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1. Introduction 

No clear consensus exists on what constitutes systemic risk, neither empirically nor 
theoretically. Although systemic risk might be defined as the risk of the entire financial system 
collapsing, translating that conceptual view into practical measurements of systemic risk and 
policy is not straightforward. The extant literature has developed in isolated silos for most parts, 
with research and proposals focusing on one particular aspect of systemic risk rather than the 
concept in its entirety.  

Concerns about what is now termed systemic risk arising from trading are not new in the 
history of the financial system. Just a few examples are the crises of 1907, 1914, 1929 and 
1987. Moreover, market participants have always employed algorithmic trading (AT) rules and 
endogenous risk type adverse feedback loops have historically been common. However, the 
ever–increasing prominence of computer based trading (CBT), that is trading where computer 
algorithms directly interface with trading platforms and placing orders without immediate human 
intervention, makes the study of systemic risk arising from CBT an especially pertinent issue, 
especially after the flash crash of 2010. 

The objective of this paper is to provide explicit links between the literatures on systemic risk 
and CBT and make proposals as to how one might develop a more unified systemic risk 
research agenda. The first literature we consider is concerned with empirical systemic risk 
measures (SRMs). This relates to a set of tools developed over the past few years aiming at 
translating some observed data on the financial system into a measure of systemic risk. Our 
main interest here is SRMs that use market data, typically daily, as the main input into the 
systemic risk measure. We term those MSRMs (market data based systemic risk measures). 

The second literature is on CBT and its subset high–frequency trading (HFT) which have come 
to play a prominent role in the exchanges all over the world. While CBT has been a key factor 
in anomalous market outcomes for several decades, and its main ingredient AT even longer, 
extant formal studies of CBT currently only provide a tenuous link to commonly understood 
concepts of systemic risk and almost no direct connection to empirical studies of systemic risk, 
nor MSRMs. 

The connection between the CBT and systemic risk depends on whether the aggregation of 
individual trading outcomes, however extreme at high frequencies, leads to a random noise at 
immediate sampling frequencies or not. We suspect both are true.  

The speed of trading may make it easier for anomalous outcomes and asynchronicities 
between different markets to self–correct, compared to human only trading. Therefore, events 
like the 1987 crash might have been less severe if trading had been faster. The fact that the 
flash crash played out within a single day, and high frequency extreme outcomes do not seem 
to result in extreme daily outcomes, provides strong evidence for the self–healing nature of 
high–frequency trading. In other words, HFT might reduce the incidence of market crashes. 

On the other hand, a sudden coordination between high frequency traders in selling or buying 
the same assets may create feedback loops which in turn may lead to a structural break in the 
prices. Hence, CBT is more likely to affect systemic risk via endogenous risk and resulting 
adverse feedback loops. While none of the extant MSRMs capture this phenomenon, we 
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expect that combining extreme value theory (EVT, i.e. power laws) type approaches to MSRMs 
with an explicit focus of endogenous feedback loops might provide a roadmap for future 
research on the systemic implications of CBT.  

2. Systemic risk measures 

Systemic risk is a term used frequently, both in popular media and by specialists. 
Unfortunately, most usage is imprecise and contradictory. One common definition is from 
Trichet (2009):  

 “systemic risk, in a broader sense, relates to the risk that widespread instabilities in the 
financial system translate into adverse effects on growth and welfare in the economy at 
large.”  

whilst the BIS in 1994 finds  

 “risk that the failure of a participant to meet its contractual obligations may in turn cause 
other participants to default, with the chain reaction leading to broader financial 
difficulties.”  

These are representative for two different types of views, either focused on the financial system 
adversely affecting the real economy (Trichet) or particular problems in the financial system 
leading to financial difficulties (BIS). 

These high level definitions of systemic risk provide multiple different paths for translation into 
more operational constructs, either theoretically or empirically, many of which have little 
relation with each other or are even mutually inconsistent.  

2.1. Operationalizing systemic risk analysis 

When it comes to translating the high level definitions of systemic risk into concepts that can be 
used operationally, many authors have opted to ignore the interconnectedness between 
financial institutions, perhaps because it is harder to model empirically. More recent studies of 
systemic risk are more likely to explicitly focus on the inter–linkages in the financial system, 
with cascading failures amplified by the inherent pro–cyclicality of banking and regulations, see 
for example Kritzman et al. (2010) or Drehmann and Tarashev (2011). 

However, identifying inter–linkages and pro–cyclicality as the main ingredient of systemic risk 
still leaves multiple different ways of defining it on a conceptual level, with yet harder problem 
of how it can be measured. Perhaps, a single measure of systemic risk is neither feasible nor 
desirable, with policymakers considering different definitions of threats to financial stability in 
their analysis.  

2.2. Probability levels 

Besides identifying the main ingredients of systemic risk, it is also necessary to identify the 
probability threshold required for an event to be systemic, along with levels of granularity and 
accuracy. No consensus exists on such probability thresholds. The definitions at the beginning 
of this section would suggest an event that happens very rarely, perhaps a couple of times in a 
century. That frequency of (near) systemic events is consistent with the view that the last three 
(near) systemic crises happened in 2008, 1929 (the Great Depression) and 1914.  
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Such high level views of the probability of systemic risk do not translate well into operational 
tools, and especially not into empirical measures of systemic risk. After all, this suggests that 
2008 is the only (near) systemic event in recent history, making statistical analysis rather 
difficult. 

As a consequence, most studies aiming to operationalize systemic risk measures focus on less 
extreme probabilities. Some authors and organizations even view a typical financial crisis as a 
systemic event, giving rise to difficulties in identifying and analyzing more serious crisis events. 

In practice, most MSRMs focus on probabilities such as daily 1% (2.5 times a year) outcomes, 
and the issue of whether that is extreme enough to be considered systemic remains an open 
and controversial question. While such non–extreme probabilities facilitate empirical modelling, 
our view is that a daily 1% event is far from systemic, and does not provide by itself any useful 
information to policymakers concerned with systemic risk. 

Furthermore, the definition, theoretical methodology, empirical methodology and data need to 
be directly consistent with the probabilities one considers systemic. Trying to somehow 
extrapolate from non–extreme to more extreme systematically related probabilities by means of 
probability shifting, that interpret interference at one probability level for outcomes at another 
level, is not advisable.  

2.3. Measurement challenges 

The empirical modeling is further made difficult by the fact that systemic events seem to 
happen quite suddenly, even if the underlying risk builds up slowly over time, and hidden away, 
as noted by Crockett (2000):  

“The received wisdom is that risk increases in recessions and falls in booms. In contrast, 
it may be more helpful to think of risk as increasing during upswings, as financial 
imbalances build up, and materialising in recessions.”  

This suggests that most indications of increasing systemic risk only flash up after a crisis is 
already underway, at which time every single indicator points in the same direction.  

Trying to propose a forward–looking method/indicator for identifying systemic risk is 
challenging since we only have one recent event to test such method/indicator on. Therefore, 
there is a significant probability of spurious results. This becomes especially problematic if the 
probability of the underlying crisis events is relatively non–extreme and model risk high. 

2.4. The literature on market based SRMs 

A large number of authors have proposed various different empirical systemic risk measures 
(SRMs). For a comprehensive survey see Bisias et al. (2012). The connection between most of 
these and CBT is rather remote, but some are more directly related, in particular those who 
make use of the same type of data (securities prices), albeit at different frequencies.  

Within the broad universe of SRMs, a common approach is to use medium frequency market 
data, such as daily stock returns. For this reason we term these market data based SRMs 
(MSRMs). 

Often, the authors start with some theoretical model of interconnectedness between financial 
institutions and the transmission of adverse outcomes. Since estimating such structural models 
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would be challenging, generally the authors then propose a reduced form statistical model. 
Many of these reduced form approaches consider both the time series and cross–sectional 
dimensions, with medium frequency securities data as the main input. 

Of these, one example is the banking stability measures of Zhou (2010), a set of quantitative 
measures of the financial stability of a portfolio of banks. A different approach is taken by 
Adrian and Brunnermeier (2010) (conditional value at risk, CoVaR) and Acharya et al. (2010); 
Brownlees and Engle (2011) (marginal expected shortfall, MES). These measures first identify 
the asset or equity returns of publicly traded financial institutions and define a systemic event 
as simultaneous losses among those financial institutions.  

Focusing on aggregate imbalances and considering the financial interconnectedness, Kritzman 
et al. (2010) propose the ‘absorption ratio’ whereas Billio et al. (2010) propose several systemic 
risk measures, derived by using Granger–causality test and principal components analysis, 
where the latter enables them to gauge the degree of commonality among a vector of asset 
returns. 

Finally, although related, but focusing more on the credit risk as an underlying source of the 
systemic risk, Tarashev et al. (2010) proposed the Shapley value (SV) approach and Huang 
et al. (2010) construct a systemic risk indicator, the distress insurance premium, using the 
structural model of Vasicek (1991).  

All of these MSRMs make use of (conditional) volatilities and/or VaR, and we hence refer to 
them as V–MSRM. 

An alternative to the V–MSRMs is to use methods focused on more extreme probabilities, 
typically EVT. Several proposals have been made for EVT based MSRMs, for example 
Hartmann et al. (2004) and Gravelle and Li (2011). The main problem with these approaches is 
that they are based on unconditional probabilities for very large outcomes and therefore 
provide an imprecise signal for systemic risk, unless one is willing to assume commonality in 
the distribution of extreme outcomes across crisis. This could be problematic since the 
statistical properties of different crisis events, and the underlying direct causes, are generally 
quite different. 

2.4.1 The unifying factors 

Of the MSRMs, perhaps CoVaR and SES/MES are the most prominent. Danielsson et al. 
(2011) study their theoretical and empirical properties and we adopt that analysis below. 

Let Ri indicate the risky outcomes of a financial institution i on which the risk measures are 
calculated. This could be for example, daily returns of such an institution. Similarly, we denote 
the risky outcomes of the entire financial system by Rs. We can then define the joint density of 
an institution and the system by  

f(Ri , RS ). 

The marginal density of the institution is then f(Ri), and the two conditional densities are f(Ri | 
RS ) and f(RS | Ri ). If we then consider the marginal density of the system as a normalizing 
constant, we get by Bayes theorem:  

f(Ri | RS ) ∝ f(RS | Ri ) f(Ri) . 
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Suppose we use as a risk measure, we arrive at CoVaR. Define Q as the event such that:  

[R ≤ Q] = p 

where Q is some extreme negative quantile and p is the probability. Then, CoVaRi is the value 
at risk of the financial system given that the institution i is under financial distress. i.e.,  

CoVaRi =pr[RS ≤ QS |Ri ≤ Qi] = p 

If alternatively we use ES:  

[R|R ≤ Q]  

we get MES; institutions expected equity loss in tail market outcomes:  

MESi =E[Ri|RS ≤ QS] (1) 

We could just as easily have defined MVaR as  

MVaRi =pr[Ri ≤ Qi|RS ≤ QS] = p 

and CoES as  

CoESi =E[RS|Ri ≤ Qi] 

Table 1 provides a summary, which suggests that ultimately, regardless of the risk measure, or 
conditioning, the main determinant of the empirical performance of each measure is VaR.  

Table 1: Summary. 

Marginal 
risk 
measure 

Condition on system Condition on 
institution 

 MVaR CoVaR 

VaR [Ri ≤ Qi|RS ≤ QS] = p [RS ≤ QS|Ri ≤ Qi] = p 

 MES CoES 

ES [Ri |RS ≤ QS] [RS |Ri ≤ Qi] 
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2.4.2 Empirical performance 

The empirical performance of the MSRMs are important. To be reliable, they need to be to be 
of a high–quality, not just weakly better than a noise. Taking this into account, ( Danielsson 
et al., 2011, 2012) study the model risk of MES and CoVaR and along with VaR by employing 
a sample of daily returns from the 92 largest financial institutions in the US from January 1997 
to December 2010. Their analysis finds that the signals provided by these V–MSRMs are 
highly unreliable. 

One of the reasons for the poor performance of the V–MSRMs is because the underlying VaR 
forecast is subject to a high degree of model risk at the best of times, which is even worse 
during heightened market uncertainty. The risk forecasts lag behind market outcomes and the 
statistical models perform poorly at the structural break when the markets transit from stable to 
a crisis period.  

3. Computer based trading 

The ongoing developments in CBT have affected the operations of financial markets in a 
profound way. In this survey we limit the analysis to how CBT may affect systemic risk, 
especially through extant MSRMs. For a comprehensive survey of CBT see Gomber et al. 
(2011).  

3.1. Implications for market dynamics 
Most of the existing literature focuses on the effects of HFT, or in general CBT, on market 
quality; whether CBT makes prices more informative, its effect on market liquidity or intraday 
volatility. 

One of the earliest work of this kind is by Brogaard (2010) where he analyses the impact of 
HFT on the US equity market by using a sample of 120 Nasdaq stocks. In his sample, the 
group of HFT is identifiable. The results show that much of HFT activity follows a price reversal 
strategy to make higher profits. This in turn suggests a role of HFT in diminishing intraday 
volatility. Moreover, he shows that HFTs add significantly to the price discovery process. 
Although HFTs consume almost the same amount of liquidity they supply, they provide best bid 
and ask quotes for most of the trading day. Overall, those findings advocate HFT over non–
HFT as an improved market quality. 

Hasbrouck and Saar (2010) use order–level NASDAQ data and therefore are not able to 
identify HTF activity explicitly. Instead, they use messaging bursts as a proxy for strategic runs, 
which in turn is used as a measure of low–latency activity. Statistical analysis of 500 stocks for 
the period of October 2007–June 2008 suggests that increased high–frequency, at least, low–
latency activity improves market quality measures such as short–term volatility, spreads, and 
depth in the limit order book. 

By developing a theoretical model that allows high–frequency machine trading, Cvitanic and 
Kirilenko (2010) examine the effects of HFT on transaction prices. They find that in a market 
with a high–frequency trader, the distribution of transaction prices has more mass around the 
center and thinner extreme tails. 

Hendershott et al. (2011) test whether AT improves liquidity by analyzing the time series 
evolution of AT in a sample of NYSE stocks spanning 2001–2005, finding that AT increases 
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liquidity by narrowing the bid–ask spread, especially for large cap stocks by reducing adverse 
selection, or equivalently by increasing the informativeness of the quotes. 

Similar question is considered by Hendershott and Riordan (2012). In a statistical analysis of 
30 DAX stocks on the Deutsche Boerse for a total of 13 trading days in January 2008, the 
authors examine the role of algorithmic traders in liquidity supply and demand. They conclude 
that AT consumes liquidity when it is plentiful, i.e. when the inside spread is narrow and supply 
liquidity when the spreads are wide. Hence, CBT is beneficial for market liquidity since ATs 
react more quickly and actively compare to human traders. 

Although many of the academic literature provide empirical evidence suggesting that CBT is 
beneficial for market quality, some studies reach a different conclusion. Zhang (2010) shows 
that HFT is positively correlated with stock price volatility and this positive correlation is even 
stronger during periods of high market uncertainty. Similarly, contrary to the findings mentioned 
above, he argues that HFT is harmful for price discovery. 

Haldane (2011) notes in a speech that HFT is increasing abnormalities in the market prices, 
where the latter is proxied by the volatility and correlation. He concludes that instead of solving 
the liquidity problem, HFT even amplifies market stress and illiquidity since it adds liquidity to 
the market in the good times, but absorbs it during turmoil. 

As an investigation into the HFT and algorithmic trading on Swedish equity market, 
Finansinspektionen, Financial Supervisory Authority of Sweden, conducted a survey with 24 
companies; 10 Swedish banks and 14 large institutional investors. Results reveal that although 
the negative effects related to HFT is limited (for example increased volatility in the market), 
there is still considerable concern about market abuse among survey participants. 

3.1.1 Relevance for systemic risk 

While the question of the impact of CBT on securities markets generally is of interest in many 
applications, it is less clear how relevant it is to the question of systemic risk. For example, 
establishing that CBT increases volatility does not mean systemic risk is increased because the 
connection between volatility and systemic risk is tangental. The reason is that unconditional 
volatility as a measure of risk is generally only relevant if and only if returns on financial assets 
are Gaussian, which is not the case. At the daily frequency it has been recognized at least 
since the pioneering work of Mandelbrot (1963) and his student Fama (1963, 1965) that 
financial returns exhibit fat tails. Consequently, it is the tail thickness that provides information 
about the risk, including the systemic risk, not the volatility. 

CBT also has implications for liquidity. Liquidity is a multifaceted concept and CBT only imparts 
on a small part of the concept, liquidity in high–speed trading environments. There, liquidity is 
measured either by spreads of various types or price impacts of relatively small trades. While 
such market liquidity is of fundamental importance to many market participants, the connection 
to the more general concept of liquidity and systemic risk is more tangental. There are however 
direct connections in special cases discussed below. 

Most extant studies on the impact of CBT on market dynamics, such as those discussed 
above, are made with pre flash crash data. As a consequence, the focus of these studies is 
more on the general operation of markets rather than anomalous in crisis situations. While HFT 
might normally make markets, this can be quickly reversed during extreme turmoil. Clear 
mechanisms exist for CBT leading to extreme outcomes in financial markets. Rapid liquidation 
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of positions to avoid further losses may accelerate the downward pressure on prices, 
aggravating a crisis situation. Based on several arguments such as feedback loops, large 
trading volumes and lack of regulations, several authors consider the post–flash crash period 
and underline the HFT as a potential source to systemic instabilities and crashes.  

Zigrand et al. (2011) argue that feedback loops are the underlying force behind most of the 
financial crises and those loops are more likely to arise, or at least harder to supervise in AT 
environments. Feedback loops arise because in a stress situation many algorithms quickly 
coordinate and act simultaneously and feed each other. Under CBT, this coordination will be 
even quicker. 

Similarly, Leland (2011) underlines forced selling as a possible source of positive feedback 
loops, hence the crashes. He notes that forced selling can lead to price declines which in turn 
force further selling and further price declines, a positive feedback situation that can lead to 
extreme market volatility and crashes. The 1929 crash, the 1987 crash, 1998 Long Term 
Capital Management collapse, the 2007 Slaughter of the Quants, and elements of the 2008 
financial crisis are all discussed as examples of forced selling triggered market crashes. 
Finally, he concludes that the 1987 crash and 2010 flash crash are similar in nature, but not in 
speed; the latter is accelerated because of the HF traders who turn to be liquidity consumers 
rather than providers hence created rapid and further price drops. 

Sornette and von der Becke (2011) question the value of liquidity provided by HFT by arguing 
that beyond a certain cutoff, excess liquidity may not be beneficial for the real economy, and 
can increase the risk of herding and possible systemic instabilities, even crashes. They 
conclude that HFT is likely to create a future crash. 

Kirilenko et al. (2011) ask whether HF traders played any role in triggering the flash crash. In 
contrast to the findings of Sornette and von der Becke (2011), they clear HFT as a trigger, 
however, the study still shows that due to the large selling pressure on that day, presence of 
HFT exacerbated market volatility and drive withdrawals of liquidity in times of stress. 

Farmer and Skouras (2011) study the impact of CBT on stability of the markets by employing 
an ecological microstructure perspective of financial markets. Since there is significant 
homogeneity and interdependence in AT, only a few algorithms and their interactions may 
dominate the market dynamics and can lead to systemic risk. The authors argue that this may 
be the underlying cause of the 1987 crash, the 2007 quant crisis and the 2010 flash crash. 

A different approach is taken by Johnson et al. (2012) who analyze a set of 18,520 ultrafast 
large price movements (‘black swan events’) for the period 2006–2011. They conclude that a 
system–wide transition from a mixed human–machine phase (mixed phase of humans and 
machines, in which humans have time to assess information and act) to a all–machine phase is 
characterized by lower durations but more frequent black swan events. This does however not 
provide a channel from these high frequency price movements to medium frequency market 
outcomes more likely to be associated with systemic risk. 

3.2. Relevance for systemic risk 
These results suggest that a necessary condition for CBT to increase systemic risk is that it 
creates channels for adverse feedback loops whereby the relatively small events like micro 
crisis or sudden disappearance of liquidity, can be amplified into a systemwide market crisis. 
However, this is not a sufficiency condition. After all, one of the two major event caused by AT, 
the flash crash was not systemic. Furthermore, the fact that none of the high–frequency 
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extreme events documented by Johnson et al. (2012) is associated with anything resembling a 
systemic event, further argues against CBT contributing to systemic risk.  

The preponderance of available evidence argues against CBT being of systemic concern. This 
however does not lead us to the conclusion that one should disregard the systemic 
consequences of CBT. We discuss this in the next section.  

4. Impact of CBT on MSRMs 

The literature on SRMs and CBT has generally developed independently with authors not 
providing linkages between the two research areas in most cases, except perhaps in general 
statements. This is problematic because one would expect any systemic risk arising from CBT 
to manifest itself in the SRMs, in particular the MSRMs. This leads us to the following 
questions:  

1. Does the presence of CBT affect price dynamics (typically at the daily frequencies) and in 
turn do these changes constitute a contribution to systemic risk?  

2. Does CBT contribute to systemic risk in a way that is not captured by extant SRMs?  
3. Can we use empirical and theoretical CBT modelling to improve MSRMs?  

4.1. Effects of CBT on price dynamics 

In order to address this issue, it is necessary to consider how high–frequency trading outcomes 
get aggregated into lower frequency price movements, such as daily returns. To help in the 
analysis, we identify three levels of aggregation of financial data. 

The first level of aggregation is individual trading outcomes and data aggregated to very high 
frequencies, perhaps seconds. 

The second level of aggregation is to intermediate frequencies, such as daily, the aggregation 
level often considered by financial institutions, supervisors and MSRMs. Without loss of 
generality, it could also include weekly or monthly, even annual aggregation of securities 
prices.  

The final level of aggregation constitutes the impact of securities prices on other economic 
variables, such as macroeconomic data, investment decisions, funding liquidity, and the like. 

We consider two cases below, both the situation where high frequency trading outcomes 
aggregate into noise, and also where they lead to feedback loops, culminating in extreme 
outcomes. 

4.1.1 CBT aggregates to noise 

Most of the time, aggregated outcomes from CBT resemble random noise. Under these 
conditions, no systemic risk would arise from CBT, since lower frequencies are more 
dangerous than higher frequencies, and mini crashes, microfractures and the like are self–
healing, aggregating into essentially noise. Even large events like the flash crash aggregated 
into noise. This suggests that the systemic risk from CBT does not arise from the presence of 
very large short duration price changes, in the absence of acceleration mechanisms. 
Therefore, we can view risk as usually being exogenous in the terminology of Daníelsson and 
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Shin (2003), as compared to endogenous, even if high frequency data exhibits large jumps or 
other anomalies. 

In some historical cases we have seen CBT aggregate into extreme market movements, most 
prominently in 1987. Regardless, 1987 being the largest price shock in modern history, it was 
not systemic, according to either the Trichet or BIS definitions discussed in Section 2 as it had 
neither adverse effects on growth and welfare and the economy nor caused brought financial 
difficulties. This illustrates a key fact that an extreme market movement does not by itself 
constitute an increase in systemic risk. 

Furthermore, is plausible that if the speed of trading had been higher, the price recovery would 
have been faster – HFT increasing the speed of self healing.  

4.1.2 CBT aggregates to extreme outcomes 

CBT might create systemic risk when the aggregation of very high–frequency outcomes does 
not result in noise, but instead leads to a chain reaction whereby market participants suddenly 
coordinate in selling and buying the same assets, causing a structural break in price dynamics, 
because risk suddenly stops being approximately exogenous and becomes highly 
endogenous.  

This might happen because of the interaction between unthinking algorithms following 
mechanical rules, heterogeneous trading venues and the speed of trading making real–time 
human supervision impossible. This creates informational and efficiency problems, since 
market participants not only focus on the basic worth of a security, but also on the beliefs about 
other traders’ beliefs about yet other traders’ beliefs and so forth.  

The immediate impact of this structural break is the failure of models assuming the risk is 
exogenous, such as most extant MSRSs, at the precise time when they are needed the most.  

4.2. Does CBT contribute to systemic risk in a way that is not captured by 
extant SRMs?  

At the second level of aggregation, the focus is not on individual trading strategies but rather 
how prices across assets change from one day or week to the next. The problem of modelling 
risk at this frequency has been under intense study since the pioneering work of Engle (1982) 
and his ARCH model. A decade later this got translated into formal statistical risk measures, 
first Value–at–Risk (VaR), which remains the most widely used risk measure at the daily 
frequency. Following the crisis that started in 2007, we have seen several applications to 
systemic risk with the various MSRMs discussed in Section 2.4 above. 

Even though these risk measures are derived from daily data, which is mostly just aggregated 
outcomes from HFT, the link between CBT and the SRMs is somewhat tenuous. As noted 
above, most of the time CBT generates noise that may not be all that relevant for systemic risk.  

In this, there is a significant difference between the V–MSRMs and the EVT–MSRMs. The 
former derive from the daily price dynamics whilst the latter focus on unconditional extreme 
movements. 

Given the analysis above, we find that a more likely chain of causality would be for CBT to 
result in an extreme market movement which in turn would affect price dynamics. Therefore, a 
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more direct link of causality between CBT and the MSRMs is with EVT–MSRMs rather than the 
V–MSRMs. 

However, the evidence seems to suggest that if CBT creates systemic risk it would not be 
captured by the MSRMs. The reason is that the MSRMs are based on using historical 
observed data to forecast the possibility of an extreme future market outcome. However, there 
is no historical data of CBT and HFT causing extreme outcomes (1987 is hardly fast). For this 
reason, if one is concerned with systemic risk arising from CBT, it is necessary to focus on 
high–frequency data, along with direct modeling of the possible feedback loops, rather than the 
medium frequency data, without any mechanism modeling, central to the MSRMs.  

4.3. Implication for CBT–SRMs and possible improvements  

Although not discussed in the extant literature, beyond perhaps general statements, there are 
several directions one could take in to develop a CBT–SRM, a SRM using CBT as a 
fundamental building block. An SRM incorporating elements from the EVT–MSRMs and 
considering endogenous feedback loops from CBT seems to us a sensible way forward. 

On the CBT side, this involves explicit modeling of endogenous risk, arising for example from 
the interaction between algorithms. This might be done in a hybrid real world—simulated 
trading environment, whereby the researcher can explicitly identify the interaction between 
algorithms and the potential for endogenous adverse feedback loops. Johnson et al. (2012) is a 
useful first attempt at such modelling. 

We suggest that a combination of such an approach with EVT could be fruitful. EVT is focused 
on the formal modelling of unconditional probabilities of extreme outcomes and extreme tail 
dependence (power law analysis is a subset of EVT). This might then help research in 
approaching the problem from both ends: aggregating from individual trading outcomes in the 
presence of endogenous adverse feedback loops from algorithms, and the probabilities of 
extreme aggregated outcomes from the other side. 

5. Conclusion 

In this paper we critically survey the recent empirical literature on the systemic risk and CBT 
along with its subset HFT. In particular, our focus is to explicitly connect the literature on 
systemic risk arise from CBT to the broader empirical literature on systemic risk. 

We find that most MSRMs focus on modeling daily price dynamics and are not reliable as a 
tool to get at systemic risk. Similarly, most of the time HFT is not a systemic concern as high 
frequency extremes tend to aggregate into medium frequency innocuous noise. 

There are however good reasons to believe that under special circumstances high frequency 
extremes might interact with trading algorithms to generate endogenous feedback loops, 
resulting in extreme medium frequency outcomes and even on to a systemic event. One way to 
study these phenomena is to combine the analysis of HFT with EVT to formalize the 
probabilities of extreme outcomes. This in turn might then be useful as an input into non-
MSRMs. 
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Glossary 

AT algorithmic trading.  

CBT computer-based trading.  

HFT high–frequency trading. 

SRM systemic risk measure. A statistical device to quantify systemic risk.  

MSRM market data based systemic risk measure. An SRM using market prices, typically daily, 
to quantify systemic risk.  

VaR Value–at–Risk. A quantile of return distributions, typically 1% or 5% (99% or 95%) for 
daily data. The main market risk measure, used in regulations and internal risk control.  

ES expected shortfall, also known as tail VaR. Expected losses conditional on losses 
exceeding VaR.  

EVT extreme value theory. The probability theory of power laws.  

V–MSRM MSRMs that use volatilities and/or VaR (or ES which is a function of VaR) as a 
fundamental building block.  

EVT–MSRM MSRMs that use EVT as a fundamental building block.  

CBT–SRMs MSRMs that use CBT as a fundamental building block.  
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