

Bowland Shale Mapping and Resource Estimation (sorry not yet)

PROSPEX conference – London – 13 Dec 2012 toni.harvey@decc.gsi.gov.uk BGS: Sue Stoker, Ian Andrews

Resource Estimates

Geological Survey

•2010 DECC estimated potential production-

•The UK Carboniferous (Upper Bowland Shale) shale gas play, if equivalent to the Barnett Shale of Texas, could potentially yield up to 4.7 tcf shale gas."

•2011 Cuadrilla 200 tcf (5,664 BCM) estimate for Gas in Place

So Cuadrilla claim 200 tcf **gas in place** on their licence where DECC estimate 4.7 tcf could **potentially be produced.**

Both may be right.

Area of 2012 Study

UKOGL seismic and Bowland shale in wells

ENERGY & CLIMATECHANGE

Depth to Top Bowland

Thickness of Bowland-Hodder Unit

North American Shale Gas Analogies

				Horn River –		
	Barnett - Fort	Eagle Ford –	Haynesville -	NE British	Marcellus -	Bakken –
Shale Gas	Worth Basin	South Texas	Texas/Louisiana	Colombia	Appalachia	Williston Basin
	Mississipian	Cretaceous	U Jurassic	U. Devonian	M Devonian	U Dev/L Mississ.
Age	340 MYA	100 MYA	170 MYA	370 MYA	385 MYA	360 MYA
	Siliceous	Bituminous	Argill/			Sst/Siltst/
Lithology	mudst	shales	Calcareous	Brittle Shale	Argill mudst	Carbonate
Depth (ft)	7,500	11,500	12,000	8,800	7,000	10,000
Thickness (ft)	300	250	225	450	350	150

source: www.transformsw.com/papers-and-presentations/studies.html

1 Northern Bowland Basin

3 Edale Basin

The Bowland Shale does not look like North American producing plays

•Upper part is thin but widespread marine shale unit drowning most platform highs •Lower part is very thick rift-basin fill shales with mass-flow carbonates and rare mass-flow sandstones, passing laterally to platform carbonates on highs

Bowland-Hodder Unit: (Widmerpool Trough)

Old Dalby Widmerpool Trough

Rempstone Widmerpool Trough

TOC in Bowland/Hodder

TOC (%)

Vitrinite Reflectance vs. Depth

Widmerpool 1 – minor uplift

Swinden 1 – major uplift

Depth to top gas window at VR = 1.1

Depth to top gas window Cross Section

Depth cross-section showing the effect of the sub-ground level and isomaturity cut-offs

Bowland-Hodder interval within gas window (VR >1.1%) – used for volumetric estimation

Location of DECC/BGS Rock-Eval samples

BGS Rock-Eval work: HI (pd) vs Tmax

DEPARTMENT OF

ENERGY

CLIMATE/CHANGE

 Table 3. Minimum and Best Values for Determining Whether a Low-Porosity, Low-Permeability Shale Has High Thermal Maturity

 Using Both Visual and Chemical Maturity Parameters

	R _o (%)	7 _{max} (°C)	TR (%)	HI _{pd} (mg HC/g TOC)	Dry Gas (%)	C ₂₀₊ (%)
Minimum	1.00	455	80	76-100	80	5
Better	1.20	465	90	50-75	90	3
Best	1.40	475	95	<50	95	1

Generation potential vs organic richness for DECC Bowland Shale samples

Blue line is Barnett Shale well maturation trend (Jarvie, 2008)

Jarvie et al, 2012 – Characteristics of best shale gas resource system

Wells in best-producing areas (in terms of initial production and ongoing production) :

Marine shales, commonly described as type II organic matter

Organic rich source rocks; >1% TOC present day

In gas window (>1.4% Ro)

Have low oil saturations (<5% So)

Have significant silica content (>30% with some carbonate)

Have non-swelling clays (are brittle)

Have <1000 nanoD permeability

Have < 15% porosity, typically 4-7%

Have GIP values of more than 100 bcf/section

Have 150+ ft (45+m) of organic rich mudstone

Are slightly to highly overpressured

Have very high first year decline rates

Have consistent or known principal stress fields

Are drilled away from structures and faulting

Are continuous mappable systems

So, will the Bowland Shale produce shale gas?

	-	-		
Positive factors	Negative factors	Unknown or poorly known		
Thickness of >2.5%	Variable organic content in	Limited well penetrations in		
TOC intervals	lower unit isopach thick	lower unit isopach thick		
	areas.	areas.		
Some Type II	Some Type III kerogen	Gas yield		
kerogen				
Brittle shale	Structural complexity and	IP and decline rate		
(interbedded	inversion			
w/brittle limestones)				
Thermal maturity	Relatively low gamma	Extent of over-pressuring		
>1.1 R ₀ >3.5 R ₀	response compared to North			
	American analogues			
Evidence of gas in	Lower unit isopach thick			
shale wells and	areas have no North			
producing fields	American shale gas			
sourced from	analogues			
Bowland Shale				

Bowland/Hodder Shale Isopach

Conclusions

- BGS Mapping, geochemical analysis still underway
- Fault-bounded thicks do not look like North American analogies, but have few well penetrations
- Bowland /Hodder has condensed zones of high-TOC, laterally correlative high gamma, brittle shale
- Basins are mature for gas, but some for liquids, too

DECC will publish Bowland Tech report and GIP estimation early in 2013

Thanks to Sue Stoker, Ian Andrews, Mike Sankey at BGS!

Oil & Gas

-	Licences	Exploration & production	Environment	Business opportunities	PONs & codes of practice	Emergencies	Data & maps	Technical papers

Exploration & production > Onshore > Decision on fracking for shale gas

Wells

Fields and field development

Measurement of petroleum

Operatorship

Infrastructure

Onshore

Cuadrilla Geomechanical and DECC report

Decommissioning

Taxation

NEW CONTROLS ON SEISMIC RISKS PERMIT A RESUMPTION OF SHALE GAS EXPLORATION

Hydraulic fracturing operations for shale gas in the UK have been suspended since May 2011, pending the investigation of two seismic tremors experienced near Preese Hall, Lancashire during fracking operations.

In the light of the recommendations of a panel of independent experts, of comments received in response to a public consultation, and of the recommendations of an authoritative review of the scientific and engineering evidence on shale gas extraction made by the UK's science and engineering academies, the Royal Society and the Royal Academy of Engineering, the Secretary of State for Energy has announced the introduction of new regulatory requirements to ensure that seismic risks are effectively mitigated.

A copy of the Secretary of State's statement to Parliament is available at the following link. [link].

Subject to these new requirements, DECC is prepared in principle to consider new applications for consent to such operations, and the suspension is therefore lifted. As before, final consent to any well or well operations is dependent on confirmation that all other necessary permits and consents have been obtained. A wide range of other issues were raised in the responses to the public consultation, and DECC together with other relevant bodies has prepared a full Q&A brief on these issues, which can be found at [Q&A link....]

The full Government response to the recommendations made on the scientific and engineering evidence by the Royal Society and the Royal Academy of Engineering can be found via the following link [RS/RAE response]

Here is further background information on Shale Gas

Environment Agency' guidance note on exploratory shale gas operations Id