(1)

Department for Environment, Food and Rural Affairs
Nobel House
17 Smith Square
London SW1P 3JR
Tel: 02072386000
Website: www.defra.gov.uk
© Crown copyright 2012
Copyright in the typographical arrangement and design rests with the Crown.
This publication (excluding the Royal Arms and departmental logos) may be re-used free of charge in any format or medium for research for non-commercial purposes, private study or for internal circulation within an organisation. This is subject to it being re-used accurately and not used in a misleading context. The material must be acknowledged as Crown copyright and the title of the publication specified.

Information about this publication is available from:

Food Statistics Unit
Defra Food and Sustainable Economy
Room 301 Foss House
Kings Pool
Peasholme Green
York YO1 7PX
Tel: 01904455069
Email: familyfood@defra.gsi.gov.uk

This document is available on the Defra website:
http://www.defra.gov.uk/statistics/foodfarm/food/
Published by the Department for Environment, Food and Rural Affairs

## A National Statistics Publication

National Statistics are produced to high professional standards set out in the National Statistics Code of Practice. They undergo regular quality assurance reviews to ensure that they meet customer needs. They are produced free from any political interference.

Further information on National Statistics can be found on the UK Statistics Authority website at: http://www.statisticsauthority.gov.uk/

## Contents

National Statistics ..... i
Executive Summary ..... v
Introduction ..... vii
Chapter 1 UK trends in purchases and expenditure
1.1 Overview ..... 1
1.2 Household purchases (trends 2008 to 2011) ..... 1
1.3 Home-grown food ..... 4
1.4 Household spending ..... 5
1.5 Trends in spending in real terms ..... 7
1.6 Takeaway food and drink ..... 8
1.7 Eating out purchases ..... 9
Chapter 2 UK trends in energy and nutrient intakes
2.1 Overview ..... 11
2.2 Nutrient conversion ..... 11
2.3 Reference nutrient intakes ..... 11
2.4 Energy and nutrient intakes ..... 11
2.5 Major sources of energy from household food purchases ..... 17
2.6 Comparison with Reference Nutrient Intakes ..... 20
2.7 Nutrients from eating out ..... 20
Chapter 3 Geographic comparisons
3.1 Overview ..... 23
3.2 UK country comparisons ..... 23

## Family Food 2011

3.3 England regional comparisons ..... 29
3.4 Rural urban comparisons for England, Scotland and Wales ..... 35
Chapter 4 Demographic patterns in key dietary indicators
4.1 Overview ..... 41
4.2 Statistical method ..... 41
4.3 Baseline group ..... 42
4.4 Analyses in this section ..... 42
4.5 Sodium ..... 43
4.6 Saturated fatty acids ..... 44
4.7 Non-milk extrinsic sugars ..... 45
4.8 Fruit ..... 46
4.9 Vegetables ..... 47
4.10 5 A DAY - fruit and vegetables ..... 48
4.11 Fibre ..... 48
Chapter 5 Exploratory analysis and trends informing policy
5.1 Overview ..... 51
5.2 Effects of food price rises ..... 51
5.3 Indicator of affordability of food ..... 54
5.4 Fruit and vegetables ..... 55
5.5 Eatwell plate ..... 58
5.6 Energy intake ..... 59
5.7 Nutrient intakes ..... 62

## Chapter 6 Price elasticities

6.1 Overview ..... 67
6.2 Household AIDS model ..... 67
6.3 Level 1 groupings ..... 68
6.4 Dynamic AIDS model ..... 69
6.5 Level 2 groupings ..... 71
6.6 When to use each model ..... 72
Development priorities ..... 73
Family Food committee ..... 75
Data downloads ..... 76
Glossary ..... 77

# Executive Summary 

### 1.1 The Survey

Family Food 2011 is a report on the 2011 Family Food Module of the Living Costs and Food Survey. This report provides statistics on food purchases by type of food and includes estimates of nutrient content. Excel datasets and method notes are provided on the website with some statistics back to the 1940s. The Family Food Survey covers about 6000 households across the United Kingdom each year. Foods are reported at a detailed level and demographic patterns and trends are identified.
http://www.defra.gov.uk/statistics/foodfarm/food/familyfood/
Family Spending is a separate report on the Living Costs and Food Survey published by the Office for National Statistics. It covers all forms of household expenditure but without as much detail on food and without quantities and nutrient content of food purchases.

Family Food 2011 includes more statistics on low income groups. Income deciles divide the UK household population into ten equally sized groups based on the magnitude of their equivalised income. Equivalised income is calculated using the OECD-modified equivalence scale which assigns a value of 1 to the first household member, of 0.5 to each additional adult and of 0.3 to each child. Equivalised income is gross household income divided by the OECD scale value.

### 1.2 Key Messages

- There was a statistically significant reduction in energy intake from household food and drink in 2011 which is consistent with the longer term decline in energy intake from food and drink since the mid 1960s. Although energy intake reduced in 2011 the percentage of food and drink energy (excluding alcohol) derived from NMES and saturated fatty acids were hardly changed compared to 2010. Intake of sodium is on a downward trend.
- Households in income decile 2 (second lowest group) derived 1891 Kcals per person per day from household food in 2011, 15 per cent less than in 2007 and now similar to households in income decile 1 (lowest group). Previously each year from 2001-02 to 2010 this group had an energy intake from household food higher than the average UK household.
- For households in income deciles 1 and 2 (the lowest 20 per cent) 16.6 per cent of spend went on household food in 2011, 1.4 percentage points above the 2007 level.
- Having peaked in 2006 and 2007 purchases of fruit and vegetable were 10 per cent lower in 2011 than 2007 for UK households, 22 per cent lower for households in income decile 2 (second lowest group), and 15 per cent lower for households in income decile 1 (lowest group).


### 1.3 Dietary Trends

Chapter 5 shows latest dietary trends covering energy intake from food and drink, estimates of trading down, latest trends in purchases of fruit and vegetables and the percentage of spend going on food.

Chart 1. Trends in energy content of food


- Households in income decile 2 (second lowest group) derived 1891 Kcals per person per day from household food in 2011, 15 per cent less than in 2007 and now similar to households in income decile 1 (lowest group). Previously each year from 2001-02 to 2010 this group had an energy intake from household food higher than the average UK household.
- Households in income decile 1 (lowest income group) increased energy intake from household food by 6.4 per cent in 2011 to 1919 Kcals per person per day, having fallen 8.3 per cent between 2007 and 2010.
- In 2011 households in income deciles 1 and 2 (low income groups) derived around 5 per cent less energy from household food than the average UK household.
- Energy intake from household food across UK households was 2.1 per cent lower in 2011 than in 2007 while for households in income decile 1 (lowest income group) it was 2.4 per cent less.
- There was a statistically significant reduction in energy intake from household food and drink in 2011 which is consistent with the longer term decline in energy intake from food and drink since the mid 1960s.
- Eating out has been in decline. Energy intake from eating out was 4.9 per cent lower in 2011 than in 2008 due mainly to reductions in free school meals and reductions in work provided meals.

Table 1. Main consumer reaction to the high food prices between 2007 and 2011

|  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |

- On average UK households purchased 4.2 per cent less food in 2011 than in 2007 while spending 12 per cent more. They saved 6.8 per cent by trading down to cheaper products.
- Households in income decile 1 (lowest income group) spent 17 per cent more on food in 2011 than in 2007. Although they traded down in eggs, pork, potatoes, butter and vegetables the overall effect was not of trading down.
- On average UK households traded down on pork to save 18 per cent between 2007 and 2011 while households in income decile 1 (lowest income group) did not trade down but spent 37 per cent more on pork.
- Since 2007 UK households have bought less bread, lamb, beef, fish, fruit, vegetables, potatoes and alcoholic drinks but more bacon.
- Since 2007 households in decile 1 (lowest income group) have bought less butter, fruit, vegetables and soft drinks but more pork, bacon and cheese.

Chart 2. Fruit and Vegetables (measured in portions)


## Family Food 2011

- Having peaked in 2006 and 2007 purchases of fruit and vegetable were 10 per cent lower in 2011 than 2007 for UK households, 22 per cent lower for households in income decile 2, and 15 per cent lower for households in income decile 1 (lowest income group).
- UK households purchased an average of 4.0 portions of fruit and vegetables per person per day in 2011 while households in income decile 1 (lowest income group) purchased an average of 2.9 portions of fruit and vegetables per person per day in 2011.
- Households in income deciles 1 and 2 (low income groups) have both consistently purchased smaller quantities of fruit and vegetables than higher income households.

Chart 3. Percentage of spend going on food


- Averaged over all UK households 11.3 per cent of spend went on household food in 2011, while for household in income deciles 1 and 2 (the lowest 20 per cent) it was higher at 16.6 per cent.
- Food is exerting greater pressure on household budgets since 2007 when food prices started to rise in real terms.
- The percentage of spend on food for all households in the UK was 11.3 per cent in 2011, 0.8 percentage points above the 2007 level.
- For households in income deciles 1 and 2 (lowest 20 per cent) the percentage of spend on food was 16.6 per cent in 2011, 1.4 percentage points above the 2007 level.


### 1.4 Food purchases and expenditure

Levels and trends of the quantities and expenditures on different types of food and drink are shown in Chapter 1. There are downward trends in purchases of fruit, fresh green vegetables, bread, milk, fats and biscuits. The downward trends in fruit and milk purchases remain despite small recorded rises in 2011.

There are upward trends in purchases of cheese, eggs, meat based ready meals and low calorie soft drinks.
There are downward trends in purchases of most categories of eating out food and drink since 2008. The most significant reductions include confectionery down 24 per cent, alcoholic drinks down 11 per cent, 'crisps, nuts and snacks' down 12 per cent and fresh and processed fruit down 5.3 per cent.

Food spending in 2011 was only 1.8 per cent higher than in 2010 despite food inflation averaging 5.9 per cent over the year. On average 11.3 per cent of spending by UK households went on household food and drinks in 2011.

Spending on food and drink for the household came to $£ 27.99$ and on eating out to $£ 11.93$ in 2011. (Food for the household is any food that enters the household regardless of where it is eventually consumed.)
In real terms households reduced spending in 2011 on household food and non-alcoholic drinks by 3.3 per cent.

### 1.5 Nutrient intakes

The nutrient content of food is estimated using average nutrient compositional data for each food code used in the survey. Chapter 2 presents estimates for energy and nutrient content of household food and drink, and eating out food and drink. These are compared with recommended levels for the population average.

Nutrient Intakes of NMES and saturated fatty acids, as measured as a percentage of food and drink energy (excluding alcohol), were both lower in 2011 than in 2008, although hardly changed compared to 2010. Both continue to exceed the government recommended levels.

All micronutrient intakes except sodium reached at least 100 per cent of their reference nutrient intake values, where one is set. The average intake of sodium excluding table salt was 84 per cent above the recommended maximum in 2011, but is on a downward trend

### 1.6 Geographic comparisons

Country level and regional comparisons are shown in Chapter 3. Averaged over the three years to 2011 the ratio between the highest and lowest amounts purchased for household supplies between the four UK countries varied from 1.1 (milk and cream, eggs, fruit, and cereals) to 1.6 (sugar and preserves).
Where the ratio between highest and lowest levels of purchasing was greater than 1.25:

- Northern Ireland households purchased the least cheese, sugar and preserves, vegetables and alcoholic drinks. They purchased the most carcase meat and potatoes.
- Wales households purchased the most sugar and preserves, vegetables and alcoholic drinks.
- Scotland households purchased the least carcase meat and potatoes.
- England households purchased the most cheese.

Rural areas tended to have higher food and drink purchases and associated higher energy and nutrient intakes.

### 1.7 Income links with healthy diet

Demographic patterns in food and drink are explored in Chapter 4 using a statistical technique to control for differences in household composition, region, income and the age and ethnic origin of the household reference person.

The survey shows that in 2011 low income is associated with lower purchases of fruit, vegetables and fibre, and with higher levels of NMES (non-milk extrinsic sugars).

Households in income deciles 2 and 3 (low but not the lowest income) obtained the highest amount of food energy from NMES. Households with the highest income, deciles 9 and 10, purchased foods with a lower amount of NMES.

Households in income deciles 1, 2 and 3 purchased less fruit than other income deciles. This was a difference of 99 grams of fruit per person per day, just over one portion of 5 A DAY ( 80 grams), between the highest and lowest income groups.

Purchases of vegetables increased with income. The difference between the lowest and highest deciles equates to half a portion of vegetable purchases. Those households in income deciles 1, 2, 3 and 5 purchased lower quantities of vegetables.

Purchases of food containing fibre increased with income. Fibre intake was higher in income groups 7, 8 and 10. Many in these income groups achieved the recommended average of 18 grams of fibre per day. There was a difference of 4 grams per person per day between the highest and lowest income groups.

### 1.8 Dietary Trends

Chapter 5 shows latest dietary trends covering energy intake from food and drink, estimates of trading down, latest trends in purchases of fruit and vegetables and the percentage of spend going on food.

## Family Food 2011

### 1.9 Price elasticities

New price elasticities based on Family Food Survey data from 2001 to 2009 are presented in Chapter 6. The estimates show how demand for different types of food varies with changing food prices and changing levels of total expenditure on food. The underlying research was carried out by Reading University on behalf of Defra.

One finding is that demand for alcoholic drinks by low income households (bottom 10 per cent by equivalised income) became more sensitive to price in 2008 and 2009 than it had been between 2001 and 2007. Those paying a 1 per cent higher price for alcoholic drinks purchased on average 2.7 per cent less in 2008 and 2009. Previously in 2001 to 2007 they had purchased 1.4 per cent less.

## Introduction

Family Food provides detailed statistics on purchases, expenditure and derived nutrient content of food purchases from a large household survey covering the United Kingdom. Foods are reported at a detailed level and patterns are related to demographic characteristics. This report presents statistics on food purchasing in 2011 and compares levels with previous years to provide trends, mostly over the last 4 years, although for some food types, statistics go back to the 1940s.

The Family Food Survey measures all food that is brought into the household, including fruit and vegetables grown in gardens and allotments. It also covers all food bought and eaten away from the home such as restaurant meals, school meals and snacks.

This report includes more statistics on low income groups. Low income deciles divide the UK household population into ten equally sized groups based on the magnitude of their equivalised income. Equivalised income is calculated using the OECD modified equivalence scale which assigns a value of 1 to the first household member, of 0.5 to each additional adult and of 0.3 to each child. Equivalised income is gross household income divided by the OECD scale value.

Report structure:

- Chapter 1 presents estimates and recent trends in quantities of purchases and expenditure by different type of food and drink.
- Chapter 2 presents estimates of the energy and nutrient content of food purchases, including trends and a comparison against reference nutrient intakes.
- Chapter 3 presents country and regional estimates, where apparent differences are often due to differences in demographic characteristics such as income.
- Chapter 4 attributes differences in diet in 2011 to regional and demographic characteristics of households. It covers patterns in purchases of fruit and vegetables, and patterns in intakes of sodium, Non-Milk Extrinsic Sugars (NMES), fibre and saturated fatty acids.
- Chapter 5 examines dietary trends. It covers food prices, trading down and fruit and vegetable purchases with a focus on low income households. It also covers trends in intakes of energy, fat, saturated fatty acids, NMES, sodium, fibre and alcohol.
- Chapter 6 presents estimates of price elasticities which show how demand varies when food prices change.

Family Food conforms fully to National Statistics standards. The term 'National Statistics' is an accreditation quality mark which stands for a range of qualities such as relevance, integrity, quality, accessibility, value for money and freedom from political influence. http://www.statisticsauthority.gov.uk/assessment/code-of-practice/ index.html

Defra is the main user of the statistics in its co-ordinating role on food policy across Government. The statistics feature in high level indicators on healthy diet and food security. In Scotland the statistics are used to monitor the health of the Scottish diet. The data is placed on the National Data Archive and is accessed by academics and used in research.

The Defra website provides links to a set of method papers which provide a background to the survey, its history, sampling, reliability and methods of calculating nutrient intakes. It provides links to other Government surveys in the UK related to health, diet and food, along with details of where to source information on consumption in European Union countries.

Family Food 2011

# Chapter 1 UK trends in purchases and expenditure 

### 1.1 Overview

In 2011 the amount that an average household spent on all food and drink, including alcoholic drinks and food eaten out, rose 1.8 per cent to $£ 39.93$ per person per week. Household food purchases formed the largest share at $£ 24.92$ per person per week. When inflation is taken into account, the amount spent was 3.3 per cent less than 2010 and 1.0 per cent less than 2008.

Various household foods are on clear short term downward trends since 2008 including: 'milk and cream', fish, fats, 'fresh and processed potatoes', fruit, bread and 'biscuits and crispbreads'. Eggs and cheese are on short term upwards trends since 2008. The amount of food eaten out has been declining since 2001 with decreases in many categories. While household purchases are declining for many foods, household spending is showing increases in most categories with food inflation averaging 5.2 per cent in 2011.

This chapter examines these trends in more detail. Table 1.1 shows the main food groups examined in this chapter and contains an indication of those items where a statistically significant 4 year linear trend is evident. A detailed explanation of how these trends are calculated is available in the Method Papers.

A more detailed breakdown of the types of foods purchased and trends going back to 1940 are provided in excel datasets on the website: (Family Food datasets).

### 1.2 Household purchases (trends 2008 to 2011)

Comparisons between 2008 and 2011, which provide a reliable indication of change, are made for the main food groups that make up people's diets in the UK.

## Fruit and vegetables

Household purchases of fresh and processed fruit are on a downward trend since 2008 and are $4.1 \%$ lower despite a rise in 2011. In 2011, purchases of fresh fruit rose 1.2 per cent to 764 grams per person per week and purchases of processed fruit rose 2.0 per cent to 385 grams per person per week. Purchases of pure fruit juices are 5.7 per cent lower than in 2008, despite a rise of 3.7 per cent in 2011 to 307 mls per person per week. Household purchases of fresh and processed vegetables were 2.4 per cent lower in 2011 than in 2008 with 'fresh green vegetables' 6.6 per cent lower in 2011 than in 2008.

While overall purchases of fruit and vegetables reduced between 2008 and 2011, consumers spent 8.1 per cent more on fresh and processed vegetables and 6.9 per cent more on fresh and processed fruit.

Chapter 5 analyses fruit and vegetable purchasing over time in terms of 5 A DAY portions and Chapter 4 examines how fruit and vegetable purchases vary by demographic groups.

In 2011, 5.0 per cent of all the fresh fruit and vegetables entering the household came from free sources, mainly gardens and allotments. This compares to 2.9 per cent in 2008. Table 1.2 and Chart 1.1 provide a detailed breakdown.

Fats (including oils) ${ }^{1}$
There is a long term downward trend in household purchases of 'fats' since the mid eighties. Purchasing levels of oils and fats were 8.0 per cent lower in 2011 than in 2008 , equating to a reduction of 14 grams per person per week since 2008. Purchases of margarine were 6.7 per cent lower and purchases of 'reduced and low fat spreads' were 9.3 per cent lower in 2011 than in 2008.

[^0]
## Family Food 2011

Milk and cream
There is a significant long term downward trend in purchases of whole milk. Whole milk purchases were 15 per cent lower in 2011 than in 2008 despite a small rise in 2011. This equates to a reduction of 65 mls per person per week. There has been no change in purchases of skimmed milks over the same period. Purchases of cream are on an upward trend despite a small decrease in 2011.

## Bread

Purchases of white bread are on a downward trend having fallen 14 per cent between 2008 and 2011. Purchases of 'brown and wholemeal bread' were 4.2 per cent higher in 2011 than in 2008. Purchases of 'other breads', which includes continental and specialty breads, were 1.9 per cent lower in 2011 than in 2008. Sandwiches are the only bread category showing a continued upward trend, rising 17 per cent between 2008 and 2011, although they remain a small proportion of total bread purchases for the household.


#### Abstract

Cheese Household purchases of cheese are on an upward trend since 2008, with purchases of natural cheese rising 8.9 per cent between 2008 and 2011. The amount consumers spent on cheese rose 14 per cent over the same period. Within this category natural cheese (as opposed to processed cheese) has consistently made up around 90 per cent of the total. Cheddar type cheeses account for around half of all cheese purchases by weight, at 67 grams per person per week.

\section*{Meat}

Purchases of raw carcase meat have been relatively stable since 2008 despite a fall of 3.2 per cent in 2011. However, prior to 2008 purchases had been around 10 per cent higher. Since 2008 purchases of less expensive beef steak have increased 3.6 per cent whilst purchases of the more expensive steaks have reduced 13 per cent. Purchases of mutton and lamb are on a downward trend having decreased 18 per cent between 2008 and 2011, although it is the smallest contributor to this category. Purchases of 'non-carcase meat and meat products' have been relatively stable since 2008 although purchases of 'meat based ready meals and convenience meat products' are on an upward trend with a rise of 7.9 per cent between 2008 and 2011 despite a slight fall in 2011.


## Fish

There is a significant downward trend in household purchases of fish (including ready meals and fish products), which fell 8.6 per cent between 2008 and 2011 to 147 grams per person per week. Fresh/frozen white fish, which accounts for 12 per cent of fish purchases fell 29 per cent between 2008 and 2011 with a fall of 14 per cent in 2011. Sales of salmon have been stable since 2008 and consistently contribute around 8 per cent of total fish purchases. Whilst purchases have fallen expenditure on fish increased 3.2 per cent between 2010 and 2011.

## Confectionery and soft drinks

Household purchases of confectionery have been relatively stable since 2008. Household purchases of soft drinks were 3.1 per cent lower in 2011 compared to 2008. Household purchases of 'not low calorie soft drinks' are on a downward trend since 2008 and fell by 16 per cent between 2010 and 2011. Household purchases of 'low calorie soft drinks' are on an upward trend since 2008 with purchases 38 per cent higher in 2011 than in 2008.

## Alcoholic drinks

Household purchases of alcoholic drinks were 3.2 per cent higher in 2011 than in 2008 despite a fall of 4.4 per cent in 2011. Spend on alcoholic drinks for the household in 2011 was unchanged on 2010 but significantly higher than in 2008 ( 17 per cent higher). Intakes of alcohol are examined in Chapters 2 and 5.

Table 1.1: Quantities of household purchases of food and drink in the UK²

|  |  | 2008 | 2009 | 2010 | 2011 | RSE ${ }^{\left({ }^{\text {a }}\right.}$ | change since 2010 | hange since 2008 | $\begin{gathered} \text { trend } \\ \text { since } \\ 2008{ }^{(b)} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | grams per person per week unless otherwise stated |  |  |  |  |
| Milk and cream | (ml) | 1957 | 2003 | 1897 | 1904 | $\checkmark \checkmark \checkmark$ | +0.4 | -2.7 | $\downarrow$ |
| Liquid whole milk (including welfare and school milk) | (ml) | 420 | 421 | 352 | 355 | $\checkmark \checkmark$ | +0.8 | -15.4 | $\checkmark$ |
| Skimmed milks | (ml) | 1145 | 1156 | 1156 | 1151 | $\checkmark \checkmark \checkmark$ | -0.4 | +0.5 |  |
| Cream | (ml) | 21 | 23 | 24 | 23 | $\checkmark \checkmark$ | -1.3 | +13.1 | $\lambda$ |
| Cheese |  | 111 | 116 | 118 | 118 | $\checkmark \checkmark \checkmark$ | +0.2 | +6.8 | $\pi$ |
| Cheese, natural |  | 99 | 105 | 107 | 108 | $\checkmark \checkmark \checkmark$ | +0.8 | +8.9 | $\lambda$ |
| Processed cheese |  | 12 | 11 | 11 | 11 | $\checkmark \checkmark$ | -5.5 | -10.5 |  |
| Carcase meat |  | 211 | 212 | 211 | 204 | $\checkmark \checkmark \checkmark$ | -3.2 | -3.1 |  |
| Beef and veal |  | 111 | 112 | 114 | 112 | $\checkmark \checkmark$ | -1.8 | +1.0 |  |
| Mutton and lamb |  | 45 | 46 | 44 | 37 | $\checkmark$ | -16.2 | -18 | $\pm$ |
| Pork |  | 55 | 54 | 53 | 56 | $\checkmark \checkmark$ | +4.4 | +0.8 |  |
| Non-carcase meat and meat products |  | 787 | 787 | 805 | 794 | $\checkmark \checkmark \checkmark$ | -1.4 | +0.8 |  |
| Bacon and ham (cooked or uncooked) |  | 108 | 111 | 113 | 112 | $\checkmark \checkmark$ | -0.9 | +3.5 |  |
| Poultry (cooked or uncooked) |  | 250 | 246 | 242 | 247 | $\checkmark$ | +2.2 | -1.1 |  |
| Meat based ready meals and convenience meat products |  | 145 | 151 | 161 | 157 | $\checkmark \checkmark \checkmark$ | -2.8 | +7.9 | $\lambda$ |
| Fish |  | 161 | 158 | 151 | 147 | $\checkmark \checkmark \checkmark$ | -2.3 | -8.6 | $\pm$ |
| White fish, fresh, chilled or frozen |  | 24 | 23 | 20 | 17 | $\checkmark$ | -14.4 | -28.7 | $\checkmark$ |
| Herrings and other blue fish, fresh, chilled or frozen |  | 6 | 6 | 5 | 4 | $\checkmark$ | -20.6 | -31.3 | $\downarrow$ |
| Salmon, fresh, chilled or frozen |  | 12 | 13 | 12 | 12 | $\checkmark$ | -3.2 | -1.6 |  |
| Eggs | (no.) | 1.6 | 1.6 | 1.7 | 1.7 | $\checkmark \checkmark \checkmark$ | +2.1 | +9.3 | $\lambda$ |
| Fats |  | 184 | 181 | 183 | 170 | $\checkmark \checkmark \checkmark$ | -7.5 | -8.0 | $\pm$ |
| Butter |  | 40 | 39 | 40 | 40 | $\checkmark \checkmark$ | +1.5 | -0.6 |  |
| Margarine |  | 22 | 24 | 23 | 20 | $\checkmark \checkmark$ | -12.7 | -6.7 |  |
| Reduced and low fat spread |  | 51 | 48 | 49 | 46 | $\checkmark$ | -6.8 | -9.3 | $\otimes$ |
| Sugar and preserves |  | 127 | 125 | 126 | 126 | $\checkmark \checkmark \checkmark$ | +0.2 | -0.5 |  |
| Fresh and processed potatoes |  | 776 | 761 | 742 | 746 | $\checkmark \checkmark \checkmark$ | +0.5 | -3.9 | $\downarrow$ |
| Vegetables |  | 1118 | 1103 | 1107 | 1090 | $\checkmark \checkmark \checkmark$ | -1.5 | -2.4 |  |
| Fresh green vegetables |  | 203 | 201 | 192 | 189 | $\checkmark \checkmark \checkmark$ | -1.2 | -6.6 | $\pm$ |
| Other fresh vegetables |  | 557 | 552 | 565 | 550 | $\checkmark \checkmark \checkmark$ | -2.7 | -1.2 |  |
| Processed vegetables ${ }^{(d)}$ |  | 358 | 350 | 350 | 351 | $\checkmark \checkmark \checkmark$ | +0.2 | -2.0 |  |
| Fruit |  | 1199 | 1143 | 1133 | 1150 | $\checkmark \checkmark \checkmark$ | +1.5 | -4.1 | $\downarrow$ |
| Fresh fruit |  | 790 | 762 | 755 | 764 | $\checkmark \checkmark \checkmark$ | +1.2 | -3.2 |  |
| Processed fruit and fruit products |  | 409 | 381 | 378 | 385 | $\checkmark \checkmark \checkmark$ | +2.0 | -5.8 | $v$ |
| Pure fruit juices | (ml) | 325 | 302 | 296 | 307 | $\checkmark \checkmark \checkmark$ | +3.7 | -5.7 |  |
| Bread |  | 659 | 656 | 634 | 621 | $\checkmark \checkmark \checkmark$ | -2.0 | -5.8 | $\downarrow$ |
| White bread |  | 301 | 297 | 281 | 259 | $\checkmark \checkmark \checkmark$ | -7.7 | -13.8 | $\downarrow$ |
| Brown and wholemeal bread |  | 168 | 173 | 164 | 175 | $\checkmark \checkmark \checkmark$ | +6.8 | +4.2 |  |
| Sandwiches |  | 10 | 10 | 12 | 12 | $\checkmark$ | -0.8 | +16.6 | $\lambda$ |
| Cakes, buns and pastries |  | 153 | 158 | 153 | 151 | $\checkmark \checkmark \checkmark$ | -1.5 | -1.8 |  |
| Biscuits and crispbreads |  | 170 | 169 | 162 | 164 | $\checkmark \checkmark \checkmark$ | +1.5 | -3.1 | $\pm$ |
| Other cereals and cereal products |  | 535 | 548 | 556 | 547 | $\checkmark \checkmark \checkmark$ | -1.5 | +2.2 |  |
| Beverages |  | 55 | 54 | 56 | 53 | $\checkmark \checkmark \checkmark$ | -5.1 | -2.7 |  |
| Soft drinks ${ }^{(c)}$ | (ml) | 1682 | 1678 | 1718 | 1630 | $\checkmark \checkmark \checkmark$ | -5.1 | -3.1 |  |
| Not low calorie | (ml) | 1192 | 1208 | 1139 | 954 | $\checkmark \checkmark$ | -16.2 | -20.0 | $\checkmark$ |
| Low calorie | (ml) | 490 | 469 | 579 | 676 | $\checkmark \checkmark$ | +17 | +38.0 | $\lambda$ |
| Confectionery |  | 131 | 134 | 131 | 134 | $\checkmark \checkmark \checkmark$ | +2.2 | +1.9 |  |
| Alcoholic drinks | (ml) | 706 | 744 | 762 | 728 | $\checkmark \checkmark$ | -4.4 | +3.2 |  |

(a) Relative Standard Error: 3 ticks: < 2.5\%, 2 ticks: $2.5 \%-5 \%, 1$ tick: $5 \%-10 \%$, no ticks: $10 \%-20 \%$, cross: >20\%, - not available
(b) An arrow indicates a statistically significant linear trend since 2008, see website for more details.
(c) Converted to unconcentrated equivalent by applying a factor of 5 to concentrated and low calorie concentrated soft drinks.
(d) includes frozen, canned and dried vegetables.

## Family Food 2011

### 1.3 Home-grown food

In 2011, 5.0 per cent of fresh fruit and vegetables entering the household came from free sources, mainly gardens and allotments. Fresh beans, which include broad, runner, and French varieties, had the highest proportion with 33 per cent being home-grown. The percentage of home-grown fruit and vegetables has been increasing gradually since 2008.

Table 1.2: Percentage of household food home-grown in gardens or allotments

|  | 2008 | 2009 | 2010 | 2011 |
| :--- | ---: | ---: | ---: | ---: |
| Beans | 28 | 29 | 31 | 33 |
| Potatoes | 2 | 3 | 2 | 7 |
| Onions, leeks and shallots | 4 | 3 | 3 | 4 |
| Tomatoes | 4 | 6 | 7 | 6 |
| All other vegetables | 3 | 3 | 3 | 4 |
| Apples | 3 | 5 | 10 | 9 |
| Soft fruit | 6 | 8 | 8 | 10 |
| All other fruit | 13 | 1 | 1 | 2 |
| Overall percentage | 2.9 | 3.3 | 3.6 | 5.0 |
| Eggs | 3.2 | 5.1 | 5.6 | 5.7 |

The total amount of home-grown fruit and vegetables in grams per person per week is 101 grams, an increase of 38 per cent on 2010. In 2011 household purchases of fresh fruit and vegetables (including potatoes) was 1899 grams. Processed fruit and vegetables e.g. frozen chips and canned baked beans are excluded from the totals. Non-indigenous fruits and vegetables that are not grown in quantity in the UK, such as bananas and melons, are included. Beans grown in a garden or allotment account for 33 per cent of all fresh beans entering the household in 2011, although they only account for around 7 per cent of all home grown fruit and vegetables by weight, as shown in Chart 1.1.

There was a significant increase between 2009 and 2010 in the percentage of eggs entering the household from free sources. In 2011 the percentage of eggs entering the household which was free or home-produced stayed similar to the 2010 level at 5.7 per cent.

Chart 1.1: Breakdown of home-grown fruit and vegetables 2011

'Other vegetables’ account for 20 per cent of the total volume of home-grown fruit and vegetables. This category includes: marrow, courgettes, aubergine, pumpkin, cabbage, lettuce, cucumber, carrots plus other fresh root vegetables such as: parsnips, beetroot, radishes, turnip and swede.

### 1.4 Household spending

The average weekly expenditure on all household food and drinks in 2011 was $£ 27.99$ per person, an increase of 1.5 per cent on 2010. Total expenditure on household food and non-alcoholic drink rose by 1.7 per cent in 2011 and is 8.3 per cent higher than in 2008 ( 1 per cent lower when adjusted for the effects of inflation). Table 1.3 shows significant upward trends between 2008 and 2011 in household expenditure on:

- Alcoholic drinks and butter - spending increased 17 per cent for both;
- Confectionery - spending increased 16 per cent;
- Sugar and preserves - spending increased 15 per cent and
- Cheese and beverages - spending increased 14 per cent for both.

There is a statistically significant 4 year downward trend on the amount spent on liquid whole milk, down 19 per cent since 2008 and 6.2 per cent on 2010.

Chapters 5 and 6 examine the effects of food price rises on purchasing levels.

Table 1.3: Expenditure on food and drink in the UK, 2008-2011

|  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |

(a) Relative Standard Error: 3 ticks: <2.5\%, 2 ticks: $2.5 \%-5 \%, 1$ tick: $5 \%-10 \%$, no ticks: $10 \%-20 \%$, cross: $>20 \%$, - not available.
(b) "yes" if the change since 2008 is statistically significant (if the change is more than twice its standard error).

### 1.5 Trends in spending in real terms

Table 1.4 shows expenditure in real terms, which means that the values are adjusted to remove the effects of inflation. The figures are derived by deflating expenditure at current prices by the Retail Price Index (all items). In 1975 households spent the equivalent of $£ 26.39$ per person per week on household food and drink. This is not directly comparable with the 2011 figure of $£ 24.92$ as it does not include spending on confectionery and soft drinks, and excludes Northern Ireland. It does show that spending in real terms was lower in 2011 than in 1975.

The Retail Price Index (RPI) (a measure of inflation) rose by 4.1 per cent between 2008 and 2010 and by 5.2 per cent between 2010 and 2011. Removing this overall rise in prices of 9.5 per cent from the changes in expenditure on food and drink shows how expenditure in real terms changed since 2008:

- household spending on food and drink fell by 0.2 per cent,
- eating out spending down by 2.7 per cent,
- spending on alcoholic drinks for household consumption increased by 7.2 per cent,
- spending on alcoholic drinks bought outside the home decreased by 5.5 per cent.

Chapter 5 examines in more detail the effects of food price rises on household spending.

Table 1.4: UK expenditure on food and drink at constant 2010 prices

|  | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{c} \\ & \text { ज } \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{c} \stackrel{0}{0} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \stackrel{\rightharpoonup}{0} \\ & \frac{0}{0} \end{aligned}$ | N | N | $\begin{aligned} & \text { N } \\ & \hline 8 \end{aligned}$ | $\stackrel{\mathrm{N}}{\mathrm{O}}$ | $\underset{\underset{\rightharpoonup}{\mathrm{O}}}{\stackrel{N}{2}}$ | \% change \% since 2010 | change since 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Retail price index (1975 = 100) | 100 | 277 | 436 | 604 | 629 | 625 | 654 | 688 | 5.2 | 9.5 |
|  |  |  |  | $£$ per person per week |  |  |  |  |  |  |
| Household food and drink |  |  | 27.65 | 28.40 | 28.05 | 29.44 | 29.01 | 27.99 | -3.5 | -0.2 |
| Food and drink eaten out |  |  | $8.74{ }^{\text {(d) }}$ | 12.94 | 12.26 | 12.48 | 12.26 | 11.93 | -2.7 | -2.7 |
| All food and drink |  |  | 36.39 | 41.34 | 40.32 | 41.92 | 41.27 | 39.93 | -3.3 | -1.0 |
| Household food and drink exc. alcohol | 26.39 | 23.41 | 24.96 | 25.20 | 25.18 | 26.26 | 25.78 | 24.92 | -3.3 | -1.0 |
| Food and drink eaten out exc. alcohol |  |  | $6.46{ }^{\text {(d) }}$ | 9.06 | 8.94 | 9.09 | 8.98 | 8.79 | -2.1 | -1.7 |
| All food and drink exc. alcohol |  |  | 31.42 | 34.27 | 34.12 | 35.35 | 34.76 | 33.71 | -3.0 | -1.2 |
| \% eaten out |  |  | 21\% | 26\% | 26\% | 26\% | 26\% | 26\% |  |  |
| Household alcoholic drink |  |  | 2.69 | 3.20 | 2.87 | 3.18 | 3.23 | 3.08 | -4.9 | 7.2 |
| Eaten out alcoholic drink |  |  | $2.28{ }^{\text {(d) }}$ | 3.88 | 3.33 | 3.39 | 3.28 | 3.14 | -4.2 | -5.5 |
| All alcoholic drinks |  |  | 4.97 | 7.08 | 6.20 | 6.57 | 6.52 | 6.22 | -4.6 | 0.4 |
| \% of alcoholic drinks eaten out |  |  | 46\% | 55\% | 54\% | 52\% | 50\% | 51\% |  |  |

(a) Great Britain only.
(b) Estimates on eating out in 1995 are based on National Food Survey which was considered less reliable.
(c) Excludes confectionery, soft and alcoholic drinks.
(d) Whilst National Food Survey food purchases were adjusted, eating out figures were not.

## Family Food 2011

### 1.6 Takeaway food and drink

Takeaway purchases for consumption within the home are classed as household purchases (see Method Papers). Table 1.5 reports on the takeaway part of the major food groups. Between 2008 and 2011 purchases of takeaway food brought home have remained similar. Expenditure on takeaway foods decreased slightly to $£ 1.71$ per person per week in 2011, 10 pence per person per week higher than in 2008.

Table 1.5: UK household purchased quantities and expenditure on takeaway food brought home

| Purchases | 2008 | 2009 | 2010 | 2011 | RSE ${ }^{(a)}$ | \% change since 2010 | $\begin{array}{r} \% \text { change } \\ \text { since } \\ 2008 \end{array}$ | $\begin{aligned} & \text { trend since } \\ & 2008 \text { (b) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| grams per person per week |  |  |  |  |  |  |  |  |
| Total Meat | 58 | 57 | 59 | 55 | $\checkmark \checkmark$ | -6.4 | -5.2 |  |
| Total Fish | 11 | 11 | 10 | 11 | $\checkmark \checkmark$ | 10.8 | 0.4 |  |
| Total Vegetables | 47 | 47 | 45 | 46 | $\checkmark \checkmark$ | 1.6 | -3.8 |  |
| Total Bread | 4 | 4 | 5 | 4 | $\checkmark$ | -19.9 | -16.3 |  |
| Total Other cereals ${ }^{(c)}$ | 40 | 38 | 42 | 40 | $\checkmark \checkmark$ | -3.5 | 1.7 |  |
| Total Miscellaneous | 3 | 2 | 2 | 2 | $\checkmark$ | 5.5 | -14.5 |  |

UK Expenditure on takeaway food purchases brought home

| Expenditure | 2008 | 2009 | 2010 | 2011 | RSE ${ }^{(a)}$ | $\begin{array}{r} \% \text { change } \\ \text { since } \\ 2010 \end{array}$ | $\begin{array}{r} \% \text { change } \\ \text { since } \\ 2008 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pence per person per week |  |  |  |  |  |  |  |
| Total Meat | 67 | 67 | 73 | 70 | $\checkmark \checkmark$ | -3.0 | 4.9 |
| Total Fish | 18 | 19 | 17 | 19 | $\checkmark \checkmark$ | 8.4 | 6.3 |
| Total Vegetables | 27 | 27 | 26 | 27 | $\checkmark \checkmark$ | 4.0 | 2.7 |
| Total Bread | 7 | 6 | 7 | 6 | $\checkmark$ | -16.2 | -8.7 |
| Total Other cereals ${ }^{(c)}$ | 40 | 39 | 46 | 45 | $\checkmark \checkmark$ | -1.0 | 12.8 |
| Total Miscellaneous | 3 | 3 | 3 | 3 | $\checkmark$ | 3.2 | -4.7 |
| Total | 161 | 161 | 172 | 171 |  |  |  |

(a) Relative Standard Error: 3 ticks: < 2.5\%, 2 ticks: $2.5 \%-5 \%, 1$ tick: $5 \%-10 \%$, no ticks: $10 \%-20 \%$, cross: $>20 \%$, not available
(b) An arrow indicates a statistically significant linear trend since 2008, see website for more details.
(c) Other cereals including pastries, rice, pasta and noodles, pizza and savoury snacks such as popcorn, popadoms and prawn crackers.

### 1.7 Eating out purchases

Measured in grams, the amount of eating out was 7.5 per cent lower in 2011 than in 2008, with the rate of year on year decrease rising each year. In terms of money spent in actual prices (not adjusted for inflation) it was 6.5 per cent higher in 2011 than in 2008 at $£ 11.93$ per person per week for all food and alcoholic drinks. Spending on food and non-alcoholic drinks was $£ 8.79$ in 2011. Spending on alcoholic drinks increased slightly to $£ 3.14$ per person per week in 2011, 3.5 per cent higher than in 2008. See Table 1.3.

There are downward trends in purchases of some categories of eating out food and drink since 2008. The most significant reductions between 2008 and 2011 in amounts bought include confectionery down 24 per cent, salads down 16 per cent, sandwiches down 12 per cent, 'crisps, nuts and snacks' down 12 per cent and alcoholic drinks down 11 per cent. There are no categories with a significant upward trend since 2008. See Table 1.6.

Table 1.6: UK eating out purchased quantities of food and drink, 2008 to 2011

|  | 2008 | 2009 | 2010 | 2011 | RSE ${ }^{(a)}$ | \% change since 2010 | \% change since 2008 | $\begin{gathered} \text { trend } \\ \text { since } \\ 2008^{(b)} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of households in sample | 5845 | 5825 | 5263 | 5692 |  |  |  |  |
| Number of persons in sample | 13890 | 13760 | 12196 | 13448 |  |  |  |  |

Eating Out Purchases grams per person per week unless otherwise stated

| Alcoholic drinks |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| average across whole population | ml | 443 | 449 | 413 | 394 | $\checkmark \checkmark$ | -4.6 | -11.2 | $\searrow$ |
| average excluding under 14 's | ml | 532 | 538 | 494 | 472 | $\checkmark \checkmark$ | -4.4 | -11.3 | $\searrow$ |
| Soft drinks inc. milk drinks | ml | 291 | 286 | 279 | 269 | $\checkmark \checkmark \checkmark$ | -3.4 | -7.5 | $v$ |
| Other food products ${ }^{(c)}$ |  | 116 | 127 | 144 | 118 | $\checkmark \checkmark$ | -18.1 | +1.6 |  |
| Beverages | ml | 124 | 120 | 117 | 117 | $\checkmark \checkmark$ | -0.4 | -5.4 |  |
| Meat and meat products |  | 78 | 76 | 75 | 75 | $\checkmark \checkmark \checkmark$ | -0.7 | -3.7 |  |
| Sandwiches |  | 73 | 67 | 67 | 64 | $\checkmark \checkmark$ | -3.7 | -12.3 | $v$ |
| Fresh and processed potatoes |  | 66 | 65 | 62 | 62 | $\checkmark \checkmark \checkmark$ | -0.2 | -6.3 | $\searrow$ |
| Indian, Chinese or Thai food |  | 31 | 28 | 31 | 30 | $\checkmark \checkmark$ | -4.5 | -5.1 |  |
| Vegetables |  | 29 | 28 | 26 | 27 | $\checkmark \checkmark$ | +5.0 | -8.5 | $\searrow$ |
| Ice cream, desserts and cakes |  | 26 | 26 | 25 | 25 | $\checkmark \checkmark$ | -0.2 | -1.8 |  |
| Cheese and egg dishes or pizza |  | 23 | 21 | 22 | 22 | $\checkmark \checkmark$ | -0.8 | -3.8 |  |
| Salads |  | 19 | 17 | 17 | 16 | $\checkmark \checkmark$ | -6.3 | -16.1 |  |
| Rice, pasta or noodles |  | 14 | 14 | 15 | 15 | $\checkmark \checkmark$ | +0.1 | +4.6 |  |
| Fish and fish products |  | 13 | 14 | 14 | 13 | $\checkmark \checkmark$ | -0.8 | +2.3 |  |
| Fresh and processed fruit |  | 13 | 12 | 12 | 12 | $\checkmark \checkmark$ | +0.9 | -5.3 |  |
| Confectionery |  | 12 | 11 | 10 | 9 | $\checkmark \checkmark$ | -5.8 | -24.5 | $\searrow$ |
| Soups |  | 10 | 9 | 8 | 10 | $\checkmark$ | +20.1 | +3.3 |  |
| Bread |  | 8 | 7 | 7 | 7 | $\checkmark \checkmark$ | -1.3 | -10.7 | $\searrow$ |
| Crisps, nuts and snacks |  | 8 | 7 | 7 | 7 | $\checkmark \checkmark$ | +1.6 | -11.6 | $v$ |
| Biscuits and chocolate |  | 3 | 3 | 3 | 3 | $\checkmark \checkmark$ | -1.6 | -4.3 |  |
| Yoghurt and fromage frais |  | 2 | 2 | 2 | 2 |  | -2.3 | +8.3 |  |
| Breakfast cereals |  | 0 | 1 | 0 | 1 |  | +13.0 | +7.1 |  |

(a) Relative Standard Error: 3 ticks: < 2.5\%, 2 ticks: $2.5 \%-5 \%, 1$ tick: $5 \%-10 \%$, no ticks: $10 \%-20 \%$, cross: $>20 \%$, - not available.
(b) An arrow indicates a statistically significant linear trend since 2008, see website for more details.
(c) Other food products mostly contains unspecified meals such as free school meals and free meals through work.

Family Food 2011

# Chapter UK trends in energy and nutrient intakes 

### 2.1 Overview

This chapter presents the estimated energy and nutrient content of food purchases across the UK and trends since 2008. Chapter 3 presents country and regional estimates, where apparent differences are often due to variations in demographic characteristics such as income. Chapter 4 attributes differences in intakes to regional and demographic characteristics of households. It covers sodium, Non-Milk Extrinsic Sugars (NMES), fruit, vegetables, fibre and saturated fatty acids. Chapter 5 examines in more detail the trends in these dietary indicators and compares average intakes with recommended levels.

Food and drink purchases are converted to energy and nutrient intakes in this chapter. Trends over four years are examined and comparisons made with the UK Dietary Reference Values where appropriate.

A further reduction in 2011 reaffirms the downward trend in energy intake. Energy intake was 1.4 per cent lower in 2011 than in 2008.

Intakes of NMES and saturated fatty acids, as measured as a percentage of food and drink energy (excluding alcohol), were both lower in 2011 than in 2008, although hardly changed compared to 2010. Both continue to exceed the Dietary Reference Values, which are set as recommended maximum levels.

All vitamin and mineral intakes except sodium reached at least 100 per cent of the population-weighted Reference Nutrient Intake, where one is set. The average intake of sodium, excluding table salt, was 84 per cent above the Reference Nutrient Intake in 2011, but is on a downward trend.

More detailed series for all years from 1974 onwards are available in Excel format: Datasets. Estimates for some types of food and therefore some nutrient intakes are available from 1940.

### 2.2 Nutrient Conversion

Estimated nutrient intakes are calculated from food purchases using nutrient composition data supplied by the Department of Health (DH). The majority of the data are from the DH's nutrient analysis programme, supplemented by values from manufacturers and retailers. Methodology paper, 'Reference nutrient intakes' documents which food codes have been updated with new nutrient composition data in the last 4 years.

The nutrient conversion excludes inedible parts of purchased foods, e.g. fish heads, banana peels; it assumes all food is eaten. Intakes from dietary supplements are not included in any of the tables.

Definitions of certain nutritional terms can be found in the glossary.

### 2.3 Reference Nutrient Intakes

Many tables in this chapter compare nutrient intakes derived from the survey with Reference Nutrient Intakes ${ }^{1}$ (RNIs). These RNIs represent the best estimate of the amount of a nutrient that is enough, or more than enough, for about 97.5 per cent of people in a group. If average intake of a group is at or above the level of the RNI, then the risk of deficiency in the group is very small.

Energy intake is compared against the Estimated Average Requirement (EAR) for a group. Estimates of energy requirements for different populations are termed EARs and are defined as the energy intake estimated to meet the average requirements of the group. About half the people in the group will usually need more energy than the EAR and half the people in the group will usually need less.

The Reference Nutrient Intakes and Estimated Average Requirements and the calculation of weighted average values for the population are described in the methodology paper 'Reference nutrient intakes'.

## Family Food 2011

### 2.4 Energy and nutrient intakes

## Energy

Based on food and drink purchases, total energy intake per person was 1.4 per cent lower in 2011 than in 2008. This is a statistically significant downward trend over this four year period that confirms the longer term downward trend already apparent since the mid-nineteen sixties. Total energy intake was an average of 2245 kcal per person per day in 2011.

Energy intake from eating out was 4.9 per cent lower in 2011 than in 2008 due mainly to fewer free work meals and fewer free school meals. Average energy intake from eating out was 236 kcal per person per day in 2011 accounting for 11 per cent of total energy intake.

## Sodium (excluding table salt)

There was a decrease ( $3.1 \%$ ) in the total intake of sodium in 2011. Levels are now 1.5 per cent lower than in 2008 indicating a downwards trend. Eating out accounted for 11 per cent of sodium intakes, in line with eating out as a percentage of total energy intake. Sodium intakes from eating out fell 7.8 per cent in 2011, a reduction of 3.6 per cent since 2008. Major contributors to the sodium content of household food purchases in 2011 include: 'non-carcase meat and meat products', bread and 'other cereals and cereal products'. The contribution that these food groups make to energy intake is shown in Table 2.4.

The figures do not include purchases of table salt since table salt can be used for a variety of household tasks such as melting ice. Salt that might have been added to food during cooking or at the table is therefore excluded from the estimate.

## Non-milk extrinsic sugars

Non-milk extrinsic sugars are a category of sugars that are considered to contribute to dental decay. Extrinsic sugars are any sugars not contained within the cellular structure of a food, either because they have been added to a food in the form of table sugar, honey etc; or because the food has been processed which has released sugars from the cell structure e.g. fruit juice.
The sugar naturally present in milk and milk products (lactose) is excluded from the definition as it is not considered to have adverse effects on teeth.

Total intake of non-milk extrinsic sugars is on a downwards trend since 2008 having fallen 3.3 per cent between 2008 and 2011.

Intake of NMES, as measured as a percentage of food and drink energy (excluding alcohol), was 13.9 per cent, unchanged from 2010, 1.8 per cent below the 2008 level. The household food groups that contribute most to total NMES intakes can be seen in Table 2.4 , they are 'sugar and preserves', 'soft drinks' and 'confectionery'.

NMES provided 11 per cent of eating out food and drink energy in 2011. This has fallen almost 10 per cent since 2008, driven by reductions in eating out purchases of soft drinks, alcoholic drinks, confectionery and 'icecream, desserts and cakes'. Eating out purchases now account for around 8.0 per cent of total NMES intakes.

## Saturated fatty acids

Total intakes of saturated fatty acids (measured in grams per person per day) continued on a downward trend, falling by 3.9 per cent between 2008 and 20011. In 201114.2 per cent of food and drink energy (excluding alcohol) was derived from saturated fatty acids, having fallen from 14.6 per cent in 2008 . See Tables 2.1 and 2.2.

Saturated fatty acids provided 13.3 per cent of eating out food and drink energy in 2011, little changed from 2008. Eating out purchases provided 9.4 per cent of total saturated fatty acid intakes in 2011.

Over the four years 2008 to 2011, intakes of monounsaturated fatty acids indicate an upward trend, while intakes of polyunsaturated fatty acids are showing a downward trend.

Table 2.1 UK average energy and nutrient intakes from all food and drink

|  |  | 2008 | 2010 | 2011 | \% change since 2010 | \% change since 2008 | Trend since 2008 | \% from food eaten out in 2011 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total energy and nutrient intakes ${ }^{(a)}$ |  |  |  |  |  | average intake per person per day |  |  |
| Energy | kcal | 2276 | 2292 | 2245 | -2.1 | -1.4 | $\checkmark$ | 10.5 |
|  | MJ | 9.5 | 9.6 | 9.4 | -2.1 | -1.4 | $v$ | 10.5 |
| Energy excluding alcohol | kcal | 2210 | 2221 | 2176 | -2.0 | -1.5 |  | 10.1 |
| Total Protein | g | 78.1 | 78.6 | 77.2 | -1.7 | -1.1 |  | 11.2 |
| Fat | g | 94 | 95 | 92 | -3.3 | -2.5 | $\pm$ | 11.5 |
| Fatty acids: |  |  |  |  |  |  |  |  |
| Saturates | g | 35.7 | 35.1 | 34.3 | -2.3 | -3.9 | $v$ | 9.4 |
| Monounsaturates | g | 35.1 | 37.0 | 35.8 | -3.3 | +2.0 | $\nearrow$ | 12.2 |
| Polyunsaturates | g | 17.4 | 17.1 | 16.2 | -5.3 | -6.7 | $v$ | 13.5 |
| Cholesterol | mg | 262 | 257 | 252 | -2.1 | -3.9 | $v$ | 13.6 |
| Carbohydrate ${ }^{(b)}$ | g | 279 | 279 | 276 | -1.0 | -1.0 |  | 8.7 |
| Total sugars | g | 127 | 125 | 124 | -1.5 | -2.8 | $\pm$ | 7.0 |
| Non-milk extrinsic sugars | g | 83 | 82 | 81 | -2.2 | -3.3 | $v$ | 8.0 |
| Starch | g | 152 | 153 | 152 | -0.6 | +0.5 |  | 10.0 |
| Fibre ${ }^{(c)}$ | g | 15.0 | 15.3 | 15.2 | -0.6 | +1.3 |  | 10.5 |
| Alcohol | g | 9.4 | 10.2 | 9.8 | -4.1 | +4.2 |  | 24.8 |
| Calcium | mg | 969 | 965 | 955 | -1.1 | -1.5 | $\downarrow$ | 7.3 |
| Iron | mg | 11.8 | 11.9 | 11.8 | -1.1 | +0.6 |  | 9.9 |
| Zinc | mg | 9.2 | 9.4 | 9.2 | -2.0 | -0.7 |  | 10.8 |
| Magnesium | mg | 287 | 289 | 287 | -0.7 | +0.1 |  | 9.6 |
| Sodium ${ }^{\text {(d) }}$ | g | 2.78 | 2.83 | 2.74 | -3.1 | -1.5 | $v$ | 11.4 |
| Potassium | g | 3.22 | 3.21 | 3.21 | -0.3 | -0.4 |  | 10.9 |
| Thiamin | mg | 1.66 | 1.67 | 1.62 | -3.0 | -2.1 | $\pm$ | 11.8 |
| Riboflavin | mg | 1.89 | 1.89 | 1.92 | +1.7 | +1.9 |  | 7.2 |
| Niacin equivalent | mg | 34.0 | 34.4 | 33.6 | -2.1 | -1.1 |  | 12.5 |
| Vitamin $\mathrm{B}_{6}$ | mg | 2.5 | 2.5 | 2.4 | -3.9 | -3.4 | $v$ | 13.5 |
| Vitamin $\mathrm{B}_{12}$ | $\mu \mathrm{g}$ | 6.4 | 6.4 | 6.2 | -2.5 | -2.1 |  | 8.9 |
| Folate | $\mu \mathrm{g}$ | 299 | 302 | 298 | -1.2 | -0.4 |  | 12.8 |
| Vitamin C | mg | 76 | 80 | 77 | -3.6 | +1.6 |  | 10.7 |
| Vitamin A: |  |  |  |  |  |  |  |  |
| Retinol | $\mu \mathrm{g}$ | 526 | 542 | 533 | -1.7 | +1.4 |  | 8.3 |
| $\beta$-carotene | $\mu \mathrm{g}$ | 2225 | 2299 | 2187 | -4.9 | -1.7 |  | 15.3 |
| Retinol equivalent | $\mu \mathrm{g}$ | 898 | 927 | 900 | -2.9 | +0.2 |  | 11.1 |
| Vitamin D | $\mu \mathrm{g}$ | 3.03 | 3.12 | 3.10 | -0.5 | +2.4 | $\lambda$ | 10.2 |
| $\underline{\text { Vitamin E }}$ | mg | 12.17 | 12.36 | 12.33 | -0.3 | +1.3 |  | 12.6 |
|  |  |  |  |  | percentage | ffood and | rink energy ex | uding alcohol |
| Fat | \% | 38.5 | 38.6 | 38.1 | -1.3 | -1.0 |  |  |
| Fatty acids: |  |  |  |  |  |  |  |  |
| saturates | \% | 14.6 | 14.2 | 14.2 | -0.3 | -2.4 |  |  |
| monounsaturates | \% | 14.3 | 15.0 | 14.8 | -1.3 | +3.6 |  |  |
| polyunsaturates | \% | 7.1 | 6.9 | 6.7 | -3.4 | -5.3 |  |  |
| Carbohydrate | \% | 47.4 | 47.2 | 47.6 | +1.0 | +0.6 |  |  |
| Non-milk extrinsic sugars | \% | 14.1 | 13.9 | 13.9 | -0.2 | -1.8 |  |  |
| Protein | \% | 14.1 | 14.2 | 14.2 | +0.3 | +0.4 |  |  |

## Family Food 2011

Table 2.1 continued

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |

(a) Contributions from pharmaceutical sources are not recorded by the survey.
(b) Available carbohydrate, calculated as monosaccharide equivalent
(c) As non-starch polysaccharides.
(d) (i) Excludes sodium from table salt (ii) In May 2003 the Scientific Advisory Committee Nutrition recommended that average salt intake for adults should not exceed $6 \mathrm{~g} / \mathrm{day}$, equivalent to 2.4 grams of sodium.
(e) As a percentage of Estimated Average Requirement.
(f) Department of Health, 'Dietary Reference Values for Food Energy and Nutrients for the United Kingdom', HMSO 1991. RNI values for protein, vitamins and minerals are set for each age/sex group at a level of intake considered likely to be sufficient to meet the requirements of $97.5 \%$ of the group. Weighted RNIs, based on the age/sex composition of the survey sample, have been calculated for comparison with population average intakes.

Fibre
Fibre intake in 2011 was 1.3 per cent higher than in 2008, although there was a small decrease in between 2010 and 2011 of 0.6 per cent. Intakes of fibre, from both household and eating out combined, was 15.2 grams per person per day.

## Alcohol

Alcohol intake fell 4.1 per cent in 2011 to 9.8 grams per person per day, but was still 4.2 per cent higher than in 2008. In 2011, eating out intakes of alcohol fell by 5.8 per cent, 7.4 per cent lower than in 2008 and showing a significant downward trend. Eating out purchases accounted for nearly 25 per cent of total alcohol intake in 2011.

## Vitamins and minerals

Over the four years 2008 to 2011, intakes of Vitamin D indicate an upward trend. Over the same period, calcium, thiamin, and vitamin $B_{6}$ are showing downward trends. These trends may be partly explained by changes in food composition data over time, due to new analytical data becoming available or changes in fortification practices.

Table 2.2 UK average energy and nutrient intakes from household and eating out food and drink


## Family Food 2011

Table 2.2 continued

|  |  | $\begin{array}{r} 2011 \\ \text { Household } \end{array}$ | \% change since 2008 Household | $\begin{array}{r} \text { Trend since } \\ 2008 \end{array}$ | $2011$ <br> Eating out | \% change since 2008 Eating out | $\begin{array}{r} \text { Trend since } \\ 2008 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | as a percentage of weighted Reference Nutrient Intake ${ }^{(f)}$ |  |  |  |
| Energy ${ }^{(e)}$ | \% | 96 | -0.7 |  | 11 | -4.7 |  |
| Energy excluding alcohol ${ }^{(e)}$ | \% | 93 | -0.9 |  | 10 | -4.5 |  |
| Protein | \% | 150 | -0.7 |  | 19 | -2.9 |  |
| Calcium | \% | 129 | -1.1 |  | 10 | -3.4 |  |
| Iron | \% | 104 | 1.2 |  | 11 | -1.2 |  |
| Zinc | \% | 103 | -0.2 |  | 12 | -3.1 |  |
| Magnesium | \% | 98 | 0.8 |  | 10 | -4.5 |  |
| Sodium ${ }^{(d)}$ | \% | 163 | -1.0 |  | 21 | -3.4 |  |
| Potassium | \% | 89 | 0.1 |  | 11 | -3.1 |  |
| Thiamin | \% | 170 | -1.8 |  | 23 | -2.1 |  |
| Riboflavin | \% | 156 | 2.7 |  | 12 | -5.1 |  |
| Niacin equivalent | \% | 211 | -0.4 |  | 30 | -4.3 |  |
| Vitamin $\mathrm{B}_{6}$ | \% | 168 | -3.1 |  | 26 | -4.4 |  |
| Vitamin $\mathrm{B}_{12}$ | \% | 409 | -1.9 |  | 40 | -2.4 |  |
| Folate | \% | 138 | 0.6 |  | 20 | -4.4 |  |
| Vitamin C | \% | 179 | 2.2 |  | 22 | -2.7 |  |
| Vitamin A (retinol equivalent) | \% | 129 | 0.7 |  | 16 | -3.0 |  |

(a) Contributions from pharmaceutical sources are not recorded by the survey.
(b) Available carbohydrate, calculated as monosaccharide equivalent.
(c) As non-starch polysaccharides.
(d) (i) Excludes sodium from table salt (ii) In May 2003 the Scientific Advisory Committee Nutrition recommended that average salt intake for adults should not exceed $6 \mathrm{~g} / \mathrm{day}$, equivalent to 2.4 grams of sodium
(e) As a percentage of Estimated Average Requirement.
(f) Department of Health, 'Dietary Reference Values for Food Energy and Nutrients for the United Kingdom', HMSO 1991. RNI values for protein, vitamins and minerals are set for each age/sex group at a level of intake considered likely to be sufficient to meet the requirements of $97.5 \%$ of the group. Weighted RNIs, based on the age/sex composition of the survey sample, have been calculated for comparison with population average intakes.

### 2.5 Major sources of energy from household food purchases

A third of energy from household purchases ( 661 kcal per person per day) is derived from a combination of:

- Non-carcase meat and meat products - 10.6 per cent (213 kcal);
- Bread - 10.2 per cent ( 205 kcal ) and
- Other cereal products (such as oat products, breakfast cereal, rice, pasta and pizza) - 12.1 per cent (243 kcal).

Table 2.3 Contribution to total household energy intakes from selected foods

|  | Energy - kcal | \% of household food and drink energy ${ }^{\text {(a) }}$ |
| :---: | :---: | :---: |
| Non-carcase meat and meat products |  | average per person per day |
| Meat based ready meals and convenience meat products | 39 | 1.9 |
| Chicken - whole or part | 34 | 1.7 |
| Sausages, uncooked - pork | 24 | 1.2 |
| Meat pies, pasties and puddings - frozen or not frozen | 19 | 1.0 |
| Bacon and ham, uncooked | 19 | 1.0 |
| Takeaway meats | 13 | 0.6 |
| Meat pies and sausage rolls, ready to eat | 12 | 0.6 |
| Ham and bacon | 10 | 0.5 |
| Burgers - frozen or not frozen | 9 | 0.4 |
| Cooked poultry (excluding canned) | 8 | 0.4 |
| All other non-carcase meat and meat products | 26 | 1.3 |
| Total | 213 | 10.6 |
| Bread |  |  |
| White bread (inc premium and softgrain) | 82 | 4.1 |
| Other bread | 69 | 3.4 |
| Brown and wholemeal bread | 54 | 2.7 |
| Total | 205 | 10.2 |
| Other cereals and cereal products |  |  |
| Breakfast cereals | 69 | 3.4 |
| Other cereal convenience foods | 43 | 2.1 |
| Pasta | 38 | 1.9 |
| Rice | 36 | 1.8 |
| Pizza | 28 | 1.4 |
| Oatmeal and oat products | 11 | 0.5 |
| All other cereals and cereal products | 18 | 0.9 |
| Total | 243 | 12.1 |

(a) includes energy from alcoholic drinks

A further third of energy intake from household purchases ( 657 kcal per person per day) is derived from a combination of:

- Fats (including butter, fat spreads and vegetables oils) - 8.1 per cent (163 kcal);
- Milk, yoghurt and fromage frais, milk desserts and cream - 8.4 per cent (170 kcal);
- Biscuits -5.5 per cent ( 110 kcal );
- Processed vegetables and potatoes (including frozen, canned and dried) - 6.5 per cent ( 130 kcal ) and
- Confectionery -4.2 per cent ( 84 kcal ).

The remaining third of daily energy from household food and alcoholic drinks ( 691 kcal ), comes from a range of foods including, carcase meat, fresh fruit and vegetables, fish, cheese, fresh potatoes, soft drinks and alcoholic drinks, as detailed in Table 2.4.

Family Food 2011
Table 2.4 Intakes from different types of household foods


| average per person per day |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | kcal | grams | grams | mg | mg | grams | mg | $\mu \mathrm{g}$ | mg | $\mu \mathrm{g}$ | $\mu \mathrm{g}$ |
| Milk and cream ${ }^{(a)}$ | 170 | 7.3 | 4.6 | 333 | 0.2 | 3.0 | 129 | 18.3 | 3.9 | 40 | 91 |
| Cheese | 60 | 5.0 | 3.1 | 102 | 0.0 | 0.0 | 113 | 5.0 | 0.0 | 24 | 55 |
| Carcase meat | 56 | 3.7 | 1.6 | 2 | 0.4 | 0.0 | 18 | 2.8 | 0.0 | 0 | 0 |
| Non-carcase meat and meat products | 213 | 13.4 | 4.8 | 30 | 1.2 | 0.1 | 531 | 11.8 | 2.3 | 69 | 169 |
| Fish | 30 | 1.5 | 0.3 | 13 | 0.2 | 0.0 | 69 | 2.7 | 0.1 | 5 | 3 |
| Eggs | 16 | 1.1 | 0.3 | 6 | 0.2 | 0.0 | 19 | 5.7 | 0.0 | 0 | 15 |
| Fats and oils | 163 | 18.0 | 5.7 | 4 | 0.0 | 0.2 | 82 | 11.8 | 0.0 | 80 | 145 |
| Sugar and preserves | 65 | 0.0 | 0.0 | 3 | 0.1 | 17.1 | 4 | 0.1 | 0.3 | 1 | 0 |
| Fresh potatoes | 43 | 0.1 | 0.0 | 3 | 0.2 | 0.0 | 4 | 19.2 | 3.4 | 0 | 0 |
| Fresh green vegetables | 5 | 0.1 | 0.0 | 10 | 0.2 | 0.0 | 2 | 14.7 | 2.8 | 94 | 16 |
| Other fresh vegetables | 18 | 0.2 | 0.0 | 15 | 0.4 | 0.0 | 9 | 18.6 | 6.0 | 1032 | 172 |
| Processed vegetables | 130 | 5.2 | 0.9 | 26 | 0.9 | 0.9 | 203 | 25.0 | 5.5 | 259 | 48 |
| Fresh fruit | 46 | 0.3 | 0.1 | 11 | 0.2 | 0.0 | 3 | 8.5 | 16.2 | 30 | 5 |
| Processed fruit | 49 | 2.0 | 0.4 | 10 | 0.3 | 5.7 | 14 | 10.1 | 16.0 | 10 | 2 |
| Bread | 205 | 2.4 | 0.6 | 126 | 1.7 | 0.1 | 420 | 26.9 | 0.0 | 1 | 6 |
| Flour | 36 | 0.1 | 0.0 | 9 | 0.2 | 0.0 | 0 | 1.6 | 0.0 | 0 | 0 |
| Cakes, buns and pastries | 73 | 3.1 | 1.3 | 17 | 0.3 | 4.8 | 65 | 2.4 | 0.2 | 4 | 13 |
| Biscuits | 110 | 5.1 | 2.5 | 27 | 0.5 | 5.5 | 78 | 2.6 | 0.0 | 3 | 1 |
| Other cereal products ${ }^{\left({ }^{(b)}\right.}$ | 243 | 4.8 | 1.5 | 72 | 2.4 | 4.3 | 238 | 42.8 | 0.7 | 43 | 23 |
| Beverages | 6 | 0.1 | 0.0 | 6 | 0.2 | 0.6 | 7 | 8.5 | 0.0 | 0 | 2 |
| Other food ${ }^{(c)}$ | 82 | 4.4 | 1.3 | 24 | 0.4 | 6.4 | 382 | 13.4 | 0.6 | 104 | 19 |
| Soft drinks | 48 | 0.0 | 0.0 | 9 | 0.0 | 12.8 | 15 | 2.7 | 10.7 | 49 | 8 |
| Confectionery | 84 | 3.5 | 1.9 | 21 | 0.2 | 11.4 | 18 | 1.8 | 0.0 | 6 | 6 |
| Alcoholic drinks | 59 | 0.0 | 0.0 | 7 | 0.3 | 1.2 | 7 | 2.5 | 0.0 | 0 | 0 |
| Total household intake | 2009 | 82 | 31 | 885 | 11 | 74 | 2430 | 260 | 69 | 1853 | 800 |


|  | percentage of total intake per person per day from household purchases |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% | \% | \% | \% | \% | \% | \% | \% | \% | \% | \% |
| Milk and cream ${ }^{(a)}$ | 8 | 9 | 15 | 38 | 2 | 4 | 5 | 7 | 6 | 2 | 11 |
| Cheese | 3 | 6 | 10 | 11 | 0 | 0 | 5 | 2 | 0 | 1 | 7 |
| Carcase meat | 3 | 5 | 5 | 0 | 3 | 0 | 1 | 1 | 0 | 0 | 0 |
| Non-carcase meat and meat products | 11 | 16 | 16 | 3 | 11 | 0 | 22 | 5 | 3 | 4 | 21 |
| Fish | 2 | 2 | 1 | 1 | 2 | 0 | 3 | 1 | 0 | 0 | 0 |
| Eggs | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 2 |
| Fats and oils | 8 | 22 | 18 | 0 | 0 | 0 | 3 | 5 | 0 | 4 | 18 |
| Sugar and preserves | 3 | 0 | 0 | 0 | 1 | 23 | 0 | 0 | 0 | 0 | 0 |
| Fresh potatoes | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 7 | 5 | 0 | 0 |
| Fresh green vegetables | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 6 | 4 | 5 | 2 |
| Other fresh vegetables | 1 | 0 | 0 | 2 | 3 | 0 | 0 | 7 | 9 | 56 | 22 |
| Processed vegetables | 6 | 6 | 3 | 3 | 8 | 1 | 8 | 10 | 8 | 14 | 6 |
| Fresh fruit | 2 | 0 | 0 | 1 | 2 | 0 | 0 | 3 | 23 | 2 | 1 |
| Processed fruit | 2 | 2 | 1 | 1 | 2 | 8 | 1 | 4 | 23 | 1 | 0 |

Table 2.4 continued

|  | Energy | Saturated Fat fatty acids | Calcium | Iron | Non-milk extrinsic sugars | Sodium | Folate Vitamin C | $\beta$-carotene | Vitamin A (Retinol equiv.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bread | 10 | 32 | 14 | 16 | 0 | 17 | 100 | 0 | 1 |
| Flour | 2 | $0 \quad 0$ | 1 | 2 | 0 | 0 | 10 | 0 | 0 |
| Cakes, buns and pastries | 4 | 4 | 2 | 3 | 6 | 3 | 10 | 0 | 2 |
| Biscuits | 5 | 68 | 3 | 4 | 7 | 3 | 10 | 0 | 0 |
| Other cereal products ${ }^{(b)}$ | 12 | 65 | 8 | 22 | 6 | 10 | 16 1 | 2 | 3 |
| Beverages | 0 | $0 \quad 0$ | 1 | 2 | 1 | 0 | 30 | 0 | 0 |
| Other food ${ }^{\text {c }}$ ) | 4 | $5 \quad 4$ | 3 | 4 | 9 | 16 | 51 | 6 | 2 |
| Soft drinks | 2 | $0 \quad 0$ | 1 | 0 | 17 | 1 | 116 | 3 | 1 |
| Confectionery | 4 | $4 \quad 6$ | 2 | 2 | 15 | 1 | 10 | 0 | 1 |
| Alcoholic drinks | 3 | 00 | 1 | 3 | 2 | 0 | 10 | 0 | 0 |

(a) Includes all whole and skimmed liquid and instant milks, yoghurt and fromage frais, milk desserts and cream.
(b) Includes oatmeal and oat products, breakfast cereals, canned milk puddings, other puddings such as sponge puddings and pies, rice, cereal-based invalid foods, slimming foods, infant foods, frozen cakes and pastries, pasta, pizza, cereal convenience foods such as cake, pudding and dessert mixes, custard powder, other cereals such as barley, cous cous, corn and tapioca.
(c) Includes mineral or spring waters, baby foods, soups, other takeaway food brought home, meals on wheels, salad dressings and other spreads \& dressings, pickles, sauces, takeaway sauces and mayonnaise, stock cubes and meat \& yeast extracts, jelly squares or crystals, ice cream (all types), salt, artificial sweeteners, vinegar, spices and dried herbs, bisto, gravy granules, stuffing mix, baking powder, yeast, fruit, herbal and instant teas, and soya and novel protein foods.

## Family Food 2011

### 2.6 Comparison of household and eating out intakes with Reference Nutrient Intakes

Based on the food and drink purchases average micronutrient intakes except sodium were all at or above the weighted reference nutrient intakes (RNI) in 2011. In the case of sodium, the reference nutrient intake is set as a maximum level which was exceeded in 2011 by 84 per cent excluding sodium from table salt. Vitamin $B_{12}$ shows the highest intake at 449 per cent of the RNI.

Average energy intake (including energy from alcohol) was 107 per cent of the weighted Estimated Average Requirement (EAR), as set by COMA. Average energy intake excluding energy from alcohol was also above the weighted EAR at 104 per cent.

Table 2.5 Energy and nutrient intakes in the UK in 2011 as a percentage of weighted Reference Nutrient Intakes

|  |  | Household | Nutrient intakes in 2011 |  | Intake as a percentage of weighted Reference Nutrient Intake ${ }^{(a)}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Eaten Out | Total | Household | Eaten Out | Total |
|  |  |  |  |  |  | per person per day |  |
| Energy ${ }^{(b)}$ | kcal | 2009 | 236 | 2245 | 96 | 11 | 107 |
| Energy excluding alcohol ${ }^{(b)}$ | kcal | 1957 | 219 | 2176 | 93 | 10 | 104 |
| Protein | g | 68.6 | 8.7 | 77.2 | 150 | 19 | 168 |
| Calcium | mg | 885 | 70 | 955 | 129 | 10 | 139 |
| Iron | mg | 10.6 | 1.2 | 11.8 | 104 | 11 | 115 |
| Zinc | mg | 8.2 | 1.0 | 9.2 | 103 | 12 | 115 |
| Magnesium | mg | 259 | 27 | 287 | 98 | 10 | 108 |
| Sodium ${ }^{(c)}$ | g | 2.43 | 0.31 | 2.74 | 163 | 21 | 184 |
| Potassium | g | 2.86 | 0.35 | 3.21 | 89 | 11 | 100 |
| Thiamin | mg | 1.43 | 0.19 | 1.62 | 170 | 23 | 193 |
| Riboflavin | mg | 1.78 | 0.14 | 1.92 | 156 | 12 | 168 |
| Niacin equivalent | mg | 29.4 | 4.2 | 33.6 | 211 | 30 | 242 |
| Vitamin $\mathrm{B}_{6}$ | mg | 2.1 | 0.3 | 2.4 | 168 | 26 | 194 |
| Vitamin $\mathrm{B}_{12}$ | $\mu \mathrm{g}$ | 5.7 | 0.6 | 6.2 | 409 | 40 | 449 |
| Folate | $\mu \mathrm{g}$ | 260 | 38 | 298 | 138 | 20 | 158 |
| Vitamin C | mg | 69 | 8 | 77 | 179 | 22 | 200 |
| Vitamin A (retinol equivalent) | $\mu \mathrm{g}$ | 800 | 100 | 900 | 129 | 16 | 145 |

(a) Department of Health, 'Dietary Reference Values for Food Energy and Nutrients for the United Kingdom', HMSO 1991. RNI values for protein, vitamins and minerals are set for each age/sex group at a level of intake considered likely to be sufficient to meet the requirements of $97.5 \%$ of the group. Weighted RNIs, based on the age/sex composition of the survey sample, have been calculated for comparison with population average intakes.
(b) Estimated Average Requirement
(c) (i) Excludes sodium from table salt (ii) In May 2003 the Scientific Advisory Committee Nutrition recommended that average salt intake for adults should not exceed $6 \mathrm{~g} / \mathrm{day}$, equivalent to 2.4 grams of sodium.

### 2.7 Nutrient intakes from eating out

Eating out accounted for 11 per cent of total energy intake in 2011. About 24 per cent of eating out is recorded in the survey as unspecified meals which includes free school meals and free work meals. Excluding unspecified meals (due to lack of detail) Table 2.6 shows that over half of energy from eating out is derived from a combination of meat and meat products, alcoholic drinks, sandwiches and potatoes (including chips) and Indian, Chinese and Thai dishes.

The estimation methods for unspecified meals are described in the method paper 'Free food and unspecified meals estimation'.

## Table 2.6 Intakes from different types of food eaten out

|  | Energy | Fat | Saturated fatty acids | Calcium | Iron | Non-milk extrinsic sugars | Sodium | Folate | Vitamin C | $\beta$ carotene | Vitamin A (Retinol equiv.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| average per person per day |  |  |  |  |  |  |  |  |  |  |  |
|  | kcal | grams | grams | mg | mg | grams | mg | $\mu \mathrm{g}$ | mg | $\mu \mathrm{g}$ | $\mu \mathrm{g}$ |
| Indian, Chinese and Thai meals or dishes | 16 | 0.7 | 0.1 | 4 | 0.2 | 0.2 | 30 | 1.4 | 0.1 | 7 | 1.6 |
| Meat and meat Products | 24 | 1.4 | 0.5 | 7 | 0.1 | 0.0 | 55 | 1.8 | 0.2 | 22 | 12.5 |
| Fish and fish products | 4 | 0.2 | 0.0 | 1 | 0.0 | 0.0 | 5 | 0.4 | 0.0 | 0 | 0.4 |
| Cheese and egg dishes and pizza | 7 | 0.4 | 0.2 | 4 | 0.0 | 0.0 | 11 | 2.3 | 0.1 | 5 | 4.7 |
| Potatoes | 16 | 0.7 | 0.1 | 1 | 0.1 | 0.0 | 3 | 4.3 | 1.4 | 0 | 0.4 |
| Vegetables | 3 | 0.1 | 0.0 | 2 | 0.0 | 0.0 | 8 | 1.4 | 0.3 | 40 | 6.9 |
| Salads | 2 | 0.1 | 0.0 | 1 | 0.0 | 0.0 | 2 | 0.7 | 0.4 | 17 | 3.2 |
| Rice, pasta and noodles | 3 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 1 | 0.1 | 0.0 | 0 | 0.1 |
| Soups | 1 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 7 | 0.2 | 0.0 | 0 | 0.0 |
| Breakfast cereals | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 |
| Fruit | 1 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.1 | 0.2 | 1 | 0.1 |
| Yoghurt | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0.0 |
| Bread | 3 | 0.1 | 0.1 | 1 | 0.0 | 0.0 | 6 | 0.3 | 0.0 | 0 | 0.9 |
| Sandwiches | 19 | 0.9 | 0.3 | 11 | 0.1 | 0.0 | 41 | 2.1 | 0.2 | 12 | 6.1 |
| Beverages | 1 | 0.1 | 0.0 | 2 | 0.0 | 0.1 | 1 | 0.3 | 0.0 | 0 | 0.5 |
| Soft drinks including milk | 11 | 0.1 | 0.0 | 5 | 0.0 | 2.5 | 2 | 0.6 | 1.0 | 1 | 0.8 |
| Alcoholic drinks | 23 | 0.0 | 0.0 | 4 | 0.1 | 1.6 | 4 | 4.7 | 0.2 | 0 | 0.0 |
| Confectionery | 6 | 0.2 | 0.1 | 2 | 0.0 | 0.8 | 1 | 0.1 | 0.0 | 0 | 0.2 |
| Ice cream, desserts and cakes | 12 | 0.6 | 0.3 | 3 | 0.0 | 0.7 | 9 | 0.3 | 0.1 | 4 | 4.6 |
| Biscuits | 2 | 0.1 | 0.0 | 0 | 0.0 | 0.1 | 1 | 0.1 | 0.0 | 0 | 0.0 |
| Crisps, nuts and snacks | 5 | 0.3 | 0.1 | 0 | 0.0 | 0.1 | 7 | 0.3 | 0.0 | 0 | 0.1 |
| All Food \& Drink Eaten Out (a) | 157 | 6.2 | 2.0 | 49 | 0.7 | 6.2 | 194 | 22 | 4.2 | 111 | 43 |
| As a percentage of total intake per person per day from food and drink purchased for consumption outside the home |  |  |  |  |  |  |  |  |  |  |  |
|  | \% | \% | \% | \% | \% | \% | \% | \% | \% | \% | \% |
| Indian, Chinese and Thai meals or dishes | 10 | 12 | 7 | 9 | 20 | 3 | 15 | 7 | 2 | 6 | 4 |
| Meat and meat Products | 15 | 23 | 27 | 14 | 18 | 0 | 28 | 9 | 4 | 20 | 29 |
| Fish and fish products | 3 | 3 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 1 |
| Cheese and egg dishes and pizza | 5 | 7 | 7 | 9 | 6 | 0 | 6 | 11 | 3 | 5 | 11 |
| Potatoes | 10 | 11 | 5 | 2 | 7 | 0 | 1 | 20 | 32 | 0 | 1 |
| Vegetables | 2 | 2 | 1 | 3 | 6 | 1 | 4 | 6 | 7 | 36 | 16 |
| Salads | 1 | 1 | 1 | 2 | 2 | 0 | 1 | 3 | 9 | 15 | 7 |
| Rice, pasta and noodles | 2 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| Soups | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 0 | 0 | 0 |
| Breakfast cereals | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Fruit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 1 | 0 |
| Yoghurt | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bread | 2 | 2 | 3 | 3 | 2 | 0 | 3 | 1 | 0 | 0 | 2 |
| Sandwiches | 12 | 15 | 14 | 21 | 14 | 0 | 21 | 10 | 5 | 11 | 14 |
| Beverages | 1 | 1 | 2 | 4 | 2 | 2 | 1 | 2 | 1 | 0 | 1 |
| Soft drinks including milk | 7 | 1 | 2 | 10 | 1 | 40 | 1 | 3 | 25 | 1 | 2 |
| Alcoholic drinks | 15 | 0 | 0 | 8 | 8 | 26 | 2 | 22 | 4 | 0 | 0 |
| Confectionery | 4 | 4 | 6 | 4 | 2 | 13 | 1 | 0 | 0 | 0 | 0 |
| Ice cream, desserts and cakes | 7 | 10 | 14 | 6 | 4 | 11 | 5 | 2 | 1 | 3 | 11 |
| Biscuits | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 |
| Crisps, nuts and snacks | 3 | 5 | 6 | 1 | 2 | 1 | 4 | 2 | 1 | 0 | 0 |
| (a) The category 'Other food products' has been removed from this table as it predominantly comprises of unspecified meals which is an imputed category |  |  |  |  |  |  |  |  |  |  |  |

# Chapter $3^{\text {Geographic Comparisons }}$ 

### 3.1 Overview

This chapter presents estimates of food and drink purchases and nutrient intakes for the four countries of the United Kingdom and the nine Government Office Regions of England.

Differences between regions can be due to systematic regional variation in demographic characteristics, but this Chapter does not address this. Chapter 4 analyses differences in purchases of fruit and vegetables, and in estimated intakes of sodium, non-milk extrinsic sugars, fibre and saturated fatty acids according to regional and demographic characteristics of households.

There is variation in the sample size between each of the four countries of the United Kingdom and between one year and the next; notably in 2010 Northern Ireland had a significantly reduced sample size of 147 participating households. To ensure a large enough sample for robust estimates in each country, this chapter concentrates on three year averages between 2009 and 2011.

The ratio between the highest and lowest amounts purchased between the four UK countries varied from 1.1 (milk and cream, eggs, fruit, and cereals) to 1.6 (sugar and preserves). Variation in the ratio of highest to lowest estimated nutrient intake was 1.1 or less for all nutrients except retinol (1.3), retinol equivalent (1.2), and vitamin D (1.2).

Rural areas tended to have higher food and drink purchases and associated higher energy and nutrient intakes.

### 3.2 UK country comparisons

The analysis uses regions as defined in the Nomenclature of Territorial Units for Statistics (NUTS) which is an internationally agreed standard developed by the European Union. The level 1 regions of the UK are nine regions of England, plus Wales, Scotland and Northern Ireland, making 12 NUTS 1 regions in all. For more information on NUTS codes see: http://www.statistics.gov.uk/geography/nuts.asp

## Food and drink for the household

Averaged over the three years to 2011 the ratio between the highest and lowest amounts purchased for household supplies between the four UK countries varied from 1.1 (milk and cream, eggs, fruit, and cereals) to 1.6 (sugar and preserves).

Where the ratio between highest and lowest levels of purchasing was greater than 1.25:

- Northern Ireland households purchased the least cheese, sugar and preserves, vegetables and alcoholic drinks. They purchased the most carcase meat and potatoes.
- Wales households purchased the most sugar and preserves, vegetables and alcoholic drinks.
- Scotland households purchased the least carcase meat and potatoes.
- England households purchased the most cheese.


## Eating out food and drink

Northern Ireland had the highest purchases of food eaten out in 7 out of the 12 food categories, including 'meat and meat products', beverages, soft drinks, alcoholic drinks, potatoes and confectionery, but the lowest purchases of 'fish and fish products'. Scotland had the highest purchases of 'fish and fish products', sandwiches and 'ice cream, desserts and cakes'. Scottish households purchased the lowest amount of vegetables (excluding potatoes), more than one and a half times less than Welsh households who purchased the most.

Table 3.1: Purchases of selected foods by UK country - 3 year average

|  |  | England | Wales | Scotland | Northern Ireland | Lowest | Highest | Ratio lowest highest |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of households in sample |  | 13574 | 784 | 1512 | 910 |  |  |  |
| Average age of HRP |  | 53 | 54 | 52 | 52 |  |  |  |
| Average number of adults per household |  | 2 | 2 | 2 | 2 |  |  |  |
| Average number of children per household |  | 0.5 | 0.4 | 0.4 | 0.5 |  |  |  |
| Average gross weekly household income (£) |  | 702 | 600 | 690 | 577 |  |  |  |
| Household purchases | grams per person per week unless otherwise stated |  |  |  |  |  |  |  |
| Milk and cream | (ml) | 1921 | 2126 | 1928 | 2036 | England | Wales | 1.1 |
| Cheese |  | 119 | 114 | 116 | 90 | N. Ireland | England | 1.3 |
| Carcase meat |  | 210 | 207 | 186 | 243 | Scotland | N. Ireland | 1.3 |
| Non-carcase meat and meat products |  | 779 | 924 | 837 | 911 | England | Wales | 1.2 |
| Fish |  | 154 | 151 | 144 | 125 | N. Ireland | England | 1.2 |
| Eggs | (no.) | 1.7 | 1.8 | 1.7 | 1.6 | N. Ireland | Wales | 1.1 |
| Fats and oils |  | 179 | 198 | 168 | 159 | N. Ireland | Wales | 1.2 |
| Sugar and preserves |  | 125 | 161 | 119 | 100 | N. Ireland | Wales | 1.6 |
| Potatoes |  | 738 | 819 | 713 | 1083 | Scotland | N. Ireland | 1.5 |
| Vegetables excluding potatoes |  | 1121 | 1140 | 945 | 870 | N. Ireland | Wales | 1.3 |
| Fruit |  | 1154 | 1073 | 1098 | 1025 | N. Ireland | England | 1.1 |
| Total cereals |  | 1557 | 1583 | 1626 | 1705 | England | N. Ireland | 1.1 |
| Beverages |  | 55 | 63 | 49 | 52 | Scotland | Wales | 1.3 |
| Soft drinks ${ }^{(a)}$ | (ml) | 1627 | 1871 | 2025 | 1743 | England | Scotland | 1.2 |
| Alcoholic drinks | (ml) | 740 | 842 | 766 | 655 | N. Ireland | Wales | 1.3 |
| Confectionery |  | 130 | 149 | 149 | 156 | England | N. Ireland | 1.2 |
| Eating out purchases | grams per person per week unless otherwise stated |  |  |  |  |  |  |  |
| Indian, Chinese and Thai meals |  | 30 | 27 | 26 | 35 | Scotland | N. Ireland | 1.3 |
| Meat and meat products |  | 75 | 80 | 70 | 89 | Scotland | N. Ireland | 1.3 |
| Fish and fish products |  | 14 | 13 | 15 | 9 | N. Ireland | Scotland | 1.6 |
| Cheese and egg dishes and pizza |  | 22 | 17 | 20 | 19 | Wales | England | 1.3 |
| Potatoes |  | 63 | 72 | 59 | 74 | Scotland | N. Ireland | 1.3 |
| Vegetables excluding potatoes |  | 28 | 31 | 18 | 24 | Scotland | Wales | 1.7 |
| Sandwiches |  | 66 | 52 | 78 | 69 | Wales | Scotland | 1.5 |
| Ice creams, desserts and cakes |  | 25 | 21 | 29 | 28 | Wales | Scotland | 1.4 |
| Beverages | (ml) | 119 | 103 | 115 | 125 | Wales | N. Ireland | 1.2 |
| Soft drinks including milk | (ml) | 269 | 272 | 342 | 361 | England | N. Ireland | 1.3 |
| Alcoholic drinks | (ml) | 421 | 423 | 374 | 452 | Scotland | N. Ireland | 1.2 |
| Confectionery |  | 10 | 10 | 11 | 13 | England | N. Ireland | 1.4 |

[^1]
## Nutrient intakes

Whilst there are variations in the average amount of different foods purchased in the four UK countries, there is little variation in the estimated nutrient intakes derived from these purchases (See Table 3.2).

The largest variations in nutrient intakes are in vitamin $D$, beta carotene and retinol equivalent where Wales has the largest intakes. For retinol equivalent the intake in Wales is 19 per cent higher than in Northern Ireland. For vitamin $D$ the intake in Wales is 17 per cent higher than in Scotland. This is in line with higher purchases in Wales of 'vegetables (other than potatoes)', 'non-carcase meat and meat products', eggs and 'fats and oils' which contain higher levels of these nutrients.

Welsh households had the highest percentage of energy derived from non-milk extrinsic sugars at 14.7 per cent while Northern Ireland had the lowest at 13.5 per cent. Northern Ireland had the lowest percentage of energy derived from polyunsaturates at 6.4 per cent.

## Alcohol

Welsh households had the highest volume of purchases of alcoholic drinks for the household and Northern Ireland had the least (See Table 3.1). When eating out, Scottish households purchased the least alcoholic drinks while Northern Ireland purchased the most.

In terms of alcohol content for both household and eating out purchases Scottish households had the highest intake of alcohol, 12 per cent higher than in Northern Ireland (See Table 3.2), indicating they purchased drinks containing higher alcohol content.

Table 3.2: Energy and nutrient intakes by UK country - 3 year average

|  |  | England | Wales | Scotland | Northern Ireland | Lowest | Highest | Ratio lowest highest |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of households in sample |  | 13574 | 784 | 1512 | 910 |  |  |  |
| Average age of HRP |  | 53 | 54 | 52 | 52 |  |  |  |
| Average number of adults per household |  | 1.9 | 1.9 | 1.8 | 2.0 |  |  |  |
| Average number of children per household |  | 0.5 | 0.4 | 0.4 | 0.5 |  |  |  |
| Average gross weekly household income (£) |  | 702 | 600 | 690 | 577 |  |  |  |
| Total energy \& nutrient intakes ${ }^{(a)}$ | intake per person per day |  |  |  |  |  |  |  |
| Energy | kcal | 2269 | 2360 | 2317 | 2383 | England | NI | 1.05 |
|  | MJ | 9.5 | 9.9 | 9.7 | 10.0 | England | N | 1.05 |
| Energy intake excluding alcohol | kcal | 2199 | 2289 | 2240 | 2315 | England | NI | 1.05 |
| Total Protein | g | 77.7 | 81.1 | 78.5 | 84.4 | England | N | 1.09 |
| Fat | g | 94 | 98 | 95 | 96 | England | Wales | 1.04 |
| Fatty acids: |  |  |  |  |  |  |  |  |
| Saturates | g | 34.9 | 36.7 | 36.0 | 36.7 | England | Wales | 1.05 |
| Monounsaturates | g | 36.1 | 37.5 | 36.4 | 36.9 | England | Wales | 1.04 |
| Polyunsaturates | g | 16.8 | 17.3 | 16.4 | 16.4 | Scot | Wales | 1.06 |
| Cholesterol | mg | 256 | 270 | 257 | 271 | England | N | 1.06 |
| Carbohydrate ${ }^{(b)}$ | g | 278 | 289 | 285 | 296 | England | N | 1.07 |
| Total sugars | g | 125 | 135 | 129 | 127 | England | Wales | 1.08 |
| Non-milk extrinsic sugars | g | 82 | 90 | 86 | 83 | England | Wales | 1.10 |
| Starch | g | 152 | 153 | 156 | 168 | England | NI | 1.11 |
| Fibre ${ }^{(c)}$ | g | 15.2 | 15.5 | 14.8 | 15.8 | Scot | N | 1.07 |
| Alcohol | g | 10.0 | 10.1 | 11.0 | 9.8 | NI | Scot | 1.12 |
| Calcium | mg | 962 | 1016 | 987 | 1011 | England | Wales | 1.06 |
| Iron | mg | 11.8 | 12.2 | 11.9 | 12.5 | England | N | 1.05 |
| Zinc | mg | 9.2 | 9.6 | 9.3 | 9.9 | England | N | 1.08 |
| Magnesium | mg | 287 | 297 | 288 | 298 | England | N | 1.04 |
| Sodium ${ }^{(d)}$ | g | 2.76 | 2.94 | 2.97 | 3.04 | England | N | 1.10 |
| Potassium | g | 3.21 | 3.34 | 3.17 | 3.41 | Scot | N | 1.08 |
| Thiamin | mg | 1.65 | 1.71 | 1.65 | 1.79 | England | NI | 1.09 |
| Riboflavin | mg | 1.90 | 2.03 | 1.90 | 2.00 | England | Wales | 1.07 |
| Niacin equivalent | mg | 33.9 | 35.4 | 34.2 | 37.0 | England | NI | 1.09 |
| Vitamin $\mathrm{B}_{6}$ | mg | 2.4 | 2.6 | 2.4 | 2.7 | Scot | Nl | 1.13 |
| Vitamin $\mathrm{B}_{12}$ | $\mu \mathrm{g}$ | 6.3 | 6.8 | 6.3 | 6.5 | Scot | Wales | 1.09 |
| Folate | $\mu \mathrm{g}$ | 300 | 308 | 290 | 313 | Scot | NI | 1.08 |
| Vitamin C | mg | 79 | 79 | 78 | 77 | NI | England | 1.03 |
| Vitamin A: |  |  |  |  |  |  |  |  |
| Retinol | $\mu \mathrm{g}$ | 533 | 632 | 513 | 496 | NI | Wales | 1.27 |
| $\beta$-carotene | $\mu \mathrm{g}$ | 2234 | 2343 | 2104 | 2136 | Scot | Wales | 1.11 |
| Retinol equivalent | $\mu \mathrm{g}$ | 908 | 1023 | 865 | 858 | NI | Wales | 1.19 |
| Vitamin D | $\mu \mathrm{g}$ | 3.09 | 3.49 | 2.97 | 3.17 | Scot | Wales | 1.17 |
| Vitamin E | mg | 12.32 | 12.56 | 12.07 | 12.07 | NI | Wales | 1.04 |

Table 3.2 continues over the page

Table 3.2 continued

|  |  | England | Wales | Scotland | Northern Ireland | Lowest | Highest | Ratio lowest highest |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Percentage contributions of macronutrients to energy intake excluding alcohol |  |  |  |  |  |  |
| Fat | \％ | 38.4 | 38.5 | 38.1 | 37.5 | NI | Wales | 1.03 |
| Fatty acids： |  |  |  |  |  |  |  |  |
| Saturates | \％ | 14.3 | 14.4 | 14.5 | 14.3 | NI | Scot | 1.02 |
| Monounsaturates | \％ | 14.8 | 14.8 | 14.6 | 14.4 | NI | England | 1.03 |
| Polyunsaturates | \％ | 6.9 | 6.8 | 6.6 | 6.4 | NI | England | 1.08 |
| Carbohydrate | \％ | 47.3 | 47.3 | 47.7 | 47.9 | Wales | NI | 1.01 |
| Non－milk extrinsic sugars | \％ | 14.0 | 14.7 | 14.4 | 13.5 | NI | Wales | 1.09 |
| Protein | \％ | 14.1 | 14.2 | 14.0 | 14.6 | Scot | NI | 1.04 |
| As a percentage of weighted reference nutrient intake（f） |  |  |  |  |  |  |  |  |
| Energy ${ }^{(e)}$ | \％ | 107 | 113 | 110 | 111 | England | Wales | 1.05 |
| Energy excluding alcohol ${ }^{(e)}$ | \％ | 104 | 109 | 106 | 108 | England | Wales | 1.05 |
| Protein | \％ | 168 | 177 | 172 | 181 | England | NI | 1.08 |
| Calcium | \％ | 139 | 148 | 143 | 146 | England | Wales | 1.06 |
| Iron | \％ | 114 | 118 | 114 | 117 | England | Wales | 1.04 |
| Zinc | \％ | 115 | 122 | 118 | 123 | England | NI | 1.07 |
| Magnesium | \％ | 108 | 112 | 108 | 111 | England | Wales | 1.04 |
| Sodium ${ }^{(d)}$ | \％ | 184 | 196 | 198 | 199 | England | NI | 1.09 |
| Potassium | \％ | 99 | 104 | 99 | 105 | Scot | NI | 1.06 |
| Thiamin | \％ | 195 | 204 | 197 | 208 | England | NI | 1.07 |
| Riboflavin | \％ | 166 | 178 | 167 | 174 | England | Wales | 1.07 |
| Niacin equivalent | \％ | 242 | 256 | 246 | 261 | England | NI | 1.08 |
| Vitamin $\mathrm{B}_{6}$ | \％ | 196 | 209 | 196 | 216 | England | NI | 1.11 |
| Vitamin $\mathrm{B}_{12}$ | \％ | 452 | 491 | 453 | 462 | England | Wales | 1.09 |
| Folate | \％ | 159 | 164 | 154 | 163 | Scot | Wales | 1.06 |
| Vitamin C | \％ | 203 | 205 | 202 | 195 | NI | Wales | 1.05 |
| Vitamin A（retinol equivalent） | \％ | 145 | 166 | 140 | 136 | NI | Wales | 1.22 |

（a）Contributions from pharmaceutical sources are not recorded by the survey．
（b）Available carbohydrate，calculated as monosaccharide equivalent．
（c）As non－starch polysaccharides．
（d）（i）Excludes sodium from table salt（ii）In May 2003 the Scientific Advisory Committee on Nutrition recommended that average salt intake for adults should not exceed 6 grams per day，equivalent to 2.4 grams of sodium．
（e）As a percentage of Estimated Average Requirement．
（f）Department of Health，＇Dietary Reference Values for Food Energy and Nutrients for the United Kingdom＇，HMSO 1991．RNI values for protein，vitamins and minerals are set for each age／sex group at a level of intake considered likely to be sufficient to meet the requirements of $97.5 \%$ of the group．Weighted RNIs， based on the age／sex composition of the survey sample，have been calculated for comparison with population average intakes．

## Family Food 2011

## Spending

Spending on all food and drink was highest in Northern Ireland at $£ 44.40$ per person per week compared to Wales who spent the least at $£ 37.05$. The same pattern was evident with expenditure on eating out; Northern Ireland was the highest at $£ 15.11$, one and a half times higher than Wales, the lowest at $£ 10.11$. For household expenditure, Scotland had the highest spend on alcoholic drinks at $£ 3.38$ per week compared to Wales at $£ 2.79$. Expenditure on household food and drink (excluding alcoholic drinks) followed the same pattern as eating out, with Northern Ireland spending the most and Wales spending the least.

No account has been taken of possible variations in the cost of living between countries.

Table 3.3: Spending by UK countries - 3 year average 2009-2011

|  | England | Wales | Scotland | Northern Ireland | Lowest | Highest | Ratio lowest highest |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of households in sample | 13574 | 784 | 1512 | 910 |  |  |  |
| Average age of HRP | 53 | 54 | 52 | 52 |  |  |  |
| Average number of adults per household | 1.9 | 1.9 | 1.8 | 2.0 |  |  |  |
| Average number of children per household | 0.5 | 0.4 | 0.4 | 0.5 |  |  |  |
| Average gross weekly household income (£) | 702 | 600 | 690 | 577 |  |  |  |
| Household expenditure |  |  |  |  | pounds per person per week |  |  |
| Household food \& drink excluding alcohol | 24.28 | 24.15 | 25.40 | 26.32 | Wales | N. Ireland | 1.1 |
| Household alcoholic drinks | 2.99 | 2.79 | 3.38 | 2.97 | Wales | Scotland | 1.2 |
| all food \& drink | 27.27 | 26.93 | 28.78 | 29.28 | Wales | N. Ireland | 1.1 |
| Eating out expenditure |  |  |  |  |  |  |  |
| Eating out food \& drink excluding alcohol | 8.49 | 7.35 | 8.72 | 11.01 | Wales | N. Ireland | 1.5 |
| Eating out alcoholic drinks | 3.09 | 2.76 | 3.20 | 4.11 | Wales | N. Ireland | 1.5 |
| all food \& drink | 11.58 | 10.11 | 11.92 | 15.11 | Wales | N. Ireland | 1.5 |
| Total expenditure |  |  |  |  |  |  |  |
| all food \& drink excluding alcohol | 32.77 | 31.50 | 34.11 | 37.32 | Wales | N. Ireland | 1.2 |
| alcoholic drinks | 6.08 | 5.55 | 6.58 | 7.07 | Wales | N. Ireland | 1.3 |
| all food \& drink | 38.85 | 37.05 | 40.69 | 44.40 | Wales | N. Ireland | 1.2 |

Chart 3.1: Spending on food and alcohol by UK countries - 3 year average 2009-2011


## 3．3 England regional comparisons

England is divided into nine regions．
Detailed population statistics can be found at：http：／／www．statistics．gov．uk／statbase／Product．asp？vInk＝15106．

## Food and drink for the household

The ratio between highest and lowest levels of purchasing for household supplies across the English regions varied from 1.1 （cereals）to 2.0 （alcoholic drinks being highest in the North East）．
－London had the lowest purchases of alcoholic drinks，confectionery，soft drinks，and potatoes，but had the highest purchases of fruit．
－North East had the highest purchases of alcoholic drinks and confectionery and the lowest of fruit and for cheese．
－South West had the highest purchases of cheese and vegetables．
－West Midlands had the highest purchases of potatoes．
－East Midlands had the highest purchases of soft drinks．
－North West had the lowest purchases of vegetables．

## Eating out food and drink

The biggest differential in eating out purchases in English regions is in the＇Indian，Chinese and Thai meals＇ category；North East had the lowest purchases at 23 grams per person per week whilst London had nearly twice as much at 43 grams．Yorkshire and the Humber and London had the highest purchases of fish and fish products at 16 and 17 grams per person per week respectively，above the average for England at 14 grams．

Table 3.4: Purchases of selected foods by region - 3 year average, highest and lowest

|  | Lowest region | Lowest value |  | Highest region | Highest value | Ratio of lowest to highest |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Household purchases |  | grams per person per week unless otherwise stated |  |  |  |  |
| Milk and cream | London | 1658 | (ml) | East Midlands | 2098 (ml) | 1.3 |
| Cheese | North East | 97 |  | South West | 142 | 1.5 |
| Carcase meat | Yorkshire \& the Humber | 193 |  | North East | 240 | 1.2 |
| Non-carcase meat and meat products | London | 698 |  | North East | 839 | 1.2 |
| Fish | South West | 144 |  | London | 171 | 1.2 |
| Eggs | West Midlands | 2 | (no.) | South West | 2 (no.) | 1.2 |
| Fats and oils | North East | 159 |  | East Midlands | 192 | 1.2 |
| Sugar and preserves | London | 113 |  | South West | 139 | 1.2 |
| Potatoes | London | 555 |  | West Midlands | 854 | 1.5 |
| Vegetables exlcuding potatoes | North West | 981 |  | South West | 1230 | 1.3 |
| Fruit | North East | 942 |  | London | 1325 | 1.4 |
| Total cereals | London | 1465 |  | West Midlands | 1632 | 1.1 |
| Beverages | London | 44 |  | South West | 60 | 1.3 |
| Soft drinks ${ }^{(a)}$ | London | 1263 | (ml) | East Midlands | 1796 (ml) | 1.4 |
| Alcoholic drinks | London | 486 | (ml) | North East | 950 (ml) | 2.0 |
| Confectionery | London | 98 |  | North East | 154 | 1.6 |
| Eating out purchases | grams per person per week unless otherwise stated |  |  |  |  |  |
| Indian, Chinese and Thai meals | North East | 23 |  | London | 43 | 1.9 |
| Meat and meat products | East | 71 |  | North West | 80 | 1.1 |
| Fish and fish products | West Midlands | 11 |  | London | 17 | 1.4 |
| Cheese and egg dishes and pizza | South West | 20 |  | South East | 25 | 1.2 |
| Potatoes | East | 58 |  | Yorkshire \& the Humber | 69 | 1.2 |
| Vegetables exlcuding potatoes | North West | 25 |  | South West | 34 | 1.4 |
| Sandwiches | West Midlands | 54 |  | London | 77 | 1.4 |
| Ice creams, desserts and cakes | West Midlands | 21 |  | South West | 31 | 1.5 |
| Beverages | West Midlands | 100 | (ml) | South East | 129 (ml) | 1.3 |
| Soft drinks including milk | South West | 243 | (ml) | London | 301 (ml) | 1.2 |
| Alcoholic drinks | London | 348 | (ml) | North East | 559 (ml) | 1.6 |
| Confectionery | East | 9 |  | North West | 11 | 1.2 |
| Household expenditure |  |  |  |  | Pence per person per week |  |
| Total all food \& drink excluding alcohol | North East | 2229 |  | South East | 2589 | 1.2 |
| Total alcoholic drinks | London | 240 |  | South West | 333 | 1.4 |
| Total all food \& drink | Yorkshire \& the Humber | 2521 |  | South East | 2916 | 1.2 |
| Eating out expenditure |  |  |  |  | Pence per person per week |  |
| Total all food \& drink excluding alcohol | West Midlands | 701 |  | London | 1067 | 1.5 |
| Total alcoholic drinks | East Midlands | 277 |  | North West | 334 | 1.2 |
| Total all food \& drink | West Midlands | 1001 |  | London | 1400 | 1.4 |

(a) Converted to unconcentrated equivalent by applying a factor of 5 to concentrated and low calorie concentrated soft drinks.

Table 3.5: Purchases of selected foods by region - 3 year average 2009-2011


[^2]
## Family Food 2011

## Nutrient intakes

Given that the South West features highest in a number of food groups for purchases of household supplies and that London features as the lowest, it follows that they often feature in the same position for nutrient intakes as well as total energy.

- South West had the highest intakes for all nutrients except polyunsaturates, starch, fibre, alcohol, vitamins C , $D$ and $E$.
- North West had the highest intake of total fat with 38.9 per cent of energy derived from total fat.
- London had the highest levels of monounsaturates and polyunsaturates but the lowest level of saturated fatty acids.
- London had the lowest intake of NMES with 12.7 per cent of energy derived from NMES compared to the East and South East at 14.4 per cent.

Table 3.6: Energy and nutrient intakes by region - 3 year average 2009-2011

| ENGLAND \& REGIONS |  | England | North East | North West | Yorkshire and The Humber | East Midlands | West <br> Midlands | East | London | South East | South West |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of households in sample |  | 13574 | 777 | 1826 | 1490 | 1261 | 1525 | 1557 | 1476 | 2141 | 1521 |
| Average age of HRP |  | 53 | 53 | 53 | 52 | 53 | 53 | 53 | 50 | 54 | 55 |
| Average number of adults per househ |  | 1.9 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.8 |
| Average number of children per hous |  | 0.5 | 0.4 | 0.5 | 0.5 | 0.4 | 0.5 | 0.5 | 0.6 | 0.5 | 0.4 |
| Average gross weekly household inc | (£) | 702 | 562 | 649 | 586 | 662 | 618 | 745 | 922 | 797 | 679 |
| TOTAL ENERGY \& NUTRIENT INTAKES ${ }^{(a)}$ |  |  |  |  |  |  |  |  | intake per person per day |  |  |
| Energy | kcal | 2269 | 2253 | 2260 | 2210 | 2335 | 2292 | 2303 | 2164 | 2262 | 2378 |
|  | MJ | 9.5 | 9.4 | 9.5 | 9.3 | 9.8 | 9.6 | 9.6 | 9.1 | 9.5 | 10.0 |
| Energy excluding alcohol | kcal | 2199 | 2171 | 2181 | 2137 | 2264 | 2223 | 2234 | 2112 | 2192 | 2304 |
| Total Protein | g | 77.7 | 78.1 | 77.9 | 75.8 | 79.2 | 77.5 | 79.0 | 74.9 | 77.7 | 80.3 |
| Fat | g | 94 | 92 | 94 | 92 | 96 | 93 | 95 | 91 | 94 | 99 |
| Fatty acids: |  |  |  |  |  |  |  |  |  |  |  |
| Saturates | g | 34.9 | 34.9 | 35.1 | 34.5 | 36.2 | 34.3 | 35.8 | 31.5 | 35.5 | 37.7 |
| Monounsaturates | g | 36.1 | 35.0 | 36.2 | 35.0 | 36.5 | 35.9 | 36.6 | 35.7 | 36.0 | 37.7 |
| Polyunsaturates | g | 16.8 | 15.7 | 16.9 | 16.2 | 17.2 | 17.2 | 16.6 | 17.7 | 16.2 | 17.2 |
| Cholesterol | mg | 256 | 255 | 259 | 252 | 257 | 249 | 261 | 246 | 257 | 267 |
| Carbohydrate ${ }^{(\mathrm{b})}$ | g | 278 | 275 | 272 | 269 | 288 | 286 | 283 | 265 | 276 | 291 |
| Total sugars | g | 125 | 124 | 122 | 121 | 132 | 126 | 131 | 113 | 128 | 134 |
| Non-milk extrinsic sugars | g | 82 | 83 | 80 | 80 | 86 | 84 | 86 | 71 | 84 | 88 |
| Starch | g | 152 | 151 | 149 | 147 | 156 | 159 | 151 | 151 | 147 | 156 |
| Fibre ${ }^{(c)}$ | g | 15.2 | 14.5 | 14.6 | 14.6 | 15.7 | 15.3 | 15.4 | 15.1 | 15.3 | 16.1 |
| Alcohol | g | 10.0 | 11.8 | 11.3 | 10.3 | 10.2 | 9.8 | 9.8 | 7.5 | 10.0 | 10.6 |
| Calcium | mg | 962 | 951 | 970 | 951 | 1020 | 967 | 984 | 858 | 967 | 1025 |
| Iron | mg | 11.8 | 11.5 | 11.6 | 11.5 | 12.2 | 11.9 | 12.1 | 11.3 | 12.0 | 12.5 |
| Zinc | mg | 9.2 | 9.3 | 9.3 | 9.0 | 9.4 | 9.2 | 9.4 | 8.8 | 9.3 | 9.7 |
| Magnesium | mg | 287 | 285 | 283 | 277 | 296 | 285 | 293 | 276 | 290 | 301 |
| Sodium ${ }^{\text {d }}$ ) | g | 2.76 | 2.82 | 2.80 | 2.74 | 2.83 | 2.78 | 2.84 | 2.46 | 2.82 | 2.91 |
| Potassium | g | 3.21 | 3.19 | 3.18 | 3.11 | 3.30 | 3.20 | 3.26 | 3.05 | 3.24 | 3.37 |
| Thiamin | mg | 1.65 | 1.59 | 1.64 | 1.59 | 1.68 | 1.66 | 1.67 | 1.59 | 1.66 | 1.74 |
| Riboflavin | mg | 1.90 | 1.86 | 1.94 | 1.86 | 1.99 | 1.89 | 1.95 | 1.73 | 1.92 | 2.02 |
| Niacin equivalent | mg | 33.9 | 34.2 | 33.9 | 32.9 | 34.4 | 33.8 | 34.7 | 32.7 | 34.0 | 34.9 |
| Vitamin $\mathrm{B}_{6}$ | mg | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | 2.5 | 2.2 | 2.4 | 2.6 |
| Vitamin $\mathrm{B}_{12}$ | $\mu \mathrm{g}$ | 6.3 | 6.4 | 6.4 | 6.1 | 6.4 | 6.2 | 6.5 | 5.9 | 6.2 | 6.5 |
| Folate | $\mu \mathrm{g}$ | 300 | 285 | 293 | 287 | 307 | 299 | 307 | 288 | 306 | 321 |
| Vitamin C | mg | 79 | 71 | 75 | 71 | 80 | 74 | 83 | 84 | 82 | 82 |

Table 3.6 continues over the page

Table 3.6 continued

| ENGLAND \& REGIONS | England | North East | North West | Yorkshire and The Humber | East Midlands | West <br> Midlands | East | London | South East | South West |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Vitamin A: |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Retinol | $\mu \mathrm{g}$ | 533 | 517 | 508 | 516 | 524 | 532 | 571 | 493 | 556 | 580 |
|  | $\beta$-carotene | $\mu \mathrm{g}$ | 2234 | 2145 | 2118 | 2176 | 2302 | 2155 | 2276 | 2209 | 2292 | 2413 |
|  | Retinol equivalent | $\mu \mathrm{g}$ | 908 | 877 | 863 | 880 | 910 | 893 | 952 | 863 | 940 | 985 |
| Vitamin D |  | $\mu \mathrm{g}$ | 3.09 | 2.94 | 3.08 | 3.01 | 3.20 | 3.09 | 3.30 | 2.84 | 3.09 | 3.25 |
| Vitamin E |  | mg | 12.32 | 11.51 | 12.29 | 11.88 | 12.60 | 12.50 | 12.28 | 12.83 | 11.97 | 12.58 |


| Fat | Percentage contributions of macronutrients to energy intake excluding alcohol |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% | 38.4 | 37.9 | 38.9 | 38.5 | 38.2 | 37.8 | 38.3 | 38.7 | 38.5 | 38.6 |
| Fatty acids: |  |  |  |  |  |  |  |  |  |  |  |
| Saturates | \% | 14.3 | 14.5 | 14.5 | 14.5 | 14.4 | 13.9 | 14.4 | 13.4 | 14.6 | 14.7 |
| Monounsaturates | \% | 14.8 | 14.5 | 15.0 | 14.7 | 14.5 | 14.5 | 14.7 | 15.2 | 14.8 | 14.7 |
| Polyunsaturates | \% | 6.9 | 6.5 | 7.0 | 6.8 | 6.8 | 7.0 | 6.7 | 7.6 | 6.7 | 6.7 |
| Carbohydrate | \% | 47.3 | 47.6 | 46.7 | 47.2 | 47.8 | 48.2 | 47.5 | 47.1 | 47.2 | 47.3 |
| Non-milk extrinsic sugars | \% | 14.0 | 14.3 | 13.7 | 14.0 | 14.3 | 14.2 | 14.4 | 12.7 | 14.4 | 14.3 |
| Protein |  | 14.1 | 14.4 | 14.3 | 14.2 | 14.0 | 13.9 | 14.1 | 14.2 | 14.2 | 13.9 |
|  |  |  |  |  | As a percentage of weighted reference nutrient intake (f) |  |  |  |  |  |  |
| Energy ${ }^{(e)}$ | \% | 107 | 109 | 108 | 107 | 111 | 109 | 114 | 103 | 108 | 114 |
| Energy excluding alcohol ${ }^{(\mathrm{e})}$ | \% | 104 | 105 | 104 | 103 | 107 | 106 | 110 | 100 | 105 | 110 |
| Protein | \% | 168 | 171 | 170 | 167 | 171 | 167 | 180 | 165 | 169 | 175 |
| Calcium | \% | 139 | 139 | 140 | 139 | 146 | 140 | 148 | 124 | 140 | 149 |
| Iron | \% | 114 | 114 | 113 | 114 | 119 | 115 | 119 | 110 | 118 | 123 |
| Zinc | \% | 115 | 118 | 115 | 115 | 117 | 114 | 123 | 111 | 117 | 121 |
| Magnesium | \% | 108 | 108 | 106 | 105 | 111 | 106 | 115 | 104 | 109 | 114 |
| Sodium ${ }^{\text {(d) }}$ | \% | 184 | 189 | 189 | 188 | 191 | 185 | 198 | 166 | 190 | 196 |
| Potassium | \% | 99 | 100 | 99 | 98 | 102 | 99 | 106 | 95 | 100 | 105 |
| Thiamin | \% | 195 | 194 | 195 | 194 | 201 | 196 | 206 | 188 | 198 | 209 |
| Riboflavin | \% | 166 | 164 | 165 | 164 | 170 | 163 | 176 | 150 | 168 | 175 |
| Niacin equivalent | \% | 242 | 248 | 242 | 240 | 248 | 240 | 258 | 238 | 246 | 251 |
| Vitamin $\mathrm{B}_{6}$ | \% | 196 | 203 | 200 | 197 | 207 | 201 | 210 | 185 | 199 | 209 |
| Vitamin $\mathrm{B}_{12}$ | \% | 452 | 474 | 454 | 455 | 462 | 440 | 498 | 435 | 457 | 472 |
| Folate | \% | 159 | 153 | 154 | 155 | 162 | 157 | 169 | 154 | 161 | 170 |
| Vitamin C | \% | 203 | 186 | 194 | 190 | 210 | 189 | 222 | 220 | 211 | 217 |
| Vitamin A (retinol equivalent) | \% | 145 | 147 | 134 | 145 | 146 | 141 | 164 | 139 | 153 | 159 |

(a) Contributions from pharmaceutical sources are not recorded by the survey.
(b) Available carbohydrate, calculated as monosaccharide equivalent.
(c) As non-starch polysaccharides.
(d) (i) Excludes sodium from table salt (ii)In May 2003 the Scientific Advisory Committee on Nutrition recommended that average salt intake for adults should not exceed 6 grams per day, equivalent to 2.4 grams of sodium.
(e) As a percentage of Estimated Average Requirement.
(f) Department of Health, 'Dietary Reference Values for Food Energy and Nutrients for the United Kingdom', HMSO 1991. RNI values for protein, vitamins and minerals are set for each age/sex group at a level of intake considered likely to be sufficient to meet the requirements of $97.5 \%$ of the group. Weighted RNIs, based on the age/sex composition of the survey sample, have been calculated for comparison with population average intakes.

## Family Food 2011

## Alcohol

There was substantial variation in alcoholic drinks and alcohol content across the regions. The Family Food
Survey estimates should be treated with caution due to a suspected high level of underreporting.

- North East had the highest purchases of alcoholic drinks for the household at 950 mls per week; almost double that of London.
- North East had the highest purchases of eating out alcoholic drinks, 1.6 times higher than London.
- South West had the highest spending on alcoholic drinks for the household at $£ 3.33$ per person per week.
- North West had the highest spending on eating out alcoholic drinks at $£ 3.34$ per person per week.
- East Midlands had the lowest spending on eating out alcoholic drinks at $£ 2.77$ per person per week, below the average for England of $£ 3.09$.
- North East had the highest alcohol intake at almost 12 grams per person per day; around 1.5 times higher than that of London at 7.5 grams.


## Spending

The South East had the highest spending on all food and drink for the household at £25.89 per person per week compared to the lowest spend which was in the North East at $£ 22.29$ per person. In London 34 per cent of food and drink spending is on eating out purchases compared to 27 per cent in the East Midlands. In England as a whole 30 per cent of all food and drink expenditure went on eating out purchases.

In London 58 per cent of spending on alcoholic drinks was for eating out purchases while in the South West it was only 47 per cent. The average for England was 51 per cent.

Table 3.7: Percentage of food and drink spending on eating out: England regions

|  | Food \& drink excluding <br> alcohol |  |  |
| :--- | :--- | ---: | :--- |

### 3.4 Rural Urban comparisons for England, Scotland and Wales

Each household in the survey in Great Britain (excluding Northern Ireland) is categorised as either rural or urban. An urban rural classification exists for Northern Ireland and may be included in the future. The rural urban definition for England and Wales is described in detail on the ONS website; http://www.ons.gov.uk/ons/guide-method/geography/products/area-classifications/rural-urban-definition-and-la/rural-urban-definition--england-and-wales-/index.html. The way rural and urban areas in Scotland are defined is different, reflecting the different geography of the country. Details of the Scottish Rural Urban Classification are at; http://www.scotland.gov.uk/P ublications/2004/06/19498/38784

One fifth of the household population of England lives in rural areas, two fifths of the Wales population and a quarter of the Scottish populations. Average weekly incomes are included in the tables to aid comparisons and are higher in rural areas than urban areas.

## Household purchases

Across GB rural households purchased more food for household supplies in each of the 16 household food categories than urban households. The pattern was not as clear cut for eating out where urban households purchased more of some food types than rural households. The energy content of food and drink purchases was 5.1 per cent higher in rural than urban households and nutrient intakes were generally higher.

The largest difference was for purchases of 'sugar and preserves' which was 1.9 times higher in rural Wales at 224 grams per person compared to Scottish urban households at 117 grams . Purchases of beverages were 1.5 times higher in rural Wales compared to urban Wales. Rural areas of England had the highest purchases of 'milk and cream', cheese, carcase meat, fish, vegetables (excluding potatoes) and alcoholic drinks. See Table 3.8 for a more detailed breakdown.

## Spending

England rural areas had the highest level of average spending per person per week on household food and drink over the 3 year period of 2009 to 2011 at £26.14. Urban areas in Wales spent the least at an average of $£ 23.56$ per week over the same period.

Chart 3.2 shows the average amount spent on alcoholic drinks for household supplies and eating out by rural and urban area. Total spending on alcoholic drinks was highest in Scottish urban areas at $£ 7.27$ per person per week, and lowest in Scottish rural areas at $£ 5.23$ per person per week

## Eating out

Urban areas of Scotland had the highest purchases in 4 out of the 12 eating out groups including: 'Indian, Chinese and Thai meals', 'cheese and egg dishes and pizza', sandwiches and soft drinks. Purchases of vegetables were more than twice as high in rural Wales at 37 grams per person per week, compared to rural Scotland at 17 grams. Total spending on eating out was lowest in rural Scotland at $£ 9.58$ per person per week, compared to the highest - Scottish urban at $£ 13.12$. Urban Wales had the highest purchases of alcoholic drinks but urban Scotland had the highest expenditure.

Table 3.8: Purchases of selected foods by urban/rural breakdown-3 year average 2009-2011

|  |  | GB Urban | GB Rural | England Urban | England Rural | Wales Urban | Wales Rural | Scotland Urban | Scotland Rural |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of households in sample |  | 12051 | 3819 | 10539 | 3035 | 468 | 316 | 1044 | 468 |
| Average age of HRP |  | 52 | 56 | 52 | 56 | 52 | 57 | 51 | 54 |
| Average number of adults per household |  | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.8 | 1.9 |
| Average number of children per household |  | 0.5 | 0.4 | 0.5 | 0.4 | 0.5 | 0.4 | 0.4 | 0.5 |
| Average gross weekly household income (£) |  | 674 | 767 | 681 | 777 | 560 | 669 | 657 | 778 |
| HOUSEHOLD PURCHASES |  |  |  | grams per person per week unless otherwise stated |  |  |  |  |  |
| Milk and cream | (ml) | 1884 | 2092 | 1874 | 2089 | 2020 | 2076 | 1922 | 2088 |
| Cheese |  | 114 | 133 | 114 | 134 | 111 | 119 | 116 | 133 |
| Carcase meat |  | 206 | 228 | 211 | 233 | 181 | 198 | 167 | 205 |
| Non-caracse meat and meat products |  | 792 | 806 | 785 | 789 | 893 | 815 | 811 | 897 |
| Fish |  | 152 | 160 | 153 | 164 | 160 | 146 | 147 | 139 |
| Eggs | (no.) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Fats and oils |  | 181 | 192 | 182 | 191 | 187 | 203 | 165 | 191 |
| Sugar and preserves |  | 119 | 151 | 119 | 148 | 134 | 224 | 117 | 141 |
| Potatoes |  | 730 | 767 | 732 | 760 | 765 | 748 | 694 | 817 |
| Vegetables excluding potatoes |  | 1084 | 1214 | 1095 | 1232 | 1090 | 1218 | 946 | 1109 |
| Fruit |  | 1100 | 1282 | 1103 | 1284 | 1046 | 1381 | 1096 | 1248 |
| Total cereals |  | 1559 | 1596 | 1546 | 1580 | 1617 | 1539 | 1684 | 1723 |
| Beverages | (ml) | 53 | 63 | 54 | 64 | 46 | 71 | 49 | 52 |
| Soft drinks ${ }^{(a)}$ | (ml) | 1683 | 1758 | 1637 | 1657 | 1807 | 1741 | 2175 | 2383 |
| Alcoholic drinks | (ml) | 726 | 890 | 717 | 923 | 744 | 824 | 821 | 738 |
| Confectionery |  | 130 | 137 | 128 | 134 | 150 | 130 | 147 | 158 |
| EATING OUT PURCHASES |  |  |  | grams per person per week unless otherwise stated |  |  |  |  |  |
| Indian, Chinese and Thai meals |  | 31 | 27 | 31 | 27 | 31 | 25 | 32 | 25 |
| Meat and meat products |  | 76 | 73 | 75 | 75 | 83 | 87 | 82 | 62 |
| Fish and fish products |  | 13 | 15 | 13 | 15 | 11 | 19 | 15 | 18 |
| Cheese and egg dishes and pizza |  | 22 | 20 | 22 | 22 | 17 | 14 | 25 | 15 |
| Potatoes |  | 62 | 64 | 61 | 65 | 74 | 81 | 66 | 59 |
| Vegetables excluding potatoes |  | 26 | 28 | 26 | 29 | 30 | 37 | 22 | 17 |
| Sandwiches |  | 68 | 64 | 67 | 65 | 49 | 52 | 82 | 68 |
| Ice creams, desserts and cakes |  | 24 | 29 | 25 | 29 | 18 | 29 | 28 | 31 |
| Beverages | (ml) | 119 | 115 | 120 | 114 | 93 | 146 | 119 | 110 |
| Soft drinks including milk | (ml) | 284 | 255 | 278 | 251 | 270 | 216 | 376 | 308 |
| Alcoholic drinks | (ml) | 428 | 400 | 426 | 418 | 481 | 381 | 421 | 294 |
| Confectionery |  | 10 | 10 | 10 | 9 | 10 | 8 | 11 | 13 |
| HOUSEHOLD EXPENDITURE |  |  |  |  |  |  | pence per person per week |  |  |
| Total all food \& drink excluding alcohol |  | 2388 | 2599 | 2378 | 2614 | 2356 | 2496 | 2518 | 2582 |
| Total alcoholic drinks |  | 279 | 378 | 274 | 393 | 249 | 316 | 355 | 311 |
| Total all food \& drink |  | 2667 | 2977 | 2652 | 3008 | 2604 | 2812 | 2873 | 2893 |
| EATING OUT EXPENDITURE |  |  |  |  |  |  | pence per person per week |  |  |
| Total all food \& drink excluding alcohol |  | 839 | 864 | 836 | 898 | 733 | 770 | 939 | 746 |
| Total alcoholic drinks |  | 311 | 300 | 306 | 322 | 298 | 241 | 372 | 212 |
| Total all food \& drink |  | 1150 | 1165 | 1141 | 1220 | 1030 | 1011 | 1312 | 958 |

[^3]Chart 3.2: Average spending on alcoholic drinks in urban/rural areas


## Nutrient intakes

Comparing percentage contributions of macronutrients to energy intake excluding alcohol there were small differences across rural and urban areas. The percentage of energy from fat was lowest in Scottish urban and Welsh rural areas at 38.0 per cent and highest in English rural areas at 38.7 per cent. The biggest proportional difference was in vitamin A intakes, with Welsh rural regions being the highest at $1206 \mu \mathrm{~g}$ retinol equivalent per person per day compared to an urban Scotland average of $817 \mu \mathrm{~g}$. See Table 3.9 for more detailed breakdown.

Table 3.9: Energy and nutrient intakes by urban/rural breakdown - 3 year average 2008-2010

|  |  | Urban (GB) | Rural (GB) | England urban | England rural | Wales urban | Wales rural | Scotland urban | Scotland rura |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of households in sample |  | 12051 | 3819 | 10539 | 3035 | 468 | 316 | 1044 | 468 |
| Average age of HRP |  | 52 | 56 | 52 | 56 | 52 | 57 | 51 | 54 |
| Average number of adults per household |  | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.8 | 1.9 |
| Average number of children per household |  | 0.5 | 0.4 | 0.5 | 0.4 | 0.5 | 0.4 | 0.4 | 0.5 |
| Average weekly income of HRP |  | 674 | 767 | 681 | 777 | 560 | 669 | 657 | 778 |
| Total energy and nutrient intake ${ }^{\text {(a) }}$ |  |  |  |  |  |  | intake per person per day |  |  |
| Energy | kcal | 2251 | 2366 | 2244 | 2363 | 2333 | 2374 | 2292 | 2366 |
|  | MJ | 9.4 | 9.9 | 9.4 | 9.9 | 9.8 | 9.9 | 9.6 | 9.9 |
| Energy intake excluding alcohol | kcal | 2193 | 2294 | 2178 | 2277 | 2264 | 2301 | 2210 | 2298 |
| Total Protein | g | 77.1 | 80.6 | 76.9 | 80.5 | 80.6 | 80.8 | 77.7 | 80.1 |
| Fat | g | 93 | 98 | 93 | 98 | 97 | 97 | 93 | 98 |
| Fatty acids: |  |  |  |  |  |  |  |  |  |
| Saturates | g | 34.4 | 37.5 | 34.2 | 37.6 | 36.4 | 37.1 | 35.4 | 37.4 |
| Monounsaturates | g | 35.8 | 37.5 | 35.8 | 37.4 | 37.3 | 37.2 | 35.9 | 37.4 |
| Polyunsaturates | g | 16.8 | 16.8 | 16.9 | 16.7 | 17.6 | 16.6 | 16.1 | 17.0 |
| Cholesterol | mg | 252 | 271 | 252 | 270 | 264 | 275 | 253 | 265 |
| Carbohydrate ${ }^{(b)}$ | g | 276 | 287 | 275 | 285 | 283 | 294 | 282 | 291 |
| Total sugars | g | 123 | 135 | 123 | 134 | 128 | 145 | 126 | 134 |
| Non-milk extrinsic sugars | g | 81 | 89 | 80 | 88 | 84 | 98 | 84 | 88 |
| Starch | g | 152 | 151 | 152 | 151 | 155 | 148 | 156 | 157 |
| Fibre ${ }^{(c)}$ | g | 15.0 | 15.7 | 15.0 | 15.7 | 15.4 | 15.5 | 14.6 | 15.3 |
| Alcohol | g | 9.6 | 11.8 | 9.4 | 12.2 | 9.8 | 10.4 | 11.6 | 9.8 |
| Calcium | mg | 952 | 1016 | 948 | 1014 | 1004 | 1023 | 970 | 1016 |
| Iron | mg | 11.7 | 12.4 | 11.7 | 12.4 | 12.1 | 12.3 | 11.8 | 12.2 |
| Zinc | mg | 9.2 | 9.6 | 9.1 | 9.6 | 9.6 | 9.6 | 9.2 | 9.5 |
| Magnesium | mg | 284 | 300 | 283 | 302 | 293 | 301 | 286 | 291 |
| Sodium ${ }^{(d)}$ | g | 2.76 | 2.91 | 2.73 | 2.89 | 2.93 | 2.91 | 2.96 | 3.00 |
| Potassium | g | 3.17 | 3.36 | 3.16 | 3.36 | 3.30 | 3.39 | 3.12 | 3.25 |
| Thiamin | mg | 1.63 | 1.71 | 1.63 | 1.71 | 1.71 | 1.69 | 1.63 | 1.71 |
| Riboflavin | mg | 1.87 | 2.02 | 1.87 | 2.02 | 1.98 | 2.08 | 1.86 | 1.98 |
| Niacin Equivalent | mg | 33.6 | 35.2 | 33.5 | 35.2 | 35.1 | 35.5 | 33.8 | 34.8 |
| Vitamin $\mathrm{B}_{6}$ | mg | 2.4 | 2.5 | 2.4 | 2.5 | 2.6 | 2.5 | 2.4 | 2.5 |
| Vitamin $\mathrm{B}_{12}$ | $\mu \mathrm{g}$ | 6.2 | 6.7 | 6.2 | 6.6 | 6.4 | 7.3 | 6.2 | 6.5 |
| Folate | $\mu \mathrm{g}$ | 295 | 315 | 295 | 317 | 306 | 310 | 284 | 303 |
| Vitamin C | mg | 78 | 83 | 78 | 83 | 78 | 81 | 77 | 81 |
| Vitamin A: |  |  |  |  |  |  |  |  |  |
| Retinol | $\mu \mathrm{g}$ | 518 | 599 | 521 | 578 | 504 | 800 | 485 | 572 |
| Carotene | $\mu \mathrm{g}$ | 2177 | 2398 | 2189 | 2402 | 2298 | 2437 | 1989 | 2344 |
| Retinol equivalent | $\mu \mathrm{g}$ | 882 | 1001 | 888 | 981 | 888 | 1206 | 817 | 965 |
| Vitamin D | $\mu \mathrm{g}$ | 3.03 | 3.32 | 3.02 | 3.32 | 3.40 | 3.54 | 2.91 | 3.12 |
| Vitamin E | mg | 12.33 | 12.22 | 12.35 | 12.20 | 12.85 | 11.96 | 11.87 | 12.48 |

Table 3.9 continues over the page

Table 3.9 continued

|  |  | Urban（GB） | Rural（GB） | England urban | England rural | Wales urban | Wales rural | Scotland urban | Scotland rural |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Percentage contributions of macronutrients to energy intake excluding alcohol |  |  |  |  |  |  |  |
| Fat | \％ | 38.3 | 38.6 | 38.4 | 38.7 | 38.8 | 38.0 | 38.0 | 38.5 |
| Fatty acids： |  |  |  |  |  |  |  |  |  |
| Saturates | \％ | 14.2 | 14.8 | 14.1 | 14.9 | 14.5 | 14.5 | 14.4 | 14.6 |
| Monounsaturates | \％ | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 14.5 | 14.6 | 14.7 |
| Polyunsaturates | \％ | 6.9 | 6.6 | 7.0 | 6.6 | 7.0 | 6.5 | 6.5 | 6.7 |
| Carbohydrate | \％ | 47.4 | 47.1 | 47.4 | 47.0 | 46.9 | 47.9 | 47.8 | 47.5 |
| Non－milk extrinsic sugars | \％ | 13.9 | 14.5 | 13.8 | 14.4 | 13.9 | 15.9 | 14.3 | 14.4 |
| Total Protein | \％ | 14.1 | 14.1 | 14.1 | 14.1 | 14.2 | 14.0 | 14.1 | 14.0 |
|  |  |  |  | As a percentage of weighted reference nutrient intake（f） |  |  |  |  |  |
| Energy ${ }^{(e)}$ | \％ | 108 | 112 | 107 | 113 | 112 | 113 | 110 | 114 |
| Energy exc alcohol ${ }^{(e)}$ | \％ | 105 | 108 | 104 | 109 | 108 | 109 | 106 | 110 |
| Protein | \％ | 170 | 174 | 169 | 174 | 177 | 173 | 169 | 175 |
| Calcium | \％ | 139 | 147 | 138 | 147 | 147 | 147 | 141 | 148 |
| Iron | \％ | 114 | 123 | 114 | 123 | 119 | 121 | 114 | 120 |
| Zinc | \％ | 116 | 120 | 115 | 120 | 120 | 120 | 116 | 120 |
| Magnesium | \％ | 108 | 112 | 108 | 113 | 112 | 112 | 107 | 110 |
| Sodium | \％ | 186 | 193 | 184 | 192 | 199 | 191 | 197 | 201 |
| Potassium | \％ | 100 | 104 | 100 | 104 | 105 | 104 | 97 | 102 |
| Thiamin | \％ | 196 | 203 | 195 | 203 | 204 | 200 | 194 | 204 |
| Riboflavin | \％ | 165 | 175 | 165 | 175 | 174 | 180 | 163 | 173 |
| Niacin equivalent | \％ | 243 | 252 | 242 | 253 | 253 | 254 | 244 | 252 |
| Vitamin $\mathrm{B}_{6}$ | \％ | 197 | 205 | 197 | 206 | 213 | 205 | 194 | 204 |
| Vitamin $\mathrm{B}_{12}$ | \％ | 451 | 476 | 451 | 474 | 465 | 519 | 443 | 467 |
| Folate | \％ | 158 | 166 | 158 | 167 | 164 | 163 | 150 | 161 |
| Vitamin C | \％ | 203 | 214 | 203 | 216 | 204 | 208 | 198 | 212 |
| Vitamin A（retinol equivalent） | \％ | 143 | 160 | 144 | 157 | 143 | 193 | 131 | 155 |

（a）Contributions from pharmaceutical sources are not recorded by the survey．
（b）Available carbohydrate，calculated as monosaccharide equivalent．
（c）As non－starch polysaccharides．
（d）（i）Excludes sodium from table salt（ii）In May 2003 the Scientific Advisory Committee on Nutrition recommended that average salt intake for adults should not exceed 6 grams per day，equivalent to 2.4 grams of sodium．
（e）As a percentage of Estimated Average Requirement．
（f）Department of Health，＇Dietary Reference Values for Food Energy and Nutrients for the United Kingdom＇，HMSO 1991．RNI values for protein，vitamins and minerals are set for each age／sex group at a level of intake considered likely to be sufficient to meet the requirements of $97.5 \%$ of the group．Weighted RNIs，based on the age／sex composition of the survey sample，have been calculated for comparison with population average intakes．

Family Food 2011

# Chapter 4 Demographic Comparisons 

### 4.1 Overview

This chapter examines how key dietary intakes vary with demographic characteristics of households. It examines age, region, income, ethnicity and household composition with respect to sodium, saturated fatty acids, Non-Milk Extrinsic Sugars (NMES), fruit and vegetables and fibre.

In general, higher income has a positive effect on diet and greater age has a mixed effect. Those with higher incomes purchase more fruit and vegetables and achieve higher fibre intake. Intake of NMES falls as income rises for those with higher income (deciles 7 to 10) but sodium intake increases gradually with income. Households with an older household reference person have greater intakes of saturated fatty acids and NMES. Intake of fruit, vegetables and fibre also increased with age of HRP up to age '60 to 69'.

Chapter 3 presents country and regional estimates, where apparent differences are often due to differences in demographic characteristics such as income. Chapter 5 examines long term trends in purchases of fruit and vegetables and trends in intakes of energy, fat, saturated fatty acids, NMES, sodium, fibre and alcohol.

### 4.2 Statistical Method

Since correlations between the demographic characteristics are common and make simple tables difficult to interpret, multiple regression (see glossary for a detailed definition) is used to isolate the pattern in one demographic characteristic while controlling for differences in the others.

A simple form of multiple regression is used with no attempt to model the interrelationships between different demographic characteristics. Each demographic variable is separated into a number of categories e.g. equivalised income is split into ten bands. A main effects regression provides separate estimates for each category of the variable.

The method finds the average demographic pattern in the data. For example if the percentage of energy from fat increases with age then the method finds the average pattern of increase across all regions, ethnic groups, household composition and incomes.

The analyses in this chapter include both household and eating out food and drink purchases. The only exception is when considering fruit and vegetables, for which only household purchases are analysed. When looking at energy intake, energy from alcohol is excluded.

The analysis uses regions as defined in the Nomenclature of Territorial Units for Statistics (NUTS) which is an internationally agreed standard developed by the European Union. There are twelve NUTS 1 regions in the UK: the nine regions of England, plus Wales, Scotland and Northern Ireland. For more information on NUTS codes see: http://www.statistics.gov.uk/geography/nuts.asp and Chapter 3 for regional comparisons.

This chapter uses the concept of the Household Reference Person (HRP) to categorise the data; see glossary for a detailed definition. Equivalised income uses a measure of standard of living rather than income alone; it adjusts household income for differences in household composition taking into account economies of scale of two or more people living in the same household.

## Family Food 2011

### 4.3 Baseline Group

In drawing out the comparisons, a baseline group is used which is the most frequently occurring category of household in the data. The characteristics of the baseline household are as follows:

Table 4.1: Baseline household

| Demographic variable | Baseline category |
| :--- | :--- |
| Region | South East of England |
| Household composition | 2 adults, no children |
| Age of HRP | $40-49$ years |
| Ethnicity of HRP | White British |
| Equivalised income | Income decile 4 |

### 4.4 Analyses in this section

Six analyses are presented. They focus on public health objectives and aim to identify key demographic differences, which may be useful in developing a clearer understanding of the barriers to healthier eating.

Table 4.2: Summary of analyses

| Item | Population Recommendations |
| :---: | :---: |
| Sodium | Less than 2.4 grams sodium per day ( 6 grams of salt). <br> Figures in this analysis do not include table salt and so are not directly comparable with the recommended maximum level of 2.4 grams; however data still give a good indication of patterns in sodium intake by demographics. |
| Percentage of energy intake derived from saturated fatty acids | Population average intake should contribute no more than 11 per cent of food energy. <br> Chapter 2 shows that the current percentage exceeds this recommendation. |
| Percentage of energy intake derived from non-milk extrinsic sugars | Population average intake should contribute no more than 11 per cent of food energy. <br> Chapter 2 shows that the current percentage exceeds this recommendation. |
| Fruit | At least 400 g of fruit and vegetables per day equivalent to the 5 A DAY guidance. <br> Chapter 1 shows a 4.1 per cent drop in purchases of fruit since 2008. Analysis in Chapter 5 shows that the UK population did not achieve 5 A DAY fruit and vegetables in 2011. |
| Vegetables excluding potatoes | At least 400 g of fruit and vegetables per day equivalent to the 5 A DAY guidance. <br> Chapter 1 shows a 2.4 per cent drop in purchases of vegetables since 2008. Analysis in Chapter 5 shows that the UK population did not achieve 5 A DAY fruit and vegetables in 2011. |
| Fibre | Population average intake of at least 18 grams per day. <br> Chapter 2 shows that intake did not reach this recommendation in 2011. |

Results of each analysis concentrate on the demographic variables that showed the most correlation; hence, each section may focus on different variables (age, region, ethnic origin, etc). Intakes are calculated from combined household and eating out purchases: See Chapter 2 for UK averages.

### 4.5 Sodium

Variation in sodium intake across demographic groups is explored using the baseline group as a benchmark. Sodium intake analysis from this survey excludes the contribution from table salt and salt added during cooking and is therefore an underestimate of total intake.

The approximate 95 per cent confidence interval for the baseline group ranged between 2.9 grams and 3.1 grams per person per day. This means we are confident that the estimate of 3.0 grams is within plus or minus 0.1 grams per person per day.

## Equivalised income

Chart 4.1a: sodium by income (baseline characteristics other than income) 2011


Age
Chart 4.1b: sodium by age of HRP (baseline characteristics other than age of HRP) 2011


## Chart 4.1a: Equivalised income

- The range of sodium intake across income deciles was 0.3 grams per person per day between the highest and lowest groups; ranging from 2.9 grams to 3.2 grams per person per day.
- Sodium intake increases gradually with income.
- The lowest ten per cent of households by equivalised income purchased foods with the lowest sodium content.


## Chart 4.1b: Age

- The range of sodium intake across age of HRP groupings was 0.4 grams per person per day between the highest and lowest groups; ranging from 2.8 grams to 3.2 grams per person per day.
- The sodium content of purchased foods increases with age up to ' 60 to 69 ' years.
- Households where the HRP was aged '60 to 69' years purchased foods with the highest sodium content.
- Households where the HRP was under 30 years or ' 80 and over' purchased foods with the lowest sodium content.
- All age groups, with the exception of the ' 80 and over' group exceeded the recommended maximum level of 2.4 grams per person per day.


## Region

In 2011, households in Northern Ireland and Wales purchased foods with higher sodium content than those in England and Scotland.

## Family Food 2011

### 4.6 Saturated fatty acids

Variation in intake of saturated fatty acids across demographic groups is explored using the baseline group described in 4.3 as a benchmark.

On average, people obtained 14.2 per cent of food energy from saturated fatty acids in 2011 based on combined household and eating out purchases: See Chapter 2 for UK averages.

The approximate 95 per cent confidence interval for the baseline group ranged between 13.9 per cent and 14.4 per cent of food energy derived from saturated fatty acids.

## Age

Chart 4.2a: percentage of energy from saturated fatty acids by age of HRP (baseline characteristics other than age of HRP) 2011


## Ethnicity

Chart 4.2b: percentage of energy from saturated fatty acids by ethnicity (baseline characteristics other than ethnicity) 2011


Chart 4.2a: Age

- The percentage of food energy derived from saturated fatty acids ranged by 1.4 percentage points across age groupings of the HRP; the lowest were 'under 30 '; the highest were ' 80 and over'.
- The percentage of food energy intake derived from saturated fatty acids rises with the age of the HRP.


## Chart 4.2b: Ethnicity

- The percentage of food energy derived from saturated fatty acids ranged by 3.0 percentage points across ethnic groups; the lowest were 'Black and Black British'; the highest were 'White British'.


## Region

Region is not an important factor in percentage of energy from saturated fatty acids. Variation across all regions was no more than 0.9 percentage points. In 2010 and 2011, households in Northern Ireland and the West Midlands purchased foods with the lowest amount of food energy derived from saturated fatty acids.

### 4.7 Non-milk extrinsic sugars (NMES)

Variation in intake of non-milk extrinsic sugars across demographic groups is explored using the baseline group described in 4.3 as a benchmark.

The approximate 95 per cent confidence interval for the baseline group ranged between 14.0 per cent and 14.8 per cent of food energy derived from NMES. We are confident that the estimate of 14.4 per cent is within plus or minus 0.4 per cent per person per day.

The major food purchases contributing to NMES intake are 'not low calorie' soft drinks and table sugar.

## Equivalised Income

Chart 4.3a: percentage of energy from NMES by income (baseline characteristics other than income) 2011


Age
Chart 4.3b: percentage of energy from NMES by age of HRP (baseline characteristics other than age of HRP) 2011


## Chart 4.3a: Equivalised Income

- The percentage of food energy derived from NMES ranged 0.8 percentage points across income groupings; ranging from 12.6 per cent for the highest income decile to 14.6 per cent for income decile 7 .
- In 2011 households in income decile 7 obtained the largest percentage of energy from NMES, compared to other income groups, at 14.6 per cent.
- Intake of NMES falls with income for those with higher incomes (deciles 7 to 10).
- All income deciles exceeded the recommended maximum level of 11 per cent of energy from NMES.


## Chart 4.3b: Age

- The percentage of food energy derived from NMES ranged across the age groupings of the HRP by 1.3 percentage points.
- The percentage of energy intake derived from NMES rose with the age of the HRP.
- All age groups exceeded the recommended level of 11 per cent of food energy from NMES.

The evidence from the Family Food Survey is supported by the National Diet and Nutrition Survey ${ }^{1}$ which reported that; "mean NMES intakes exceeded recommended levels (no more than 11 per cent food energy) for all groups most notably for children aged 11 to 18 years where mean intakes provided 15.3 per cent food energy".

## Ethnicity

Asian and Asian British households had the lowest percentage of energy from NMES at around 3 percentage points below other groups.

## Region

Variation in percentage of energy derived from NMES was 1.4 percentage points across regions. In 2010 and 2011 households in the Eastern region purchased foods with the highest amount of food energy from NMES. In both 2010 and 2011 households in London and Northern Ireland purchased foods with the lowest amount of food energy from NMES.

[^4]
## Family Food 2011

### 4.8 Fruit

This analysis includes all household purchases of fresh and processed (e.g. dried, frozen and canned) fruit, including fruit juice but excludes nuts, fruit contained in composite products (e.g. fruit pudding) and all eating out fruit purchases.

Variation in fruit purchases across demographic groups is explored using the baseline group as a benchmark.
The approximate 95 per cent confidence interval for the baseline group ranged between 144 grams and 165 grams of fruit purchases per person per day. We are confident that the estimate of 154 grams is within plus or minus 10 grams of fruit per person per day.

## Equivalised Income

Chart 4.4a: fruit purchases by income (baseline characteristics other than income) 2011


## Age

Chart 4.4b: fruit purchases by age of HRP (baseline characteristics other than age of HRP) 2011


Chart 4.4a: Equivalised Income

- Fruit purchases ranged 120 grams per person per day between the highest and lowest income groups.
- Fruit purchases rise with income.
- The lowest income decile purchased 107 grams of fruit, a little over 1 portion of fruit per person per day.


## Chart 4.4b: Age

- Fruit purchases ranged 107 grams across age groupings of the HRP.
- Fruit purchases increase with age up to the ' 70 to 79 ' group.
- Households where the age of the HRP is 'under 30 ' or ' 30 to 39 ' purchase the least fruit.


## Region

Age and income are more important factors than region in purchases of fruit. The regional pattern in 2011 was similar to 2010. With all other demographic characteristics the same, the North East purchased about half a portion less fruit in 2011.

### 4.9 Vegetables

This analysis excludes potatoes, vegetables contained in composite products (e.g. vegetable curry) and eating out purchases of vegetables.

Variation in vegetable purchases across demographic groups is explored using the baseline group as a benchmark.

The approximate 95 per cent confidence interval for the baseline group ranged between 167 grams and 184 grams of vegetable purchases per person per day.

## Equivalised Income

Chart 4.5a: vegetable purchases by income (baseline characteristics other than income) 2011


## Age

Chart 4.5b: vegetable purchases by age of HRP (baseline characterisitics other than age of HRP) 2011


Chart 4.5a: Equivalised Income

- Vegetable purchases ranged 47 grams per person per day between the highest income decile and income decile 2.
- Purchases of vegetables increase with income.
- The difference in vegetable purchases between income decile 2 and the highest income decile equates to half a portion.

Chart 4.5b: Age

- Vegetable purchases ranged across age groupings of the HRP by 85 grams per person per day.
- Vegetable purchases increase with age until the HRP is '60 to 69', after which it decreases.
- Households with the HRP 'under 30' purchased less than 2 portions of vegetables per person per day ( 152 grams).
- Households with the HRP aged ' 60 to 69 ' purchased 3 portions of vegetables per person per day.


## Region

Age and income are more important factors than region in purchases of vegetables. Variation across the regions was no more than 64 grams of vegetables per person per day.

## Family Food 2011

### 4.10 5 A Day - Fruit and vegetables

## Equivalised income and age of HRP

Analysing fruit and vegetables collectively shows the extent to which households are achieving 5 A DAY in terms of purchases of fresh and processed fruit and vegetables (excluding fruit and vegetables in composite foods).

In the baseline group:

- Households in income deciles 9 and 10 or those where the HRP is within the top three age groups (i.e. aged 60 or above) are estimated as achieving 5 A DAY in 2011.
- Households in the lowest equivalised income decile purchased only 3.4 portions per person per day in 2011.
- Households where the age of the HRP was 'under 30' purchased only 3.6 portions per person per day in 2011.
- Purchases by households in the lowest income decile and with age of HRP 'under 30' are estimated at 2.9 portions per person per day in 2011.

The Health Survey for England ${ }^{2}$ shows similar patterns with higher fruit and vegetable consumption in higher income and older households.

### 4.11 Fibre

Variation in fibre intake across demographic groups is explored using the baseline group of households.
The approximate 95 per cent confidence interval for the baseline group ranged between 15.3 grams and 16.4 grams per person per day.

## Equivalised Income

Chart 4.6a: fibre by income (baseline characteristics other than income) 2011


Age
Chart 4.6b: fibre by age of HRP (baseline characteristics other than age of HRP) 2011


Chart 4.6a: Equivalised income

- Fibre intake ranged 3.2 grams per person per day between the highest and lowest income groups.
- Fibre intake increases with income.
- Only households in the highest income decile achieved the recommended average of 18 grams of fibre per person per day in 2011.

Chart 4.6b: Age

- Fibre intake ranged 4.7 grams per person per day across age groups of the HRP.
- Fibre intake increases with the age of the HRP to the group aged ' 60 to 69 '.
- Households with the HRP aged ' 60 to 69' purchased foods with the highest amount of fibre at 18.8 grams per person per day. This age group met the recommended average fibre intake of 18 grams per person per day.


## Chapter5 Dietary Trends J

### 5.1 Overview

This chapter examines the effects of recent changes in food purchasing patterns on indicators of healthy diet, and presents reliable evidence on levels of trading down. The Family Food Survey is a key data source for dietary indicators because it provides annual estimates on a consistent basis since 2001 and comparable estimates for many years previously.

Chapter 5 focuses on years 2007 to 2011 to capture the whole period of food price rises, unlike the evidence presented in Chapters 1, 2 and 3 where the focus is on years 2008 to 2011.

There is also a new focus on low income households to bring out the greater effects food price rises may have on vulnerable groups in society. There are many other reasons in addition to low income to be vulnerable in society but low income households are used here for simplicity with Family Food Survey data available from 2001 onwards. Low income households are identified as the lowest ten per cent of households by equivalised income, a measure of household income that accounts for differences in household size and composition.

While chapter 5 looks at trends chapter 4 looks at patterns in purchases in 2011 alone. Chapter 4 attributes differences in diet to regional and demographic characteristics of households covering fruit and vegetables, sodium, Non-Milk Extrinsic Sugars (NMES), fibre and saturated fatty acids.

## Key Points

The percentage of spend on food continues to be high for low income households, rising to 16.6 per cent in 2011, about 1.5 percentage points above the 2007 level. In 2011, the lowest income households (bottom 10 per cent) increased energy intake from household food while those in the second decile decreased energy intake. The bottom two income deciles have the lowest energy intake from household food in 2011.

Lowest income households (decile 1), purchased 29 per cent less fruit and 20 per cent less vegetables in 2011 than in 2007. Reductions were less pronounced in decile 2 households.

On average households traded down to cheaper products to save nearly 7 per cent while low income households did not trade down to cheaper products. While all households spent 12 per cent more in 2011 than in 2007 low income households spent 17 per cent more. Intakes of fat, saturated fatty acids, non-milk extrinsic sugars, sodium and fibre have been relatively stable since 2007.

### 5.2 Effects of food price rises

Food prices from 2007 to 2011
Food prices rose in real terms from September 2007, peaking in February 2009, before steadying at a new higher level in 2010 and 2011 some 12 per cent higher in real terms than in 2007.

Table 5.1 shows average food prices in 2011 for key food groups. On average, food prices overall rose by 5.0 per cent in 2011, slightly above the all items rate of inflation as measured by CPI. The highest rises in price were recorded against lamb, butter, coffee and hot drinks and biscuits and cakes. Smallest rises in price were recorded against vegetables, fruit, sugar and preserves, tea, beef, bread and cereals. All types of food and drink were subject to real terms price rises.

Table 5.1: Food price evolution, 2007=100

|  | 2001-02 | 2007 | 2008 | 2009 | 2010 | 2011 | \% change since 2007 | \% change since 2010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Items Consumer Price Index | 90 | 100 | 104 | 106 | 109 | 114 | +14.2 | +4.5 |
| CPI food items | 90 | 100 | 110 | 116 | 120 | 126 | +25.7 | +5.0 |
| Bread | 79 | 100 | 115 | 119 | 119 | 125 | +25.0 | +5.1 |
| Cereals | 94 | 100 | 113 | 121 | 123 | 130 | +30.3 | +5.6 |
| Biscuits and cakes | 93 | 100 | 111 | 115 | 120 | 133 | +33.3 | +11.2 |
| Beef | 94 | 100 | 115 | 124 | 124 | 129 | +28.7 | +4.1 |
| Lamb | 85 | 100 | 109 | 122 | 128 | 155 | +55.0 | +21.0 |
| Pork | 91 | 100 | 115 | 124 | 128 | 135 | +35.1 | +5.2 |
| Bacon | 94 | 100 | 109 | 115 | 113 | 116 | +15.6 | +2.1 |
| Poultry | 98 | 100 | 113 | 116 | 116 | 122 | +22.2 | +5.7 |
| Fish | 88 | 100 | 107 | 113 | 119 | 131 | +30.5 | +9.2 |
| Butter | 88 | 100 | 123 | 121 | 138 | 159 | +59.4 | +15.3 |
| Cheese | 91 | 100 | 115 | 120 | 122 | 129 | +28.9 | +5.7 |
| Eggs | 78 | 100 | 127 | 131 | 136 | 137 | +37.3 | +1.0 |
| Milk | 81 | 100 | 114 | 122 | 121 | 122 | +21.7 | +0.9 |
| Tea | 100 | 100 | 106 | 118 | 133 | 138 | +38.2 | +3.9 |
| Coffee and hot drinks | 93 | 100 | 104 | 112 | 113 | 128 | +28.3 | +13.4 |
| Soft drinks | 94 | 100 | 102 | 105 | 112 | 121 | +20.8 | +8.1 |
| Sugar and preserves | 83 | 100 | 106 | 120 | 121 | 125 | +25.3 | +3.5 |
| Sweets and chocolates | 81 | 100 | 107 | 115 | 122 | 132 | +31.5 | +8.0 |
| Potatoes | 97 | 100 | 111 | 116 | 118 | 125 | +24.7 | +5.6 |
| Vegetables | 85 | 100 | 108 | 115 | 118 | 121 | +20.8 | +2.2 |
| Fruit | 98 | 100 | 107 | 112 | 121 | 126 | +25.7 | +3.9 |
| of which fresh fruit | 100 | 100 | 106 | 113 | 114 | 119 | +19.0 | +4.1 |
| Alcoholic drinks | 100 | 100 | 103 | 108 | 111 | 118 | +17.7 | +5.8 |

## Trading Down, Buying Less and Spending More

Family Food provides evidence based estimates of trading down. For foods within a given food code, price rises are measured by the Retail Prices Index and the Consumer Prices Index. In contrast, The Family Food Survey measures the average price or unit price that households have paid for foods within a food code. The difference between the rise in price and the rise in unit price paid provides a way of estimating trading down. This is calculated by dividing (deflating) the rise in price paid by the actual rise in price for each food code.

Table 5.2 shows how consumers have reacted to price rises between 2007 and 2011 for different types of food and drink, including estimates of trading down. The table shows the true change in price (measured by CPI) and how the consumer has responded to this by a combination of buying less, spending more and trading down.

Table 5.2: Consumers' response to food price rises

| Percentage changes between 2007 and 2011 | Price rise | Quantity purchased |  | Expenditure |  | Trading Down ${ }^{\text {(a) }}$ (deflated unit value) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | all households | low income households | all households | low income households | all households | low income households |
| Food | +26 | -4.2 | -3.2 | 12.1 | 17.0 | -6.8 | 1.1 |
| Bread | +25 | -8.3 | -5.1 | 9.8 | 14.4 | -4.3 | 2.8 |
| Cereals | +30 | 2.1 | -2.2 | 17.9 | 23.6 | -11.4 | 6.5 |
| Biscuits \& cakes | +33 | -2.2 | -9.8 | 16.8 | 3.1 | -10.4 | -4.9 |
| Beef | +29 | -11.1 | -10.3 | 7.5 | 23.7 | -6.2 | 21.1 |
| Lamb | +55 | -33.4 | na | -3.7 | na | -10.8 | na |
| Pork | +35 | 3.0 | 22.8 | 13.6 | 36.8 | -18.3 | -6.3 |
| Bacon | +16 | 7.5 | 10.8 | 18.2 | 26.7 | -5.0 | -3.8 |
| Poultry | +22 | -1.4 | 4.5 | 17.7 | 40.2 | -2.4 | 14.4 |
| Fish | +31 | -10.9 | -11.8 | 4.3 | 10.8 | -10.3 | -2.4 |
| Butter | +59 | -3.0 | -17.9 | 37.0 | 18.7 | -11.6 | -8.7 |
| Cheese | +29 | -0.2 | 7.2 | 18.7 | 26.5 | -7.8 | -1.5 |
| Eggs | +37 | 8.4 | 10.7 | 24.1 | 17.0 | -13.8 | -12.8 |
| Milk | +22 | -4.0 | -5.8 | 9.1 | 8.2 | -7.3 | -3.9 |
| Tea | +38 | -9.7 | -6.4 | 11.9 | 24.7 | -10.2 | -1.6 |
| Coffee \& hot drinks | +28 | -5.3 | -7.5 | 16.9 | 18.6 | -3.7 | 13.9 |
| Soft Drinks | +21 | -3.3 | -12.4 | 17.2 | 9.1 | 0.4 | 0.8 |
| Sugar \& preserves | +25 | 0.8 | 4.2 | 23.6 | 28.0 | -2.1 | 11.1 |
| Sweets \& chocolates | +32 | 4.0 | 5.3 | 20.5 | 16.8 | -11.9 | -1.9 |
| Potatoes | +25 | -7.6 | -0.5 | -5.9 | 1.6 | -14.7 | -9.0 |
| Vegetables | +21 | -4.4 | -11.9 | 8.6 | 4.7 | -5.8 | 2.4 |
| Fruit | +26 | -10.3 | -15.5 | 6.3 | -3.2 | -5.0 | 0.5 |
| of which fresh fruit | +19 | -10.6 | -18.8 | 5.6 | -3.8 | 0.4 | 7.1 |
| Alcoholic drinks | +18 | -5.7 | -2.7 | 9.5 | 10.9 | -1.5 | 5.3 |

${ }^{(a)}$ a positive value indicates trading up
na: not statistically reliable
Change in expenditure = change in price

+ change in quantity purchased
+ change in unit value achieved
For example, for butter there was a change in expenditure of +37 per cent for all households. Quantity of butter purchases reduced by 3.0 per cent and all households managed to reduce their unit price paid (trading down) by 11.6 per cent. The dominant response to the 59 per cent price rise in butter between 2007 and 2011 was to spend more money on butter purchases.


## Family Food 2011

Table 5.3: Main consumer reaction to the high food prices between 2007 and 2011

|  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |

Table 5.2 and table 5.3 show:
On average UK households purchased 4.2 per cent less food in 2011 than in 2007 while spending 12 per cent more. They saved 6.8 per cent by trading down to cheaper products

- Households in income decile 1 (lowest income group) spent 17 per cent more on food in 2011 than in 2007. Although they traded down in eggs, pork, potatoes, butter and vegetables the overall effect was not of trading down.
- On average UK households traded down on pork to save 18 per cent between 2007 and 2011 while households in income decile 1 (lowest income group) did not trade down but spent 37 per cent more on pork.
- Since 2007 UK households have bought less bread, lamb, beef, fish, fruit, vegetables, potatoes and alcoholic drinks but more bacon.
- Since 2007 households in decile 1 (lowest income group) have bought less butter, fruit, vegetables and soft drinks but more pork, bacon and cheese.


### 5.3 Indicator of affordability of food

The relative affordability of food can be measured by the share of the household budget going on food, i.e. the percentage of total household spending that goes on household food purchases. If the percentage increases, food is placing a greater burden on spending. Low income households are of particular concern because they tend to have a greater percentage of spend going on food.

Chart 5.1: Percentage of spend going on food and non-alcoholic drinks


Chart 5.1 shows that averaged over all households 11.3 per cent of spend went on food in 2011, while for the lowest 20 per cent of households (by equivalised income) it was higher at 16.6 per cent.

- The percentage of spend on food for all households in the UK was 11.3 per cent in 2011, 0.8 percentage points above the 2007 level.
- For households in the lowest 20 per cent by equivalised income the percentage of spend on food was 16.6 per cent in 2011, 1.4 percentage points above the 2007 level.
- Food is exerting greater pressure on household budgets since 2007 when food prices started to rise in real terms.

Low income households bought less food in 2011 than in 2007. The trading down analysis in Table 5.2 shows that the lowest ten per cent of households by income purchased 9.8 per cent less food by weight between 2007 and 2011. The energy content of food purchases by households in income decile 2 (see Chart 5.6), fell by 15 per cent between 2007 and 2011.

In 2012 food inflation is running at about the same rate as all items inflation suggesting that the percentage spend on food is likely to remain at a similar level in 2012.

### 5.4 Fruit and Vegetables

Government advice on healthy eating is primarily in terms of the "eatwell plate" and the 5 A DAY message. Both recommend a significant increase on current consumption of fruit and vegetables. Family Food provides reliable evidence on trends which are examined in detail here.

Reducing levels of obesity is a Government policy. While Family Food provides evidence of long term reductions in energy intake it does not capture information on energy expenditure. Therefore the Family Food evidence cannot be used to predict reductions in obesity because it only covers half the obesity equation.

Increasing the consumption of fruit and vegetables is a Government policy. Family Food provides evidence of recent reductions in consumption using household purchases as a proxy for consumption. This relies on the assumption that household wastage rates of fruit and vegetables remain relatively stable compared to changes in purchases.

## Family Food 2011

Chart 5.2a: Trends in fruit purchases


Chart 5.2b: Trends in vegetable purchases


- Purchases of fruit increased to 2006 but have fallen 10 per cent since 2007 with larger falls for lower income groups.
- Lowest income households (decile 1), purchased 29 per cent less fruit in 2011 than in 2007.
- Income decile 2 households purchased 19 per cent less fruit between 2007 and 2011.
- Purchases of vegetables peaked in 2005 and have fallen 4.4 per cent since 2007 with larger falls for lower income groups.
- Lowest income households (decile 1) purchased 20 per cent less vegetables in 2011 than in 2007.
- Income decile 2 households purchased 12 per cent less vegetables between 2007 and 2011.

Table 5.4: Household purchases of fruit and vegetables

| Grams per person per week | 2007 | 2008 | 2009 | 2010 | 2011 | \% change since 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All households |  |  |  |  |  |  |
| Fruit and vegetables excluding potatoes | 2421 | 2317 | 2246 | 2240 | 2240 | -7.5 |
| Fruit | 1281 | 1199 | 1143 | 1133 | 1150 | -10 |
| Vegetables | 1140 | 1118 | 1103 | 1107 | 1090 | -4.4 |
| Income decile 1 households |  |  |  |  |  |  |
| Fruit and vegetables excluding potatoes | 1853 | 1686 | 1697 | 1487 | 1600 | -14 |
| Fruit | 895 | 816 | 807 | 675 | 756 | -15 |
| Vegetables | 958 | 870 | 890 | 812 | 844 | -12 |
| Income decile 2 households |  |  |  |  |  |  |
| Fruit and vegetables excluding potatoes | 2314 | 2044 | 1961 | 2047 | 1853 | -20 |
| Fruit | 1178 | 1022 | 975 | 1010 | 915 | -22 |
| Vegetables | 1137 | 1022 | 986 | 1037 | 939 | -17 |

Table 5.4 shows that:

- Fruit and vegetable purchases were 7.5 per cent lower in 2011 than 2007.
- The drop is 14 per cent for income decile 1.
- The drop is 20 per cent for income decile 2.
- Households in income decile 1 purchase the least fruit and vegetables.
- In 2011 income decile 1 households purchased 29 per cent less fruit and vegetables than all households.
- In 2011 income decile 1 households purchased 16 per cent less fruit and vegetables than those in income decile 2.
- Fruit purchases have declined faster than vegetable purchases since 2007.
- All household fruit purchases fell 10 per cent between 2007 and 2011.
- Income decile 1 fruit purchases fell 15 per cent between 2007 and 2011.
- Income decile 2 fruit purchases fell 22 per cent between 2007 and 2011.


## Measuring fruit and vegetable purchases against 5 A DAY Guidance

Family Food estimates of fruit and vegetables can be compared against 5 A DAY consumption guidelines by assuming 80 grams per portion. The approach is approximate because it is based on purchases rather than consumption, it excludes purchases not taken into the household, it excludes fruit and vegetables in composite meals, it includes all processed fruit, fruit juice and nuts, and it assumes 80 grams per portion for all ages and all produce.

## Family Food 2011

Chart 5.3 Trends in fruit and vegetable purchases measured as portions


- Fruit and vegetable purchases peaked in 2006.
- On average all households purchased 4.0 portions of fruit and vegetables per person per day.
- Lower income households (deciles 1 and 2) have consistently purchased smaller quantities of fruit and vegetables.
- Income decile 1 households purchased 2.9 portions of fruit and vegetables per person per day in 2011.

Table 5.4 shows that households purchased an average of 2240 grams of fruit and vegetables per person per week in 2011, equivalent to 4.0 portions per person per day (dividing first by 7 to convert to daily and then by 80 to get the number of portions). Although unchanged on 2010 there is statistical evidence of a downward trend.

Defra estimates that 22 per cent of edible fruit and vegetable purchases are wasted, http://www.defra.gov.uk/ statistics/files/defra-stats-foodfarm-food-foodwastepurchases-100727.pdf.

The Health Survey for England shows a similar trend to Family Food in that reported consumption of fruit and vegetables by adults peaked in 2006 and then fell from 2006 to 2009. http://www.ic.nhs.uk/pubs/ hse08physicalactivity

The National Diet and Nutrition Survey provides estimates of fruit and vegetable consumption that includes estimates for fruit and vegetables in composite foods such as manufactured products and homemade dishes.

### 5.5 Eatwell Plate

The eatwell plate forms the basis of the Government's healthy eating advice to the general population. It makes healthy eating easier to understand by giving a visual representation of the types and proportions of foods that should be eaten to make a well-balanced, healthy diet. This includes snacks as well as meals. The eatwell plate is intended as a guide to the overall balance of the diet over a day or a week rather than for any specific meal.

Food and drink purchases for household supplies were grouped approximately into the five eatwell plate groups. Based on these groupings, Chart 5.4 shows the average UK diet for all households and low income households (equivalised income decile 1) compared to the eatwell plate categories.

Chart 5.4: Eatwell plate comparison for low income and all households


Looking at balance of diet:

- Neither low income households or all households are close to the eatwell plate.
- Both low income households and all households have a relatively similar diet when compared to the eatwell plate.
- The main difference between low income households and all households is in fruit and vegetable purchases where low income buy less.

Comparing low income households to all households in 2011 shows that low income households are:

- Closer to eatwell for starchy foods.
- Further from eatwell for milk and dairy foods.
- Further from eatwell for foods high in fat and or sugar.
- Further from eatwell for fruit and vegetables.


### 5.6 Energy Intake

Levels of obesity are linked with the risk of developing diseases such as; diabetes, coronary heart disease and some cancers, all of which affect the future cost of health care. Energy intake together with energy expenditure determines the overall energy balance. Statistics on obesity levels in England are available on the NHS Information Centre website: http://www.ic.nhs.uk/statistics-and-data-collections/health-and-lifestyles/obesity

To obtain the best estimates of trends in energy content of food purchases by households, an index is calculated such that year on year changes compare like with like, i.e. eating out energy is only added to the calculation once there are two years of data. This approach is required because the basis of estimation of energy intake has evolved over the years as shown in Table 5.5 and Chart 5.5.

## Family Food 2011

Table 5.5: Estimates of energy intake as the survey has evolved

(a) "asc" is alcoholic drinks, soft drinks and confectionery
(b) includes alcoholic drinks, soft drinks and confectionery from 1992 onwards
(c) Uses fullest information available each year. Historical estimates of household purchases between 1974 and 2000 have been adjusted to align with the level of estimates from the Family Expenditure Survey in 2000. Estimates are generally higher than original data and indicate that the scaling has partially corrected for under-reporting in the National Food Survey.
(d) this is the series with breaks shown in chart 5.5.
(e) Change in methodology makes the estimate of the year on year change unreliable between 2000 and 2001-02.

Chart 5.5: Average energy intake from food and drink since 1940


- Energy content of food purchases has been on a downward trend since 1965 as shown in each section of Chart 5.5.
- Energy intake per person declined 30 per cent between 1974 and 2011 (shown in Table 5.5 as 70 for 2011 in the index of change).

Chart 5.6: Energy derived from household food and drink


Chart 5.6 shows that:

- Income decile 2 households (second lowest group) reduced energy intake from household food in 2011 to 1891 Kcals per person per day 15 per cent less than in 2007.
- Income decile 2 households (second lowest group) had lower energy intake from household food than income decile 1 households in 2011, previously having had higher energy intake than the average of all households each year from 2001-02 until 2010.


## Family Food 2011

- Income decile 1 households (lowest income group) increased energy intake from household food by 6.4 per cent in 2011 to 1919 Kcals per person per day, having fallen 8.3 per cent between 2007 and 2010.
- Income decile 1 households (lowest income group) had 2.4 per cent less energy intake from household food in 2011 than in 2007.
- In 2011 energy intake from household food in each of the lowest two income deciles was around 5 per cent lower than all households.
- Energy intake from household food across all households was 2.1 per cent lower in 2011 than in 2007.

Chapter 2, Table 2.4 shows that the food categories making the greatest contribution to household energy intake are bread, cereal products, and 'non-carcase meat and meat products' each of which contributes around 10-12 per cent of energy.

This analysis does not identify the group with the lowest energy intake because other demographic variables as well as income are important and not considered here. Chapter 4 looks at dietary intakes, but not energy, using more demographic characteristics

### 5.7 Nutrient intakes

Family Food data on food and drink purchases is converted into its energy and nutrient content, and thereby enables trends in energy and nutrient intakes to be monitored, based on purchases rather than consumption.

Recommendations for energy and nutrient intakes for the general UK population and age/sex sub-groups have been set by expert scientific advisory committees The Committee on Medical Aspects of Food and Nutrition Policy (COMA) set dietary reference values for population intakes of energy and a range of nutrients. Its successor the Scientific Advisory Committee on Nutrition (SACN) has recently published revised dietary reference values for the energy requirements of the population.
http://www.sacn.gov.uk/pdfs/sacn_energy_report_author_date_10th_oct_fin.pdf
Estimates of average nutrient intakes from this survey indicate that many of these recommendations are not being met. A large proportion of the population consumes less than the recommended amount of fibre and fruit and vegetables and more than the recommended amount of saturated fatty acids, total fat, salt and non-milk extrinsic sugars. A poor diet impacts on the prevalence of obesity, incidence of coronary heart disease, high blood pressure and strokes and the risk of cancer.

Dietary Reference Values (DRVs) for macronutrients are expressed as a percentage of food energy intake (excluding energy from alcohol) to take account of differing energy requirements. Intakes in this chapter are expressed on the same basis to allow comparison with the DRVs. Unless otherwise stated, all statistics in this chapter are based on food energy intake (excluding energy from alcohol). The estimates are based on food purchases and do not take edible food waste into account.

## Fat and saturated fatty acids

Chart 5.7 Long term trends in the percentage of food energy derived from fat and saturated fatty acids from household and eating out food and drink


- The percentage of energy from fat declined 4.1 percentage points in the 1990s and is now stable at 37.5 per cent in 2011.
- The percentages of energy from saturated fatty acids declined 4.3 percentage points since 1974 to 14.2 per cent in 2011.
- Both are above the recommended levels.

Average (population) intake of total fat should account for no more than 35 per cent and saturated fatty acids no more than 11 per cent of food energy intake. Having too much saturated fat in the diet can increase the amount of cholesterol in the blood, which increases the risk of developing heart disease which is the leading cause of premature death in the UK.

In Chapter 2, Table 2.4 shows that most saturated fatty acids come from purchases of 'oils and fats', 'noncarcase meats and meat products', 'milk and cream', cheese, 'biscuits and crispbreads', and confectionery. Reductions in purchases of carcase meat, fats and 'non-carcase meat and meat products' helped reduce intakes of saturated fatty acids in 2011.

The National Diet and Nutrition Survey provides supporting evidence that saturated fatty acid intakes exceed the recommended maximum in all age groups. It reports a lower estimate for total fat intake that is in line with the recommended level for most age groups.

## Non-milk extrinsic sugars

Chart 5.8 Recent trend in the percentage of food energy derived from NMES from household and eating out food and drink


- $\quad 13.9$ per cent of energy came from NMES in 2011.
- Between 2003 and 2007 the percentage of energy from NMES dropped from 15.0 to 14.0 per cent.
- Since 2007 the percentage of energy from NMES has hardly changed.

Chapter 2, Table 2.4 shows that most NMES come from the food categories; 'sugar and preserves', soft drinks and confectionery. The decrease in NMES intakes in 2011 was driven by a reduction in soft drink purchases.

Non-milk extrinsic sugars are a category of sugars that are considered to contribute to dental decay. The recommendation is that intake of NMES should account for no more than 11 per cent of food energy intake.

Extrinsic sugars are any sugars not contained within the cellular structure of a food, either because they have been added to a food in the form of table sugar, honey etc; or because the food has been processed which has released sugars from the cell structure e.g. fruit juice.

The sugar naturally present in milk and milk products (lactose) is excluded from the definition as it is not considered to have adverse effects on teeth.

According to Family Food the percentage of energy derived from NMES exceeds the recommended maximum levels for the population average diet. In 2011 the population derived 13.9 per cent of food energy from NMES which is 2.9 percentage points over the recommended level.

The National Diet and Nutrition Survey provides supporting evidence that mean intakes of NMES as a percentage of food energy exceed the recommended levels in all age groups.

## Family Food 2011

## Sodium

Chart 5.9 Recent trend in sodium intake from food for household and eating out (in grams per person per day)


- Sodium intakes fell by 0.46 grams between 2001-02 and 2008.
- Although sodium intake from foods fell to a new low level of 2.74 grams in 2011 it has hardly changed since 2008.
- Sodium intake from foods exceeds the maximum recommended level of 2.4 grams per person per day.

The biggest contributors to sodium intake, from Chapter 2, Table 2.4, were 'non-carcase meat and meat products' and bread. Reductions in purchases of both 'non-carcase meat and meat products' and bread have helped reduce sodium intakes in 2011.

Family Food provides evidence of trends in sodium intake but underestimates the actual intake levels as it excludes the contribution from table salt purchases (because table salt also has non-food uses in the household).

Salt (sodium chloride) is the major source of sodium in the UK diet. It is the sodium in salt that can be bad for health. High salt intake contributes to the development of high blood pressure. High blood pressure is a risk factor for cardiovascular disease and stroke. Salt is approximately equal to sodium multiplied by 2.5.

In the report 'Nutritional Aspects of Cardiovascular Disease' (1996), COMA recommended an average intake of salt of 6 grams per day or less for adults. This is equivalent to an intake of 2.4 grams of sodium per day. The amounts are lower for children. This recommendation was endorsed by the Scientific Advisory Committee on Nutrition in its 2003 report 'Salt and Health', available at: http://www.sacn.gov.uk/reports_position_statements/ reports/salt_and_health_report.html

The National Diet and Nutrition Survey provides supporting evidence for the downward trend in sodium intake, reporting a reduction in mean salt intake between 2000-01 and 2011 from 9.5 g to 8.1 g per day.

## Fibre

Chart 5.10 Recent trend in fibre intake in grams per person per day


- Fibre intake in 2011 was 15.2 grams per person per day, about the same as it was in 2001.
- A fall in fibre intake in 2011 suggests there is not an upwards trend despite increases between 2008 and 2010.
- Fibre intake is below the recommended level by 2.8 grams per person per day.

Most fibre intake comes from the food categories of vegetables, bread and 'other cereal and cereal products' (which includes breakfast cereals, rice and pasta). Reductions in bread and vegetable purchases are a downward push on fibre intakes.

Consumption of a high fibre diet is recommended for gastro-intestinal health and may also help to lower blood cholesterol levels.

The COMA recommendation is for an average of 18 grams of fibre intake per person per day for adults. The report says that intakes for children should be proportionately less, but does not provide a specific figure.

## Alcohol

Regularly drinking above the recommended daily limits for lower risk drinking of 2-3 units for women and 3-4 units for men, significantly increases the risk of ill health.

Chapter 1 shows that household purchases of alcoholic drinks fell by 4.4 per cent in 2011 but are 3.2 per cent higher than in 2008. Eating out purchases fell by 4.6 per cent in 2011 and are 11.2 per cent lower than 2008. Chapter 2 shows that alcohol intake from household and eating out combined in 2011 was 4.1 per cent lower than 2010, but 4.2 per cent higher than in 2008.

Chart 5.11 Trend in intake of alcohol in grams per person per day


- Alcohol intake from eating out purchases declined 43 per cent between 2001-02 and 2011.
- Alcohol intake from household supplies rose slightly between 2001-02 and 2011.
- Alcohol intake overall fell 4.1 per cent in 2011 to 9.8 grams per person per day (averaged over the entire UK population).

The Family Food estimate of the absolute level of intake is likely to be an underestimate due to under-reporting of alcoholic drinks, but the trends are likely to be valid.

Family Food 2011

# Chapter 6 Price Elasticities 

### 6.1 Overview

This chapter presents estimates of how demand for different types of food varies with changing food prices and different levels of total expenditure on food. These estimates are known as price elasticities and are based on Family Food Survey data from 2001 to 2011. The underlying research was carried out by Reading University on behalf of Defra.

The previous estimates of price elasticities were carried out using Family Food data from the 1990s when the Family Food Survey was known as the National Food Survey. Food prices remained relatively stable from 2001 to 2007 followed by a period of rising food prices.

Price elasticities are used in a wide range of situations where food price changes are anticipated. These food price changes can be converted into demand changes by using price elasticities. The price elasticities can be used as a general tool for use in a wide range of analyses by Defra and by other organisations.

Own price elasticities measure the responsiveness of demand for a food to changes in the price of that food. Cross price elasticities measure the responsiveness of demand for one food to changes in the price of another food. Expenditure elasticities measure the responsiveness of demand for all foods to changes in the level of total expenditure on food. The estimates are presented as percentage changes in demand when there is a one per cent rise in a food price or a one per cent rise in total expenditure on food.

Price elasticities based on the Family Food Survey data are representative of the whole UK household population. Their strength is that the underlying data is collected accurately and with a view to minimising non-response. Although non-response rates are significant, having varied from 40 per cent to 50 per cent over the period, great effort is made to keep the rate to a minimum. To reduce the risk of non-response bias, post stratification weights are constructed using detailed matching to demographics in the population census. Other data sources used to estimate price elasticities tend not to be as representative of the UK even when demographic matching is applied.

To calculate the price elasticities Reading University used two alternative approaches, the Household AIDS model (Almost Ideal Demand System) and the Dynamic AIDS model. The Household AIDS model identifies differences in demand depending on prices faced and total amount spent on food by households that are identical in all other respects. The DAIDS model identifies differences in demand when prices change over time. The prices used in the analyses are unit values, calculated as ratios of total expenditure on a type of food to total quantity entering the home food supply

### 6.2 Household AIDS model

Comparisons between 2008 and 2011, which provide a reliable indication of change, are made for the main food. The Household AIDS model measures the extent to which demand for different foods varies with prices paid and with total expenditure on food. These differences relate to households that are identical in all respects other than the price they face or the total expenditure they make on food. The model controls for differences in demographic characteristics. It assumes that there is no difference between short and long run behaviour, such that the consumer is always in equilibrium.

The model was applied at three levels of food groupings. Level one was the highest level dividing foods into seven groups. The fats and starches group was used as a catch-all and includes potatoes, sweets, drinks and other foods. Level 2 models divided each level 1 group into several subcategories. Level 3 models divided level 2 groups of meat, fruit and vegetables into subcategories.

The level 1 model estimated for different subsamples including England, England \& Wales (E\&W), Scotland, Northern Ireland, UK households with children, and UK households in the lowest income quintile.

## Family Food 2011

The statistics in this chapter are uncompensated elasticities that assume that a consumer's total expenditure on food is fixed and therefore when a food price rises they adjust their demand accordingly.

As well as uncompensated elasticities ${ }^{1}$ there are alternative estimates for compensated elasticities in the project report on the Defra website downloadable at http://www.defra.gov.uk/statistics/foodfarm/food/

### 6.3 Level 1 groupings

The seven high level groupings cover dairy \& eggs, meat, fish, fruit, vegetables, fats \& starches and alcoholic drinks. The averages of the 9 sets of elasticities from 2001 to 2009 provide a useful summary in Table 6.1.

For low income households the elasticities in 2008 and 2009 showed difference to those from 2001 to 2007. Table 6.2 brings out these differences by separately averaging elasticities up to 2007 and after 2007.

## Table 6.1 All households: own, cross price and expenditure elasticities of high level food groups from the household level AIDS

|  | Effect on demand when price rises by $1 \%$ |  |  |  |  |  |  |  | Expenditure on food rises 1\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Average elasticities 2001-2009 | Dairy \& egg | Meat | Fish | \& nuts | Vegetables | Fats \& starches | Alcoholic drinks |  |
|  | Dairy \& egg | -0.4 | 0.0 | 0.0 | -0.1 | -0.1 | -0.3 | 0.0 | 0.9 |
|  | Meat | 0.0 | -0.8 | 0.0 | 0.0 | 0.0 | -0.2 | 0.0 | 1.1 |
|  | Fish | -0.1 | 0.0 | -0.4 | 0.0 | 0.0 | -0.1 | -0.1 | 0.7 |
|  | Fruit \& nuts | -0.1 | 0.1 | 0.0 | -0.8 | 0.0 | 0.0 | -0.2 | 0.9 |
|  | Vegetables | -0.1 | 0.0 | 0.0 | 0.0 | -0.6 | 0.0 | -0.1 | 0.9 |
|  | Fats \& starches | -0.1 | -0.1 | 0.0 | 0.0 | 0.0 | -0.8 | 0.0 | 1.1 |
|  | Alcoholic drinks | 0.0 | 0.0 | -0.1 |  | -0.1 | 0.2 | -0.8 | 0.9 |

- Foods where demand is more sensitive to changes in price are alcoholic drinks, 'fats \& starches', 'fruit \& nuts', and meat. On average, those paying a 1 per cent higher price buy 0.8 per cent less.
- Foods where demand is less sensitive to changes in price are fish and 'dairy \& eggs'. On average, those paying a 1 per cent higher price buy 0.4 per cent less.
- Households that spend 1 per cent more on food than others tend on average to buy disproportionately more (1.1 per cent more) meat and 'fats \& starches'. Similarly, those that spend 1 per cent less on food tend on average to buy less (1.1 per cent less) meat and less 'fats \& starches'.
- Small reductions in demand for alcoholic drinks are linked with households that pay a 1 per cent higher price for fish, 'fruit \& nuts', vegetables, and 'fats \& starches'.
- Households that pay a 1 per cent higher price for alcoholic drinks have on average a lower demand for fish ( 0.1 per cent), 'fruit \& nuts' ( 0.2 per cent) and vegetables ( 0.1 per cent).
- Households that pay a 1 per cent higher price for 'dairy\& eggs' have on average a 0.1 per cent lower demand for fish, 'fruit \& nuts', vegetables, 'fats \& starches'.
- Households that pay 1 per cent higher prices for 'fats \& starches' on average have a lower demand for 'dairy \& eggs' ( 0.3 per cent), meat ( 0.2 per cent), fish ( 0.1 per cent) and alcoholic drinks ( 0.2 per cent).

Table 6.2 Low income households: own, cross price and expenditure elasticities of high level food groups from the Household AIDS model

|  | Effect on demand when price rises by 1\%, 2001 to 2007 |  |  |  |  |  |  |  | Expenditure on food rises 1\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Average elasticities 2001-2007 | $\begin{array}{r} \text { Dairy \& } \\ \text { egg } \end{array}$ | Meat | Fish F | \& nuts | Vegetables | Fats \& starches | Alcoholic drinks |  |
|  | Dairy \& egg | -0.4 | -0.1 | 0.0 | -0.1 | -0.1 | -0.3 | 0.1 | 0.9 |
|  | Meat | -0.1 | -0.8 | 0.0 |  | -0.1 | -0.1 | 0.0 | 1.1 |
|  | Fish | -0.1 | -0.1 | -0.5 |  | -0.1 | -0.1 | 0.1 | 0.7 |
|  | Fruit \& nuts | -0.1 | 0.1 | 0.0 | -0.8 | -0.1 | 0.0 | 0.0 | 0.9 |
|  | Vegetables | -0.1 | -0.1 | 0.0 | -0.1 | -0.6 | -0.1 | 0.1 | 1.0 |
|  | Fats \& starches | -0.1 | -0.1 | 0.0 | 0.0 | 0.0 | -0.9 | 0.0 | 1.1 |
|  | Alcoholic drinks | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.2 | -1.4 | 0.9 |
|  | Effect on demand when price rises by 1\%, 2008 and 2009 |  |  |  |  |  |  |  |  |
|  | Average elasticities 2008-2009 | $\begin{array}{r} \text { Dairy \& } \\ \text { egg } \end{array}$ | Meat | Fish | \& nuts | Vegetables | Fats \& starches | Alcoholic drinks | Expenditure on food rises 1\% |
|  | Dairy \& egg | -0.6 |  | -0.1 | -0.1 | -0.1 | -0.3 | 0.2 | 0.9 |
|  | Meat |  | -0.8 | 0.0 | -0.1 | -0.1 | -0.1 |  | 1.1 |
|  | Fish | -0.3 | -0.2 | -0.5 |  |  |  | 0.4 | 0.6 |
|  | Fruit \& nuts | -0.1 | -0.2 |  | -0.6 | -0.1 |  | 0.2 | 0.9 |
|  | Vegetables | -0.1 | -0.2 |  | -0.1 | -0.6 | -0.1 | 0.2 | 0.9 |
|  | Fats \& starches | -0.1 | -0.1 |  | 0.0 | 0.0 | -1.0 | 0.1 | 1.1 |
|  | Alcoholic drinks | 0.4 |  | 0.2 | 0.2 | 0.2 | 0.6 | -2.7 | 0.8 |

Empty cells are where the estimate was not statistically significantly different from zero.

- Demand for alcoholic drinks by low income households (bottom 10 per cent by equivalised income) became more sensitive to price in 2008 and 2009 than it had been between 2001 and 2007. Those paying a 1 per cent higher price for alcoholic drinks purchased on average 2.7 per cent less in 2008 and 2009. Previously in 2001 to 2007 they had purchased 1.4 per cent less.
- In 2008 and 2009 the demand by low income households (bottom 10 per cent by equivalised income) for fish, 'fruit \& nuts' and vegetables was 0.2 per cent lower when paying a 1 per cent higher price for meat.
- In 2008 and 2009 the demand by low income households (bottom 10 per cent by equivalised income) for fish was 0.3 per cent lower when paying 1 per cent more for 'dairy \& eggs'.
- When food prices rose low income households (bottom 10 per cent by equivalised income) did not in general change their food preferences, as evidenced by the expenditure elasticities remaining similar before and after the price rises.


### 6.4 Dynamic AIDS model

The DAIDS (Dynamic Almost Ideal Demand System) measures the way households in aggregate respond to price changes over time. Results for DAIDS are based on 2001 to 2011 data with a break in the responses in June 2008 to allow different responses after food prices rose in real terms in 2007 and 2008.

If food prices rise by 1 per cent then demand by low income households will be expected to change as shown in Table 6.3. If total expenditure on food rises 1 per cent then we would expect demand for different types of food to change as shown in the expenditure column in Table 6.3.

Short run elasticities measure how demand responds within a month to changes in prices. Long run elasticities measure the total response of demand to changes in prices, i.e. what happens if price stays like this for the rest of the year.

## Family Food 2011

Table 6.3 Low income households: own price and expenditure elasticities from the Dynamic AIDS model 2001 to 2011 for a 1 per cent rise in prices

|  |  | Long run response (full response) |  | Short run response (one month) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Own price elasticity | Expenditure elasticity | Own price elasticity | Expenditure elasticity |
|  | Dairy \& eggs | -0.5 | 0.94 | -0.4 | 0.92 |
|  | Fats \& starches | -0.8 | 1.02 | -0.7 | 1.02 |
|  | Fish | -0.2 | 0.88 | -0.2 | 0.86 |
|  | Fruit \& nuts | -0.8 | 1.00 | -0.5 | 0.95 |
|  | Meat | -0.3 | 0.97 | -0.3 | 1.00 |
|  | Vegetables | -0.6 | 0.87 | -0.4 | 0.95 |
|  | Alcoholic drinks | -1.0 | 1.43 | -0.6 | 1.41 |

The model includes a structural break in the time series in mid 2008.
The long run own price elasticity for fish is not statistically significantly different from zero.

- Demand for alcoholic drinks by low income households (bottom 10 per cent by equivalised income) reduces by 1.0 per cent when the price of alcoholic drinks rises by 1 per cent and it reduces by 1.4 per cent when total expenditure on food and drink reduces by 1 per cent while prices are unchanged.
- A 1 per cent rise in the prices of foods produces smaller than proportionate reductions in demand by low income households (bottom 10 per cent by equivalised income), with reductions as low as 0.2 per cent for fish and 0.3 per cent for meat.
- Demand for 'fruit $\&$ nuts' reduces by 0.8 per cent when prices rise by 1 per cent, with a 0.5 per cent reduction in demand in the first month. Demand for 'fruit \& nuts' reduces by 1.0 per cent when total expenditure on food reduces by 1 per cent with no change in prices.
- While demand for alcoholic drinks by low income households (bottom 10 per cent by equivalised income) is more sensitive to prices than foods, the effect in the first month is similar.


### 6.5 Level 2 food groupings

Using the Household AIDS model, elasticities are estimated for each year from 2001 to 2009. Table 6.4 provides averages of the nine sets of estimates as a useful summary. It reveals differences in demand by households that are identical in all respects apart from the price they pay or the total they spend on food.

## Table 6.4 Level 2 groupings from the Household AIDS model

| Percentage change in demand when price or food expenditure rises by $1 \%$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cheeses | Eggs | Cream | Milk | Other | Expenditure |  |  |
| Cheeses | -0.6 | 0.0 | 0.0 | -0.2 | -0.1 | 0.9 |  |  |
| Eggs | 0.1 | -0.6 | 0.0 | -0.1 | 0.1 | 0.5 |  |  |
| Cream | -0.3 | -0.1 | -0.5 | 0.8 | -0.1 | 0.2 |  |  |
| Milk | -0.2 | -0.1 | 0.0 | -0.7 | -0.1 | 1.0 |  |  |
| Other | -0.1 | 0.0 | 0.0 | -0.2 | -0.7 | 0.9 |  |  |
|  | Beef | Lamb | Pork | Bacon \& ham | Poultry | Sausage | Other | Expenditure |
| Beef | -0.6 | -0.1 | 0.0 | 0.0 | 0.0 | 0.0 | -0.1 | 1.1 |
| Lamb | -0.2 | -0.6 | 0.1 | -0.1 | 0.1 | 0.0 | 0.0 | 0.9 |
| Pork | -0.1 | 0.1 | -0.8 | 0.0 | 0.0 | 0.0 | 0.1 | 0.8 |
| Bacon \& ham | 0.0 | 0.0 | 0.0 | -0.7 | 0.0 | 0.0 | 0.0 | 1.0 |
| Poultry | 0.0 | 0.0 | 0.0 | 0.0 | -0.9 | 0.0 | 0.0 | 1.1 |
| Sausage | 0.0 | 0.0 | -0.1 | 0.0 | 0.0 | -0.6 | 0.2 | 0.7 |
| Other | -0.1 | 0.0 | 0.0 | -0.1 | 0.0 | 0.0 | -1.0 | 1.3 |


|  | White fish | Salmon | Blue fish | Other | Expenditure |
| :--- | ---: | ---: | ---: | ---: | ---: |
| White fish | -0.7 | 0.0 | -0.1 | -0.1 | 0.6 |
| Salmon | -0.1 | -0.7 | -0.1 | -0.1 | 0.6 |
| Blue fish | -0.2 | -0.1 | -0.5 | 0.0 | 0.5 |
| Other | 0.0 | 0.0 | 0.0 | -0.9 | 0.7 |


|  | Fresh fruitProcessed fruit | Nuts | Fruit juice | Expenditure |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Fresh fruit | -1.0 | 0.0 | 0.0 | 0.0 | 0.9 |
| Processed fruit | 0.1 | -0.8 | 0.0 | 0.0 | 0.6 |
| Nuts | 0.0 | 0.0 | -0.7 | 0.0 | 0.6 |
| Fruit juice | 0.0 | 0.0 | 0.0 | -0.8 | 0.7 |


|  | Fresh vegProcessed veg | Expenditure |  |
| :--- | :---: | ---: | ---: |
| Fresh veg | -1.0 | -0.1 | 1.0 |
| Processed veg | 0.1 | -0.6 | 0.4 |


|  | Potato | Sweets | Starch | Drink | Other | Fat | Expenditure |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Potato | -0.5 | -0.1 | -0.2 | 0.0 | -0.1 | 0.0 | 1.0 |
| Sweets | -0.1 | -0.5 | -0.2 | -0.1 | 0.0 | 0.0 | 1.0 |
| Starch | -0.1 | -0.1 | -0.8 | 0.0 | 0.0 | -0.1 | 1.2 |
| Drink | 0.0 | -0.1 | 0.0 | -0.8 | 0.0 | 0.0 | 1.0 |
| Other | -0.1 | 0.0 | -0.1 | 0.0 | -0.6 | 0.0 | 1.0 |
| Fat | 0.0 | 0.1 | -0.3 | 0.1 | 0.1 | -0.5 | 0.7 |

## Family Food 2011

A substitute food is a food with a positive cross price elasticity of demand, i.e. demand increases when the price of another food increases. Apart from cream and milk, the substitute relationships identified are very small in magnitude.

- Demand for eggs was 0.1 per cent higher by households paying a 1 per cent higher price for cheese. This means that eggs are to a small extent a substitute for cheese.
- Demand for cream was 0.8 per cent higher by households paying a 1 per cent higher price for milk. This means that cream is a strong substitute for milk.
- Substitute relationships are apparent for eggs and cheese; cream and milk; lamb and pork; sausage and other meat; tinned fruit and fresh fruit; canned vegetables and fresh vegetables; fat and sweets; fat and drinks; fat and other foods.

A complementary food is a food with a negative cross elasticity of demand, i.e. demand increases when the price of another food group is decreased.

- Demand was lower for sweets ( 0.1 per cent) and starchy foods ( 0.1 per cent) by households paying a 1 per cent higher price for potatoes. This means starchy foods and sweets are complementary foods to potatoes.
- Demand was lower for fats ( 0.3 per cent), potatoes ( 0.2 per cent) and sweets ( 0.2 per cent) by households paying 1 per cent more for starchy foods. This means fats, potatoes and sweets are complementary foods to starchy foods.
- Complementary relationships are apparent for: cream and cheese; milk and cheese; cream and milk; milk with other dairy; cream with other dairy; lamb with beef; pork with other meat; blue fish with white fish; white fish with blue fish; canned vegetables with fresh vegetables; other foods with potatoes; fat with sweets; potato with starchy foods; sweets with starchy foods; other foods with starchy foods; fat with starchy foods; potato with other foods.


### 6.6 When to use each model

The Household AIDS is the preferred model because it makes most use of the information in the data. It can be used when changes in purchasing levels are anticipated to arise from changes in prices paid for foods, which may arise because of changes in underlying food prices or because of changes in household preferences such as trading up or trading down.

The DAIDS model is a simpler less powerful approach based on data that has been aggregated over all households on a monthly basis.

Development Priorities

The development priorities for the Family Food Survey over the next year are:

1. updating nutrient composition data for our food codes,
2. monitor accuracy of reporting and coding,
3. checks on portion sizes,
4. assess non-response bias,
5. reduce the dependence of eating out estimates on unspecified meals,

## (1) updating and accuracy of nutrient composition profiles

The conversion from food purchases to nutrient content requires nutrient composition factors for each of the 'Family Food' food codes. There are about 250 codes for household supplies of food and drink and another 250 for eating out categories. The Department of Health maintains a databank of nutrient compositions for a wide range of specific foods that are made available to Defra. These are updated as and when new data becomes available from DH's analytical programme or from manufacturers and retailers. Each Family Food code covers a number of foods so a weighted average nutrient composition is calculated for each code using data on the relative market share of foods within a code. Work is ongoing to update these market shares to ensure that the nutrient composition calculated for each Family Food code is as accurate as possible. One approach for household supplies is to obtain data from the KANTAR household panel which records household food purchases.

## (2) accuracy of reporting and coding

Survey participants record their food and drink purchases in a two week diary. They are able to attach till receipts or to write in diary entries to cover amount spent and quantity purchased for each individual item. In many cases quantities are not properly recorded and to maintain good will and high response rates these omissions are frequently tolerated. As well as lack of quantity information there are also cases where there is insufficient detail recorded on the diary, possibly the till receipt, to identify the correct food code.

To deal with quantity omissions on the diary proxy quantities are found by searching on-line supermarket websites and matching the item description and expenditure. To deal with insufficient information to code default codes are used for generic type products such as breakfast cereals. These forms of imputation impact on the estimates.

## (3) checks on portion sizes to improve the quality of eating out

Quantities are not recorded against eating out foods on the Family Food diaries because purchases are often in the form of meals and quantities are unknown. In the eating out section of the Family Food diary the survey participant records an itemised list of meal components. Defra uses a set of standard portion sizes for eating out food codes. These have not been updated since 2001.

## (4) assess non-response bias

The response rate to the Family Food Survey has fallen from 60 per cent in 2001 to 54 per cent in 2011. The risk of non-response bias rises as the response rate falls. Significant survey resources are already targeted at achieving a high response rate.

## Family Food 2011

## (5) reduce the dependence of eating out estimates on unspecified meals

For most meals recorded in the diary respondents provide an itemised list of its components and we apply standard portion sizes. Unspecified meals arise in the survey when expenditure is recorded but no itemised list is provided. Unspecified meals are problematic in the Family Food Survey because they provide no details of the types of food being purchased or of its nutritional content. To obtain quantity, energy content and nutrient content of unspecified meals we use averages of portion sizes and energy and nutrient contents across the range of possible meal components. It is estimated that unspecified meals may account for over a third of the energy content of food purchases.

## Links to Family Food Datasets on the Defra Website

Datasets for the Family Food publication can be accessed though the web at http://www.defra.gov.uk/statistics/foodfarm/food/familyfood/datasets/

Information is available on purchases, expenditure and nutrient intakes for both household and eating out. Datasets available are:

- United Kingdom
- UK regions
- Gross income quintile
- Equivalised income decile
- Urban Rural
- Household composition
- Age group of household reference person
- Age at which household reference person ceased full-time education
- Ethnic origin of household reference person
- Socio-economic classification of household reference person
- Economic activity of household reference person


## The Family Food Committee

Defra are extremely grateful to the Family Food Committee whose advice on the conduct of the Family Food Module and quality assurance of the annual report is invaluable. The committee are selected from the devolved administrations, Department of Health, Food Standards Agency, Office for National Statistics, nutrition professionals and the food industry. The committee members are not paid a fee for their time spent advising Defra on the survey report.

Jim Holding (Chair)
Department for Environment, Food and Rural Affairs

## Andrew Barnard

Office For National Statistics

Gaynor Bussell
Dietitian

Professor Judith Buttriss
British Nutrition Foundation

Professor Andrew Chesher
University College, London

Dermot Donnelly
Northern Ireland Statistics and Research Agency

Dr Giles Horsfield
Office For National Statistics

Dr Kathy Johnston
Scottish Government

## Dr Laura Keyse

Office For National Statistics

Kirsty Pavey
Food And Drink Federation

Gillian Swan
Department of Health

Professor Martin Wiseman
University Of Southampton

## Family Food 2011

## Data Downloads

Datasets in excel format are available at:
http://www.defra.gov.uk/evidence/statistics/foodfarm/food/familyfood/documents/index.htm
The Family Food datasets are excel spreadsheets containing data for years 2001/02 onwards. The UK household consumption and the UK household expenditure spreadsheets show data for 1974 onwards.

Information is available at United Kingdom level for both household and eating out on:

- purchases,
- expenditure and
- nutrient intakes

There is a further breakdown by:
UK regions
Scotland, Wales, Northern Ireland, English Government Office Region
Rural and Urban: England, Wales and Scotland
Gross income quintile
Equivalised income decile
Household composition
Age group of household reference person
Age at which household reference person ceased full-time education
Ethnic origin of household reference person
Socio-economic classification of household reference person
Economic activity of household reference person

## Economic and Social Data Service

Survey data for the Expenditure and Food Survey (2000/01 to 2007) and subsequently the Living Costs and Food Survey (2008 to 2010) is available to download via the Data Archive on the Economic and Social Data Service website:
http://www.esds.ac.uk/findingData/efsTitles.asp
National Food Survey data from 1974 to 2000 is available from:
http://www.esds.ac.uk/findingData/nfsTitles.asp

## Glossary

## General

| Term | Meaning |
| :--- | :--- |
| Household <br> Reference Person <br> (HRP) | The HRP is the person who: owns the household accommodation, <br> or is legally responsible for the rent of the accommodation, <br> or has the household accommodation by virtue of their employment <br> or personal relationship to the owner who is not a member of the household. If more than <br> one person meets these criteria the HRP will be the one with the higher income. If the <br> incomes are the same then the eldest is chosen. |
| Consumer Price <br> Index (CPI) | The Consumer Price Index is a statistical measure of a weighted average of prices of a <br> specified set of goods and services. It is used as an indicator of inflation, which is the <br> percentage change in the index compared with the same month one year previously. |

## Nutrients

| Macronutrients | Major nutrients that are consumed in largest amounts and provide bulk energy - protein, <br> carbohydrate and fat. |
| :--- | :--- |
| Micronutrients | A substance needed only in small amounts for normal body function; e.g. vitamins and <br> minerals. |
| Sodium | Sodium Chloride in the diet is more commonly known as salt. It is the sodium in salt <br> that can be bad for health. Too high an intake of sodium can raise blood pressure, <br> which triples the risk of developing heart disease or having a stroke at any age. Salt is <br> approximately equal to sodium multiplied by 2.5. |
| Non-milk extrinsic <br> sugar (NMES) | These sugars are more likely to damage teeth than other types of sugar. Products that <br> contain this sugar include fruit juices and honey and 'added sugars', which comprise <br> recipe and table sugars. NMES are found in a wide range of foods, the main sources <br> in the diet being table sugar, confectionery, soft drinks and fruit juices and biscuits and <br> cakes. |
| Fibre | Non-starch polysaccharides as determined by the Englyst method. |
| COMA | Committee on Medical Aspects of Food and Nutrition Policy (COMA) |
| Scientific Advisory <br> Committee on <br> Nutrition (SACN) | A UK-wide advisory committee set up to replace COMA. It advises UK health <br> Departments. |
| Dietary Reference <br> Values (DRV) | Department of Health, 'Dietary Reference Values for Food Energy and Nutrients for the <br> United Kingdom', HMSO 1991. |
| Reference Nutrient <br> Intakes (RNI) | Reference Nutrient Intake (RNI) values for protein, vitamins and minerals are set for <br> each age/sex group at a level of intake considered likely to be sufficient to meet the <br> requirements of 97.5\% of the group. |
| Estimated Average <br> Requirement <br> (EAR) | Estimates of energy intake required to meet the average needs of the group to which they <br> apply. About half the people in the group will usually need more energy than EAR and <br> half the people will need less. |

## Statistical terms

| Main effect <br> regression | A statistical technique that does not allow the effect of an explanatory variable (e.g. age) <br> to change when another explanatory variable (e.g. region) changes. |
| :--- | :--- |
| Multiple regression <br> modelling | A statistical technique that predicts values of one variable (e.g. intake of fat) on the basis <br> of two or more other variables (e.g. age, region and income) |
| Equivalised <br> income | The income a household needs to attain a given standard of living will depend on <br> its size and composition. Equivalisation means adjusting a household's income for <br> size and composition so that the incomes of all households are on a comparable <br> basis. To calculate equivalised income using the ''Modified OECD' equivalence scale, <br> each household member is given an equivalence value. This scale, first proposed by <br> Haagenars et al. (1994), assigns a value of 1 to the household head, of 0.5 to each <br> additional adult member and of 0.3 to each child. Additional household members are <br> assigned smaller values to reflect the economies of scale achieved when people live <br> together. Economies of scale arise when households share resources such as water and <br> electricity, which reduces the living costs per person. |
| Trading Down | Trading down is used in this Family Food report to mean switching to purchases of <br> cheaper products within a food grouping. Cheaper is equivalent to lower quality in <br> some way. The reduction in quality could be in any quality attribute of the product such <br> as packaging, brand name, provenance, nutrient content or taste. Trading down into a <br> completely different type of food is not captured. |

Family Food 2011


[^0]:    1 In the context of the Family Food Survey, 'margarine' includes any spread (either block or tub) that contains more than $62 \%$ fat.

[^1]:    (a) Converted to unconcentrated equivalent by applying a factor of 5 to concentrated and low calorie concentrated soft drinks.

[^2]:    (a) Converted to unconcentrated equivalent by applying a factor of 5 to concentrated and low calorie concentrated soft drinks.

[^3]:    (a) Converted to unconcentrated equivalent by applying a factor of 5 to concentrated and low calorie concentrated soft drinks.

[^4]:    1 National Diet and Nutrition Survey: Headline Results from Years 1, 2 and 3 (combined) of the rolling programme 2008/09-2010/11, Department of Health.

