 
 
As would be expected, the fraction of models failing in the historical baseline period for 
EDred scenario is equal or smaller than for the BAU scenario. If all demands are reduced 
(ALLred) the situation is further improved specially for Somerset, with zero consecutive 
failures in the baseline period in this case.  In the future, under any scenario, the number 
of models failing increases, consistent with the reduction in summer river flows simulated 
by the ensemble; even though winter flows increase in some ensemble members, they 
are clearly not enough to refill the reservoirs (see next section).  Compared to the BAU 
scenario, both EDred and ALLred result in far fewer consecutive monthly failures, 
especially after the 2040s. ALLred scenario is again particularly effective for Somerset, 
completely eliminating isolated monthly failures and working very well until the 2060s for 
2 or 3 consecutive monthly failures. 
 
A comparison of EDred and ALLred scenarios for East Devon suggests that the 
management of different demands interacts non-linearly within this system, since even 
though reducing all demands does not affect particularly the number of isolated monthly 
failures in East Devon, it does have an effect for 2 consecutive monthly failures. 
 
We also evaluate the changes in multi-year system failure. Table 3 shows the number of 
ensemble members failing to meet demand in single and multiple consecutive years, 
over thirty year periods.  Failures for more than six consecutive years are very rare and 
appear mostly in the last three decades of the simulation period. Here we define an 
annual failure whenever the annual volume of water supplied does not coincide with the 
annual volume required, independently of whether that occurs in just one or more 



months within the year. Therefore, these tables do not provide information about when 
and how the demand was not satisfied within any particular year. Nevertheless, they do 
provide information about how demand management options can remediate the fact that 
under simulated future climate and BAU demand and supply, the fraction of models 
failing two or more consecutive years increases in time. 
 
Under the BAU scenario only one ensemble member fails to meet Somerset demand in 
any two consecutive years in 1960-1989, but this increases to 10 and 27 members for 
2020-2049 and 2050-2079 respectively; the increase in consecutive year failures is even 
greater at East Devon. However, after East Devon demand is reduced by 15% (EDred), 
the number of models failing reduces by three times at Somerset and at least six times 
at East Devon for 2020-2049. Implementing the additional 15% reduction in Somerset 
and Peak demand (ALLred) completely eliminates two annual consecutive failures in the 
future, apart from final period for East Devon.  Thus, for this system, relatively small 
year-round demand reductions could eliminate the need for more drastic measures in 
critical dry consecutive years. 
 
If the single model realisation using the standard version of HADCM3 is used, it never 
fails to supply East Devon or Somerset under these two demand reduction scenarios. 
This suggests that, potentially, a single-scenario based approach could produce an over-
optimistic view of the future water supply situation. 

 
4.2 Supply management options: 
An alternative to reducing demand is to add another source of water.  One way to do this 
in LANCMOD is to increase the size of the reservoir. Although this may not be feasible in 
practice for Wimbleball, increasing reservoir size is often an option, as it is relatively 
uncontroversial and often cost-effective. It is also an easy way to represent an additional 
source of water within the current model set up. Increasing the depth of the reservoir by 
1m augments the storage from 21320 Ml to 25075Ml, an increase of 18% in the volume 
of water stored. Since we do not change any other parameter in the model, such as link 
capacities or control rules, the limitations in the amount of water that can be released 
into the system will still be controlled by these factors. However, the fact that the 
reservoir can store more water during the periods of high flows changes the behaviour of 
the reservoir in relation to other scenarios. This is illustrated in Figure 11 which shows 
Wimbleball reservoir storage in September as a function of time for the ALLred demand 
reduction scenario, the increased reservoir level scenario (Lres), and these two scenarios 
implemented in combination ( L+ ALLred ). 
 
If only demand reduction is implemented, much of the effect of drier summers can be 
alleviated: many more models exceed any given threshold compared to the BAU 
scenario. For example, the storage level exceeded by half the models in the 2070s shifts 
from 30% under BAU to 40% under ALLred.  Furthermore, the risk of occurrence of very 
low reservoir levels across the ensemble, as indicated by the 2.5 percentile, is delayed 
from the 2030s under BAU until the 2070s under ALLred. 
 
When the reservoir capacity is increased without reducing demand, we see that the 
behaviour of the 50th percentile is similar to the ALLred case, improving the chances of 
having the reservoir half full as compared with the BAU scenario. However, the risk of 
very low reservoir levels as indicated by the 2.5th percentile does not change significantly 
compared to the BAU scenario, suggesting that even though there is more storage 
capacity within the system, the change in river flows across the ensemble are not 



enough to make use of this greater capacity in the driest years. If capacity is increased 
and demand reduced (L+ALLred) there is little improvement over ALLred when looking at 
the behaviour of the percentiles as a function of time. Obviously in absolute values, the 
fractions of storage level represent a larger storage capacity for Lres and L+ALLred 
(fractions of 25075Ml) than ALLred (fractions of 21320Ml). 
 
How the supply to different demands is affected by these two last scenarios can be 
assessed in Tables 2 and 3.  In the case of Somerset demand we observe that 
scenarios ALLred and L+ ALLred are equally effective in reducing the number of 
consecutive monthly and annual failures, and much more effective than EDred and Lres in 
isolation. EDred and Lres are roughly equally effective until the 2040s, but the former 
becomes more effective thereafter, when it is clear that increasing the size of the 
reservoir does not improve Somerset situation significantly as compared to the BAU 
scenario. This is consistent with the previous observation that increasing the size of the 
reservoir does not change significantly the risk of very low reservoir level across the 
ensemble after the 2030s. 
 
For East Devon the situation is different. Once again increasing the size of the reservoir 
only is not as effective in reducing failures as ALLred.  However, if this is combined with a 
reduction in all demands (L+ ALLred), the number of single month failures reduces after 
the 2040s, compared with the demand reduction only scenarios. Similarly, for two or 
more consecutive monthly failures L+ ALLred performs equally or better than EDred and 
ALLred at any time. This suggests that increasing the reservoir capacity combined with 
demand reduction measures can work effectively at reducing the number of consecutive 
monthly failures. 
 
A similar response emerges for failures in consecutive years. Increasing the reservoir 
size only is not very effective, suggesting than even though a large proportion of the 
ensemble projects wetter winters, these do not completely compensate for the drier 
summers. However when a larger reservoir size is combined with demand reductions, 
the number of isolated annual failures goes from 49 at the baseline for BAU, to 27 in the 
period 2020-2049. For 2 or more consecutive failures the demand reduction scenarios 
and L+ ALLred are equally effective up to the middle of the 21st century, suggesting that 
the main limitation to reduce the number of consecutive annual failures is water 
availability and not storage capacity, at least until the early 2050s.  
 

 

5 Discussion 
In this work we have described an approach to use a large perturbed-physics GCM 
ensemble to provide potentially useful information for the study of impacts and 
adaptation to climate change in a water resources system.  We base our analysis on the 
only publicly-available perturbed physics ensemble (climateprediction.net), an 
hydrological model (CATCHMOD), and a water resource system model (LANCMOD); 
the latter two are operational decision-support tools used by the Environment Agency of 
England and Wales.  In this way, we ensure that our case study is a working example of 
direct relevance for current environmental planning in UK. 
 
In the process of translating the climate model outputs into the appropriate inputs for the 
hydrological and water resource models, we have made some simplifying assumptions.  



Firstly, we use all ensemble members “as is”, without any previous evaluation of their 
relative skill in simulating the climate system. Various methodologies have been 
proposed to weight  different model runs within a perturbed physics ensemble (Murphy 
et al. 2007) and different GCMs within an ensemble of opportunity (Lopez et al. 2006; 
Tebaldi; Knutti 2007; Tebaldi et al. 2005), or to constraint climate predictions using 
observations of past climate change (Stott; Forest 2007). These approaches assume 
that models can be weighted according to a number of possible metrics in order to obtain 
a meaningful probabilistic projection for the climate variables of interest. The metrics can 
be either global, regional/local or a combination of both. Global metrics assume that 
models should perform adequately at the global scale. These include  for instance the 
climate prediction index (Murphy et al. 2004). Regional/local metrics quantify how 
different variables perform at the scale relevant for the climate change impact being 
analysed and weight the models accordingly; an example of this being the impacts 
relevant climate prediction index of Wilby and Harris (2006). At the other end of the 
spectrum, some authors (Stainforth et al. 2007) argue that using current observations to 
calibrate or weight models to produce forecast probabilities of climate change is incorrect, 
and misleading to the users of climate science. The underlying reason is that climate 
models are simulating a non-stationary system and past observations can not possibly 
sample the full state space.  In our work we ignore these issues and take the very 
practical approach of considering all stable model runs as member of our sample. 
 
Secondly, we have assumed that the model data for the grid box over the South West of 
England is a reliable input for the downscaling method used to derive local daily 
precipitation and PET inputs to the CATCHMOD model.  Further, although using the 
quantile-quantile transform method to bias correct/downscale precipitation has removed 
GCM precipitation biases, more work is needed to develop bias correction and 
downscaling methodologies that ensure the correct time and spatial correlations in the 
downscaled data  (Hay et al. 2002; Venema et al. 2006; Wood et al. 2004). 
 
Our choice of these relatively simple methodologies to process the climate model data is 
justified by the fact that in this work we are mostly interested in analysing how the 
climate model ensembles can be used in impacts/adaptation studies as compared to 
single model information, and not in predicting accurately how any particular climate 
variable will behave in the future.  
 
Once the river flows simulated by CATCHMOD are fed into the water resource 
management model we observe that the reservoir operating rules that work properly 
under historical conditions might need some revision in the future provided that we 
interpret the information across the ensemble in the same way practitioners use 
historical information, i.e., fraction of models having a given reservoir level at any time 
slice in the future as fraction of time that the given reservoir level was observed in the 
historical record. 
 
Even more valuable perhaps is the fact that the climateprediction.net experiment stores 
time series of relevant climate variables for each ensemble member. This provides time-
dependent information that is internally consistent for each perturbed-physics model, a 
feature that is extremely important for water resources management. Since this time 
dependent information has been generated by a fully dynamical climate model, we 
assume that it provides a range of future possible paths consistent with the state of the 
art climate science. Therefore we can then look at relative changes in time in the 
reservoir storage across the model ensemble for instance, or compute changes in the 



frequency of occurrence of different events of interest simulated using our PPE. This is 
particularly relevant for multi-month and multi-year dry periods. 
 
Our results show that for this perturbed-physics ensemble, the fraction of ensemble 
members failing to satisfy demand in the period 1960-1989 is similar to the failure 
frequency when using observed river flow data for 1930-2005.  However, the frequency 
of failure increases steadily in the future under a business as usual demand and supply 
management scenario. 
 
To illustrate how different management options can affect this result, we analyse the 
response of the system under four alternative scenarios, a 15% demand reduction at 
East Devon, a 15% demand reduction in all major demands, an 18% increase in 
capacity for Wimbleball reservoir, and a final one combining the last two options. We 
note in passing that many other strategies could have been explored within the 
modelling framework, such as, increased groundwater exploitation, or changes to the 
consented conditions for pumped storage (i.e., volume and season of take) to better 
utilise the available resource during the wetter winters. 
 
The effectiveness of the different measures depends on the component of the demand 
that is analysed and the planning horizon of interest. For instance, both demand 
management options can be quite effective in reducing the number of failures across the 
ensemble, particularly the ALLred scenario for Somerset. In the case of East Devon, 
when demand management is supplemented with a larger storage capacity, the 
frequency of failures is even further reduced towards the end of the 21st century. For that 
planning horizon this ensemble indicates that larger storage capacity only is not enough 
to significantly reduce the frequency of failures, largely due to the lack of water available 
to be stored. However, a larger storage capacity combined with demand reduction (L+ 
ALLred) seems to be a more appropriate choice to largely reduce the possibilities of 
failure to supply East Devon demand. 
 
As we have already discussed, the scenarios proposed here are simple options that can 
be easily implemented with LANCMOD, and allow us to describe how the system 
responds and whether there are any physical limitations imposed by, for instance, lack of 
water available to be stored in the system. In a more realistic situation the path chosen 
to adapt to possible impacts of climate change will depend on many other factors that 
include the climate information, but are not limited to that. An integrated assessment of 
possible adaptation strategies, taking into account issues such as the cost of the 
different options, their impacts on the environment, public response, technical feasibility, 
population and water use changes, will be the focus of future work. 
 
This study demonstrates the value added by the use of large climate model ensembles 
as opposed to a small number of scenarios used in impacts studies to date. It is clear 
that a single HADCM3 model run fails to capture the full range of climate possibilities 
and might lead to false confidence, suggesting in our case that there is no need for 
intervention while the full ensemble indicates the need for adaptive management.  
 
Moreover, the ensemble information provides a particularly effective way to consider the 
benefit of different management options in a way that a few deterministic scenarios 
would not.  We expect that the overhead in additional time and expertise for carrying out 
the impacts analysis will be justified by the increased quality of the decision making 
process. 



 
It is clear that adaptation to climate change is often context specific. Different sectors will 
have different climate information needs and more or less sophisticated approaches to 
use this information for the impacts’ analysis.  In this sense, the UK water sector is 
perhaps one of the better prepared to undertake the challenge of using large ensembles 
of climate models since it already posses hydrological and water resource management 
models potentially adaptable to the novel climate data. 
 
However, even though our case study is specific to the water sector, the key conclusions 
regarding the value added by the use of large climate model ensembles in impacts 
studies can be generalized to other sectors. 
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 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

East 

Devon 

114 116 116 115 120 130 138 138 115 111 111 114 

Somerset 47.35 48 48.2 49.15 50.3 53.55 56.75 59.55 48.2 46.85 46.1 46 

Peak 

demand 

6.3 6.3 6.3 14.7 14.7 14.7 14.7 14.7 14.7 0 6.3 6.3 

Pumped 

Storage 

150 150 150 0 0 0 0 0 0 0 150 150 

Ktt 0.5 0.5 0.5 0.5 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 

Crediton 0 0 0 0 .54 .54 .54 .54 0 0 0 0 
 

Table 1: Annual demand profiles for Wimbleball water resource system. The figures in the table are 

in Ml/d.  
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 Consecutive Monthly Failures 

 1 2 3 

Demand 

Scenario 

BAU EDred ALLred Lres  L+Allre

d 

BAU EDred ALLred Lres L+Allre

d 

BAU EDred ALLred Lre L+Allre

d 

1960-1989 3(3) 2(2) 0 3(3) 0 3(3) 1(1) 0 2(2) 0 2(2) 2(2) 0 2(2) 0 

2020-2029 2(2) 2(2) 0 2(2) 0 5(6) 2(2) 0 4(6) 0 7(7) 1(1) 0 5(5) 0 

2030-2039 2(2) 2(2) 0 3(3) 0 21(23) 10(10) 0 17(19) 0 6(6) 3(3) 0 6(6) 0 

2040-2049 10(11) 4(4) 0 8(8) 0 24(27) 7(7) 0 22(23) 0 8(8) 7(7) 0 6(6) 0 

2050-2059 14(14) 4(4) 0 13(14) 0 28(31) 9(9) 0 18(19) 0 13(14) 5(5) 1(1) 9(9) 1(1) 

2060-2069 17(19) 5(5) 0 14(16) 0 35(40) 16(16) 2(2) 32(35) 2(2) 13(15) 5(5) 0 8(10) 0 

2070-2079 29(33) 9(10) 0 22(25) 0 51(53) 16(17) 2(2) 31(31) 1(1) 20(24) 12(16) 1(1) 21(22) 1(1) 

 
 Consecutive Monthly Failures 

 4 5 6 

Demand 

Scenario 

BAU EDred ALLred Lres  L+Allre

d 

BAU EDred ALLred Lres L+Allre

d 

BAU EDred ALLred Lre L+Allre

d 

1960-1989 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2020-2029 2(2) 2(2) 0 2(2) 0 0 0 0 0 0 0 0 0 0 0 

2030-2039 5(5) 6(6) 0 6(6) 0 4(4) 2(2) 0 3(3) 0 0 0 0 0 0 

2040-2049 5(5) 4(4) 0 5(5) 0 2(2) 1(1) 0 1(1) 0 0 0 0 0 0 

2050-2059 7(8) 5(6) 0 6(7) 0 2(2) 1(1) 0 2(2) 0 0 0 0 0 0 

2060-2069 7(7) 6(6) 0 6(6) 0 1(1) 0(0) 0 1(1) 0 0 0 0 0 0 

2070-2079 14(19) 9(9) 0 13(16) 0 3(3) 4(4) 1(1) 4(4) 0 1(1) 1(1) 0 1(1) 1(1) 

 

 
Table 2a: The number of models that fail to satisfy Somerset demand for between 1 and six consecutive months, on a decadal basis. In the baseline 

period (1960-1989), this is the mean number of models per decade. Different columns within each number of consecutive monthly failures correspond to 

the five demand/supply scenarios analysed. The numbers in brackets indicate total number of failures. 
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 Consecutive Monthly Failures 

 1 2 3 

Demand 

Scenario 

BAU EDred ALLred Lres  L+Allred BAU EDred ALLred Lres L+Allred BAU EDred ALLred Lre L+Allred 

1960-1989 10(10) 2(2) 2(2) 5(5) 0 5(5) 1(1) 0 5(5) 0 1(1) 0 0 1(1) 0 

2020-2029 19(21) 4(4) 3(3) 14(14) 3(3) 13(13) 3(3) 1(1) 9(9) 0 8(9) 0 0 5(5) 0 

2030-2039 31(35) 4(4) 5(5) 22(24) 5(5) 28(31) 12(12) 9(9) 18(22) 5(5) 15(15) 1(1) 0 8(8) 0 

2040-2049 41(49) 12(12) 11(11) 29(30) 8(8) 53(63) 13(13) 10(11) 38(44) 3(4) 19(19) 5(5) 2(2) 14(15) 2(2) 

2050-2059 63(79) 19(21) 18(19) 41(53) 6(6) 60(78) 14(15) 8(8) 40(48) 5(6) 26(26) 5(5) 4(5) 12(13) 3(4) 

2060-2069 82(108) 14(14) 13(14) 45(50) 5(5) 70(99) 23(24) 15(15) 47(55) 14(14) 27(31) 6(6) 5(5) 23(25) 3(3) 

2070-2079 93(137) 32(37) 30(33) 57(77) 18(18) 110(168) 28(30) 15(16) 75(100) 10(10) 31(34) 5(6) 5(6) 22(23) 5(6) 

 
 Consecutive Monthly Failures 

 4 5 6 

Demand 

Scenario 

BAU EDred ALLred Lres  L+Allred BAU EDred ALLred Lres L+Allred BAU EDred ALLred Lre L+Allred 

1960-1989 0(0) 0 0 0 0 0(0) 0 0 0 0 0(0) 0 0 0 0 

2020-2029 0(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2030-2039 1(1) 0 0 1(1) 0 0 0 0 0 0 0 0 0 0 0 

2040-2049 3(3) 0 0 1(1) 0 0 0 0 0 0 0 0 0 0 0 

2050-2059 5(6) 1(1) 0 3(4) 0 0 0 0 0 0 0 0 0 0 0 

2060-2069 4(4) 0 0 4(4) 1(1) 1(1) 1(1) 1(1) 1(1) 0 1(1) 0 0 0 0 

2070-2079 9(10) 1(1) 1(1) 5(6) 0 0 0 0 0 0 0 0 0 0 0 

 
 

Table 2b: The number of models that fail to satisfy East Devon demand for between one and six consecutive months, on a decadal basis. Numbers in the 

baseline period (1960-1989) are for the mean number of models per decade. Different columns within each number of consecutive monthly failures 

correspond to the five demand/supply scenarios analysed. The numbers in brackets indicate total number of failures.. 
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 Consecutive Yearly Failures 

 1 2 3 

Demand 

Scenario 

BAU EDred ALLred Lres  L+Allre

d 

BAU EDred ALLred Lres L+Allred BAU EDred ALLred Lre L+Allred 

1960-1989 24(25) 15(15) 0 22(22) 0 1(1) 1(1) 0 1(1) 0 0 0 0 0 0 

1990-2019 33(34) 17(17) 1(1) 29(30) 0 2(2) 1(1) 0 2(2) 0 0 0 0 0 0 

2020-2049 64(84) 36(42) 0 57(69) 0 10(10) 3(3) 0 10(10) 0 1 1(1) 0 1(1) 0 

2050-2079 122(208) 71(94) 7(7) 103(161) 6(6) 27(30) 10(11) 0 22(24) 0 5(5) 1(1) 0 4(4) 0 

 
 Consecutive Yearly Failures 

 4 5 6 

Demand 

Scenario 

BAU EDred ALLred Lres  L+Allre

d 

BAU EDred ALLred Lres L+Allred BAU EDred ALLred Lre L+Allred 

1960-1989 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1990-2019 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2020-2049 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2050-2079 2(2) 0 0 1(1) 0 0 0 0 0 0 0 0 0 0 0 

 
Table 3a: Somerset demand: number of models that fail to satisfy Somerset demand during 1to 6 consecutive years for the thirty year periods shown in 

the left column.  

 

 



 26 

 

 
 Consecutive Yearly Failures 

 1 2 3 

Demand 

Scenario 

BAU EDred ALLred Lres  L+Allre

d 

BAU EDred ALLred Lres L+Allred BAU EDred ALLred Lre L+Allred 

1960-1989 47(49) 9(9) 8(8) 30(30) 2(2) 1(1) 0 0 1(1) 0 0 0 0 0 0 

1990-2019 81(97) 19(19) 11(11) 61(73) 9(9) 4(4) 0 0 3(3) 0 0 0 0 0 0 

2020-2049 126(206) 49(54) 39(42) 101(144) 26(27) 20(21) 0 0 12(12) 0 1(1) 0 0 1(1) 0 

2050-2079 190(500) 89(138) 78(111) 149(315) 53(64) 60(91) 10(10) 5(5) 44(53) 4(4) 16(19) 0 0 7(7) 0 

 
 Consecutive Yearly Failures 

 4 5 6 

Demand 

Scenario 

BAU EDred ALLred Lres  L+Allre

d 

BAU EDred ALLred Lres L+Allred BAU EDred ALLred Lre L+Allred 

1960-1989 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1990-2019 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2020-2049 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2050-2079 2(2) 0 0 1(1) 0 0 0 0 0 0 0 0 0 0 0 

 
Table 3b: East Devon demand: number of models that fail to satisfy East Devon demand during 1 to 6 consecutive years for the thirty year periods 

shown in the left column.
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Figure 1: Mean monthly precipitation (mm/day) for the period 1930-1984. The dark blue 
line corresponds to observed monthly means, colour crosses to CPDN model runs 
without bias correction and colour circles to CPDN model runs after bias correction. The 
red dashed line indicates a simulation with the standard version of the HADCM3L model. 
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Figure 2: Mean monthly PET (mm/day) for the period 1930-1984. The dark blue line 
corresponds to observed monthly means, and the colour crosses to CPDN model runs 
without bias correction. The red dashed line indicates corresponds to the standard 
version of HADCM3L. 
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Figure 3: Changes in monthly mean River Exe flow at Thorverton between 2020-2039 
and 1961-1990. Black circles indicate the standard version of HADCML3 model run. 
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a)  

b)  
 
Figure 4: Flow duration curve for daily flows at Thoverton over the period 1961-1990 (a) 
and 2020-2039 (b). The blue lines correspond to observed flows, green dashed lines to 
simulated flows using observed precipitation and PET, black dashed to CPDN model 
runs, and the red lines to the CPDN model run with standard values of the physical 
parameters. The blue and green lines are included for reference in panel b). 
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Figure 5: Wimbleball water resource zone. Reservoirs, river abstraction points and 
groundwater sources are represented by blue triangles, wiggly lines and circles 
respectively. Green circles represent different demands. Yellow squares are water 
treatment plants and black arrows indicate direction of flow between different sources 
and demands. 
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Figure 6:  Wimbleball mean monthly storage for historical data represented as fraction of 
maximum storage. Colour squares are storage levels simulated with simulated flows 
between 1930 and 1957. Colour circles are simulated levels with observed river flows 
between 1957 and 2005. The black solid line indicates the control rule described in the 
text. Dashed lines represent from bottom to top, the reservoir level found 2.5, 25, 50, 75, 
and 97.5% of the time respectively. 
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Figure 7: Wimbleball fraction of maximum storage level for 2040 using CPDN ensemble 
(colour crosses). The black solid line indicates a control rule described in the text. 
Dashed lines represent from bottom to top the reservoir level simulated by 2.5, 25, 50, 
75, and 97.5% of the model runs respectively. 
. 
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Figure 8: Mean monthly fraction of maximum storage level for September between 1960 
and 2079. The black lines represent from top to bottom: maximum values (solid), 97.5% 
(dotted-dashed), 75% (dashed), 50% (dotted), 25% (dashed), 2.5% (dotted-dashed), 
minimum values (solid), across the climate model ensemble. The thick solid line 
corresponds to the control rule described in the text. Blue and green crosses indicate 
storage levels simulated by LANCMOD using observed flows and simulated historical 
flows respectively. Red crosses correspond to storage levels for the CPDN model run 
with standard values of the physical parameters. 
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Figure 9: East Devon demand. The top panel (bottom panel) indicates the fraction of 
models that fail to supply September (October) average monthly demand each year. The 
black horizontal line is mean over 1960-1989, and the red lines are averages over the 
corresponding decades. The magenta circle indicates the only time demand failed within 
the historical record (September 1976).  

 

 

 

 

 



 36 

 

 
 
Figure10: Same as figure 9 for Somerset demand. 
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Figure 11: Wimbleball storage levels as a function of time (September) for ALLred (a), Lres (b) and L+ ALLred (c) demand and supply 
management scenarios. The black lines represent from top to bottom: maximum values (solid), 97.5% (dotted-dashed), 75% (dashed), 50% 
(dotted), 25% (dashed), 2.5% (dotted-dashed), minimum values (solid), across the climate model ensemble. The thick solid line corresponds 
to the control rule. Blue and green crosses indicate storage levels simulated by LANCMOD using observed flows and simulated historical 
flows respectively, and are included here for reference. Red crosses correspond to storage levels for the CPDN model run with standard 
values of the physical parameters. 
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Climate change impacts and adaptation assessments have traditionally adopted a
scenario-based approach, which precludes an assessment of the relative risks of particular
adaptation options. Probabilistic impact assessments, especially if based on a thorough
analysis of the uncertainty in an impact forecast system, enable adoption of a risk-based
assessment framework. However, probabilistic impacts information is conditional and
will change over time. We explore the implications of a probabilistic end-to-end risk-
based framework for climate impacts assessment, using the example of water resources in
the Thames River, UK. We show that a probabilistic approach provides more
informative results that enable the potential risk of impacts to be quantified, but that
details of the risks are dependent on the approach used in the analysis.

Keywords: climate change; impacts; uncertainties; probabilities; water resources;
ensembles
On
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1. Introduction

Climate change impact assessments have to date relied predominantly on the
scenario-based approach (Carter et al. 2001; Mearns et al. 2001). It has long been
recognized that any one scenario represents a single trajectory through the cascade of
uncertainty: emissions/concentrations/regional climate response/local climate
response/impact (with or without feedbacks between each component of the
cascade, e.g.New&Hulme 2000; IPCC2001). The use of one ormore scenarios, while
useful for exploring potential climate change impacts, presents difficulties when
adaptation decisions have to be made. Scenarios typically have no associated
likelihood, so decision-makers faced with alternative scenarios cannot assess the
relative risk of particular adaptations; the tendencymay then be to choose a response
to amiddle of the road scenarioormore conservatively, a strategy that is robust in the
face of all available scenario-based information. Even a robust strategy may be
difficult to implement if the decision-maker is concerned about impacts that fall
outside the range suggested by the scenarios at hand.
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Probability distributions of climate change impacts allow us to move to a risk-
based impact and adaptation decision-making framework (Pittock et al. 2001).
However, even for global-scale metrics such as climate sensitivity or the
likelihood of exceeding a given ‘dangerous’ global temperature threshold, a
unique probability distribution is impossible to derive due to the imprecise
information available, scientific and modelling uncertainties, and different
statistical estimation approaches (Hall 2007; Hall et al. 2007; Rougier 2007).

Although there have been previous attempts to assess local impacts within a
probabilistic framework, these studies have typically scaled one or a few GCM
responses by probabilities derived from a simple climate model (e.g. Jones 2000;
New & Hulme 2000; Prudhomme et al. 2003), or have involved an assessment
of the relative size of climate model and impacts model uncertainties (e.g.
Aggarwal & Mall 2002; Wilby & Harris 2006; Graham et al. 2007), rather than a
full end-to-end uncertainty analysis. Methods for addressing uncertainty in
simulation models are well developed in many natural science fields, most
notably hydrology (Freer et al. 1996; Beven 2000; Beven & Freer 2001), but
relatively few climate change impact studies have drawn on these approaches
(Araújo & New 2007). There have also been a number of assessments of regional
scale uncertainty in climate change scenarios arising from both GCMs and
regional climate models (RCMs) and/or statistical downscaling techniques (e.g.
Tebaldi et al. 2005; Feng & Fu 2006; Frei et al. 2006; Haylock et al. 2006;
Goodess et al. in press) and some attempts to link multiple GCM-downscaling
combinations (Benestad 2004; Jasper et al. 2004; Pryor et al. 2005, 2006; Salathe
2005; Chen et al. 2006; Graham et al. 2007). But linking all these aspects of
uncertainty together to address combined climate model and impacts model
uncertainty in an end-to-end probabilistic framework has been fundamentally
limited by a lack of sufficiently comprehensive uncertainty analyses of GCMs,
which ultimately drive the impacts assessment process (Fowler et al. in press).

The large-ensemble GCM-modelling efforts described in this issue (Murphy
et al. 2007) and elsewhere (Murphy et al. 2004; Stainforth et al. 2005) offer the
opportunity for a ‘probabilistic’ approach to assess regional and local climate
change impacts. Large ensemble GCM simulations, using hundreds to many tens
of thousands of GCMs, potentially provide richer regional detail than multiple
sampling of a few GCM patterns, as different climate forcings and initial
conditions (IC) are propagated through alternative physics to a larger number of
model-specific regional responses (e.g. Harris et al. 2006); the range in both
global and regional responses from large perturbed-physics ensembles have
been wider than those produced through analysis of model runs available from
the global climate modelling community, the so-called ‘ensembles of opportu-
nity’. However, probabilistic climate prediction is a double-edged sword. While
undoubtedly providing more information, the regional information arising from
large ensemble GCM modelling remains conditional and will suffer from the same
lack of uniqueness as distributions for global metrics.

In this paper, we explore the implications of this new generation of
probabilistic climate information for end-to-end uncertainty analysis in impacts
modelling and assessment. Our focus is at the regional to local scale, where local
authorities, environmental agencies, business and other players may need to
make decisions on climate change adaptation. We present the first example of
how climate data from the climateprediction.net project can be used to generate
Phil. Trans. R. Soc. A (2007)
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probabilistic information that incorporates both climate model and impact
model uncertainty, focusing on the Thames River in the UK. We first describe
the experimental set-up, including the climateprediction.net data, the hydro-
logical model (CATCHMOD) that we use and the approach to downscale the
climate model outputs to the spatial scale required by CATCHMOD. We then
describe the resultant probabilistic projections of future flow statistics in the
Thames. We conclude the paper with a discussion of the main points arising from
this research.
2. Methods and data

We use the initial results from the climateprediction.net experiment described
in detail by Stainforth et al. (2005). The data from the experiment represent
2700 individual simulations with the HadSM3 climate model; each simulation
comprises three 15-year periods: a calibration phase, followed by a 15 year
1!CO2 ‘control’ simulation, and a 2!CO2 simulation, in which the model
moves towards an equilibrium response to 2!CO2. Within this subset of the full
first experiment, seven physics parameter values are perturbed and there are 449
unique combinations of perturbations. For most perturbations, there is more
than one simulation, with each simulation differing only in IC. The total number
of simulations in the 449 IC ensembles adds up to 2700 simulations in the ‘grand
ensemble’. The ensemble is therefore large, but limited in a number of ways: it
comprises a sampling of only some of the uncertain physics parameters in the
Hadley Centre climate model; it only samples from a single ‘parent’ model
structure, ignoring uncertainties arising from alternative GCM model structures;
it is a 2!CO2 sensitivity experiment, without a full ocean model, rather than a
transient experiment with a comprehensive atmosphere–ocean model such as
those contributing to the last IPCC report.

Seasonal means from the last 8 years of the control and 2!CO2 runs, and only
for a limited number of variables, have been returned by client machines for
archival in climateprediction.net data servers; we use precipitation, temperature
and cloud fraction data to calculate future daily precipitation and potential
evaporation to input into our hydrological model.

Many ensemble members have not reached equilibrium at the end of the 2!CO2

phase. We therefore scale the 2!CO2 8-year mean responses for each variable by
the ratio of global mean temperature for this period to the global mean equilibrium
temperature change, estimated using the approach of Stainforth et al. (2005).

We use CATCHMOD to simulate daily discharge in the Thames at
Teddington, London. CATCHMOD is a rainfall-runoff model used by the
Environment Agency (EA) of England and Wales for water resource planning
and abstraction licence allocation, and is described in detail by Wilby et al.
(1994). It uses daily rainfall (PPT) and potential evapotranspiration (PET) data
for input at sub-catchments represented in the model. This requires downscaling
of the coarser resolution seasonal mean GCM data. As the archived GCM data
do not support either dynamical or statistical downscaling, we use a simple
change factor (CF) downscaling approach to produce input for CATCHMOD.
For both PPT and PET, we compute a factor by which the variable will change
in the future (2!CO2) compared to the present day (1!CO2) for each model
Phil. Trans. R. Soc. A (2007)
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run; these CFs are then used to perturb the observed daily climate data used to
run CATCHMOD for present day simulations. For precipitation, the CF is the
per cent change in seasonal precipitation between 1!CO2 and 2!CO2 periods
for the GCM grid box that covers the Thames catchment. The seasonal CFs are
linearly interpolated to monthly CFs and applied to the daily observed
precipitation data.

The procedure for PET is more complicated as this variable is not available as
direct climateprediction.net output; available model outputs of relevance to PET
are temperature and cloud cover. We first estimate mean monthly PET for the
present day using observed data (temperature, vapour pressure, net radiation
and wind speed) with the Penman (1948) formulation. We next calculate CFs for
temperature and cloud from the GCM data, which are then used to perturb the
observed temperature, vapour pressure and radiation inputs to the PET
calculation; the ratio of present day to perturbed Penman PET is then used as
a CF to perturb the observed PET daily time series.

Wenote that ouruse ofCFs forces the future time series to have the same temporal
structure as the present day, and that any changes in variance simply reflect a scaling
of the observed series (Diaz-Nieto & Wilby 2005). In addition, use of an 8-year
average to characterize both 1!CO2 and 2!CO2mean climate implies that natural
variability will contribute more to the resulting CFs than in many previous impacts
assessments, where usually differences of 30-year averages are considered. The
influence of natural variability is reduced somewhat by averaging across
IC-members, but the number of members in each IC ensemble varies from one to
eight, and thus natural variability is a varying unknown for each CF.

CATCHMOD was set up with three ‘subcatchments’, each representing the
area of the catchment with a similar hydrological runoff response: urban areas,
clay geology and chalk geology (Wilby & Harris 2006). For each subcatchment,
five parameters for CATCHMOD are determined through calibration against
observed discharge. For our research, we explore the effects of uncertainty in
these parameters by running CATCHMOD with 100 different combinations of
parameter values, all of which produce calibration results within predefined
goodness of fit limits (Wilby & Harris 2006). The underlying rationale to
exploration of parameter uncertainty is similar to the climateprediction.net
project; however, unlike climateprediction.net, the set of parameters values used
for CATCHMOD is preselected by evaluation against observed discharge.
3. Results

(a ) Climate change information

The simulated 1!CO2 and 2!CO2 precipitation and temperature at the GCMgrid
box covering the Thames basin are shown in figure 1. Temperature shows a similar
range anddistribution to the global equilibrium temperature results (Stainforth et al.
2005), as might be expected from amid-latitude location. Rainfall changes in winter
are almost all positive, and range up to a 50% increase compared to the control
simulations.For autumnandspring, both increases anddecreases inprecipitationare
simulated,while in summer nearly allmodels simulate reducedprecipitation; in some
instances, the reduction is as much as 80%. Cloud cover changes correlate closely to
changes in precipitation (not shown).
Phil. Trans. R. Soc. A (2007)
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Figure 1. Simulated 1!CO2 and 2!CO2 climate data (precipitation change on the left and
temperature change on the right) over the Thames from the climateprediction.net experiment.

2121Probabilistic climate change impact assessment
In addition to the wide ranges of predicted mean changes in climate,
precipitation change shows a bimodal distribution in spring, summer and
autumn; this bimodality occurs over all UK and Ireland and adjacent ocean grid
boxes, so appears to be a regional characteristic. The bimodality is particularly
strong in summer and is not related to any individual parameter perturbation. A
clearer understanding of reasons for this is difficult to come by, due to the limited
set of model diagnostics that are archived. There is evidence that HadSM3 can
become locked into different climate regimes over SW France, due to soil-
moisture feedbacks (Clark et al. 2006); in some simulations, soil moisture reduces
sufficiently to produce persistent surface heating. This would then affect regional
circulation patterns, which may in turn affect precipitation. There also appears
to be a relationship with the mean pressure gradient over the North Atlantic,
since models with a high gradient under 2!CO2 have lower autumn rainfall.
This is consistent with an observed link between UK summer rainfall and the
Phil. Trans. R. Soc. A (2007)
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Figure 2. Changes in CATCHMOD simulated low (Q95), average (Q50) and high (Q05) flow
statistics due to changes in precipitation and PET downscaled from the climateprediction.net
ensemble. Q95 is the daily flow exceeded 95% of the time (low flows); Q50 is the median daily flow;
Q05 is the daily flow exceeded 5% of the time (high flows). The red star shows the results when
CATCHMOD is run with unperturbed present day climate data (1961–1990); blue symbol shows
results for the standard version of HadSM3 climate model used in climateprediction.net.
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North Atlantic Oscillation in the preceding winter (Wilby 2001). The available
model diagnostics do not allow us to ascertain whether the pressure gradient-
rainfall relationship is linked in any way to soil-moisture feedbacks.
(b ) Simulated flow

We first describe how the downscaled climateprediction.net data described above
propagate through the ‘standard’CATCHMODversion (i.e. theversionwitha single
set of parameter values, as used by the EA). For each of the 449 simulations with
CATCHMOD, we calculate 1!CO2 and 2!CO2 flow percentiles as follows:

—Q05, the daily flow exceeded 5% of the time, which represents high flows,
—Q50, the median daily flow, and
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parameters are combined with the climateprediction.net ensemble. Each black curve is a smoothed
frequency histogram obtained by combining one climateprediction.net IC ensemble with 100
CATCHMOD model versions. Green curves show the response of each CATCHMOD version
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singular combination of the standard HadSM3 and EA CATCHMOD.
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—Q95, a low-flow index corresponding to the daily flow exceeded on 95% of days,
commonly used for resources assessment in catchment abstraction management
plans by the EA.

The distribution of these percentiles across the 449 climateprediction.net ICs are
shown in figure 2. For low andmedian flows, most realizations produce a decrease in
the future. Of particular note is that most simulations result in reduced flows when
compared with the standard atmospheric model (blue cross in figure 2), which was
used, albeit coupled to a full ocean model, to generate the current set of UK climate
change scenarios (Hulme et al. 2002). This illustrates a potential limitation of a
scenario-based approach to impacts assessment; in this case, a single projection using
the standard model provides a rather high estimate of future water resource
availability when compared with other parameter combinations.

The bimodal distribution in precipitation produces either a second mode
(Q95 and Q50) or negative skew (Q05) in the flow statistics. For high flows, while
the proportion of simulations showing increases and decreases are roughly equal,
the skewed distribution means that there are a relatively large number of cases
where high flows are reduced by more than 40%, but all increases (bar one) are less
than C40%.

We next consider the changes in simulated flow arising from both climatepre-
diction.net and CATCHMOD parameter uncertainty. Here, we calculate flow
statistics for 44 900 simulations with CATCHMOD, each simulation a unique
combination of one of the 449 climateprediction.net IC outputs and one of the 100
CATCHMOD parameterizations (figure 3). If the standard HadSM3 model
projections are run through all versions of CATCHMOD (light blue curve in
figure 3), the range of responses in Q50 is K15 to C20%; similar ranges, with a
Phil. Trans. R. Soc. A (2007)



Table 1. Frequency of future monthly flows in climateprediction.net–CATCHMOD ensemble below
low-flow thresholds identified in the present-day (1961–1990) simulations: (i) the lowest flows
between 1961–1990 (LMMF 61–90) and (ii) the 10th percentile of monthly mean flow (MMF10).

month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

LMMF 61–90 0.039 0.067 0.033 0.034 0.039 0.056 0.071 0.075 0.311 0.195 0.039 0.065
MMF10 61–90 0.231 0.153 0.130 0.139 0.151 0.217 0.310 0.330 0.380 0.283 0.203 0.306
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different central value, arise from combining any one climateprediction.net IC with
the 100 CATCHMOD versions (black curves in figure 3). A similar result arises for
Q05 and Q95 (not shown). Thus, the wide spread of climateprediction.net outputs
dominate the spread in simulated changes, with different versions of CATCHMOD
modulating the climateprediction.net signal. Nonetheless, if one compares the range
of changes inQ05,Q50 andQ95whenusing only the standardCATCHMODto those
using the full ensemble, CATCHMOD parameter uncertainty adds an additional
23% to the range for Q50, 16% for Q05 and 35% for Q95; thus low flows are most
sensitive to hydrological model uncertainty.
(c ) Implications for water resource planning

The simulated flows described above provide important information on the
spread of plausible future natural flow levels in the Thames, and therefore an
indication of possible future change in raw water availability. To illustrate this, we
identify the lowest mean monthly flow (LMMF) and the 10th percentile for mean
monthly flow (MMF10) in the 1961–1990 period; we then calculate the frequency
with which monthly flow in the 2!CO2 in the full climateprediction.net–
CATCHMOD ensemble does not reach these levels (table 1). For reference, flows
lower than LMMF would have a present-day frequency no higher than 0.033
(return period of 30 years); flows lower than MMF10 have a present-day frequency
of 0.10 (10-year return period).

The lowest monthly flows in 1961–1990 occur in 1976 (January–August) and
1974 (September–December); 1976 is well known as a year with the most extensive
drought conditions over southern England in recent years, and severe water
shortages over most areas of the UK (Jones et al. 2006). It is used by some water
utilities as a worst-case scenario for future resource planning, especially in
southern England. In the Thames, summer 1976 flows are thought to be the lowest
since 1865, at just 20% of the 1961–1990 average discharge (Jones et al. 2006). In
the 2!CO2 ensemble, the frequency of flows lower than LLMF ranges between 3%
(similar to today) and 30%, depending on the month, with the highest frequencies
occurring in late summer and autumn (a reflection of the reduced summer rainfall
across most of the climateprediction.net ensemble). For MMF10, the frequency
ranges from 13% in March (similar to present day) to over 30% for late summer
and autumn, more than a threefold increase.

While these results provide information about the change in frequency of
stressful water resource situations, the use of probabilistic climate data in a
planning context requires more than consideration of GCM and hydrological
model uncertainties addressed here. Future demand is also subject to considerable
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ambiguity, mainly because of uncertainty about changes in regional population,
housing stock and industrial demands, but also due to changed (probably
increased) per capita water use in a warmer climate. For example, current
projections indicate that about 200 000 new households will form each year out to
2026, of which 60% will be in the south of England (EA 2007). This implies a
10–15% increase in reservoir capacity to meet rising water demand, at a cost of
£3 billion. It is also envisaged that measures will be taken to improve water
efficiency of new homes as well as the current housing stock. From April 2007, all
publicly funded housing will have to be built to the Level 3 standard of the Code
for Sustainable Homes, which means no more than 105 l per person per day,
compared with the current UK average of 150 l (EA 2007). Making existing homes
more water efficient could help meet approximately 40% of the future demand
arising from new communities in the region, but considerable uncertainty exists as
to the extent to which this can be achieved.

A thorough assessment of the implications of the probabilistic climate data for
the Thames would therefore require simulations with a model representing the full
water-resource system for the river, with the flexibility to include uncertainty in
future demand and possible new abstraction and storage schemes.

We illustrate the type of information that can potentially be provided in such a
water resource assessment using the trigger storage levels for reservoirs and flows set
by the Environment Agency for the discharge in the River Thames at Teddington.
These operating rules set out the demand management measurements that follow
fromprogressively lower reservoir storage levels and river flows in the lowerThames.
Under critical water storage conditions that vary through the year, the four trigger
levels in the Thames are 800, 600, 400 and 300 Ml dK1. Thus in January, when there
remains a good chance of further rainfall to replenish reservoirs before demand peaks
in late summer, reservoir storage must drop below 63 000 Ml for the Level 4
threshold of 300 Ml to be reached; in August, when there is little likelihood of
replenishment, Level 4 is reached at amuch higher storage level of 125 000 Ml. These
thresholds invoke water saving publicity campaigns (Level 1), sprinkler bans and
voluntary restrictions of inessential water use (Level 2), banning inessential water
use and reduced pressure in the distribution system (Level 3) and finally major cuts
of supply on a rota basis and use of standpipes (Level 4), respectively.

We first consider the changes in frequency of these thresholds being reached
when the outputs from the simulations are used in their ‘unprocessed’ frequency
distribution (i.e. without any post-processing to account, for example, for the
uneven sampling of climateprediction.net parameter space). For July, the flow
thresholds were not met in the 1961–1990 simulations some 1.5% of the time for
the Level 4 trigger and 3.8% of the time for the more lenient Level 1 threshold
(table 2; figure 4). When the frequency output from the 2!CO2 ensemble is
analysed the Level 1 and Level 4 targets are not met 6 and 16% of the time,
respectively; this represents a quadrupling of the likelihood of triggering demand
management measures relative to 1961–1990. The highest frequency of future
failure is in August, at the end of the summer dry period, where the Level 1 target
is not met 22% of the time, or an average of once every 4 years, and the Level 4
target is not met 8.5% of the time, once every 12 years. In January, the frequency
of any of the thresholds being met is very low in both 1961–1990 and 2!CO2

simulations owing to the generally higher flows in winter. Note that these will not
correspond directly to the frequency of implementation of demand management
Phil. Trans. R. Soc. A (2007)



Table 2. Frequency with which EA water-demand management flow thresholds at Teddington are
reached under present-day and 2!CO2 climates (figure 4). ((i) 1961–1990, present-day simulated
flows; (ii) unprocessed: using the 2!CO2 climateprediction.net–CATCHMOD outputs directly;
(iii) uniform, equal likelihood across the range of the 2!CO2 climateprediction.net–CATCHMOD
outputs; (iv) normal, assuming a Gaussian distribution across the range of the 2!CO2

climateprediction.net–CATCHMOD outputs.)

flow target (Ml dK1)

300 (Level 4) 400 (Level 3) 600 (Level 2) 800 (Level 1)

January 1961–1990 0.0002 0.0002 0.0005 0.0005
unprocessed 0.0003 0.0008 0.0034 0.0100
uniform 0.0090 0.0120 0.0170 0.0230
Gaussian 0.0016 0.0017 0.0019 0.0021

July 1961–1990 0.0153 0.0278 0.0346 0.0381
unprocessed 0.0612 0.0821 0.1198 0.1613
uniform 0.0310 0.0420 0.0640 0.0850
Gaussian 0.0025 0.0030 0.0045 0.0064

August 1961–1990 0.0274 0.0371 0.0533 0.0688
unprocessed 0.0850 0.1102 0.1607 0.2237
uniform 0.0310 0.0420 0.0630 0.0850
Gaussian 0.0025 0.0030 0.0044 0.0064
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measures, which are only triggered if the flow reaches a given threshold and the
reservoir storage also below a critical threshold; our hydrological model does not
simulate reservoir storage, so these joint probabilities cannot be calculated.
(d ) Alternative sampling strategies

The examples presented above represent an illustrative sensitivity study, where
the outcomes are conditional on a number of factors arising from the experimental
strategy, including: the choice of climate model, hydrological model, climate and
hydrological model parameters to be perturbed, sampling across these parameters,
climate variables available, and downscaling methodology. A different experi-
mental set-up would produce different results (Rougier 2007), though we cannot
say how different they would be. For example, the bimodal distribution in rainfall
change may contain real information about the behaviour of the climate system or
it may be an artefact of the GCM structure, the limited number of GCM
parameters assessed or of GCM parameter combinations that, with more extensive
evaluation, are considered to produce unrealistic climate system behaviour.
Various post-processing methods to account for some of the artefacts of the
experimental set-up are possible. An emulator can be used to estimate the full
response surface across the parameter space, as will be done for the 2008 UK
climate change scenarios (Murphy et al. 2007); similarly, evaluation of the
climateprediction.net ensemble against observations may down weight or exclude
particular areas of parameter space (Murphy et al. 2004).

Given that the distribution of climate impacts will depend on experimental set-up
and post-processing, we explore the effect of two simple alternatives to the direct use
of climateprediction.net–CATCHMOD data to estimate frequency of low-flow
Phil. Trans. R. Soc. A (2007)
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Figure 4. Cumulative frequencies of (a) January and (b) July monthly discharge for the Thames at
Teddington, in the context of environmental flow targets (300, 400, 600 and 800 Ml dK1) set by the
Environment Agency for different reservoir capacities. Red shows the frequency for the present day
flows (1961–1990). The remaining curves show the frequency from the climateprediction.net–
CATCHMOD under different sampling strategies: black, sampling of unprocessed output; blue,
assuming a uniform distribution over the range of outputs; green, assuming a Gaussian distribution
centred on the middle of the range.

2127Probabilistic climate change impact assessment
thresholds. These illustrate the point that different likelihoods of impacts will arise
dependent on the methodology chosen. The first approach uses uniform sampling
across the range of the ensemble, making no assumptions about the distribution
within the range; all outcomeswithin the range of predicted flow statistics are equally
probable. The second analysis assumes that the distribution is Gaussian across the
rangeof theunprocesseddata;herewe set themiddleof the rangeto themean, and the
range is assumed to correspond to 6 standard deviations of the Gaussian.

Results (table 2; figure 4) show that with uniform sampling the likelihood of any
demandmanagement threshold being reached is lower in the key summer months of
July andAugust when compared with using unprocessed output. This is because the
Phil. Trans. R. Soc. A (2007)
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distribution of the unprocessed 2!CO2 ensemble flows is strongly skewed towards
reduced flows (figure 2); uniform sampling reduces the likelihood in this more-
populated negative part of the range. For the same reason, Gaussian sampling also
reduces the likelihoods of the thresholds in summer. These likelihoods are similar or
smaller than the present day (1961–1990) ones, whereas the unprocessed data yield
up to a quadrupled likelihood; for example, unprocessed data suggest a Level 3
likelihood in August of 0.11, while the Gaussian or uniform sampling data suggest a
likelihood not much greater than today. A water utility may make quite different
infrastructure decisionswhen facedwith aLevel 3 situationoccurringmore thanonce
in every 10 years compared to only once every 25 years.

Clearly, if the flow thresholds of interest were nearer the middle of the range (or
closer to the end of the range) of simulated flows, the relative frequencies would
change; however, they would remain different, in some cases markedly different, in
a way that is dependent on the post-processing strategy. For the January flow
targets, uniform sampling does, in fact, produce a higher frequency of failure than
the unprocessed distribution (albeit a low 0.9 and 2% for 300 and 800 Ml dK1). The
few very low flows in January produce a long tail to the distribution of the 2!CO2

ensemble flows; in such a situation, uniform sampling results in a cumulative
frequency in the tails of the distribution that is greater than the raw data.
4. Discussion

Our analysis has illustrated the potentially rich information that can be obtained
by using large perturbed-physics ensemble outputs in a climate change impact
assessment. The approach can clearly provide more information than a scenario-
based impact assessment. This is illustrated in figure 2, where a scenario approach
might produce one or several points on the horizontal axis, whereas with
probabilistic information, a frequency distribution or probability distribution can
be estimated, and the risks of an adverse impact can be calculated and used to
make a risk-based judgement. But figure 4 also shows that different approaches to
analysing probabilistic information may lead to a different risk-based decision.

Moving from such an illustrative example to a more complete analysis would
require a number of additional elements in the methodology we have used. These
include, but are not limited to: (i) use of the transient climateprediction.net ensemble
which assesses a wider range of physics perturbations and simulates the transient
response to past and future GHG forcing with a coupled ocean–atmosphere model,
(ii) incorporation of more sophisticated downscaling methodologies, (iii) consider-
ation of GCM, downscaling and hydrological model structural uncertainties, (iv)
estimation of the true response surface(s) for impacts across the parameter ranges in
the hierarchy of models used in the end-to-end impacts forecast system, (v) a more
sophisticated approach to assessing (and weighting) the skill of individual model
combinations in the forecast system, (vi) use of a water resource systems model that
enables the assessment of the interplay of demand and supply under different
socioeconomic and water infrastructure scenarios, and finally (vii) the development
of a methodology that links all these components.

The development of an approach that comprehensively addresses these issues in
an end-to-end probabilistic assessment is non-trivial and may be beyond the
resources of many organizations. The next set of UK Climate Change Scenarios
Phil. Trans. R. Soc. A (2007)
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will provide an ‘off-the-shelf’ set of probabilistic climate information for many
users, but with the proviso the information is dependent on a specific methodology.
Further, a full probabilistic impact assessment will require considerable work to
estimate probabilities across the entire ‘uncertainty cascade’. Organizations
without sufficient resources to undertake a full assessment may still be interested
in information arising from perturbed-parameter modelling. For example, simply
looking at the ranges of predicted outputs, even though their reliability may be
questioned, enables an analysis of exposure to them and the risk of not taking
the right decisions (Stainforth et al. 2007). If potential exposure is deemed
serious—and this raises socio-political considerations as individual judgements will
need to be made in relation to the accepted level of risk—then a more
comprehensive probabilistic assessment might be justified.

However, even with a more comprehensive methodology, the resulting outputs
remain conditional: they are the research team’s current impacts likelihoods, given
the available data and resources (Dessai & Hulme 2004; Rougier 2007). With more
data, more resources or an alternative experimental design, the likelihoods will not
be the same, though they may or may not be similar.

The challenge therefore is to make use of the richer information that large-
ensemble impacts forecasts provide, but to avoid the temptation to consider the
results to be fixed, that is, to be ‘the probability’ of a particular impact. The
impacts assessment and, if required, assessment of adaptation options need to be
robust in the face of wide uncertainties and the inevitability of estimates of the
uncertainty changing over time (Popper et al. 2005; Lempert et al. 2006). Blind
use of a single generation of probabilistic impact information raises the possibility
of maladaptation.

The design of methodologies for using large-ensemble climate modelling data in
impacts assessment is a developing field, in terms of (i) post-processing of global
climate model data and downscaling (Murphy et al. 2007; Fowler et al. in press),
(ii) linking the climate data through impacts to create an end-to-end ‘probabilistic
forecast system’, and (iii) development of approaches for making decisions with
probabilistic impacts information. We have shown what an end-to-end impacts
assessment might look like, but considerable further work is required to ensure
that uncertainty at all steps of the assessment are quantified (such as in the
downscaling). Future work is aimed at improving the end-to-end methodology,
exploring the relative advantages of simple and sophisticated approaches to
probabilistic impacts modelling, and, through the use of real-water resource
planning models, developing methodologies for assessing adaptation options and
making adaptation decisions.

This study was supported by Environment Agency Science Project SC050045 and by the Tyndall
Centre. The views expressed in the paper reflect those of the authors and are not necessarily
indicative of the position held by the Environment Agency.
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Appendix III: River ecology case 
study  

Introduction 
The following provides a summary of the results from the ecological impacts case study 
which was aimed at stimulating discussion between the ecologists, water resources 
planners and climate modellers who were involved in the project.  Only the key results 
are presented; further details of the work will be published in Fung et al. (2009).  It is 
important to note here that the study is purely an illustrative one, demonstrating how 
information from new developments in climate modelling can be used and does not in 
any way aim to provide accurate predictions of the future in the study region.  

Case study region 
The River Itchen was chosen as the case study catchment on the strength of having a 
relatively long-term ecological and flow dataset (from 1978 to 2002) and having been 
an area of intensive study in the past.  It is a chalk stream located in the south of 
England (see Figure I.1) and a candidate Special Area of Conservation (SAC). It has 
also been designated a Site of Special Scientific Interest (SSSI), achieved due to the 
number of rare species and the richness of the macro-invertebrate community in the 
river catchment.  The river also supports a large range of protected species from the 
otter to the tiny brook lamprey. 

 

Figure I.1 Itchen catchment (Crosswaite, 2008) 



 

  

From climate change to impacts on river ecology   
In this section, the characteristics of newly available climate change data will be 
described along with  the steps employed to link it to river flow modelling and then to an 
assessment of river ecology.  

Previous studies 
Recent climate change impact studies on river flows in the Itchen include Byrne (2006) 
and Halcrow (2004); both studies used UKCIP02 climate scenarios developed by the 
UK Climate Impacts Programme (UKCIP), to drive their hydro-/hydrogeological impacts 
models. The UKCIP02 climate change scenarios provide four alternative descriptions 
of how the climate of the UK might evolve over the course of this century (Hulme et al, 
2002).  Therefore for each of the impact studies, only four different pathways were 
used to span the uncertainty of future trends and behaviour, such as population growth, 
socio-economic development and technological progress, and how these might 
influence future global emissions of greenhouse gases (UKCIP, 2002). 

Using climate model data 
The CPDN data is a gridded dataset with seven squares representing the whole of the 
UK (see Figure I.2), each typically 300km by 200km. The grid square containing the 
River Itchen catchment and representing Kent, Sussex and Hampshire was chosen for 
this study.  The climate is then downscaled to the catchment level, details of which are 
provided in Appendix II. 

–  

Figure I.2 GCM grid resolution with UK cells highlighted in grey. 

Modelling river flows  
The ecological status of rivers can be affected by a whole host of factors including 
channel modification, local land use and water temperature to name a few.  However, 
the assessment of climate change impacts is restricted to variables that can be derived 
from climate models. Although river flow can be modelled directly using precipitation, 



  

and potential evaporation can be modelled indirectly through other climate variables, 
models for water temperature are still relatively new.  

An ensemble of 246 transient simulations for future climate was obtained from CPDN 
which was then used to drive the rainfall runoff model, CATCHMOD.  The model has 
been used previously for a climate change study in the Itchen by Byrne (2006) and has 
been calibrated at Allbrook and Highbridge in the lower Itchen catchment (see Figure 
I.1). 

Abstractions have not been included in CATCHMOD as it was the intention of this 
study to use tools that already exist in the Environment Agency, rather than 
recalibrating and setting up a new CATCHMOD model for the Itchen.  Moreover, this is 
an illustrative study investigating the methodology required to tease information out of 
probabilistic climate change scenarios. The study has therefore concentrated on the 
effects of climate change on the naturalised flows of the River Itchen without 
abstractions. Recalibration of CATCHMOD for this site would enable the dual effects of 
climate and abstracted flows to be assessed. The approach could also be readily 
applied to other sites where a parameterised flow model exists. 

Linking river flow to ecology 
In order to link the modelled  river flow to ecology, the Lotic Invertebrate Flow 
Evaluation (LIFE) score has been used whereby the invertebrate community is linked 
to flow largely through sensitivity to water velocity and siltation, driven by flow variability 
at sites with fixed channel dimensions (Extence et al., 1999).  The index is widely 
recognised as a good indicator of the “health” (or “integrity”) of the river in a reach 
(Exley, 2006).  A study was recently undertaken by Exley (2006) in the River Itchen 
during a Catchment Abstraction Management Strategy (CAMS), exploring the 
relationship between flow and LIFE score.  It was found that there was a statistically 
significant relationship between the LIFE score in spring and the previous year’s 
summer Q95, where the summer Q95 is the value that 95 per cent of flows exceed 
between April and September.  By using the LIFE score, expert opinion and other 
statistical tools, a number of flow thresholds were determined, marking flows at which 
clear changes in the macro-invertebrate community can be observed. 

Management of rivers and ecological flow targets 
Three flow targets were developed for the whole of the River Itchen during the CAMS 
process and the targets at Allbrook and Highbridge in particular are detailed in Figure 
I.3.  Note the difference between targets and flow thresholds, in particular for Target 3, 
which comprises a flow threshold as well as a threshold for its frequency of occurrence.  
On the right-hand side of the figure, the flow thresholds are plotted as levels marking 
out a “flow warning band” where the invertebrate community is changing.  It is 
described in Atkins (2007) as follows: 

“Above the flow warning band, the invertebrate communities essentially 
remain in good condition (i.e. healthy), although still experiencing flow 
related changes; within it, the risk of more significant flow induced changes 
in community structure, such as a reduction in abundance scores for 
certain family groups, starts to increase.  Below the band, there is a high 
risk that macroinvertebrate communities may suffer longer term damage 
characterised by large changes in the abundance scores of many families 
and the loss of some family groups.   

Small reductions in abundance with no reduction in richness are seen only 
as changes, as they are relatively easily rectified once flow conditions 
return to normal (i.e. the risk of an adverse impact is low or negligible).  



 

  

Large losses in abundance and/or reduction in richness, however, are 
much more likely to have an adverse effect on the population, since heavily 
reduced abundances and lost groups can only be replenished by active 
repopulation and recolonisation; the latter either by larvae drifting in from 
upstream, up or downstream migration of adults or migration of adults from 
other catchments (the latter two depending on the family lost).”  

Target 1 The long-term 
average summer Q95 
flow should be above 
262Ml/day 

Target 2 River flow 
should not fall below 
198Ml/day  

Target 3 The annual 
summer Q95 should not 
fall below 237Ml/day 
more frequently than 
recorded in the gauged 
flow record, i.e. one in 
six years 
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Figure I.3 Targets set during CAMS at Allbrook and Highbridge. 

Exley (2006) also conducted a multivariate ordination analysis where it was found that 
for flows at Allbrook and Highbridge between 232Ml/day and 237Ml/day, the 
invertebrate community exhibit a clear shift away from the typical chalk stream 
community.  It was found that taxa preferring fast flowing water were being lost during 
critical low flow periods and the same was observed for the species abundance.  At 
flows lower than 232Ml/day there was a lower abundance of Baetidae (olive mayfly), 
Caenidae (anglers curse mayfly), Ephemerellidae (blue-winged olive mayfly) and 
Gammaridae (freshwater shrimp).  Gammaridae, Ephemerellidae and Batidae are 
important food sources for the SAC fish species, salmon and bullhead.  Notably there 
was no increase in the abundance in low flow communities at low flows.  Above the 
flow of 270Ml/day, no ecologically significant changes to invertebrate community were 
observed (Exley, 2006). 

Impacts of climate change 
In the following sections, each of the targets will be examined with the large ensemble 
of future flows in order to assess how probabilistic information can be used in an 
analysis of climate change impacts on river ecology.   

It is important to note here that CATCHMOD has been calibrated to a dataset that does 
not capture low flows well, and any real interpretation must be made in this light. This is 
because of the way CATCHMOD was parameterised at this site by a previous study 
(see Fung et al., 2009), but this could be overcome and would not preclude the use of 
this approach at other sites.  The role of the following results is to attempt to tease out 
the useful information that can be gained from using large ensemble datasets. 



  

Target 1 

Graph explained  
This target is based on the observed long-term averaged summer Q95, that is, the 
summer Q95 averaged over the period of 1970 to 2002.  In Figure I.4, the grey lines 
represent the mean summer Q95 averaged over the previous 30 years and each line is 
calculated from the flow generated by a single CATCHMOD run using climate data 
from one member of the CPDN climate ensemble.  The grey plume therefore 
represents the whole 246-member ensemble of CATCHMOD runs.  The black lines 
summarise the distribution across the ensemble: the bottom line is the 95th percentile, 
indicating the flow which 95 per cent of all runs exceed.  For example, Figure I.4 shows 
that by the 2050s, 5 per cent of the ensemble fail Target 1 and by the late 2070s, about 
25 per cent of the ensemble fail Target 1. To demonstrate the added-value of the 
information provided by the ensemble, the green line represents the standard run.  This 
is the run that uses climate parameters from the GCM model that has an unperturbed 
parameter set analogous to using one GCM and one emissions scenario. 

Features  
Approximately 25 per cent of runs show a rise in the summer Q95 up to the 2030s and 
then all runs show a decreasing mean summer Q95 thereafter.  The range of possible 
futures values of Q95 for each year also increases through time, representing 
increasing uncertainty as the GCM attempts to predict further into the future. 

Impacts on ecology  
Target 1 was set at a conservative level (Exley, 2008) and such that the breaching of 
this flow threshold was not expected.  However, if 25 per cent of the runs have a long-
term summer Q95 below Target 1, the invertebrate community will be changing by the 
late 2070s.   
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Figure I.4 Target 1: Mean summer Q95 with moving 30-year window for 
naturalised flows. 

Notes   
The nature of the long-term mean summer Q95 may mask the variability of the actual 
summer Q95.   It is therefore difficult to interpret how these long-term statistics can be 
used to determine the impact on the invertebrate community. 

Target 2 

Graphs explained  
The percentage of runs that fail Target 2 is presented in Figure I.5a, showing that 
during the baseline period (1961-90), fewer than five per cent of runs generate daily 
flows less than the flow threshold of Target 2 (198Ml/day) .  However, there are an 
increasing number of runs that fail through the century, reaching about 40 per cent by 
the late 2070s.  In order to explore the results further, the percentage of runs that fail 
Target 2 in each month of the year has been plotted in Figure I.5b.  The mean 
percentages over a decade are shown and as with the previous figure, for the decades 
between 1961 and 1990, fewer than five per cent of the runs fail in any month.  As the 
twenty-first century progresses, an increasing number of runs start failing, with the 
greatest number between October and December: by the 2070s, 25-30 per cent of 
models fail in these months. 

The above result appears to be at odds with the generally accepted opinion that 
summers will become hotter and drier and winters milder and wetter in the UK and so 
intuitively the river flows should decrease during the summer but recover in the winter.  
It is appropriate to note here that although this study has focussed on the uncertainties 



  

associated with the climate model data, there are also uncertainties associated with 
modelling river flows, notably in the parameterisation as well as structure of the 
CATCHMOD model.  These uncertainties would also be present in any other models 
as detailed in Wilby (2005).  The lengthening of the summer dry period could be due to:  

• The fact that the climate models show precipitation decreasing in both the summer 
and autumn and potential evaporation increasing.  This means that summer low 
flows extend into the autumn and recover during the winter/spring period from 
January onwards.   It is also important to note that the catchment’s chalk geology 
will lead to a lag between rainfall and flow and this will be more pronounced 
following periods of drought. This is a result of increased soil moisture deficits 
building over the summer period. 

• An artefact of the parameterisation and structure of CATCHMOD.  In all climate 
change impact studies, understanding the limitations and assumptions of the 
various models is of great importance in determining the useful information that can 
be teased out of the results. For a formal analysis of the uncertainty in climate 
models and CATCHMOD see New et al. (2007) in Appendix I and Wilby (2005).  

If the dry period occurred earlier in the summer, invertebrates with bi- or multivoltine life 
cycles would be largely unaffected because of the production of several generations 
through the breeding season.  However, univoltine species may be more impacted. 

In the scenarios described, low flows regularly extending from August to December 
would result in the loss of a high proportion of individuals recruited that year (for both 
uni- and multivoltine taxa). This would in turn lead to diminished over-wintering 
populations, with potentially catastrophic consequences for the following year’s 
breeding and recruitment programme. 

The extension of the dry period appears to be consistent with the climate model data 
but it is also important to keep the uncertainty in the hydrological modelling in mind.   

 

(a)  Runs that fail Target 2 and have daily 
flows that fall below flow warning band. 

(b)  Mean percentage of runs that fail 
Target 2 at least once in a given month for 
each decade 
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Figure I.5 Target 2. 

Features 
An interesting feature is that there are failures during the baseline period of 1961-1990.  
Failures are not found in the “observed” data and gauged records, but those shown in 



 

  

the figures represent the spread of flows that are generated by the plausible past 
climates given the variability of climate. 

Impacts on ecology 
Target 2 has been set at a level such that there is a buffer between the flow threshold 
and the level of flow below which there is likely to be an unacceptably high risk of an 
adverse impact on the invertebrate community (Atkins, 2007). In Figure I.5a, the failure 
of this lower threshold (below the flow warning band) has been plotted and it can be 
inferred that that the invertebrate community will be increasingly at risk. Indeed the 
figure shows that by the 2060s, about 10 per cent of runs have daily flows that fall 
below the flow warning band, indicating a high risk of adverse impact to the 
invertebrate community.  

The increasing frequency of low flows occurring later in the year as shown in Figure 
I.5b point to the possibility of an increasing risk of many individuals being lost.  

Notes 
Target 2 is based on daily flows and it is important to note that the bias-correction 
procedure performed on the CPDN data does not preserve the day-to-day variability of 
the observed precipitation over long periods of time. This will obviously have a strong 
influence on the accuracy of the daily structure of simulated river flows (Hay et al., 
2002).  However, for the purposes of this target, the daily structure is unimportant.  
Indeed it is only important that the flow falls below the target at some point during the 
year. 

Target 3 

Graph explained 
Target 3 comprises an annual flow threshold of summer Q95 of 237Ml/day which 
should not be breached at a frequency greater than one in six years, that is, a return 
period of six years.  The number of runs that fail the flow threshold of Target 3 in a 30-
year period is presented in Figure I.6.  For each year, the number of failures in the 
previous 30 years is counted, for example in the year 2020, the period 1991-2020 is 
analysed for failures. No runs fail the target return period of six years (see Figure I.3) 
during the baseline period.  However, a steady increase in the percentage of runs that 
fail through the twenty-first century can be seen, with over 50 per cent of runs failing by 
the 2050s. By the end of the 2070s, five per cent of runs fail about every year. 
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Figure I.6 Target 3: Percentiles of return period for the failure of flow threshold 3 
for a 30-year moving window. 

Features 
Target 3 attempts to capture the frequency of low flow years and it is clear from Figure 
I.6 that they increase through the twenty-first century, meaning an increasing chance of 
consecutive low flow years.  

Impacts on ecology 
Although there is a lack of long-term datasets showing the effects of extended 
droughts, there is evidence that invertebrate communities can survive two years of low 
flows or drought (Wood and Armitage, 2004).  Figure I.6, however, suggests that there 
may be droughts of much longer duration but unfortunately there is no data on the 
effects of these droughts on invertebrates.  However, it is clear that by the end of the 
twenty-first century, the flows may not recover to the levels to re-establish taxa 
associated with chalk rivers. Indeed, by the 2050s, over 50 per cent of runs fall below 
Target 3, possibly meaning that the Environment Agency may have to consider that the 
invertebrate community will be permanently altered.  Exley (2006) found little evidence 
to suggest that taxa preferring slow flowing water habitats were increased in 
abundance under low flow conditions.  Under multi-year droughts, taxa preferring 
slower velocities would become established. Many species typical of chalk streams 
could be lost or diminished, however changes in biota in relation to flow variation and 
habitat structure are discussed in more detail by in forthcoming papers in a special 
issue of Freshwater Biology and Aquatic Conservation. 

LIFE scores 

Graph explained  
Statistical relationships between LIFE scores and river flows were developed by Exley 
(2006).  Spring LIFE is almost always higher than autumn LIFE in any given year, so 
modelling autumn LIFE (when chalk stream communities are more stressed) using a 



 

  

range of predicted flows would represent a worst case scenario and could be very 
informative.  However, the CAMS flow targets were developed using the spring LIFE 
scores and previous year’s summer Q95, and it is this relationship that has been 
looked at in this study. 

Each member of the flow ensemble was converted to a LIFE score and a histogram of 
values plotted in Figure I.7, showing the range of LIFE scores for a particular year in 
the twenty-first century.  The red line is a threshold developed using the Resource and 
Management framework (RAM) for the River Itchen (Environment Agency, 2002), 
below which there is the potential of flow stress developing.  A LIFE score of 0.974 for 
this threshold was arrived at following detailed discussion between the Environment 
Agency and the Centre for Ecology and Hydrology, in advance of the production of the 
RAM framework (Exley, 2006).  

The graph shows that in 2008, the distribution of LIFE scores is centred just above the 
value of one and as time progresses, the centre of the distribution shifts towards lower 
values of LIFE.  The distribution also becomes narrower and skewed by the end of the 
century, with an increasing number of runs that have LIFE scores failing the RAM 
threshold. 

Notes  
The low LIFE scores in 2079 correspond to low summer Q95 flows.  However, the 
linear relationship between LIFE and flow may in reality break down over a protracted 
period of drought. In these circumstances flow may be consistently low but a further 
deterioration in ecology occurs simply as a function of time (Extence, 2008). 
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Figure I.7 Histograms of LIFE scores for given year in twenty-first century. 
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Figure I.8 Location of Q98 for each year with grey dots representing each 
ensemble run and green dots representing standard run. 



 

  

Summer Q95 
A large number of flow metrics were originally tested by Exley (2006) and it was 
summer Q95 that showed the most statistically significant relationships to LIFE score.  
For the past climate, times of low flow occurred frequently in September.  However, as 
can be seen in Figure I.8, which shows the annual Q98 for the twenty-first century, the 
low flows tend to occur later on in the year by the 2070s, represented by the shift of the 
cluster of grey dots from August-January to October-January.  The annual Q98 has 
been shown as it is equivalent to the summer Q95, if summer flows are less than winter 
flows. Should the temperatures also rise, thereby allowing invertebrates to breed and 
live later in the year, the definition of summer may need to be revised. 

Ecological impacts matrix 
The three targets that were drawn up during the CAMS process have been useful to 
test and have shown that it will be difficult to maintain a natural chalk stream 
invertebrate community in the future.  However, it does reduce the statistical analysis to 
only three sets of values.  To provide a richer story, a matrix is proposed for analysing 
the effects of the river on biodiversity which combines both the thresholds derived 
previously and expert opinion on how the ecology of the River Itchen will react to 
climate change.  As the focus of the study has been on low flows, on one axis of the 
matrix is the duration of the low flow (or the number of consecutive years of low flow). 
On the other axis is the extent (or the value of the annual Q98).  In each of the cells of 
the matrix is a qualitative description of the ecological status of the river, see Error! 
Reference source not found..  The matrix has been used to then analyse the 
percentage of ensemble members that experience each of the river ecology impacts at 
selected time horizons, colour-coded into five categories representing the percentage 
of runs that fall into each part of the matrix (see Figure I.9).   

The figure shows that in the 2020s, there is a high risk of the invertebrate community 
being harmed in more than 50 per cent of runs, followed by a chance that recovery 
may not occur once higher flows return.  By the 2070s, over 25 per cent of runs show 
high risk of damage to the invertebrate community with an equal percentage of runs 
showing that there will be either recovery or a permanent change in the community.  As 
the twenty-first century progresses, the colours towards the top left of the matrix 
become bluer, and the middle to bottom right change towards orange, representing a 
growing risk of the invertebrates being harmed.  However, in this set of simulations, the 
risk of a highly modified community remains less than five per cent. 

 



  

 

 
1 year only 2-4 consecutive 

years > 5 consecutive years 

Upper flow 
warning band 
(198 - 262Ml/day) 

No adverse impacts 
on invertebrates and 
overall ecology of 
river remains 
healthy. 

Some risk of 
invertebrate 
community being 
harmed but 
recovery 
possible. 

High risk of community 
changing with some 
chance of recovery. 

Lower flow 
warning band 
(157 - 198Ml/day) 

Some risk of 
invertebrate 
community being 
harmed but recovery 
possible. 

High risk of 
invertebrate 
community 
changing but 
with high chance 
of recovery. 

High risk of community 
changing with some 
species remaining. 

Below  flow 
warning band 
and RAM 
threshold 
(< 157Ml/day) 

Invertebrate 
community harmed 
and some risk no 
recovery. 

High risk of 
invertebrate 
community 
changing 
permanently to 
slow flow-type 
communities. 
 

Highly modified 
community more typical 
of arid environments 
could develop, including 
species with adaptive 
strategies enabling 
survival over extended 
periods of drought. 
Iconic species such as 
salmon, lamprey, otter 
no longer present. 

Table I.1 Climate change impacts assessment matrix for ecology of River Itchen. 
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Figure I.9 Matrices of climate change impacts on ecology of River Itchen 
through twenty-first century. 



 

  

Relevance to management decisions 

Abstractions 
The overall picture so far appears to show drastic changes in the flow and 
consequently the invertebrate community.  This picture will be worsened should 
abstractions also be included, and although not considered in the CATCHMOD 
modelling, it was deemed necessary to provide at least a simple analysis of the effects 
of abstractions. By using simple regression relationships to examine the effects of 
water abstractions, graphs similar to Figure I.6 for testing Target 3 have been plotted in 
Figure I.10.  The three scenarios considered in order of increasing volume of 
abstraction are: 

• Historical abstractions. 

• Business-as-usual scenario where only 2002 abstractions are used. 

• Fully licensed scenario. 

It is clear from Figure I.10 that for all abstraction scenarios, Target 3 is failed 
throughout the whole of the twenty-first century; that is, the summer Q95 flow falls 
below the flow threshold of 237Ml/day with a return period of less than six years.  It can 
be seen that the fifth percentile moves closer towards a return period of one year as 
more water is abstracted and as time progresses.  For example, in 2010, five per cent 
of the models show a return period of 1.5 years for historical abstractions, 1.3 years for 
business-as-usual and 1.1 years for fully-licensed, but by 2070, all abstraction 
scenarios show a value one year.  This result is not surprising as it is well known that 
the Itchen is over abstracted at a level that is not sustainable in the future. All the 
figures show is that the return period decreases at a reduced rate as an increasing 
amount of water is abstracted from the river, in other words, the frequency at which the 
flow threshold is breached increases at an increasing rate. 
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(b) Historical abstractions 
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(c) Business-as-usual 
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(d) Fully-licensed 
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Figure I.10 Return period of summer Q95 flows less than Target 3’s flow 
threshold with percentiles. 

Adapting to climate change 

Assessing adaptation strategies  
The scenarios described so far are not the whole story. Should large changes in flow 
arise in the future it is likely that some form of action will be taken to mitigate or adapt 
to the impacts of climate change.  In terms of river ecology, there are a number of 
possible ways to adapt, including channel modification and habitat restoration which 
have been shown to affect the sensitivity of LIFE scores to flow (Dunbar et al., 2006 
and Dunbar and Mould 2008). Unfortunately, there is little quantitative data to calculate 
the effects of these measures.  However, the effects of river support, that is, 
augmenting river flow by pumping from the groundwater aquifer, can be modelled.  
This has been carried out using CATCHMOD simply by removing water from the chalk 
aquifer and releasing it as river runoff.  In effect, this process “borrows” water from the 
winter flows, assuming that the groundwater aquifer refills during the winter. 

Graphs Explained 
The annual augmented flow required each year to sustain daily flow such that it does 
not reach the flow threshold of Target 1 or near the top of the flow warning band, that 
is, a value of 262 Ml/day, is plotted in Figure 0.3.  Each grey dot represents the total 



 

  

augmented flow for each year for each CATCHMOD run.  For years where there is no 
augmentation, a dot is not plotted, hence the broken lines for the percentile plots, for 
example the 25th percentile shows one value for 2026 and 2030 but no values in 
between, meaning that no augmentation was required for at least 25 per cent of the 
runs during this period. The results show that up to the mid-2020s, only 5 per cent of 
the runs require augmentation, but by the 2060s, 50 per cent of the runs need 
additional flow. As time progresses the amount of flow augmentation increases, for 
example in the mid-2040s the flow required by 50 per cent of runs is of the order of 
10Ml/year, however by the 2070s this increases by one order of magnitude to over 
100Ml/year. 

As the augmentation borrows water from future baseflows, changes in the high flows 
(Q2) have been plotted in Figure I.12.  The results show a decrease in the high flows 
once augmentation starts, although there is some delay which relates to the amount of 
augmentation that is  supplied to the river, for example although 25 per cent of runs 
require augmentation every year from about the 2020s, it is only by the early 2040s 
that a corresponding number of runs show decreasing high flows. However, for about 
half of the runs, there is very little effect on the high flows. 

Impacts on ecology 
The aim of the augmentation is to support the river ecology, so that it can retain its 
ecological status.  However, by augmenting the flow, the high flows are also reduced 
which can be important for scouring the river bed and removing silt to the benefit of the 
invertebrate community.  Therefore at some point further augmentation may need to be 
curtailed in order to maintain high flows.  However, it must be noted that the degree of 
habitat modification may also be important, as less river support may be needed if 
appropriate river restoration is undertaken (Dunbar et al., 2006, Dunbar and Mould, 
2008).   

Impacts on decisions 
As mentioned previously, abstractions have not been included in this analysis.  
However, it is clear from Figure 0.3, that there will be conflict between pumping 
groundwater to augment flows to achieve and maintain good ecological status of the 
river and allowing users to abstract the quantities of water under their current 
abstraction licences. 



  

Year

A
nn

ua
l A

ug
m

en
te

d 
F

lo
w

 (
M

l/y
ea

r)
5th

25th

50th

 

 

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

All runs
Standard run

 

Figure I.11 Time series of volume of annual augmented flows to maintain healthy 
ecological status. Individual grey dots represent total augmented flow in one year for one 
CATCHMOD run. Green diamonds mark the results for the standard run.  The black, red 
and blue lines represent the total annual augmented flow that 5%, 25% and 50% of the 
ensemble exceeds respectively. 
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Figure I.12 Percentiles of differences in high flows (annual Q2) between river flows with 
and without augmentation (curves smoothed by moving average with window of 10 
years). 
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