
© Copyright Integra 2007

Activity DataBase 20 API

© Copyright Integra 2007

The Activity DataBase Application
Programming Interface (API)

The ADB API is an object based programming interface accessible from any application that
supports the Microsoft Common Object Model (COM). This includes Visual Basic, Visual
Basic for Applications (VBA), C++ or .NET Visual Basic or C# via COM Interop.
The objects described below together with their methods and properties are a subset of the full
object model but are those which are considered to be most useful to an ADB User. Two
methods of using the API are available; the first is to use the objects themselves and the
second is to use the ProcessMessage method of the application object. Both approaches are
available for MS Excel, Access and Word while the second is the only avaiable for use with
AutoCAD

The ADB Object Model

Application Entities Lists Schedules

IADB IADBProject IADBProjectBrowseList IADBRoomSchedule
 IADBDepartment IADBDepartmentBrowseList IADBSequencedRoomSchedule
 IADBRoom IADBRoomBrowseList IADBOrderedRoomSchedule
 IADBAssembly IADBAssemblyBrowseList IADBAssemblySchedule

 IADBComponent IADBComponentBrowseList IADBComponentSchedule
 IADBActivity IADBActivityBrowseList IADBActivitySchedule
 IADBBrand IADBModelBrowseList IADBModelSchedule

 IADBSupplier IADBBrandBrowseList
 IADBModel IADBSupplierBrowseList

Miscellaneous

IADBConditionList
IADBMsgQueue

© Copyright Integra 2007

1. The ADB application Object

IADB

Methods Description
Sub Initialise(UserName
As String, Password As
String)

Initialise the ADB application and logon to ADB

Sub UnInitialise Close all database connections. Must be called once before application
terminates

Function Exists(Project
As String, Name As String,
Type As Integer) As
Boolean

Returns True if the named Entity exists. Type:
Component=0,Assembly=1,Room=2,Department=3,Activity=4,Project
Class=5,Department Class=6,Room Class=7,Assembly
Class=8,Component Class=9,Activity Class=10, Cat1=11, Cat2=12,
Cat3=13, User=14, Grp=15, P=16, UsrLayer=17, Brand=18, Model=19,
Supplier=20

Function GetLastError()
As Object

Returns an IADB_MsgQueue object holding the full error stack for the
last error

Function
IsCodeInUse(Project As
String, Code As String) As
Boolean

Is this code already in use by a Department, Room, Assembly or
Component within the specified Project

Function
ProcessMessage(Msg As
Integer, K1 As String, K2
As String, Param1 As
String, Param2 As String,
Param3 As String) As
String

Messaging support – used for Web Services and AutoCAD
Msg – Message number see Appendix
K1 – Public key (username)
K2 – Private key (password)
Param1,2,3 - Parameters

© Copyright Integra 2007

Application Example 1

‘ Initailsie ADB and login
Dim oADB As New IADB
oADB.Initialise “manager”,”adb”

‘ Check if the Component OUT010 exists in project MYPROJ
If oADB.Exists(“MYPROJ”, “OUT010”, 0) Then
 MsgBox “Component: OUT010 exists”, vbOKOnly + vbInformation
Else
 MsgBox “Component: OUT010 does not exist”, vbOKOnly + vbInformation
EndIf

‘ Check if the code is in use in project MYPROJ
If oADB.IsCodeInUse(“MYPROJ”, “B0303”) Then
 MsgBox “Code: B0303 in use”, vbOKOnly + vbInformation
Else
 MsgBox “Code: B0303 not used”, vbOKOnly + vbInformation
EndIf

‘ Uninitialise ADB
oADB.UnInitialise

© Copyright Integra 2007

2. Entities

IADBProject

Properties Data Type Description
Description string unlimited Project title
Issue string 10 chars
Name string 8 chars Project code
Notes string unlimited
Path String Path to project database file
ProjectType String 1 char S-SQL Server blank or A for MS Access
RevisionDate Date/Time

Methods Description
Function AsXml() As String Returns the project definition as an XML string

see Appendix for definition.
Sub Close() Reset all Project attributes. The Project must be

Open.
Function ComponentSchedule() As Object Generate a Project Component Schedule.
Sub Delete() Delete the Project
Sub DeleteUnusedDate(Type As Integer)
(note typo)

Delete unused entities. 1 = Dept, 2 = Room, 3 =
Assy, 4 = Component, 5 = Activity

Function FromXml(lpszXml As String) As String Creates a project entity from a project definition
as an XML string see Appendix for definition.

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the
full error stack for the last error

Function IsDirty() As Boolean True if the Project has been modified since it was

Opened
Function IsOpen() As Boolean True if the Project has been Opened
Sub Open() Read the Project details from the ADB database.

The Name property must be set before calling this
method

Sub Save(UpdateRevisionDate As Boolean,
OverWrite As Boolean)

Write the Project to the database

Sub SaveAs(Name As String, Path As String,
UpdateRevisionDate As Boolean, OverWrite As
Boolean)

Copy the current Project to a new Project

© Copyright Integra 2007

Project Example 1
‘ Delete Unused Data for a Project – it is assumed ADB has been initialised

‘ Open the Project
Dim oProject As IADBProject
Set oProject = New IADBProject
oProject.Name = “MYPROJ”
oProject.Open

‘ Delete unused Rooms
oProject.DeleteUnusedDate 2

‘ Close
oProject.Close

Project Example 2
‘ Output the Component Schedule for a Project – it is assumed ADB has been initialised

‘ Open the Project
Dim oProject As IADBProject
Set oProject = New IADBProject
oProject.Name = “MYPROJ”
oProject.Open

‘ Get the Project’s Component Schedule
Dim oSchedule As IADBComponentSchedule
Set oSchedule = oProject.ComponentSchedule
oSchedule.Open

‘ Check there is data
If oSchedule.Count > 0 Then

‘ FOR EACH item in the Schedule
oSchedule.MoveFirst
While Not oSchedule.IsEOF

 ‘ Output
 Debug.Print oSchedule.Name, oSchedule.Description, _

oSchedule.NewCount, oSchedule.Group

‘ Next Item
 oSchedule.MoveNext
Wend

Endif

‘ Close and any open schedules
oProject.Close

© Copyright Integra 2007

IADBDepartment

Properties Data Type Description
Class String 10 chars Numeric Class
Description string unlimited Department Title
Name string 10 chars Department ADB Code. Must be set before

calling Open or Save
Notes string unlimited Optional notes
Order String 1 char Department Ordering scheme (A – alpha, S –

Specified, R – Room ordered)
Project String 8 chars ADB Project Code. Must be set before calling

Open or Save
RevisionDate Date/Time Date/Time Department last saved
UserData(n) string unlimited Set n=0,1,2,3,4 for UserData1..UserData5

Methods Description
Function ActivitySchedule() As Object Returns a Department Activity Schedule

IADBActivitySchedule
Sub AddChild(ChildType As Integer, Name As
String, NewCount As Long, TransferCount As
Long)

Add a child of the specified type (0 = Component,
1 = Assembly, 2 = Room) to the Department.
The approprate RoomSchedule must also be open.
Note: the ADB Explorer only supports adding
Rooms to Departments.

Function AssemblySchedule() As Object Generate an Assembly Schedule for this
Department

Function AsXml() As String Returns the Department definition as an XML
string see Appendix for definition.

Sub Close() Reset all Department attributes and close any
open schedules. The Department must be Open.

Function ComponentSchedule() As Object Returns a Department Component Schedule.
IADBComponentSchedule

Sub Delete() Delete the Department
Sub DeleteChild(ChildType As Integer, Name As
String, NewCount As Long, TransferCount As
Long)

Delete a child of the specified type (0 =
Component, 1 = Assembly, 2 = Room) from the
Department. The approprate RoomSchedule must
also be open. Note: the ADB Explorer only
supports deleting Rooms from Departments.

Function FromXml(lpszXml As String) As String Creates a Departmententity from a Department
definition as an XML string see Appendix for
definition.

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the
full error stack for the last error

Function IsDirty() As Boolean True if the Department has been modified since it
was Opened

Function IsOpen() As Boolean True if the Department has been Opened
Sub Open() Read the Department details from the ADB

database. The Name & Project properties must be
set before calling this method

Function OrderedRoomSchedule() As Object Returns an IADBOrderedRoomSchedule for
Departments where Order = “R”

Function RoomSchedule() As Object Returns a IADBRoomSchedule for Departments

© Copyright Integra 2007

where Order = “A”

Sub Save(UpdateRevisionDate As Boolean,
OverWrite As Boolean)

Write the Department to the database

Sub SaveAs(Project As String, Name As String,
UpdateRevisionDate As Boolean, OverWrite As
Boolean)

Copy this Department, optionally to a different
Project

Sub SaveAsWithSuffix(Project As String, Name
As String, Suffix As String, UpdateRevisionDate
As Boolean, OverWrite As Boolean)

Copy this Department, optionally to a different
Project and add a suffix to each Room code

Sub Synchronise() Re-Open all Schedules where IsDirty() = true.
Reset all internal Child Entity Lists

Function SequencedRoomSchedule() As Object Returns a IADBSequencedRoomSchedule for
Departments where Order = “S”

© Copyright Integra 2007

Department Example 1
‘ Open an existing Department and display its properties – it is assumed ADB has been
initialised

‘ Open a Department
Dim oDepartment As IADBDepartment
Set oDepartment = New IADBDepartment

‘ Set the Project and Name
oDepartment.Project = “MYPROJ”
oDepartment.Name = “INP01”

‘ Open the Department and display it’s properties
oDepartment.Open

‘ Output the data – note the index of the UserData properties
‘ is 0 for UserData field 1, 1 for UserData field 2 etc.
Debug.Print oDepartment.Name, oDepartment.Description, _

 oDepartment.Order, oDepartment.Notes, _
oDepartment.RevisionDate, oDepartment.UserData(0)

‘ Close
oDepartment.Close

Department Example 2
‘ Create new Department – it is assumed ADB has been initialised

‘ Open a Department
Dim oDepartment As IADBDepartment
Set oDepartment = New IADBDepartment

‘ Set the Project and Name
oDepartment.Project = “MYPROJ”
oDepartment.Name = “INP01”

‘ Open the Department and set the Description and Order
oDepartment.Open
oDepartment.Description = “IN-PATIENTS”
oDepartment.Order = “A”

‘ Save the Department and set the revision date to the current date
oDepartment.Save True, True

‘ Close
oDepartment.Close

© Copyright Integra 2007

Department Example 3
‘ Add/Delete Rooms to/from a Department – it is assumed ADB has been initialised

‘ Open a Department
Dim oDepartment As IADBDepartment
Set oDepartment = New IADBDepartment

‘ Set the Project and Name
oDepartment.Project = “MYPROJ”
oDepartment.Name = “INP01”

‘ Open the Department and set the Description and Order
oDepartment.Open

‘ Note the Room Schedule must also be open
‘ For alphanumeric ordered Departments this must be an IADBRoomSchedule
‘ For specified sequenced Departments this must be an IADBSequencedRoomSchedule
‘ For room ordered Departments this must be an IADBOrderedRoomSchedule
Dim oSchedule As IADBRoomSchedule
Set oSchedule = oDepartment.RoomSchedule
oSchedule.Open

‘ Add 3 Rooms (ChildType = 2) B0303 to the Department
‘ (To delete use the DeleteChildMethod)
oDepartment.AddChild 2,”B0303”,3,0

‘ Add 1 Room C0214 to the Department
oDepartment.AddChild 2,”C0224”,1,0

‘ Save the Department and set the revision date to the current date
oDepartment.Save True, True

‘ Close – This will also close the Room Schedule
oDepartment.Close

Department Example 4
‘ Output the Room Schedule for a Department – it is assumed ADB has been initialised

‘ Open a Department
Dim oDepartment As IADBDepartment
Set oDepartment = New IADBDepartment

‘ Set the Project and Name
oDepartment.Project = “MYPROJ”
oDepartment.Name = “INP01”

‘ Open the Department
oDepartment.Open

‘ Open the Room Schedule:
‘ IADBRoomSchedule for alphanumeric ordered
‘ IADBSequencedRoomSchedule for specified sequenced

© Copyright Integra 2007

‘ IADBOrderedRoomSchedule for room ordered
Dim oSchedule As IADBRoomSchedule
Set oSchedule = oDepartment.RoomSchedule
oSchedule.Open

‘ Check there is data
If oSchedule.Count > 0 Then

‘ FOR EACH ROOM…
oSchedule.MoveFirst
While Not oSchedule.IsEOF

 ‘ Output data
 Debug.Print oSchedule.Name, oSchedule.Description, oSchedule.NewCount

 ‘ Next record
 oSchedule.MoveNext
Wend

Endif

‘ Close – This will also close the Room Schedule
oDepartment.Close

Department Example 5
‘ Output the Component Schedule for a Department - it is assumed ADB has been initialised

‘ Open a Department
Dim oDepartment As IADBDepartment
Set oDepartment = New IADBDepartment

‘ Set the Project and Name
oDepartment.Project = “MYPROJ”
oDepartment.Name = “INP01”

‘ Open the Department and set the Description and Order
oDepartment.Open

‘ Open the Component Schedule:
Dim oSchedule As IADBComponentSchedule
Set oSchedule = oDepartment.ComponentSchedule
oSchedule.Open

‘ Check there is data
If oSchedule.Count > 0 Then

‘ FOR EACH COMPONENT…
oSchedule.MoveFirst
While Not oSchedule.IsEOF

 ‘ Output data
 Debug.Print oSchedule.Name, oSchedule.Description, _

oSchedule.Group , oSchedule.NewCount

© Copyright Integra 2007

 ‘ Next record
 oSchedule.MoveNext
Wend

Endif

‘ Close – This will also close the Component Schedule
oDepartment.Close

© Copyright Integra 2007

IADBRoom

Properties Data Type Description
AcceptableSoundLevel Double (Room Environmental Data). The

acceptable sound level in the Room
(L10dB(A))

Acoustics String unlimited (Room Environmental Data). Brief textual
notes relating to the noise levels within
the Room

Area Double Room Area
Arrestance Double (Room Environmental Data). Percentage

arrestance
AutomaticDetection String (Room Environmental Data). Automatic

fire detection
Ceilings String unlimited (Room Design Characteristics). Brief

textual notes relating to Room ceilings
Class String 10 chars Numeric Class
ColourRendering Boolean (Room Environmental Data). Colour

rendering required (true/false)
ColourRenderingNotes String unlimited (Room Environmental Data). Brief textual

notes relating to the Room colour
rendering requirements

Description String unlimited Department Title
DesignNotes String unlimited (Room Design Characteristics). Brief

textual notes relating to Room Design
Characteristics

Doorsets String unlimited (Room Design Characteristics). Brief
textual notes relating to Room doorsets

DustSpotEfficiency Double (Room Environmental Data). Dust Spot
Efficiency

Enclosure String (Room Environmental Data). Enclosure
FiltrationHumidityNotes String unlimited (Room Environmental Data). Brief textual

notes relating to the Room humidity
FireProtection String (Room Environmental Data). Brief textual

notes relating to fire prevention/detection
features required by the Room

Flooring String unlimited (Room Design Characteristics). Brief
textual notes relating to Room flooring

Glazing String unlimited (Room Design Characteristics). Brief
textual notes relating to Room glazing

Hatch String unlimited (Room Design Characteristics). Brief
textual notes relating to Room hatches

Height Double Room Height
HotSurfaceTemperature Double (Room Environmental Data). Maximum

temperature in degrees Celsius of hot
surfaces within the Room

HotWaterTemperature Double (Room Environmental Data). Maximum
temperature in degrees Celsius of hot water
supplies within the Room

HVAC String unlimited (Room Environmental Data). Brief textual
notes relating to Heating, Ventilation &
Air Conditioning

Illumination String (Room Environmental Data). Brief textual

© Copyright Integra 2007

notes relating to the Room lighting
requirements

IntrusiveNoise Double (Room Environmental Data). Intrusive
noise levels (NR Leq)

LocalIllumination Double (Room Environmental Data). Local
illumination (Lux)

LocalIlluminationNotes String unlimited (Room Environmental Data). Brief textual
notes relating to the Room local lighting

MechanicalServices Double (Room Environmental Data). Noise
related to mechanical services (NR)

MechanicalVentilationExtract Double (Room Environmental Data). Mechanical
ventilation (extract ac/hr)

MechanicalVentilationNotes String unlimited (Room Environmental Data). Brief textual
notes relating to the Room mechanical
ventilation

MechanicalVentilationSupply Double (Room Environmental Data). Mechanical
ventialtion (supply ac/hr)

Name String 10 chars Department ADB Code. Must be set before

calling Open or Save
NoiseNotes String
Notes String unlimited Optional notes
Personnel String unlimited Room personnel requirements
PlanningRelationships String unlimited The relationship between this Room and

adjoining spaces
Precautions String (Room Environmental Data). Brief textual

notes relating to special safety features
required by the Room

PrivacyFactor Double (Room Environmental Data). Privacy
factor required (dB)

Project String 8 chars ADB Project Code. Must be set before
calling Open or Save

QualityNotTolerated String (Room Environmental Data). The types
of noise which cannt be permitted in the
Room (Tonal/Intermittent/Impact)

RelativeHumidity Double (Room Environmental Data). Percentage
relative humidity

RelativePressure String (Room Environmental Data). Relative
pressure to adjoining space. NEG/POS

RevisionDate Date/Time Date/Time Room last saved
SafetyNotes String (Room Environmental Data).

Additionaltextual notes relating to special
safety features required by the Room

ServiceIllumination Double (Room Environmental Data). Service
illumination (Lux)

ServiceIlluminationNight Double (Room Environmental Data). Night-time
service illumination (Lux)

ServiceIlluminationNightNotes String (Room Environmental Data). Brief textual
notes relating to the Room night-time
service lighting

ServiceIlluminationNotes String (Room Environmental Data). Brief textual
notes relating to the Room service lighting

SpaceNotes String unlimited
SpeechPrivacy Boolean (Room Environmental Data). Specifies

© Copyright Integra 2007

whether speech privacy is required in the
Room (true/false)

StandbyLightingGrade String (Room Environmental Data). Standby
lighting grade

StandbyLightingGradeNotes String (Room Environmental Data). Standby
lighting grade

SummerTemperature Double (Room Environmental Data). Maximum
summer in degrees Celsius

TemperatureNotes String unlimited (Room Environmental Data). Brief textual
notes relating to the Room temperature
requirements

Type String Entity type. Normally T (Template) I
(instanced)

UserData(n) String unlimited Set n=0,1,2,3,4 for UserData1..UserData5
Walls String unlimited Room Design Characteristics). Brief

textual notes relating to Room walls
Windows String unlimited Room Design Characteristics). Brief

textual notes relating to Room windows
WinterTemperature Double (Room Environmental Data). Minimum

winter in degrees Celsius

Methods Description
Function ActivitySchedule() As Object Returns a Room Activity Schedule

IADBActivitySchedule
Sub AddChild(ChildType As Integer, Name As
String, NewCount As Long, TransferCount As
Long)

Add a child of the specified type (0 = Component,
1 = Assembly, 2 = Activity) to the Room. The
approprate Schedule must also be open.

Function AssemblySchedule() As Object Returns an Assembly Schedule
IADBAssemblySchedule for the Room

Function AsXml() As String Returns the Room definition as an XML string see
Appendix for definition.

Sub ChildDisposition(Type As Integer, Name As
String, NewCount As Long, TransferCount As
Long)

Adjust the New & Transferred counts for the
specified child entity. NewCount + TransferCount
must equal the current total count. Components:
ChildType = 0

Sub ClearSubEntityMask() Remove any previously set Sub-Entity filters
Sub Close() Reset all Room attributes and close any open

schedules. The Room must be Open.
Function ComponentSchedule() As Object Returns a Room Component Schedule.

IADBComponentSchedule
Sub Delete() Delete the Room
Sub DeleteChild(ChildType As Integer, Name As
String, NewCount As Long, TransferCount As
Long)

Delete a child of the specified type (0 =
Component, 1 = Assembly, 2 = Activity) from
the Room. The approprate Schedule must also be
open.

Function FromXml(lpszXml As String) As String Creates a Room entity from a Room definition as
an XML string see Appendix for definition.

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the
full error stack for the last error

Sub GetSpaceBox(X1 As Double, Y1 As Double,
Z1 As Double, X2 As Double, Y2 As Double, Z2
As Double)

Get the coordinates of two opposite corners of a
bounding cube which fully encloses the Room

Function IsDirty() As Boolean True if the Room has been modified since it was
Opened

© Copyright Integra 2007

Function IsOpen() As Boolean True if the Room has been Opened
Sub Open() Read the Room details from the ADB database.

The Name & Project properties must be set
before calling this method

Function PanelSchedule() As Object Returns and IADBPanelSchedule (i.e walls)
Sub Save(UpdateRevisionDate As Boolean,
OverWrite As Boolean)

Write the Room to the database

Sub SaveAs(Project As String, Name As String,
UpdateRevisionDate As Boolean, OverWrite As
Boolean)

Copy this Room, optionally to a different Project

Sub SetSpaceBox(X1 As Double, Y1 As Double,
Z1 As Double, X2 As Double, Y2 As Double, Z2
As Double)

Set the coordinates of two opposite corners of a
bounding cube which fully encloses the Room

Sub SetSubEntityMask(SubEntity As Integer) Open/Save will ignore thye sepcified sub-entity
data. 0 = Space, 1 = env, 2 = env notes, 3 =
character, 4 = personnel, 5 = planning, 6 = class

Sub ShiftActivity(Direction As Integer) Move the Activity one position Direction = 0
forwards (down list) Direction = 1 backwards (up
list)

Sub Synchronise() Re-Open all Schedules where IsDirty() = true.
Reset all internal Child Entity Lists

© Copyright Integra 2007

Room Example 1
‘ Open an existing Room and output it’s properties – it is assumed ADB has been initialised

‘ Create a Room entity
Dim oRoom As IADBRoom
Set oRoom = New IADBRoom

‘ Set the Project and Name
oRoom.Project = “MYPROJ”
oRoom.Name = “B0303”

‘ Open the Room
oRoom.Open

‘ Output the Data
Debug.Print oRoom.Name, oRoom.Description, oRoom.RevisionDate

‘ Space data
Debug.Print oRoom.Area, oRoom.Height

‘ Personnel
Debug.Print oRoom.Personnel

‘ Planning Relationships
Debug.Print oRoom.PlanningRelationships

‘ Environmental Data
Debug.Print oRoom.WinterTemperature

‘ Design Character Data
Debug.Print oRoom.Flooring

‘ Close
oRoom.Close

© Copyright Integra 2007

Room Example 2
‘ Create new Room or modify an existing Room and set its properties – it is assumed ADB
has been initialised

‘ Create a Room entity
Dim oRoom As IADBRoom
Set oRoom = New IADBRoom

‘ Set the Project and Name
oRoom.Project = “MYPROJ”
oRoom.Name = “B9000”

‘ Open the Room and set the Description
oRoom.Open
oRoom.Description = “Bedroom”

‘ Space data
oRoom.Area = 20.0
oRoom.Height = 2400

‘ Personnel
oRoom.Personnel = “1-Patient, 2-Others”

‘ Planning Relationships
oRoom.PlanningRelationships = “Adjacent to staff base”

‘ Environmental Data
oRoom.WinterTemperature = 21.0

‘ Design Character Data
oRoom.Flooring = “Carpet”

‘ Save the Room and set the revision date to the current date
oRoom.Save True, True

‘ Close
oRoom.Close

© Copyright Integra 2007

Room Example 3
‘ Add/Delete Activities, Assemblies and Components to/from a Room – it is assumed ADB
has been initialised

‘ Create a Room entity
Dim oRoom As IADBRoom
Set oRoom = New IADBRoom

‘ Set the Project and Name and Open the Room
oRoom.Project = “MYPROJ”
oRoom.Name = “B9000”
oRoom.Open

‘ Note the Component Schedule must also be open
Dim oCompSchedule As IADBComponentSchedule
Set oCompSchedule = oRoom.ComponentSchedule
oCompSchedule.Open

‘ Add new Components (ChildType = 0) to the Room
‘ The Components must exist in the Project so better to use the Exists
‘ method for the application object to check if not sure
 oRoom.AddChild 0, "OUT010", 2, 0
 oRoom.AddChild 0, "OUT005", 1, 0
 oRoom.AddChild 0, "CHA017", 4, 0
 oRoom.Save True, True

‘ Close – This will also close the schedules
oRoom.Close

© Copyright Integra 2007

Room Example 4
‘ Output the Actvity, Assembly and Component Schedules for a Room – it is assumed ADB
has been initialised

‘ Open a Room
Dim oRoom As IADBRoom
Set oRoom = New IADBRoom

‘ Set the Project and Name
oRoom.Project = “MYPROJ”
oRoom.Name = “B9000”

‘ Open the Room
oRoom.Open

‘ Open the Activity schedule
Dim oActSchedule As IADBActivitySchedule
Set oActSchedule = oRoom.ActivitySchedule
oActSchedule.Open

 ‘ FOR EACH ACTIVITY…
oActSchedule.MoveFirst
While Not oActSchedule.IsEOF

 ‘ Output data
 Debug.Print oActSchedule.Name, oActSchedule.Description

 ‘ Next record
 oActSchedule.MoveNext
Wend

‘ Open the Assembly schedule
Dim oAssySchedule As IADBAssySchedule
Set oAssySchedule = oRoom.AssemblySchedule
oAssySchedule.Open

 ‘ FOR EACH ASSEMBLY…
oAssySchedule.MoveFirst
While Not oAssySchedule.IsEOF

 ‘ Output data
 Debug.Print oAssySchedule.Name, oAssySchedule.Description, _

oAssySchedule.NewCount

 ‘ Next record
 oAssySchedule.MoveNext
Wend
‘ Open the Component schedule
Dim oCompSchedule As IADBComponentSchedule
Set oCompSchedule = oRoom.ComponentSchedule
oCompSchedule.Open

‘ FOR EACH COMPONENT…

© Copyright Integra 2007

oCompSchedule.MoveFirst
While Not oCompSchedule.IsEOF

 ‘ Output data
 Debug.Print oCompSchedule.Name, oCompSchedule.Description, _

oCompSchedule.NewCount, oCompSchedule.TransferCount, _
oCompSchedule.Group

 ‘ Next record
 oCompSchedule.MoveNext
Wend

‘ Close – This will also close all the open schedules
oRoom.Close

© Copyright Integra 2007

IADBAssembly

Properties Data Type Description
Class String 10 chars Numeric Class
Description String unlimited Department Title
Name String 10 chars Department ADB Code. Must be set

before calling Open or Save
Notes String unlimited Optional notes
Project String 8 chars ADB Project Code. Must be set before

calling Open or Save
RevisionDate Date/Time Date/Time Assembly last saved
Type String Entity type. Normally T (Template) I

(instanced)
UserData(n) String unlimited Set n=0,1,2,3,4 for UserData1..UserData5

Methods Description
Function ActivitySchedule() As Object Returns an Assembly Activity Schedule

IADBActivitySchedule
Sub AddChild(ChildType As Integer, Name As
String, NewCount As Long, TransferCount As
Long)

Add a child of the specified type (0 = Component,
1 = Assembly, 2 = Activity) to the Assembly. The
approprate Schedule must also be open.

Function AssemblySchedule() As Object Returns an Assembly Schedule
IADBAssemblySchedule for the Room

Function AsXml() As String Returns the Assembly definition as an XML string
see Appendix for definition.

Sub ClearSubEntityMask() Remove any previously set Sub-Entity filters
Sub Close() Reset all Assembly attributes and close any open

schedules. The Assembly must be Open.
Function ComponentSchedule() As Object Returns a Assembly Component Schedule.

IADBComponentSchedule
Sub Delete() Delete the Assembly
Sub DeleteChild(ChildType As Integer, Name As
String, NewCount As Long, TransferCount As
Long)

Delete a child of the specified type (0 =
Component, 1 = Assembly, 2 = Activity) from
the Assembly. The approprate Schedule must also
be open.

Function FromXml(lpszXml As String) As String Creates an Assembly entity from an Assembly
definition as an XML string see Appendix for
definition.

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the
full error stack for the last error

Sub GetSpaceBox(X1 As Double, Y1 As Double,
Z1 As Double, X2 As Double, Y2 As Double, Z2
As Double)

Get the coordinates of two opposite corners of a
bounding cube which fully encloses the Room

Function IsDirty() As Boolean True if the Assembly has been modified since it
was Opened

Function IsOpen() As Boolean True if the Assembly has been Opened
Sub Open() Read the Assembly details from the ADB

database. The Name & Project properties must be
set before calling this method

Sub Save(UpdateRevisionDate As Boolean,
OverWrite As Boolean)

Write the Assembly to the database

Sub SaveAs(Project As String, Name As String, Copy this Assembly, optionally to a different

© Copyright Integra 2007

UpdateRevisionDate As Boolean, OverWrite As
Boolean)

Project

Sub SetSpaceBox(X1 As Double, Y1 As Double,
Z1 As Double, X2 As Double, Y2 As Double, Z2
As Double)

Set the coordinates of two opposite corners of a
bounding cube which fully encloses the Assembly

Sub SetSubEntityMask(SubEntity As Integer) SubEntity = 0, Open/Save will ignore Assembly
Classification data

Sub ShiftActivity(Direction As Integer) Move the Activity one position Direction = 0
forwards (down list) Direction = 1 backwards (up
list)

Sub Synchronise() Re-Open all Schedules where IsDirty() = true.
Reset all internal Child Entity Lists

© Copyright Integra 2007

Assembly Example 1
‘ Open an existing Assembly or output it’s properties – it is assumed ADB has been initialised

‘ Create an Assembly entity
Dim oAssembly As IADBAssembly
Set oAssembly = New IADBAssembly

‘ Set the Project and Name
oAssembly.Project = “MYPROJ”
oAssembly.Name = “SA1244”

‘ Open the Assembly
oAssembly.Open

‘ Ouput the Data
Debug.Print oAssembly.Name, oAssembly.Description , _

 oAssembly.Class, oAssembly.RevisionDate

‘ Close
oAssembly.Close

© Copyright Integra 2007

Assembly Example 2
‘ Create new Assembly or modify an existing Assembly and set its properties – it is assumed
ADB has been initialised

‘ Create an Assembly entity
Dim oAssembly As IADBAssembly
Set oAssembly = New IADBAssembly

‘ Set the Project and Name
oAssembly.Project = “MYPROJ”
oAssembly.Name = “SA9000”

‘ Open the Assembly and set the Description
oAssembly.Open
oAssembly.Description = “Sanitary Assembly”
oAssembly.Class = “3311”

‘ Save the Assembly and set the revision date to the current date
oAssembly.Save True, True

‘ Close
oAssembly.Close

© Copyright Integra 2007

Assembly Example 3
‘ Add/Delete Actvities, Assemblies and Components to/from an Assembly – it is assumed
ADB has been initialised

‘ Create a Assembly entity
Dim oAssembly As IADBAssembly
Set oAssembly = New IADBAssembly

‘ Set the Project and Name and Open the Assembly
oAssembly.Project = “MYPROJ”
oAssembly.Name = “SA9000”
oAssembly.Open

‘ Note the Component Schedule must also be open
Dim oCompSchedule As IADBComponentSchedule
Set oCompSchedule = oAssembly.ComponentSchedule
oCompSchedule.Open

‘ Add new Components (ChildType = 0) to the Assembly
‘ The Components must exist in the Project so better to use the Exists
‘ method for the application object to check if not sure
 oAssembly.AddChild 0, "OUT010", 2, 0
 oAssembly.AddChild 0, "OUT005", 1, 0
 oAssembly.Save True, True

‘ Close – This will also close the schedule
oAssembly.Close

© Copyright Integra 2007

Assembly Example 4
‘ Output the Actvity, Assembly and Component Schedules for an Assembly – it is assumed
ADB has been initialised

‘ Create a new Assembly object
Dim oAssembly As IADBAssembly
Set oAssembly = New IADBAssembly

‘ Set the Project and Name
oAssembly.Project = “MYPROJ”
oAssembly.Name = “SA9000”

‘ Open the Assembly
oAssembly.Open

‘ Open the Activity schedule
Dim oActSchedule As IADBActivitySchedule
Set oActSchedule = oAssembly.ActivitySchedule
oActSchedule.Open

 ‘ FOR EACH ACTIVITY…
oActSchedule.MoveFirst
While Not oActSchedule.IsEOF

 ‘ Output data
 Debug.Print oActSchedule.Name, oActSchedule.Description

 ‘ Next record
 oActSchedule.MoveNext
Wend

‘ Open the Assembly schedule
Dim oAssySchedule As IADBAssemblySchedule
Set oAssySchedule = oAssembly.AssemblySchedule
oAssySchedule.Open

 ‘ FOR EACH ASSEMBLY…
oAssySchedule.MoveFirst
While Not oAssySchedule.IsEOF

 ‘ Output data
 Debug.Print oAssySchedule.Name, oAssySchedule.Description, _

oAssySchedule.NewCount

 ‘ Next record
 oAssySchedule.MoveNext
Wend
‘ Open the Component schedule
Dim oCompSchedule As IADBComponentSchedule
Set oCompSchedule = oAssembly.ComponentSchedule
oCompSchedule.Open

‘ FOR EACH COMPONENT…

© Copyright Integra 2007

oCompSchedule.MoveFirst
While Not oCompSchedule.IsEOF

 ‘ Output data
 Debug.Print oCompSchedule.Name, oCompSchedule.Description, _

oCompSchedule.NewCount, oCompSchedule.TransferCount, _
oCompSchedule.Group

 ‘ Next record
 oCompSchedule.MoveNext
Wend

‘ Close – This will also close all the open schedules
oAssembly.Close

© Copyright Integra 2007

IADBComponent

Properties Data Type Description
Class String 10 chars Numeric Class
Cost Double New Component Cost
DefaultModel String 10 chars ADB Code of the default Model
Description String unlimited Department Title
GenericSpec String unlimited
Group String 1 char Component Group Code
InstallerType String 1 char The ADB code for the type of

organisation which installs the
Component

Layer String 31 char AutoCAD layer on which Component will
be drawn

Level String 1 char The Component level. Used by the
AutoCAD library 1-Minor 2-Mid range 3-
Major Component

Name String 10 chars Component ADB Code. Must be set before
calling Open or Save

Notes String unlimited Descriptive textual notes
NSVCode String 10 chars Alternative e.g. supplies or code
PartNumber String 30 chars Component Manufacturers Identification

code.
PhysicalSize String unlimited Textual description of the spatial

requirements of the Component. No
longer used by ADB

Project String 8 chars ADB Project Code. Must be set before
calling Open or Save

RevisionDate Date/Time Date/Time Assembly last saved
ScheduleFlag Boolean If TRUE, this Component will be

included in Component Schedules
ServiceBool(nItem As Integer) Boolean 10 TRUE/FALSE fileds used for services

Set nItem=0,1,2,3,4,5,6,7,8,9
ServiceFloat(nItem As Integer) Single 10 Single precision floating point numbers

fileds used for services Set
nItem=0,1,2,3,4,5,6,7,8,9

ServiceInt(nItem As Integer) Integer 10 Integer fileds used for services Set
nItem=0,1,2,3,4,5,6,7,8,9

ServiceString(nItem As
Integer)

String unlimited 10 String fileds used for services Set
nItem=0,1,2,3,4,5,6,7,8,9

SupplierType String 1 char The ADB code for the type of
organisation which supplies the
Component

InstallerType String 1 char The ADB code for the type of
organisation which installs the
Component

TransferCost Double Transferred Component Cost
Type String Entity type. Normally T (Template) I

(instanced)
User1Type String 1 char First user-definable type attribute
User2Type String 1 char Second user-definable type attribute
UserData(n) String unlimited Set n=0,1,2,3,4 for UserData1..UserData5

© Copyright Integra 2007

Methods Description
Function AsXml() As String Returns the Component definition as an XML

string see Appendix for definition.
Sub ClearSubEntityMask() Remove any previously set Sub-Entity filters
Sub Close() Reset all Component attributes and close any open

schedules. The Component must be Open.
Sub Delete() Delete the Component
Function FromXml(lpszXml As String) As
String

Creates an Component entity from a Component
definition as an XML string see Appendix for
definition.

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the
full error stack for the last error

Sub GetSpaceBox(X1 As Double, Y1 As Double,
Z1 As Double, X2 As Double, Y2 As Double, Z2
As Double)

Get the coordinates of two opposite corners of a
bounding cube which fully encloses the Component

Function HasGraphic(nView As Integer) As
Boolean

Retruns TRUE if the Component has a graphic
view. Set nView 0-3D, 1-Front Elevation, 2-Plan,
3-Rear, 4-Left, 5-Right

Function IsDirty() As Boolean True if the Component has been modified since it
was Opened

Function IsOpen() As Boolean True if the Component has been Opened
Function ModelSchedule() As Object Returns an IADBModelSchedule for the

Component
Sub Open() Read the Component details from the ADB

database. The Name & Project properties must be
set before calling this method

Sub Save(UpdateRevisionDate As Boolean,
OverWrite As Boolean)

Write the Component to the database

Sub SaveAs(Project As String, Name As String,
UpdateRevisionDate As Boolean, OverWrite As
Boolean)

Copy this Component, optionally to a different
Project. The Component must be Open, and must
not have been modified (i.e. IsDirty = false)

Sub SetSpaceBox(X1 As Double, Y1 As Double,
Z1 As Double, X2 As Double, Y2 As Double, Z2
As Double)

Set the coordinates of two opposite corners of a
bounding cube which fully encloses the Component

Sub SetSubEntityMask(SubEntity As Integer) Ignore the specified sub-Entity, where
0=Class,1=NSV,2=Graphic(-3),3=Graphic(-
E),4=Graphic(-
P),5=Graphic(RE),6=Graphic(SE),7=Graphic(TE)

© Copyright Integra 2007

Component Example 1
‘ Open an existing Component or output it’s properties – it is assumed ADB has been
initialised

‘ Create a Component entity
Dim oComponent As IADBComponent
Set oComponent = New IADBComponent

‘ Set the Project and Name
oComponent.Project = “MYPROJ”
oComponent.Name = “CHA017”

‘ Open the Component
oComponent.Open

‘ Ouput the Data
Debug.Print oComponent.Name, oComponent.Description , _

 oComponent.Class, oComponent.RevisionDate, _
oComponent.Group, oComponent.ServiceBool(0), _
oComponent.ServiceString(0), oComponent.ServiceFloat(0)

‘ Close
oComponent.Close

© Copyright Integra 2007

Component Example 2
‘ Create new Component or modify an existing Component and set its properties – it is
assumed ADB has been initialised

‘ Create an Component entity
Dim oComponent As IADBComponent
Set oComponent = New IADBComponent

‘ Set the Project and Name
oComponent.Project = “MYPROJ”
oComponent.Name = “DEF900”

‘ Open the Component and set the Description and other properties
oComponent.Open
oComponent.Description = “DEFIBRILLATOR”
oComponent.Class = “2301”
oComponent.Group = “3”
oComponent.Cost = 2000.0

‘ Save the Component and set the revision date to the current date
oComponent.Save True, True

‘ Close
oComponent.Close

© Copyright Integra 2007

Component Example 3
‘ Add/Delete Models to the Component
‘ Note that unlike Departments, Rooms and Assemblies the Component Entity
‘ does not support children and therefore has no AddChild method.
‘ As support for Models etc. was added at a later date the an the Add method
‘ has been assigned to the ModelSchedule
‘ – again it is assumed ADB has been initialised

‘ Create a Component entity
Dim oComponent As IADBComponent
Set oComponent = New IADBComponent

‘ Set the Project and Name and Open the Component
oComponent.Project = “MYPROJ”
oComponent.Name = “DEF900”
oComponent.Open

‘ Note the Model Schedule must also be open
Dim oModelSchedule As IADBModelSchedule
Set oModelSchedule = oComponent.ModelSchedule
oModelSchedule.Open

‘ Add a Model – The Model, Brand and Supplier must exist
‘ Note place holders “” are used for fields which are not required
oModelSchedule.AddModel “HP4537A”,””, “”, “”, “HP”, “”, “AGILENT”, 0.0, Now

‘ Save the ModelSchedule
oModelSchedule.Save

‘ Save the Component
oComponent.Save True, True

‘ Close – This will also close the schedules
oComponent.Close

© Copyright Integra 2007

Component Example 4
‘ Output the Model Schedule for a Component – it is assumed ADB has been initialised

‘ Open a Component
Dim oComponent As IADBComponent
Set oComponent = New IADBComponent

‘ Set the Project and Name
oComponent.Project = “MYPROJ”
oComponent.Name = “DEF900”

‘ Open the Component
oComponent.Open

‘ Open the Model schedule
Dim oModSchedule As IADBModelSchedule
Set oModSchedule = oComponent.ModelSchedule
oModSchedule.Open

 ‘ FOR EACH MODEL…
oModSchedule.MoveFirst
While Not oModSchedule.IsEOF

 ‘ Output data
 Debug.Print oModSchedule.Name, oModSchedule.Description, _
 oModSchedule.Brand, oModSchedule.Supplier, _
 oModSchedule.Cost, oModSchedule.IsDefault

 ‘ Next record
 oModSchedule.MoveNext
Wend

‘ Close – This will also any open schedules
oComponent.Close

© Copyright Integra 2007

IADBActivity

Properties Data Type Description
Class String 10 chars Numeric Class
Description String unlimited Activity Title
Name String 10 chars Activity ADB Code. Must be set before

calling Open or Save
Notes String unlimited Descriptive textual notes
Project String 8 chars ADB Project Code. Must be set before

calling Open or Save
RevisionDate Date/Time Date/Time Assembly last saved
UserData(n) String unlimited Set n=0,1,2,3,4 for UserData1..UserData5

Methods Description
Function AsXml() As String Returns the Activity definition as an XML string

see Appendix for definition.
Sub Close() Reset all Activity attributes. The Activity must be

Open.
Sub Delete() Delete the Activity
Function FromXml(lpszXml As String) As
String

Creates an Activity entity from an Activity
definition as an XML string see Appendix for
definition.

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the full
error stack for the last error

Function IsDirty() As Boolean True if the Activity has been modified since it was
Opened

Function IsOpen() As Boolean True if the Activity has been Opened
Sub Open() Read the Activity details from the ADB database.

The Name & Project properties must be set before
calling this method

Sub Save(UpdateRevisionDate As Boolean,
OverWrite As Boolean)

Write the Activity to the database

Sub SaveAs(Project As String, Name As String,
UpdateRevisionDate As Boolean, OverWrite As
Boolean)

Copy this Activity, optionally to a different
Project. The Activity must be Open, and must not
have been modified (i.e. IsDirty = false)

© Copyright Integra 2007

Activity Example 1
‘ Open an existing Activity and output it’s properties – it is assumed ADB has been initialised

‘ Create an Activity entity
Dim oActivity As IADBActivity
Set oActivity = New IADBActivity

‘ Set the Project and Name
oActivity.Project = “MYPROJ”
oActivity.Name = “WAS009”

‘ Open the Activity
oActivity.Open

‘ Ouput the Data
Debug.Print oActivity.Name, oActivity.Description , _

 oActivity.Class, oActivity.RevisionDate

‘ Close
oActivity.Close

© Copyright Integra 2007

Activity Example 2
‘ Create new Activity or modify an existing Activity and set its properties – it is assumed
ADB has been initialised

‘ Create an Activity entity
Dim oActivity As IADBActivity
Set oActivity = New IADBActivity

‘ Set the Project and Name
oActivity.Project = “MYPROJ”
oActivity.Name = “WAS900”

‘ Open the Activity and set the Description and other properties
oActivity.Open
oActivity.Description = “Washing Activity”
oActivity.Class = “3310”

‘ Save the Activity and set the revision date to the current date
oActivity.Save True, True

‘ Close
oActivity.Close

© Copyright Integra 2007

IADBBrand

Properties Data Type Description
Description String unlimited Brand Title
Name String 10 chars Brand ADB Code. Must be set before

calling Open or Save
Notes String unlimited Descriptive textual notes
Project String 8 chars ADB Project Code. Must be set before

calling Open or Save
RevisionDate Date/Time Date/Time Assembly last saved
UserData(n) String unlimited Set n=0,1,2,3,4 for UserData1..UserData5

Methods Description
Function AsXml() As String Returns the Brand definition as an XML string see

Appendix for definition.
Sub Close() Reset all Brand attributes. The Brand must be

Open.
Sub Delete() Delete the Brand
Function FromXml(lpszXml As String) As
String

Creates an Brand entity from an Brand definition
as an XML string see Appendix for definition.

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the
full error stack for the last error

Function IsDirty() As Boolean True if the Brand has been modified since it was
Opened

Function IsOpen() As Boolean True if the Brand has been Opened
Sub Open() Read the Brand details from the ADB database.

The Name & Project properties must be set before
calling this method

Sub Save(UpdateRevisionDate As Boolean,
OverWrite As Boolean)

Write the Brand to the database

Sub SaveAs(Project As String, Name As String,
UpdateRevisionDate As Boolean, OverWrite As
Boolean)

Copy this Brand, optionally to a different Project.
The Brand must be Open, and must not have been
modified (i.e. IsDirty = false)

© Copyright Integra 2007

Brand Example 1
Open an existing Brand and output it’s properties – it is assumed ADB has been initialised

‘ Create an Brand entity
Dim oBrand As IADBBrand
Set oBrand = New IADBBrand

‘ Set the Project and Name
oBrand.Project = “MYPROJ”
oBrand.Name = “HP”

‘ Open the Brand
oBrand.Open

‘ Ouput the Data
Debug.Print oBrand.Name, oBrand.Description , oBrand.RevisionDate

‘ Close
oBrand.Close

© Copyright Integra 2007

Brand Example 2
Create new Brand or modify an existing Brand and set its properties – it is assumed ADB has
been initialised

‘ Create an Brand entity
Dim oBrand As IADBBrand
Set oBrand = New IADBBrand

‘ Set the Project and Name
oBrand.Project = “MYPROJ”
oBrand.Name = “HP”

‘ Open the Brand and set the Description and other properties
oBrand.Open
oBrand.Description = “Hewlett Packard”

‘ Save the Brand and set the revision date to the current date
oBrand.Save True, True

‘ Close
oBrand.Close

© Copyright Integra 2007

IADBSupplier

Properties Data Type Description
Description String unlimited Supplier Title
Name String 10 chars Supplier ADB Code. Must be set before

calling Open or Save
Notes String unlimited Descriptive textual notes
Project String 8 chars ADB Project Code. Must be set before

calling Open or Save
RevisionDate Date/Time Date/Time Assembly last saved
UserData(n) String unlimited Set n=0,1,2,3,4 for UserData1..UserData5

Methods Description
Function AsXml() As String Returns the Supplier definition as an XML string

see Appendix for definition.
Sub Close() Reset all Supplier attributes. The Supplier must be

Open.
Sub Delete() Delete the Supplier
Function FromXml(lpszXml As String) As
String

Creates an Supplier entity from an Supplier
definition as an XML string see Appendix for
definition.

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the
full error stack for the last error

Function IsDirty() As Boolean True if the Supplier has been modified since it was
Opened

Function IsOpen() As Boolean True if the Supplier has been Opened
Sub Open() Read the Supplier details from the ADB database.

The Name & Project properties must be set before
calling this method

Sub Save(UpdateRevisionDate As Boolean,
OverWrite As Boolean)

Write the Supplier to the database

Sub SaveAs(Project As String, Name As String,
UpdateRevisionDate As Boolean, OverWrite As
Boolean)

Copy this Supplier, optionally to a different
Project. The Supplier must be Open, and must not
have been modified (i.e. IsDirty = false)

© Copyright Integra 2007

Supplier Example 1
Open an existing Supplier and output it’s properties – it is assumed ADB has been initialised

‘ Create an Supplier entity
Dim oSupplier As IADBSupplier
Set oSupplier = New IADBSupplier

‘ Set the Project and Name
oSupplier.Project = “MYPROJ”
oSupplier.Name = “AGILENT”

‘ Open the Supplier
oSupplier.Open

‘ Ouput the Data
Debug.Print oSupplier.Name, oSupplier.Description , oSupplier.RevisionDate

‘ Close
oSupplier.Close

© Copyright Integra 2007

Supplier Example 2
Create new Supplier or modify an existing Supplier and set its properties – it is assumed ADB
has been initialised

‘ Create an Supplier entity
Dim oSupplier As IADBSupplier
Set oSupplier = New IADBSupplier

‘ Set the Project and Name
oSupplier.Project = “MYPROJ”
oSupplier.Name = “AGILENT”

‘ Open the Supplier and set the Description and other properties
oSupplier.Open
oSupplier.Description = “Agilent”

‘ Save the Supplier and set the revision date to the current date
oSupplier.Save True, True

‘ Close
oSupplier.Close

© Copyright Integra 2007

IADBModel

Properties Data Type Description
Brand String 10 chars ADB Brand Code
Description String unlimited Description of model
ModelCode String 255 chars Manufacturers Model code/identifier

typically as appears on the equipement
ModelType String 255 chars Manufacturers Model type where

appropriate
Name String 10 chars Model ADB Code. Must be set before

calling Open or Save
Price Double Price ex VAT
Project String 8 chars ADB Project Code. Must be set before

calling Open or Save
RevisionDate Date/Time Date/Time Model last saved
Supplier String 8 chars ADB Supplier Code
UserData(n) String unlimited Set n=0,1,2,3,4 for UserData1..UserData5

Methods Description
Function AsXml() As String Returns the Model definition as an XML string see

Appendix for definition.
Sub Close() Reset all Model attributes. The Activity must be

Open.
Sub Delete() Delete the Model
Function FromXml(lpszXml As String) As
String

Creates an Model entity from an Model definition
as an XML string see Appendix for definition.

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the
full error stack for the last error

Function IsDirty() As Boolean True if the Model has been modified since it was
Opened

Function IsOpen() As Boolean True if the Model has been Opened
Sub Open() Read the Model details from the ADB database.

The Name & Project properties must be set before
calling this method

Sub Save(UpdateRevisionDate As Boolean,
OverWrite As Boolean)

Write the Model to the database

Sub SaveAs(Project As String, Name As String,
UpdateRevisionDate As Boolean, OverWrite As
Boolean)

Copy this Model, optionally to a different Project.
The Model must be Open, and must not have been
modified (i.e. IsDirty = false)

© Copyright Integra 2007

Model Example 1
‘ Open an existing Model and output it’s properties – it is assumed ADB has been initialised

‘ Create a Model entity
Dim oModel As IADBModel
Set oModel = New IADBModel

‘ Set the Project and Name
oModel.Project = “MYPROJ”
oModel.Name = “HP4537A”

‘ Open the Model
oModel.Open

‘ Ouput the Data
Debug.Print oModel.Name, oModel.ModelCode, oModel.ModelType, _

oModel.Description , oModel.RevisionDate, _
oModel.Brand , oModel.Supplier, oModel.Price

‘ Close
oModel.Close

© Copyright Integra 2007

Model Example 2
‘ Create new Model or modify an existing Model and set its properties – it is assumed ADB
has been initialised

‘ Create a Model entity
Dim oModel As IADBModel
Set oModel = New IADBModel

‘ Set the Project and Name
oModel.Project = “MYPROJ”
oModel.Name = “HP4537A”

‘ Open the Model
oModel.Open

‘ Set the properties
oModel.ModelCode = “4537”
oModel.ModelType = “A”
oModel.Description = “Defribrillator”
oModel.Brand = “HP”
oModel.Supplier = “AGILENT”
oModel.Price =2000.0

‘ Save a set the revision date
oModel.Save, True, True

‘ Close
oModel.Close

© Copyright Integra 2007

Entity Browse Lists

Entity Lists termed browse lists are available for all the following ADB Entities:

IADBProjectBrowseList
IADBDepartmentBrowseList
IADBRoomBrowseList
IADBAssemblyBrowseList
IADBComponentBrowseList
IADBActivityBrowseList
IADBModelBrowseList
IADBBrandBrowseList
IADBSupplierBrowseList

The following properties and methods are common to all entities:

Commom Properties

Properties Data Type Description
Count Long The number of entries in the list
Description String unlimited Entity Title
Filter Object An IADBConditionList
Name String 10 chars ADB Entity Code
OrderBy Object Set a list of fields (actually an

IADB_FieldList) to order the entries in
the list. Must be set before calling Open.
The field list should not contain
references to memo fields

RevisionDate Date/Time The last modification date/time of the
entity identified by the current list
element

Entity Specific Properties

IADBDepartmentBrowseList

Properties Data Type Description
Project String 8 chars ADB Project Code. Must be set before

calling Open
Ordering String 1 char Department Ordering scheme (A – alpha,

S – Specified, R – Room ordered)

IADBRoomBrowseList

Properties Data Type Description
Area Double The Area of the Room identified by the

current list element
Project String 8 chars ADB Project Code. Must be set before

calling Open

© Copyright Integra 2007

IADBAssemblyBrowseList
IADBActivityBrowseList

Properties Data Type Description
Class String 10 chars Numeric Class
Project String 8 chars ADB Project Code. Must be set before

calling Open

IADBComponentBrowseList

Properties Data Type Description
Class String 10 chars Numeric Class
Project String 8 chars ADB Project Code. Must be set before

calling Open
Cost Double The cost (new) of the Component

identified by the current list element
TransferCost Double The transfer cost of the Component

identified by the current list element

IADBBrandBrowseList
IADBSupplierBrowseList

Properties Data Type Description
Brand String 10 chars ADB Brand Code
Project String 8 chars ADB Project Code. Must be set before

calling Open

IADBModelBrowseList

Properties Data Type Description
Class String 10 chars Numeric Class
Cost Double The Cost/Price ex VAT identified by the

current list element
ModelCode String 255 chars Manufacturers Model code/identifier

typically as appears on the equipement
ModelType String 255 chars Manufacturers Model type where

appropriate
Project String 8 chars ADB Project Code. Must be set before

calling Open
Supplier String 8 chars

Common Methods

Methods Description
Sub Close() Reset all BrowseList attributes. The BrowseList

must be Open.
Function GetLastError() As Object Returns an IADB_MsgQueue object holding the

full error stack for the last error
Function IsDirty() As Boolean True if the BrowseList l has been modified since it

was Opened
Function IsOpen() As Boolean True if the BrowseList l has been Opened

© Copyright Integra 2007

Sub Open() Read the BrowseList l details from the ADB
database. The Name & Project properties must be
set before calling this method

Sub Move(iPos As Long) Move to the specified position in the list

Sub MoveFirst() Move to first item in the list
Sub MoveNext() Move to next item in the list

Browse List Example 1
‘ Display a Browse List of all Rooms in a Project– it is assumed ADB has been initialised

‘ Create a Room BrowseList entity
Dim oRoomBL As IADBRoomBrowseList
Set oRoomBL = New IADBRoomBrowseList

‘ Set the Project
oRoomBL.Project = “MYPROJ”

‘ Open the Browse Listl
oRoomBL.Open

‘ FOR EACH ROOM…
oRoomBL.MoveFirst
While Not oRoomBL.IsEOF
 Debug.Print oRoomBL.Name, oRoomBL.Description, _

oRoomBL.Area, oRoomBL.RevisionDate
 oRoomBL.MoveNext
Wend

‘ Close
oRoomBL.Close

© Copyright Integra 2007

Browse List Example 2
 ' Display a Filtered Browse List of all Rooms in a Project– it is assumed ADB has been
initialised

 ' Create a Room BrowseList entity
 Dim oRoomBL As IADBRoomBrowseList
 Set oRoomBL = New IADBRoomBrowseList

 ' Set the Project
 oRoomBL.Project = "MYPROJ"

 ' Create a filter using an IADBConditionList
 ' to display all Rooms with a code beginning with C.
 ' The first argument of the Add method is the Public name of the filter field
 ' as given in Appendix 2
 Dim oCondList As IADBConditionList
 Set oCondList = New IADBConditionList
 oCondList.Add "Code", "like", "C%"
 Set oRoomBL.Filter = oCondList

 ' Open the Browse List
 oRoomBL.Open

 ' FOR EACH ROOM…
 oRoomBL.MoveFirst
 While Not oRoomBL.IsEOF
 Debug.Print oRoomBL.Name, oRoomBL.Description, _
 oRoomBL.Area, oRoomBL.RevisionDate
 oRoomBL.MoveNext
 Wend

 ' Close
 oRoomBL.Close

© Copyright Integra 2007

Browse List Example 3

 ' Display a Filtered Browse List of all Group 1 Components in a Project
 ' - it is assumed ADB has been initialised

 ' Create a Component BrowseList entity
 Dim oCompBL As IADBComponentBrowseList
 Set oCompBL = New IADBComponentBrowseList

 ' Set the Project
 oCompBL.Project = "ADB204"

 ' Create a filter using an IADBConditionList to display all Components in Group 1
 ' The first argument of the Add method is the Public name of the filter field
 ' as given in Appendix 2
 Dim oCondList As IADBConditionList
 Set oCondList = New IADBConditionList
 oCondList.Add "Group", "=", "1"
 Set oCompBL.Filter = oCondList

 ' Open the Browse List
 oCompBL.Open

 ' FOR EACH COMPONENT…
 oCompBL.MoveFirst
 While Not oCompBL.IsEOF
 Debug.Print oCompBL.Name, oCompBL.Description, _
 oCompBL.Group, oCompBL.Class, , oCompBL.Cost
 oCompBL.MoveNext
 Wend

 ' Close
 oCompBL.Close

© Copyright Integra 2007

Browse List Example 4

 ' Display a Filtered Browse List of Group 2 and 3 Components in a Project
 ' - it is assumed ADB has been initialised

 ' Create a Component BrowseList entity
 Dim oCompBL As IADBComponentBrowseList
 Set oCompBL = New IADBComponentBrowseList

 ' Set the Project
 oCompBL.Project = "MYPROJ"

 ' Create a filter using an IADBConditionList to display all Group 2 or 3 Components
 ' of the filter value string (‘2’,’3’) used by the "in" clause
 ' The first argument of the Add method is the Public name of the filter field
 ' as given in Appendix 2
 Dim oCondList As IADBConditionList
 Set oCondList = New IADBConditionList
 Dim sValue As String
 sValue = "(‘2’,’3’)"
 oCondList.Add "Group", "in", sValue
 Set oCompBL.Filter = oCondList

 ' Open the Browse List
 oCompBL.Open

 ' FOR EACH COMPONENT…
 oCompBL.MoveFirst
 While Not oCompBL.IsEOF
 Debug.Print oCompBL.Name, oCompBL.Description, _
 oCompBL.Group, oCompBL.Class, oCompBL.Cost
 oCompBL.MoveNext
 Wend

 ' Close
 oCompBL.Close

© Copyright Integra 2007

Entity Schedules

IADBRoomSchedule
IADBSequencedRoomSchedule
IADBOrderedRoomSchedule
IADBAssemblySchedule

IADBComponentSchedule
IADBActivitySchedule
IADBModelSchedule

The following properties and methods are common to all entities:

Commom Properties

Properties Data Type Description
Count Long The number of entries in the list
Description String unlimited Entity Title
Filter Object An IADBConditionList
Name String 10 chars ADB Entity Code
OrderBy Object Set a list of fields (actually an

IADB_FieldList) to order the entries in
the list. Must be set before calling Open.
The field list should not contain
references to memo fields

RevisionDate Date/Time The last modification date/time of the
entity identified by the current list
element

Entity Specific Properties

IADBRoomSchedule

Properties Data Type Description
Area Double The area of the Room identified by the

current list element
NewCount Long The quantity of instances of the Room

identified by the current Schedule element

IADBSequencedRoomSchedule

Properties Data Type Description
Quantity Long The quantity of instances of the Room

identified by the current Schedule element
Sequence String Room Sequence Number

© Copyright Integra 2007

IADBOrderedRoomSchedule

Properties Data Type Description
RoomNumber String Room number

IADBAssemblySchedule

Properties Data Type Description
NewCount Long The quantity of instances of the Assembly

identified by the current Schedule element

IADBComponentSchedule

Properties Data Type Description
Class String The ADB Classification of the

Component identified by the current
Schedule element

Cost Double The cost (new) of the Component
identified by the current Schedule element

Group String The ADB Group code of the Component
identified by the current Schedule element

NewCount Long The quantity of new instances of the
Component identified by the current
Schedule element

NSVCode String The National Supplies or Alternative code
of the Component identified by the
current Schedule element

Total Long The total quantity of new and transferred
instances of the Component identified by
the current Schedule element

TransferCost Double The cost (transferred) of the Component
identified by the current Schedule element

TransferCount Long The quantity of transferred instances of
the Component identified by the current
Schedule element

IADBModelSchedule

Properties Data Type Description
Brand String unlimited Brand Title
BrandCode String 10 chars ADB Brand Code
Price Double Cost/Price ex VAT
ModelCode String 255 chars Manufacturers Model code/identifier

typically as appears on the equipement
ModelType String 255 chars Manufacturers Model type where

appropriate
Supplier String unlimited Supplier Title
SupplierCode String 8 chars ADB Supplier Code

Common Methods

Methods Description
Sub Close() Reset all Schedule attributes. The BrowseList must

be Open.

© Copyright Integra 2007

Function GetLastError() As Object Returns an IADB_MsgQueue object holding the
full error stack for the last error

Function IsDirty() As Boolean True if the Schedule has been modified since it was
Opened

Function IsOpen() As Boolean True if the Schedule has been Opened
Sub Open() Read the Schedule details from the ADB database.

The Name & Project properties must be set before
calling this method

Sub Move(iPos As Long) Move to the specified position in the list

Sub MoveFirst() Move to first item in the list
Sub MoveNext() Move to next item in the list

Entity Specific Properties

IADBModelSchedule

Methods Description
Sub AddModel(sName As String, sDescription As
String, sModelCode As String, sModelType As
String, sBrand As String, sBrandCode As String,
sSupplier As String, sSupplierCode As String,
fPrice As Double, dDate As Date)

 As support for Models etc. was added at a later
date the an the Add method has been assigned to
the ModelSchedule tarther than the Component
Entity.
sDescription, sModelType, sBrand, sSupplier,
fPrice and date are not used and should be assigned
place holder values e.g. “” for strings 0.0 for reals
and Now for dates.

Sub Delete (sCode as String) Delete the Model specified by its code from the
schedule.

Sub Save Save the Model schedule to the database

© Copyright Integra 2007

ScheduleExample1

 ' Output the Component Schedule for a Room
 ' - it is assumed ADB has been initialised

 ' Open the Room
 Dim oRoom As IADBRoom
 Set oRoom = New IADBRoom
 oRoom.Project = "DEMO1"
 oRoom.Name = "B0303"
 oRoom.Open

 ' Get the Rooms's Component Schedule
 Dim oSchedule As IADBComponentSchedule
 Set oSchedule = oRoom.ComponentSchedule
 oSchedule.Open

 ' FOR EACH item in the Schedule
 oSchedule.MoveFirst
 While Not oSchedule.IsEOF

 ' Output
 Debug.Print oSchedule.Name, oSchedule.Description, _
 oSchedule.NewCount, oSchedule.Group

 ' Next Item
 oSchedule.MoveNext
 Wend

 ' Close the Room and any open schedules
 oRoom.Close

ScheduleExample2

 ' Output the filtered Component Schedule for a Department
 ' - it is assumed ADB has been initialised

 ' Open the Department
 Dim oDepartment As IADBDepartment
 Set oDepartment = New IADBDepartment
 oDepartment.Project = "DEMO1"
 oDepartment.Name = "INP01"
 oDepartment.Open

 ' Get the Department's Component Schedule
 Dim oSchedule As IADBComponentSchedule
 Set oSchedule = oDepartment.ComponentSchedule

 ' Create a filter using an IADBConditionList
 ' to display all Group 2 or 3 Components
 ' using an "in clause" ('2','3')
 Dim oCondList As IADBConditionList
 Set oCondList = New IADBConditionList
 Dim sValue As String

© Copyright Integra 2007

 sValue = "('2','3')"
 oCondList.Add "Group", "in", sValue
 Set oSchedule.Filter = oCondList
 oSchedule.Open

 ' FOR EACH item in the Schedule
 oSchedule.MoveFirst
 While Not oSchedule.IsEOF

 ' Output
 Debug.Print oSchedule.Name, oSchedule.Description, _
 oSchedule.NewCount, oSchedule.Group

 ' Next Item
 oSchedule.MoveNext
 Wend

 ' Close the Department and any open schedules
 oDepartment.Close

ScheduleExample3

 ' Output the Room Schedule for an aplhanumeric ordered Department
 ' - it is assumed ADB has been initialised

 ' Initailsie ADB and login
 Dim oADB As New IADB
 oADB.Initialise "manager", "adb"

 ' Open the Department
 Dim oDepartment As IADBDepartment
 Set oDepartment = New IADBDepartment
 oDepartment.Project = "DEMO1"
 oDepartment.Name = "INP01"
 oDepartment.Open

 ' Get the Department's Room Schedule
 Dim oSchedule As IADBRoomSchedule
 Set oSchedule = oDepartment.RoomSchedule
 oSchedule.Open

 ' FOR EACH item in the Schedule
 oSchedule.MoveFirst
 While Not oSchedule.IsEOF

 ' Output
 Debug.Print oSchedule.Name, oSchedule.Description, _
 oSchedule.NewCount

 ' Next Item
 oSchedule.MoveNext
 Wend

 ' Close the Department and any open schedules

© Copyright Integra 2007

 oDepartment.Close

ScheduleExample4

 ' Output the Room Schedule for an aplhanumeric ordered, room ordered
 ' or sequenced Department
 ' - it is assumed ADB has been initialised

 ' Open the Department
 Dim oDepartment As IADBDepartment
 Set oDepartment = New IADBDepartment
 oDepartment.Project = "DEMO1"
 oDepartment.Name = "INP01"
 oDepartment.Open

 ' Get the Department's Room Schedule
 ' Note use of late binding as the type of schedule is not known
 ' until the Department is opened
 Dim oSchedule As Object
 If oDepartment.Order = "S" Then
 Set oSchedule = oDepartment.SequencedRoomSchedule
 ElseIf oDepartment.Order = "R" Then
 Set oSchedule = oDepartment.OrderedRoomSchedule
 Else
 Set oSchedule = oDepartment.RoomSchedule
 End If
 oSchedule.Open

 ' FOR EACH item in the Schedule
 oSchedule.MoveFirst
 While Not oSchedule.IsEOF

 ' Output
 If oDepartment.Order = "S" Then
 Debug.Print oSchedule.Name, oSchedule.Description, oSchedule.Quantity
 ElseIf oDepartment.Order = "R" Then
 Debug.Print oSchedule.Name, oSchedule.Description, oSchedule.RoomNumber
 Else
 Debug.Print oSchedule.Name, oSchedule.Description, oSchedule.NewCount
 End If

 ' Next Item
 oSchedule.MoveNext
 Wend

 ' Close the Department and any open schedules
 oDepartment.Close

Error handling

ErrorHandlingExample1

© Copyright Integra 2007

Basic Error Handling

 On Error GoTo ErrorHandlingExample1_err:

 ' Initailsie ADB and login
 Dim oADB As New IADB
 oADB.Initialise "manager", "xxx"

ErrorHandlingExample1_err:

 MsgBox "Application Error:" & Err.Description, vbCritical + vbOKOnly

© Copyright Integra 2007

ErrorHandlingExample2 – Using the ADB Message Queue

 ' Initailsie ADB and login
 Dim oADB As New IADB

 ' Ignore the error and trap afterwards
 On Error Resume Next
 oADB.Initialise "manager", "xxx"

 ' Err.Number will be non zero
 If Err.Number <> 0 Then
 Dim oMsgQueue As IADBMsgQueue
 Set oMsgQueue = oADB.GetLastError
 Dim i As Integer
 oMsgQueue.MoveFirst
 For i = 0 To oMsgQueue.Count - 1
 Debug.Print oMsgQueue.Summary
 oMsgQueue.MoveNext
 Next
 End If

ErrorHandlingExample3 – Using the ADB Message Queue version 3

 ' Initailsie ADB and login
 Dim oADB As New IADB

 ' Ignore the error and trap afterwards
 On Error Resume Next
 oADB.Initialise "manager", "xxx"

 ' Report any errors
 If Err.Number <> 0 Then
 ReportError oADB
 End If

Public Sub ReportError(oADBObject As Object)

 Dim oMsgQueue As IADBMsgQueue
 Set oMsgQueue = oADBObject.GetLastError
 Dim i As Integer
 oMsgQueue.MoveFirst
 For i = 0 To oMsgQueue.Count - 1
 Debug.Print oMsgQueue.Summary
 oMsgQueue.MoveNext
 Next

End Sub

© Copyright Integra 2007

ErrorHandlingExample4 – Using the ADB Message Queue version 4

 ' Initailsie ADB and login
 Dim oADB As New IADB

 ' Ignore the error and trap afterwards
 On Error Resume Next
 oADB.Initialise "manager", "adb"

 ' Report any errors
 If Err.Number <> 0 Then
 ReportError oADB
 End If

 Dim oRoom As IADBRoom
 Set oRoom = New IADBRoom
 oRoom.Project = "XXX"
 oRoom.Open

 ' Report any errors
 If Err.Number <> 0 Then
 ReportError oRoom
 End If

© Copyright Integra 2007

Message Based Processing

Message based processing provides an alternative method of accessing and updating ADB data
competely through XML. It is the only method of using the ADB API with web services and
AutoCAD.

Three API interfaces are avaiable:

ADBOLE32.DLL General use with MS Excel, Access, Word etc
OLEACAD17.DLL for AutoCAD 2004/5 and 6 and ADT equivalents
OLEACAD16.DLL for AutoCAD 207/8 and ADT equivalents

Only three methods on the ADB Application object are used

IADB

Methods Description
Sub Initialise(UserName
As String, Password As
String)

Initialise the ADB application and logon to ADB

Sub UnInitialise Close all database connections. Must be called once before application
terminates

Function
ProcessMessage(Msg As
Integer, K1 As String, K2
As String, Param1 As
String, Param2 As String,
Param3 As String) As
String

Messaging support – used for Web Services and AutoCAD
Msg – Message number see Appendix
K1 – Public key (username)
K2 – Private key (password)
Param1,2,3 - Parameters

Messaging Example 1

‘ Project Department list

‘ Initialise and login to ADB
Dim oADB As New IADB
oADB.Initialise “manager”,”adb”
‘ Process the message
Dim sXML As String
sXml = oADB.ProcessMessage(8,”manager”,”adb”,”MYPROJ”,””,””)
Debug.Print sXML
‘ Uninitialise
oADB.UnInitialise

Messaging Example 2

 ' Extracting data from a Project Department Browse List returned as XML
 ' – it is assumed ADB has been initialised

© Copyright Integra 2007

 ' Process the message - note the password must be prepended with [PLAINTEXT]
 Dim sXML As String
 sXML = oADB.ProcessMessage(8, "manager", "[PLAINTEXT]adb", "DEMO1", "", "")

 ' Use Document Object Model (DOM) parser to extract the data
 ' This requires a reference to DOM parser - Microsoft XML, v3.0 will do
 Dim oDOMDoc As DOMDocument
 Dim oXMLNodeList As IXMLDOMNodeList
 Dim oXMLNode As IXMLDOMNode
 Dim oXMLChildNode As IXMLDOMNode

 ' Load the XML returned into the DOM document
 Set oDOMDoc = New DOMDocument
 oDOMDoc.loadXML sXML
 Set oXMLNodeList = oDOMDoc.selectNodes("ExplorerGridList/ExplorerGridListRow")
 For Each oXMLNode In oXMLNodeList
 Dim sCode As String, sDescription As String
 Set oXMLChildNode = oXMLNode.selectSingleNode("code")
 sCode = oXMLChildNode.Text
 Set oXMLChildNode = oXMLNode.selectSingleNode("description")
 sDescription = oXMLChildNode.Text
 Debug.Print sCode, sDescription
 Next

Messaging Example 3

 ' Room details – it is assumed ADB has been initialised

 ' Process the message - note the password must be prepended with [PLAINTEXT]
 Dim sXML As String
 sXML = oADB.ProcessMessage(218, "manager", "[PLAINTEXT]adb", "DEMO1",
"B0303", "")

© Copyright Integra 2007

Messaging Example 4

 ' Extracting data from a Room returned as XML – it is assumed ADB has been initialised

 ' Process the message - note the password must be prepended with [PLAINTEXT]
 Dim sXML As String
 sXML = oADB.ProcessMessage(218, "manager", "[PLAINTEXT]adb", "DEMO1",
"B0303", "")

 ' Use Document Object Model (DOM) parser to extract the data
 ' This requires a reference to DOM parser - Microsoft XML, v3.0 will do
 Dim oDOMDoc As DOMDocument
 Dim oXMLNode As IXMLDOMNode
 Dim oXMLAtts As IXMLDOMNamedNodeMap

 ' Load the XML returned into the DOM document
 Set oDOMDoc = New DOMDocument
 oDOMDoc.loadXML sXML

 ' Get the main Entity element this will enable retrieval of the attributes
 Set oXMLNode = oDOMDoc.selectSingleNode("ADBEntity")
 Dim sCode As String

 ' Get the attributes and extract the named item
 Set oXMLAtts = oXMLNode.Attributes
 sCode = oXMLAtts.getNamedItem("EntityName").Text

 ' Get the Description element this will enable retrieval of the attributes
 Set oXMLNode = oDOMDoc.selectSingleNode("ADBEntity/Description")
 Dim sDescription As String
 sDescription = oXMLNode.Text
 Debug.Print sCode, sDescription

Messaging Example 5

 ' Filtered Project Room List – it is assumed ADB has been initialised

 ' Process the message - note the password must be prepended with [PLAINTEXT]
 ' P1 is the Project code
 ' P2 is the Filter string e.g. [Code like 'C%']
 Dim sFilter As String
 sFilter = "[Code like 'C%']"
 Dim sXML As String
 sXML = oADB.ProcessMessage(14, "manager", "[PLAINTEXT]adb",

 "ADB204", sFilter, "")

© Copyright Integra 2007

Messaging Example 6

 ' Room, Assembly or Component graphic definition as XML – it is assumed ADB has been
initialised

 ' Process the message - note the password must be prepended with [PLAINTEXT]
 ' P1 Project code
 ' P2 Room or Assembly code
 ' P3 View Code -3,-P,-E,SE,TE,RE
 Dim sXML As String
 sXML = oADB.ProcessMessage(500, "manager", "[PLAINTEXT]adb", "ADB204",
"EA1631", "-P")

© Copyright Integra 2007

Messages List

Key:
PC – Project Code
EC – Entity Code
REC – Replacement Entity Code
CS – Connect string
e.g. PROVIDER=MICROS OFT.JET.OLEDB.4.0;DATA SOURCE = C:\PROGRAM
FILES\DHEFD\ACTIVITY DATABASE\PROJECTS\ADB204.MDB

MV- Project Major Version future use
mV-Project Minor Version future use
FS-Filter string
XMLA-Audit Definition as XML see Appendix 1
XMLED-Entity Definition as XML see Appendix 1
XMLI-Interface Definition as XML see Appendix 1
XMLGC-Graphics Container Definition as XML see Appendix 1
XMLGE-Graphics Enclosure Definition as XML see Appendix 1
XMLGP-Graphics Primitive Definition as XML see Appendix 1
UR-Yes to Update Revision Date

Message Type Param1 Param2 Param3 Msg Description

 Standard

 Username Password -1 Remote login
 EC PC -3 Audit history for an entity
 ID PC -4 Audit record
 PC XMLA -5 Add new audit record

 PC -6 Audit consequence browse list

 PC EC 50 Find the entity type of the specified object

 PC EC 51 Fetch the entity properties
 PC 52 Unregister a project
 CS MV mV 53 Register a project

 Tree view
 100 List of servers

 101 List of projects
 PC FS 102 List of departments
 PC FS 103 Department room schedule

 PC FS 104 Room assembly schedule
 PC FS 105 Assembly component schedule

Project-level list &
grid views

 1 List-view list of servers
 2 List-view list of projects
 PC FS 3 List-view list of departments

 PC FS 6 List-view list of rooms

© Copyright Integra 2007

 PC FS 7 List-view list of assemblies
 PC FS 16 List-view list of assemblies

 PC FS 18 List-view list of activities
 PC FS 20 List-view list of models
 PC FS 22 List-view list of suppliers
 PC FS 24 List-view list of brands

 PC FS 54 List-view list of audit records

 12 Grid-view list of servers

 13 Grid-view list of projects
 PC FS 8 Grid-view list of departments
 PC FS 14 Grid-view list of rooms
 PC FS 15 Grid-view list of assemblies

 PC FS 17 Grid-view list of components
 PC FS 19 Grid-view list of activities
 PC FS 21 Grid-view list of models

 PC FS 23 Grid-view list of suppliers
 PC FS 25 Grid-view list of brands
 PC FS 55 Grid-view list of audit records

 PC FS 257 Grid-view list of department classes
 PC FS 258 Grid-view list of room classes
 PC FS 259 Grid-view list of assembly classes
 PC FS 260 Grid-view list of component classes

 PC FS 261 Grid-view list of activity classes
 PC FS 262 Grid-view list of component groups
 PC FS 263 Grid-view list of floor design character

 PC FS 264 Grid-view list of wall design character
 PC FS 265 Grid-view list of ceiling design character
 PC FS 266 Grid-view list of component installer
 PC FS 267 Grid-view list of component supplier

 PC FS 268 Grid-view list of component user1
 PC FS 269 Grid-view list of component user2
 PC FS 270 Grid-view list of CISfB layers

 PC FS 271 Grid-view list of layer discilines
 PC FS 272 Grid-view list of user layers
 PC FS 273 Grid-view list of lighting grades
 PC FS 274 Grid-view list of layer services

 PC FS 275 Grid-view list of component views

Schedules: list &
grid views

 PC EC FS 4 Departmental room schedule (order does not matter)
 PC EC FS 5 Departmental assembly schedule
 PC EC FS 11 Departmental component schedule

 PC EC FS 27 Departmental room schedule
 PC EC FS 9 Departmental assembly schedule

© Copyright Integra 2007

 PC EC FS 26 Departmental component schedule

 PC EC FS 28 Room assembly schedule
 PC EC FS 29 Room component schedule
 PC EC FS 38 Room activity schedule
 PC EC FS 30 Room assembly schedule

 PC EC FS 31 Room component schedule
 PC EC FS 39 Room activity schedule

 PC EC FS 32 Assembly assembly schedule
 PC EC FS 33 Assembly component schedule
 PC EC FS 40 Assembly activity schedule
 PC EC FS 34 Assembly assembly schedule

 PC EC FS 35 Assembly component schedule
 PC EC FS 41 Assembly activity schedule

 PC EC FS 36 Component model schedule
 PC EC FS 37 Component model schedule
 PC EC FS 42 Room nested schedule as XML

Entity
 PC 200 User has write access to project
 UR XMLED 201 Update Project

 UR XMLED 202 Update Department
 UR XMLED 203 Update Room
 UR XMLED 204 Update Assembly

 UR XMLED 205 Update Component
 UR XMLED 206 Update Activity
 UR XMLED 207 Update Model
 UR XMLED 208 Update Supplier

 UR XMLED 209 Update Brand
 XMLI 210 Delete Department Rooms
 XMLI 211 Delete Room Assemblies, Components and Activities

 XMLI 212 Delete Assembly Sub-Assemblies, Components and Activities
 XMLI 213 Delete Component Models
 XMLI 214 Add Department Rooms
 XMLI 215 Add Room Assemblies, Components and Activities

 XMLI 216 Add Assembly Sub-Assemblies, Components and Activities
 XMLI 217 Add Component Models

PC EC

218
 Get the full entity properties – USE FOR ALL ENTITIES
EXCEPT ACTIVITES

 PC EC 219 Check if any entity with this code already exists in the Project

 220 Update and entities properties and schedules
 PC EC 221 Check if Project with this code exists
 PC EC 222 Check if a Department with this code exists in the Project

 PC EC 223 Check if a Room with this code exists in the Project
 PC EC 224 Check if a Assembly with this code exists in the Project

© Copyright Integra 2007

 PC EC 225 Check if a Component with this code exists in the Project
 PC EC 226 Check if an Activity with this code exists in the Project

 PC EC 227 Check if a Model with this code exists in the Project
 PC EC 228 Check if a Supplier with this code exists in the Project
 PC EC 229 Check if a Brand with this code exists in the Project
 XMLED 230 Create a new Project

 XMLED 231 Create a new Department
 XMLED 232 Create a new Room
 XMLED 233 Create a new Assembly

 XMLED 234 Create a new Component
 XMLED 235 Create a new Activity
 XMLED 236 Create a new Model
 XMLED 237 Create a new Supplier

 XMLED 238 Create a new Brand
 XMLED 239 Delete a Project
 XMLED 240 Delete a Department

 XMLED 241 Delete a Room
 XMLED 242 Delete an Assembly
 XMLED 243 Delete a Component

 XMLED 244 Delete an Activity
 XMLED 245 Delete a Model
 XMLED 246 Delete a Supplier
 XMLED 247 Delete a Brand

 XMLI 248 Save a Project to a new database
 XMLI 249 Save a Department to a new code and/or Project
 XMLI 250 Save a Room to a new code and/or Project

 XMLI 251 Save an Assembly to a new code and/or Project
 XMLI 252 Save a Component to a new code and/or Project
 XMLI 253 Save an Activity to a new code and/or Project
 XMLI 254 Save a Model to a new code and/or Project

 XMLI 255 Save a Supplier to a new code and/or Project
 XMLI 256 Save a Brand to a new code and/or Project
 PC EC 276 Fetch the activities properties

Graphics specific
 PC EC VC 500 Graphics Container as XML
 PC EC VC 501 Graphics Block as XML
 PC EC VC 502 Graphics Primitive as XML

 PC EC XMLGC 503 Save the Graphics Container
 PC EC XMLGP 504 Save the Graphics Primitive
 PC EC 505 Enclosure as XML

 PC EC XMLGE 506 Save the Enclosure
Add-On specific
 PC EC 600 Delete child rooms from deplk

 PC EC 601 Delete child assemblies from deplk
 PC EC 602 Delete child components from deplk

 PC EC REC 603 Replace child rooms in deplk

© Copyright Integra 2007

 PC EC REC 604 Replace child assemblies in deplk
 PC EC REC 605 Replace child components in deplk

 PC DATE 606 Set the revision date of all departments
 PC DATE 607 Set the revision date of all rooms
 PC DATE 608 Set the revision date of all assemblies

 PC DATE 609 Set the revision date of all components
 PC DATE 610 Set the revision date of all activities

© Copyright Integra 2007

Appendix 1

Entity XML Definitions

Project

<ADBEntity EntityName='ADB204' Project='ICLDBX ADB Meta-Database' EntityType='P'
RevisionDate='14/08/2007' Issue='' Path=' C:\PROGRAM FILES\DHEFD\ACTIVITY
DATABASE\PROJECTS\ADB204.MDB' Class=''
ConnectString='PROVIDER=MICROSOFT.JET.OLEDB.4.0;Data Source = C:\Program
Files\DHEFD\Activity Database\Projects\ADB204.mdb' ProjectType='A'>

<Description>Activity Database Version 20.4 © Crown Copyright</Description>
<Notes></Notes>

</ADBEntity>

Department

<ADBEntity EntityName='INP01' Project='DEMO1' EntityType='D'
RevisionDate='02/07/2007' Class='0400'>

<Description>IN-PATIENT ACCOMMODATION</Description>
<User1>User Data 1</User1>
<User2></User2>
<User3></User3>
<User4></User4>
<User5></User5>
<Notes>Departmental Notes</Notes>
<RoomOrder>A</RoomOrder>

</ADBEntity>

© Copyright Integra 2007

Room
<ADBEntity EntityName='B0303' Project='DEMO1' EntityType='R'
RevisionDate='06/06/2005' Class='0102'>

<User1>AS, 06-06-05; Basin assembly SA1112 replaced by SA1244 - Sensor tap.
Wardrobe positioned</User1>
<User2></User2>
<User3></User3>
<User4></User4>
<User5></User5>
<Notes>Space may required to accommodate use of hoist. Ceiling mounted hoist
subject to local decision.
Storage of patient drug - see hospital policy.
Outlet, compressed air, medical is a project option.
Curtain rail for door vision panel is required.
</Notes>
<Description>Single bedroom: Adult acute
With clinical support. Relative overnight stay. Access to en-suite
</Description>
<RoomSpaceData Area='34.3' Height='2700'>

<SpaceNotes></SpaceNotes>
</RoomSpaceData>
<RoomPersonnel>1 x Patient

4 x Others
</RoomPersonnel>
<PlanningRelationships>Close to staff base.
Close to ancillary rooms.
Ward activity to be visible from room.
En-suite sanitary facilities.
</PlanningRelationships>
<RoomEnvironmentalDataAir WinterTemperature='21.0' SummerTemperature='0.0'
MechanicalVentilationSupply='0.0' MechanicalVentilationExtract='0.0'
MechanicalVentilationUnits='0' DustSpotEfficiency='0' RelativeHumidity='0'
Arrestance='0'>

<HVAC></HVAC>
<TemperatureNotes></TemperatureNotes>
<MechanicalVentilationNotes></MechanicalVentilationNotes>
<FiltrationHumidityNotes></FiltrationHumidityNotes>
<RelativePressure></RelativePressure>

</RoomEnvironmentalDataAir>
<RoomEnvironmentalDataLighting ServiceIllumination='100.0'
ServiceIlluminationNight='5.0' LocalIllumination='150.0' ColourRendering='Y'>

<Illumination></Illumination>
<StandbyLightingGradeNotes>B: Lighting of the level and quality one third to
one half that provided by normal lighting.
Day Bed centre: A: Lighting of the level and quality equal or nearly equal to
that provided by normal lighting. For local examination & inspection.
</StandbyLightingGradeNotes>

<ServiceIlluminationNotes>Floor. 200-400 Bed centre. 30-50 Bedhead. Areas for
VDT's: See CIBSE Lighting Guide LG3 "The Visual Environment for Display
Screen Use" Addendum 2001
</ServiceIlluminationNotes>
<ServiceIlluminationNightNotes>Floor. 1-5 Bed centre. 0.1 Bedhead. Evening (lux):
50 Bed centre.

© Copyright Integra 2007

</ServiceIlluminationNightNotes>
<LocalIlluminationNotes>Bedhead</LocalIlluminationNotes>
<StandbyLightingGrade></StandbyLightingGrade>
<ColourRenderingNotes>Not night & local</ColourRenderingNotes>
</RoomEnvironmentalDataLighting>
<RoomEnvironmentalDataNoise AcceptableSoundLevel='0.0' SpeechPrivacy='N'
QualityNotTolerated='' PrivacyFactor='80.0' MechanicalServices='30.0'
IntrusiveNoise='35.0'>

<Acoustics></Acoustics>
<NoiseNotes>Ref: HTM2045</NoiseNotes>

</RoomEnvironmentalDataNoise>
<RoomEnvironmentalDataSafety HotSurfaceTemperature

='43.0' HotWaterTemperature='0.0'>
<Precautions></Precautions>
<SafetyNotes></SafetyNotes>

</RoomEnvironmentalDataSafety>
<RoomEnvironmentalDataFire>

<FireProtection></FireProtection>
<Enclosure></Enclosure>
<AutomaticDetection>Smoke</AutomaticDetection>

</RoomEnvironmentalDataFire>
<RoomDesignCharacter>
<Flooring>Surface Finish (HTM 61): 3 i.e. Hard, impervious, jointless, smooth
Cleaning Routine (HTM 61): To manufacturers recommendations
</Flooring>
<Walls>Surface Finish (HTM 56): 5
Moisture Resistance (HTM 56): N i.e. Normal humidity.
Cleaning Routine (HTM 56): To manufacturers recommendations
</Walls>
<Ceilings>Surface Finish (HTM 60): 5 i.e. Imperforate
Moisture Resistance (HTM 60): N i.e. Normal Humidity
Cleaning Routine (HTM 60): To manufacturers recommendations
</Ceilings>
<Doorsets>(HTM 58) Two sets of doors: 1x 1500mm, one & a half leaf, half
glazed, obscurable; bed access. 1x 1000mm,s ingle leaf, plain flush; wheelchair access.
</Doorsets>
<Glazing>(HTM 57) Clear with privacy control
</Glazing>
<Hatch></Hatch>
<Windows>(HTM 55) Clear, solar control, privacy control.
</Windows>
<DesignNotes></DesignNotes>
</RoomDesignCharacter>

</ADBEntity>

Assembly

<ADBEntity EntityName='SA1244' Project='DEMO1' EntityType='A'
RevisionDate='06/06/2005' Class='3309'>

<Description>SANITARY: Clinical handwash; medium hospital basin with automatic
action mixer tap, soap\scrub solution dispenser . Fixing Ht. basin 860.
</Description>
<User1></User1>
<User2></User2>

© Copyright Integra 2007

<User3></User3>
<User4></User4>
<User5></User5>
<Notes></Notes>

</ADBEntity>

Component

<ADBEntity EntityName='CHA017' Project='DEMO1' EntityType='C'
RevisionDate='06/06/2005' Class='3401' Group='3' Layer='A725_3' NSV='' PartNumber=''
Size='' TransferCost='0.00' Cost='84.00' Schedule='Yes' SupplyType='' InstallType=''
ComponentType='' ComponentType2='' Level='' DefaultModel=''>

<Description>CHAIR, upright, upholstered, stacking</Description>
<User1></User1>
<User2></User2>
<User3></User3>
<User4></User4>
<User5></User5>
<Notes>Option: Low hazard fabrics (£78) vinyl (£88.20) to specify</Notes>
<GenericSpec></GenericSpec>
<ComponentServicesInt Value1='0' Value2='0' Value3='0' Value4='0' Value5='0'
Value6='0' Value7='0' Value8='0' Value9='0' Value10='0'>
</ComponentServicesInt>
<ComponentServicesFloat Value1='0.000000' Value2='0.000000' Value3='0.000000'
Value4='0.000000' Value5='0.000000' Value6='0.000000' Value7='0.000000'
Value8='0.000000' Value9='0.000000' Value10='0.000000'>
</ComponentServicesFloat>
<ComponentServicesString>
<ServicesString1></ServicesString1>
<ServicesString2></ServicesString2>
<ServicesString3></ServicesString3>
<ServicesString4></ServicesString4>
<ServicesString5></ServicesString5>
<ServicesString6></ServicesString6>
<ServicesString7></ServicesString7>
<ServicesString8></ServicesString8>
<ServicesString9></ServicesString9>
<ServicesString10></ServicesString10>
</ComponentServicesString>
<ComponentServicesBool Value1='No' Value2='No' Value3='No' Value4='No'
Value5='No' Value6='No' Value7='No' Value8='No' Value9='No' Value10='No'>
</ComponentServicesBool>

</ADBEntity>

Activity

<ADBEntity EntityName='WAS009' Project='DEMO1' EntityType='V'
RevisionDate='30/12/1899' Class='3310'>

<Description>Clinical hand washing.</Description>
<User1></User1>
<User2></User2>
<User3></User3>
<User4></User4>
<User5></User5>

© Copyright Integra 2007

<Notes></Notes>
</ADBEntity>

Interface Entity

<ADBEntity Project=”DEMO1”

TargetProject=””
EntityType="R”
EntityName=”B0303”
TargetEntityName=””
Suffix=””
UpdateRevisionDate=”Yes”
RevisionDate=”24-Aug-2007”
Notes=””
User1=””
User2=””
User3=””
User4=””
User5=””
Class=””
Description=”Single Bedroom”>

 <ChildEntityChangeList Project=”DEMO1" EntityType=”C”>
<ChangeListItem EntityName=”OUT010”

Quantity=”4” ID=”” InstanceAttribute=””>
<ChangeListItem EntityName=”CHA017”

Quantity=”2” ID=”” InstanceAttribute=””>
 ….
 </ChildEntityChangeList>
</ADBEntity >

Note:

1. Quantity is the actual quantity and not the change
2. ID is the instance ID and only used for Room Ordered Departments
3. InstanceAttribute is the Room Number or Sequence Number

Audit

<ICLEntityHistory>

<ICLEntityHistoryEntry>
<pk> </pk>
<entityid> </entityid>
<entitycode> </entitycode>
<entitydescription> </entitydescription>
<version> </version>
<who> </who>
<what> </what>
<why> </why>
<when> </when>
<requestedby> </requestedby>
<authorisedby> </authorisedby>

© Copyright Integra 2007

<consequence> </consequence>
<consequenceid> </consequenceid>
<consequencenotes> </consequencenotes>

</ICLEntityHistory>
</ICLEntityHistoryEntry>

© Copyright Integra 2007

Brand

<ADBEntity EntityName='HP' Project='DEMO1' EntityType='B'
RevisionDate='27/08/2007'>

<Description>Hewlett Packard</Description>
<User1></User1>
<User2></User2>
<User3></User3>
<User4></User4>
<User5></User5>
<Notes></Notes>

</ADBEntity>

Supplier

<ADBEntity EntityName='AGILENT' Project='DEMO1' EntityType='S'
RevisionDate='27/08/2007'>

<Description>Agilent Technologies</Description>
<User1></User1>
<User2></User2>
<User3></User3>
<User4></User4>
<User5></User5>
<Notes></Notes>

</ADBEntity>

Model

<ADBEntity EntityName='HP4537A' Project='DEMO1' EntityType='M'
RevisionDate='27/08/2007' ModelCode='4537' ModelType='A' Brand='HP'
Manufacturer='AGILENT' Price='2000.00'>

<Description>Defribrillator wirh text and ECG display</Description>
<User1></User1>
<User2></User2>
<User3></User3>
<User4></User4>
<User5></User5>
<Notes></Notes>

</ADBEntity>

© Copyright Integra 2007

Graphics – Sample Assembly Definition

<ICL_GFXContainer Name="EA1631" View="-P" Type="Unknown" X1="-1.00"
Y1="0.00" Z1="0.00" X2="0.00" Y2="0.00" Z2="0.00" Phi="0.00">
<ICL_GFXBlockList Count="3">
<ICL_GFXBlock Name="EA1631" Layer="" Type="Structure"
Description="ENGINEERING: Double 13 amp socket outlet & telephone outlet, Fixing
Hts. 400.
" View="-P" SheetSize="0" SheetScale="0.02" X1="-1.00" Y1="0.00" Z1="0.00" X2="0.00"
Y2="0.00" Z2="0.00" Phi="0.00">
<ICL_GFXInsertionList Count="2">
<ICL_GFXInsert Name="OUT010" Layer="A623_1" Type="Primitive" X="300.00"
Y="0.00" Z="400.00" Phi="0.00"/>
<ICL_GFXInsert Name="OUT215" Layer="A642_1" Type="Primitive" X="0.00"
Y="0.00" Z="400.00" Phi="0.00"/>
</ICL_GFXInsertionList>
</ICL_GFXBlock>
<ICL_GFXBlock Name="OUT010" Layer="A623_1" Type="Primitive"
Description="SOCKET outlet switched 13amp twin, wall mounted" View="-P" SheetSize="0"
SheetScale="0.02" Group="1" Level="" X1="-1.00" Y1="0.00" Z1="0.00" X2="0.00"
Y2="0.00" Z2="0.00" Phi="0.00">

<ICL_GFXVectorList Count="6">
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="0.00" Y1="-172.50"
Z1="0.00" X2="0.00" Y2="-230.00" Z2="0.00"/>
<ICL_GFXArc LineStyle="CONTINUOUS" X="0.00" Y="-100.00" Z="0.00"
Radius="42.50" Phi1="3.14" Phi2="0.00"/>
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="0.00" Y1="0.00" Z1="0.00"
X2="0.00" Y2="-100.00" Z2="0.00"/>
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="72.50" Y1="-100.00"
Z1="0.00" X2="-72.50" Y2="-100.00" Z2="0.00"/>
<ICL_GFXArc LineStyle="CONTINUOUS" X="0.00" Y="-100.00" Z="0.00"
Radius="72.50" Phi1="3.14" Phi2="0.00"/>
<ICL_GFXPolyline Flags="1" LineStyle="CONTINUOUS">
<ICL_GFXPolylineVertex X="-7.59" Y="-187.53" Z="0.00" T1="14.75" T2="14.75"
Bulge="1.00"/>
<ICL_GFXPolylineVertex X="7.66" Y="-187.53" Z="0.00" T1="14.75" T2="14.75"
Bulge="1.00"/>
</ICL_GFXPolyline>
</ICL_GFXVectorList>
</ICL_GFXBlock>
<ICL_GFXBlock Name="OUT215" Layer="A642_1" Type="Primitive"
Description="SOCKET outlet telephone, wall mounted" View="-P" SheetSize="0"
SheetScale="0.02" Group="1" Level="" X1="-1.00" Y1="0.00" Z1="0.00" X2="0.00"
Y2="0.00" Z2="0.00" Phi="0.00">
<ICL_GFXVectorList Count="9">
<ICL_GFXPolyline Flags="1" LineStyle="CONTINUOUS">
<ICL_GFXPolylineVertex X="-6.25" Y="-150.00" Z="0.00" T1="12.50" T2="12.50"
Bulge="1.00"/>
<ICL_GFXPolylineVertex X="6.25" Y="-150.00" Z="0.00" T1="12.50" T2="12.50"
Bulge="1.00"/>
</ICL_GFXPolyline>
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="-21.88" Y1="-131.48"
Z1="0.00" X2="-54.09" Y2="-131.48" Z2="0.00"/>

© Copyright Integra 2007

<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="21.88" Y1="-99.45"
Z1="0.00" X2="21.88" Y2="-131.48" Z2="0.00"/>
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="-21.88" Y1="-99.45"
Z1="0.00" X2="21.88" Y2="-99.45" Z2="0.00"/>
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="-21.88" Y1="-131.48"
Z1="0.00" X2="-21.88" Y2="-99.45" Z2="0.00"/>
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="-0.97" Y1="-225.23"
Z1="0.00" X2="52.16" Y2="-131.48" Z2="0.00"/>
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="-54.09" Y1="-131.48"
Z1="0.00" X2="-0.97" Y2="-225.23" Z2="0.00"/>
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="52.16" Y1="-131.48"
Z1="0.00" X2="21.88" Y2="-131.48" Z2="0.00"/>
<ICL_GFXLine LineStyle="CONTINUOUS" Layer="0" X1="0.00" Y1="0.00" Z1="0.00"
X2="0.00" Y2="-100.00" Z2="0.00"/>
</ICL_GFXVectorList>
</ICL_GFXBlock>
</ICL_GFXBlockList>
</ICL_GFXContainer>

© Copyright Integra 2007

Appendix 2 – Entity Public Field Names used for Filters

Entity Public Field Names
Entity PublicName Data Type

Activity Class VarChar
Activity Code Char
Activity Description String
Activity RevisionDate DateTime
Activity UserData1 String
Activity UserData2 String
Activity UserData3 String
Activity UserData4 String
Activity UserData5 String
Assembly Class VarChar
Assembly Code Char
Assembly Description String
Assembly Notes String
Assembly RevisionDate DateTime
Assembly Schedule Boolean
Assembly SheetScale Double
Assembly SheetSize Integer
Assembly SpaceBox_x1 Double
Assembly SpaceBox_x2 Double
Assembly SpaceBox_y1 Double
Assembly SpaceBox_y2 Double
Assembly SpaceBox_z1 Double
Assembly SpaceBox_z2 Double
Assembly UserData1 String
Assembly UserData2 String
Assembly UserData3 String
Assembly UserData4 String
Assembly UserData5 String
Audit Approved By String
Audit Changed By String
Audit Code VarChar
Audit Consequence String
Audit Consequence Notes String
Audit Date DateTime
Audit Details of Change String
Audit Id VarChar
Audit Reason for Change String
Audit Requested By String
Audit Short Name VarChar
Audit Version String

© Copyright Integra 2007

Entity Public Field Names
Entity PublicName Data Type

Brand Code Char
Brand Description String
Brand RevisionDate DateTime
Brand UserData1 String
Brand UserData2 String
Brand UserData3 String
Brand UserData4 String
Brand UserData5 String
Component AC Boolean
Component AlternativeCode Char
Component Breadth Double
Component Cabling String
Component Class Char
Component ClassDescription String
Component ClassSchedule Boolean
Component Code Char
Component Cost Double
Component DC Boolean
Component DefaultModelID Char
Component DefaultModelName Char
Component Description String
Component Earth String
Component Gases String
Component GenericSpec String
Component Group Char
Component Height Double
Component InstallerType Char
Component Length Double
Component Level Char
Component MiscellaneousServices String
Component ModelClass String
Component Notes String
Component PartNumber Char
Component Phase String
Component Power Double
Component ProtectionType String
Component RevisionDate DateTime
Component Schedule Boolean
Component SheetScale Double
Component SheetSize Integer
Component Size Char
Component SpaceBox_x1 Double

© Copyright Integra 2007

Entity Public Field Names
Entity PublicName Data Type

Component SpaceBox_x2 Double
Component SpaceBox_y1 Double
Component SpaceBox_y2 Double
Component SpaceBox_z1 Double
Component SpaceBox_z2 Double
Component SupplierType Char
Component TransferCost Double
Component UserData1 String
Component UserData2 String
Component UserData3 String
Component UserData4 String
Component UserData5 String
Component UserType1 Char
Component UserType2 Char
Component VentilationServices String
Component Voltage Double
Component Volume Double
Component WaterServices String
Component Weight Double
Department Class Char
Department Code Char
Department Description Char
Department Notes String
Department Order Char
Department RevisionDate DateTime
Department UserData1 String
Department UserData2 String
Department UserData3 String
Department UserData4 String
Department UserData5 String
Level 1 Category CategoryType String
Level 2 Category CategoryType String
Level 3 Category CategoryType String
Model Brand String
Model BrandCode String
Model Code Char
Model Cost Double
Model Description String
Model Name String
Model RevisionDate DateTime
Model Supplier String
Model SupplierCode String

© Copyright Integra 2007

Entity Public Field Names
Entity PublicName Data Type

Model Type String
Model UserData1 String
Model UserData2 String
Model UserData3 String
Model UserData4 String
Model UserData5 String
Room Area Double
Room Class VarChar
Room Code VarChar
Room Description String
Room Design_Ceilings String
Room Design_DoorSets String
Room Design_Flooring String
Room Design_Glazing String
Room Design_Hatches String
Room Design_Notes String
Room Design_Walls String
Room Design_Windows String
Room Fire_AutoDetectionRequired String
Room Fire_Enclosure String
Room Fire_GeneralNotes String
Room Height Double
Room HVAC_Arrestance Double
Room HVAC_DustSpotEfficiency Double
Room HVAC_FiltrationAndHumidityNotes String
Room HVAC_GeneralNotes String
Room HVAC_MechanicalVentilationExtract Double
Room HVAC_MechanicalVentilationNotes String
Room HVAC_MechanicalVentilationSupply Double
Room HVAC_MechanicalVentilationUnits Integer
Room HVAC_RelativeHumidity Double
Room HVAC_RelativePressure String
Room HVAC_SummerTemperature Double
Room HVAC_TemperatureNotes String
Room HVAC_WinterTemperature Double
Room Lighting_ColourRenderingNotes String
Room Lighting_ColourRenderingRequired Boolean
Room Lighting_GeneralNotes String
Room Lighting_LocalIllumination Double
Room Lighting_LocalIlluminationNotes String
Room Lighting_ServiceIllumination Double
Room Lighting_ServiceIllumination_Night Double

© Copyright Integra 2007

Entity Public Field Names
Entity PublicName Data Type

Room Lighting_ServiceIlluminationNotes String
Room Lighting_ServiceIlluminationNotes_Night String
Room Lighting_StandbyLightingGrade Char
Room Lighting_StandbyLightingNotes String
Room Noise_AcceptableNoiseLevel Double
Room Noise_GeneraNotes String
Room Noise_IntolerableNoiseQuality String
Room Noise_IntrusiveNoiseLevel Double
Room Noise_MechanicalServices Double
Room Noise_NoiseLevelNotes String
Room Noise_PrivacyFactor Double
Room Noise_SpeechPrivacyRequired Boolean
Room Notes String
Room Personnel String
Room PlanningRelationships String
Room RevisionDate DateTime
Room Safety_GeneralNotes String
Room Safety_HotSurfaceTemperature Double
Room Safety_HotWaterTemperature Double
Room Safety_TemperatureNotes Double
Room SheetScale Double
Room SheetSize Integer
Room SpaceBox_x1 Double
Room SpaceBox_x2 Double
Room SpaceBox_y1 Double
Room SpaceBox_y2 Double
Room SpaceBox_z1 Double
Room SpaceBox_z2 Double
Room UserData1 String
Room UserData2 String
Room UserData3 String
Room UserData4 String
Room UserData5 String
Supplier Code Char
Supplier Description String
Supplier RevisionDate DateTime
Supplier UserData1 String
Supplier UserData2 String
Supplier UserData3 String
Supplier UserData4 String
Supplier UserData5 String

