SCOTTISH STATUTORY INSTRUMENTS

2010 No.

ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES

The Radioactive Substances Exemption (Scotland) Order 2010

Made Laid before the Scottish Parliament Coming into force

The Scottish Ministers make the following Order in exercise of the powers conferred by sections 8(6) and (7), 11(1) and (2) and 15(2) of the Radioactive Substances Act 1993 (^a)and all other powers enabling them to do so.

PART 1

Introduction and exemptions

Citation, commencement and extent

1.___(1) This Order may be cited as the Radioactive Substances Exemption (Scotland) Order 2010 and comes into force on 2010.

(2) This Order extends to Scotland only.

Interpretation

2.____(1) In this Order-

"the Act" means the Radioactive Substances Act 1993;

"Bq" means becquerels;

"a Class A gaseous tritium lighting device" means such a device where the activity of the device does not exceed 20×10^9 Bq;

"a Class B gaseous tritium lighting device" means such a device where the activity-

(a) in each sealed container in the device does not exceed 8×10^{10} Bq; and

(b) of the device does not exceed 1×10^{12} Bq;

^{(&}lt;sup>a</sup>) 1993 c. 12, as relevantly amended by the Environment Act 1995 (c. 25), Schedule 22, paragraphs 200 and 203 and S.S.I. 2000/100 regulation 2(1). The functions of the Secretary of State were transferred to the Scottish Ministers by virtue of section 53 of the Scotland Act 1998 (c. 46).

- "a Class C gaseous tritium lighting device" means such a device installed or intended to be installed-
- (a) in a vehicle or aircraft; or
- (b) in other equipment used or intended to be used by the armed forces of the Crown;

"an electrodeposited source" means an article-

- (a) where radionuclides are electrodeposited onto a metal substrate; and
- (b) which is a sealed radioactive source when fitted inside equipment;

"an eluting source" means a Ba-137m source which-

- (a) is generated from the decay of Cs-137 in a sealed container; and
- (b) is removed from that container by dissolving that source in an aqueous medium;
- "a gaseous tritium lighting device" means a device which is an illuminant, instrument, sign or indicator-
- (a) which incorporates tritium gas in one or more robust sealed containers constructed to withstand breaking in normal use; and
- (b) which is radioactive material solely because it contains that gas;

"m" where it appears after a radionuclide means a radionuclide in a metastable state of decay in which gamma photons are emitted;

- "a sealed radioactive source" means a radioactive source containing solid radioactive material whose structure is designed to prevent, under normal conditions of use, any dispersion of radioactive substances;
- "the table 1 summation rule" means the rule stated after table 1 in Schedule 1;

"a tritium foil source" means an article-

- (a) which has a mechanically tough surface into which tritium is incorporated;
- (b) which is radioactive material solely because of that tritium; and
- (c) where the activity does not exceed $2x10^{10}$ Bq;

"+" where it appears after a radionuclide means that the radionuclide includes such of its daughter radionuclides in the decay chain that are relevant for the purposes of radiological impact assessment.

(2) Other expressions used in this Order have the same meanings as in the Act.

Exemption from registration under section 7

3. For all classes of premises and undertakings to which section 7 (registration of users of radioactive material) of the Act applies, a person is exempt from registration under that section-

- (a) in respect of the radioactive material described in article 6; and
- (b) as applicable, where that person complies with the conditions in article 9.

Exemption from registration under section 10

4. For all classes of person to whom section 10 (registration of mobile radioactive apparatus) of the Act applies, a person within those classes is exempt from registration under that section-

- (a) in respect of mobile radioactive apparatus which is or contains the radioactive material described in article 6; and
- (b) as applicable, where that person complies with the conditions in article 9.

Exemption from authorisation under section 13 or 14

5. A person is exempt from authorisation under section 13 (disposal of radioactive waste) or 14 (accumulation of radioactive waste) of the Act-

- (a) in respect of the radioactive waste described in article 8; and
- (b) where that person complies with the conditions in article 10.

PART 2

Radioactive material and radioactive waste

Radioactive material and exemption from registration

6. Radioactive material referred to in articles 3(a) and 4(a) means radioactive material to which any of the following descriptions apply-

- (a) the material is contaminated with radionuclides-
 - (i) by the disposal of radioactive waste; or
 - (ii) as a result of a release of radioactive material arising from a significant incident;

(b) in respect of material which is a fixture of premises, such material is contaminated with radionuclides in the course of processing any other substance or article;

(c) the material is contained in a package and that package is in the course of transit to-

(i) a manufacturer or carrier of radioactive sources; or

(ii) a person who is lawfully entitled to keep or use such radioactive sources;

(d) subject to paragraph (e), material on any premises where the quantity of any radionuclide listed in column 1 of Schedule 1 which that material contains does not exceed the adjacent value specified in column 2 of that table;

(e) for material-

(i) intended for use for medical or veterinary diagnosis or treatment; or

(ii) intended for supply for such use,

the quantity on any premises of Tc-99m which that material contains does not exceed $1x10^9$ Bq;

(f) the material contains any radionuclide listed in column 1 of table 1 in Schedule 1 and-

(i) the concentration of any particular radionuclide in that material does not exceed the value specified in column 3 of that table adjacent to that radionuclide; and

(ii) the quotient value of all radionuclides in that substance or article, as determined by the table 1 summation rule, is less than or equal to one;

or

(g) for the material described in column 1 of table 2 in Schedule 1, the quantity of any radionuclide which that material contains does not exceed-

(i) in respect of any one item of that material, the value specified in column 2 of that table adjacent to that radionuclide; and

(ii) in respect of the premises where the material is kept or used, the value specified in column 3 of that table adjacent to that radionuclide.

7. In relation to article 6(a)(ii)-

(a) "a significant incident" means an incident arising in the United Kingdom or elsewhere in which radionuclides are released over a widespread area and at a level which significantly exceeds that which would be permitted under the regulatory regime for the control of such releases; and

(b) guidance may be issued by the Scottish Ministers concerning the application of the exemption.

Radioactive waste and exemption from authorisation

8. Radioactive waste referred to in article 5(a) means radioactive waste to which any of the following descriptions apply-

(a) for the waste described in column 1 of table 1 in Schedule 2-

(i) the quantity or concentration level of any radionuclide which that waste contains does not exceed any value specified in column 2 of that table; or

(ii) the quantity of the waste or, as applicable, the quantity of any radionuclide which that waste contains, does not exceed any value specified in column 3 of that table during the period specified in that column,

whichever specified value is the lower;

(b) the waste is within excreta from a patient and-

(i) the half-life of the radionuclides within that waste does not exceed half a day;

(ii) the activity level of that waste does not exceed 1 x 10^9 Bq of Tc-99m or 5 x 10^8 Bq of all other radionuclides; or

(iii) the waste arises other than at the premises where the patient received the treatment which included the radionuclide contained in the waste;

(c) except waste described in paragraph (d), the waste-

(i) is contained in a package; and

(ii) that package is in the course of transit to a person for the management, treatment or disposal of the waste;

or

(d) where the waste consists of a sealed source, a tritium foil source or a gaseous tritium lighting device, that waste is-

(i) in the course of transit to; or

(ii) accumulated with the intention of transferring it to,

a person for the management, treatment or disposal of the waste.

PART 3

Conditions in respect of radioactive material and radioactive waste

Conditions in respect of radioactive material

9. In respect of radioactive material described in article 6, except material described in article 6(a) or (b), a person to whom article 3 or 4 applies must-

(a) keep an adequate record of such material which the person keeps or uses on any premises;

(b) ensure that where practicable such material is marked or labelled as radioactive material;

(c) store safely and securely such material to prevent, so far as possible, accidental removal, loss or theft from the premises where the person keeps or uses such material;

(d) in respect of an incident of loss or theft, or suspected loss or theft, of such material which the person keeps or uses on any premises-

(i) notify the incident to the police and SEPA as soon as practicable; and

(ii) investigate the incident and, subject to the instructions from the police or SEPA, attempt to recover the material;

and

(e) allow SEPA access to such records or such premises as SEPA may request in order to determine that the above conditions are being complied with.

Conditions in respect of radioactive waste

10. In respect of radioactive waste described in article 8, a person to whom article 5 applies must-

(a) subject to paragraph (b), keep an adequate record of such waste which the person disposes of on or from, or accumulates on, any premises;

(b) in respect of excreta from a patient, keep an adequate record of the estimated amount of radioactive waste within such excreta which is expected to be disposed of;

(c) ensure that where practicable such waste which the person accumulates on any premises (or the container of such waste) and any waste stores are marked or labelled;

(d) ensure that where practicable such marking or labelling of the waste or its container is removed before the person disposes of that waste to premises used for the disposal of substantial quantities of waste which is not radioactive;

(e) dispose of such waste as soon as practicable after it has become waste;

(f) except where such waste is disposed of by a person who holds an authorisation under the Act, dispose of such waste-

(i) where it is solid waste, by causing it to be transferred to premises used for the management, treatment or disposal of substantial quantities of waste which is not radioactive;

(ii) where it is aqueous waste but not an organic liquid, by sending it from the premises where the disposal occurs to a sewer using a suitable pipeline;

(iii) where it is an organic liquid, by incineration in an appropriate incineration plant;

(g) allow such waste to be accumulated on any premises only-

(i) to the extent needed to enable its disposal; or

(ii) for such period which is reasonable to allow the activity level of such waste to decay to a level that enables the waste to be managed more effectively than if such decay had not occurred;

(h) store safely and securely such waste to prevent, so far as possible, accidental removal, loss or theft from the premises where the person accumulates it;

(i) in respect of an incident of loss or theft, or suspected loss or theft, of such waste which the person accumulates on any premises-

(i) notify the incident to the police and SEPA as soon as practicable; and

(ii) investigate the incident and, subject to instructions from the police or SEPA, attempt to recover the waste;

and

(j) allow SEPA access to such records or such premises as SEPA may request in order to determine that the above conditions are being complied with.

PART 4

Revocation

Revocation

11. The Orders specified in Schedule 3 are revoked on 2010.

[A member of the Scottish Executive]

St Andrew's House Edinburgh [] 2010

SCHEDULE 1

Article 6

EXEMPTION FROM REGISTRATION

Table 1

Maximum values for exempt radioactive material under article 6(d) and (f)

Radionuclide	Maximum quantity in	Maximum concentration
	becquerels (Bq) on any	level in becquerels per
	premises	gram (Bq/g)in radioactive
		material
H-3	10 ⁹	10^{6}
Be-7	10 ⁷	10 ³
C-14	10 ⁷	10^{4}
O-15	10 ⁹	10 ²
F-18	10 ⁶	10
Na-22	10 ⁶	10
Na-24	10 ⁵	10
Si-31	10 ⁶	10^{3}
P-32	10 ⁵	10 ³
P-33	10 ⁸	10 ⁵
S-35	10 ⁸	10 ⁵
Cl-36	10 ⁶	10 ⁴
Cl-38	10 ⁵	10
Ar-37	10 ⁸	10 ⁶
Ar-41	109	10^{2}
K-40	10 ⁶	10^{2}
K-42	10 ⁶	10 ²
K-43	10 ⁶	10
Ca-45	10 ⁷	10^{4}
Ca-47	10 ⁶	10
Sc-46	10 ⁶	10
Sc-47	10^{6}	10^{2}
Sc-48	10 ⁵	10
V-48	10 ⁵	10
Cr-51	10 ⁷	10 ³
Mn-51	10 ⁵	10
Mn-52	10^{5}	10
Mn-52m	10^{5}	10
Mn-53	109	10^4
Mn-54	10^{6}	10
Mn-56	10 ⁵	10
Fe-52	10 ⁶	10
Fe-55	10^{6}	10^{4}
Fe-59	10^{6}	10
<u>Co-55</u>	10 ⁶	10
Co-56	10 ⁵	10
Co-57	10 ⁶	10^2
Co-58	10 ⁶	10

Appendix 1	3: Draft	Scotland	RSA93	Exemption	Order
------------	----------	----------	-------	-----------	-------

Radionuclide	Maximum quantity in	Maximum concentration
	becquerels (Bq) on any	level in becquerels per
	premises	gram (Bq/g)in radioactive
		material
Co-58m	10'	104
Co-60	10 ⁵	10
Co-60m	10 ⁶	10 ³
Co-61	10 ⁶	10 ²
Co-62m	105	10
Ni-59	108	10 ⁴
Ni-63	108	10 ⁵
Ni-65	10 ⁶	10
Cu-64	10 ⁶	10^{2}
Zn-65	10 ⁶	10
Zn-69	10 ⁶	10^{4}
Zn-69m	10 ⁶	10^{2}
Ga-72	10 ⁵	10
Ge-71	10 ⁸	10 ⁴
As-73	10 ⁷	10 ³
As-74	10 ⁶	10
As-76	10 ⁵	10 ²
As-77	10 ⁶	10 ³
Se-75	10 ⁶	10 ²
Br-82	10 ⁶	10
Kr-74	109	10 ²
Kr-76	109	10 ²
Kr-77	109	10 ²
Kr-79	10 ⁵	10 ³
Kr-81	10 ⁷	10 ⁴
Kr-83m	10 ¹²	10 ⁵
Kr-85	10 ⁴	10 ⁵
Kr-85m	10 ¹⁰	10 ³
Kr-87	109	10 ²
Kr-88	109	10^{2}
Rb-86	10 ⁵	10^{2}
Sr-85	10 ⁶	10^{2}
Sr-85m	10 ⁷	10^{2}
Sr-87m	10^{6}	10^{2}
Sr-89	10 ⁶	10^{3}
Sr-90+	10^4	10^{2}
Sr-91	10^5	10
Sr-92	10^{6}	10
Y-90	10^{5}	10^{3}
Y-91	10^{6}	10^{3}
Y-91m	10^{6}	10^2
Y-92	10 ⁵	10^2
Y-93	10^5	10^2
Zr-93+	10 ⁷	10 ³

Radionuclide	Maximum quantity in	Maximum concentration
	becquerels (Bq) on any	level in becquerels per
	premises	gram (Bq/g)in radioactive
		material
Zr-95	10 ⁶	10
Zr-97+	10 ⁵	10
Nb-93m	10 ⁷	10^{4}
Nb-94	10^{6}	10
Nb-95	10 ⁶	10
Nb-97	10 ⁶	10
Nb-98	10 ⁵	10
Mo-90	10 ⁶	10
Mo-93	10 ⁸	10 ³
Mo-99	10 ⁶	10^{2}
Mo-101	10^{6}	10
Tc-96	10 ⁶	10
Tc-96m	10 ⁷	10^{3}
Тс-97	10^{8}	10^{3}
Tc-97m	10^{7}	10^{3}
Тс-99	10^{7}	10^{4}
Tc-99m	10^{7}	10^{2}
Ru-97	10^{7}	10^{2}
Ru-103	10^{6}	10^{2}
Ru-105	10^{6}	10
Ru-106+	10^{5}	10^{2}
Rh-103m	10^{8}	10^4
Rh-105	10^{7}	10^{2}
Pd-103	10^8	10^{3}
Pd-109	10^{6}	10^{3}
Ag-105	10^{6}	10^{2}
Ag-108m+	10^{6}	10
Ag-110m	10^{6}	10
Ασ-111	10^{6}	10^{3}
Cd-109	10^{6}	10^4
Cd-115	10^{6}	10^2
Cd-115m	10^{6}	10^{3}
In-111	10^{6}	10^2
In-113m	10^{6}	10^2
In-114m	10^{6}	10^2
In-115m	10^{6}	10^2
Sn_113	10^{7}	10^{3}
Sn-115 Sn-125	10^{5}	10^{2}
Sh-123 Sh 122	10^{4}	10^{2}
Sb-122 Sb-124	10^{6}	10
Sb-124 Sh 125	10	10^{-10}
Te 123m	10	$10^{-10^{2}}$
To 125m	10	10
Te 127	10	10
10-12/	10	10

Radionuclide	Maximum quantity in	Maximum concentration
	becquerels (Bq) on any	level in becquerels per
	premises	gram (Bq/g)in radioactive
		material
Te-127m	10 ⁷	10 ³
Te-129	10 ⁶	10^{2}
Te-129m	10 ⁶	10 ³
Te-131	10 ⁵	10^{2}
Te-131m	10 ⁶	10
Te-132	10 ⁷	10^{2}
Te-133	10 ⁵	10
Te-133m	10 ⁵	10
Te-134	10^{6}	10
I-123	10 ⁷	10^{2}
I-125	10^{6}	10^{3}
I-126	10^{6}	$\frac{10^2}{10^2}$
I-129	10^{5}	$\frac{10^2}{10^2}$
I-130	10^{6}	10
I-131	10^{6}	$\frac{10^2}{10^2}$
I-132	10^{5}	10
I-133	10^{6}	10
I-134	10^{5}	10
I-135	10^{6}	10
Xe-131m	10^4	$\frac{10}{10^4}$
Xe-133	10^4	$\frac{10^{3}}{10^{3}}$
Xe-135	10^{10}	$\frac{10^{3}}{10^{3}}$
Cs-129	10^{5}	$\frac{10^2}{10^2}$
Cs-131	10^{6}	$\frac{10^{3}}{10^{3}}$
Cs-132	10^{5}	10
Cs-134m	10^{5}	$\frac{10}{10^3}$
Cs-134	10^4	10
Cs-135	10^{7}	10^4
Cs-136	10^{5}	10
<u>Cs-137</u> +	10^4	10
Cs-138	10^4	10
Ba-131	10^{6}	$\frac{10}{10^2}$
Ba_{-140+}	10^{5}	10
L_{a-140}	10^{5}	10
$\frac{12a-140}{Ce-130}$	10^{6}	$\frac{10}{10^2}$
$Ce_1/1$	10^{7}	$\frac{10}{10^2}$
C_{2} 142	10^{6}	10^2
$C_{2} 144 \pm$	$10^{-10^{-5}}$	$\frac{10}{10^2}$
Ce-144+	$10^{-10^{5}}$	$\frac{10}{10^2}$
PI-142	10	$\frac{10}{10^4}$
ГІ-143 NJ 147	10	10 10^2
Nd-14/	10	$\frac{10}{10^2}$
ING-149	10	<u>10</u> 10 ⁴
Pm-14/	10	10 ³
Pm-149	10°	10

Radionuclide	Maximum quantity in	Maximum concentration
	becquerels (Bq) on any	level in becquerels per
	premises	gram (Bq/g)in radioactive
	2	material
Sm-151	10 ⁸	10 ⁴
Sm-153	10 ⁶	10^{2}
Eu-152	10 ⁶	10
Eu-152m	10 ⁶	10^{2}
Eu-154	10 ⁶	10
Eu-155	10 ⁷	10^{2}
Gd-153	10 ⁷	10^{2}
Gd-159	10 ⁶	10 ³
Tb-160	10 ⁶	10
Dy-165	10 ⁶	10 ³
Dy-166	10 ⁶	10 ³
Ho-166	10 ⁵	10 ³
Er-169	10 ⁷	10 ⁴
Er-171	10 ⁶	10^{2}
Tm-170	10 ⁶	10^{3}
Tm-171	10 ⁸	10^{4}
Yb-175	10 ⁷	10^{3}
Lu-177	10^{7}	10^{3}
Hf-181	10 ⁶	10
Ta-182	10^{4}	10
W-181	10 ⁷	10^{3}
W-185	10 ⁷	10^{4}
W-187	10^{6}	10^{2}
Re-186	10^{6}	10^{3}
Re-188	10^{5}	10^{2}
Os-185	10^{6}	10
Os-191	10^{7}	10^{2}
Os-191m	10^{7}	10^{3}
Os-193	10^{6}	10^{2}
Ir-190	10^{6}	10
Ir-192	10^{4}	10
Ir-194	10^{5}	10^{2}
Pt-191	10^{6}	10^{2}
Pt-193m	10^{7}	10^{3}
Pt-197	10^{6}	10^{3}
Pt-197m	10^{6}	10^{2}
Au-198	10^{6}	10^2
Au-199	10^{6}	$\frac{10^2}{10^2}$
Ησ-197	10^{7}	10^2
Hg-197m	10^{6}	$\frac{10}{10^2}$
Ησ-203	10^{5}	$\frac{10}{10^2}$
T1-200	10 ⁶	10
TI-201	10 ⁶	10^{2}
T1-202	10 ⁶	$\frac{10}{10^2}$
11 202	10	1.0

Radionuclide	Maximum quantity in	Maximum concentration
	becquerels (Bq) on any	level in becquerels per
	premises	gram (Bq/g)in radioactive
		material
T1-204	10 ⁴	10 ⁴
Pb-203	10 ⁶	10^{2}
Pb-210+	10^{4}	10
Pb-212+	10 ⁵	10
Bi-206	10 ⁵	10
Bi-207	10 ⁶	10
Bi-210	10 ⁶	10^{3}
Bi-212+	10 ⁵	10
Po-203	10^{6}	10
Po-205	10 ⁶	10
Po-207	10 ⁶	10
Po-210	10^{4}	10
At-211	10 ⁷	10^{3}
Rn-220+	10 ⁷	10^{4}
Rn-222+	10^{8}	10
Ra-223+	10^{5}	10^{2}
Ra-224+	10^{5}	10
Ra-225	10^{5}	10^{2}
Ra-226+	10^{4}	10
Ra-227	10^{6}	10^{2}
Ra-228+	10 ⁵	10
Ac-227+	10 ³	10-1
Ac-228	10 ⁶	10
Th-226+	10 ⁷	10^{3}
Th-227	10 ⁴	10
Th-228+	10 ⁴	1
Th-229+	10^{3}	1
Th-230	10^{4}	1
Th-231	10 ⁷	10 ³
Th-234+	10 ⁵	10^{3}
Pa-230	10 ⁶	10
Pa-231	10 ³	1
Pa-233	10 ⁷	10^{2}
U-230+	10 ⁵	10
U-231	10 ⁷	10^{2}
U-232+	10 ³	1
U-233	10^{4}	10
U-234	10 ⁴	10
U-235+	10 ⁴	10
U-236	10 ⁴	10
U-237	10 ⁶	10 ²
U-238+	10 ⁴	10
U-239	10 ⁶	10 ²
U-240	10 ⁷	10 ³

Radionuclide	Maximum quantity in	Maximum concentration
	becquerels (Bq) on any	level in becquerels per
	premises	gram (Bq/g)in radioactive
		material
U-240+	10°	10
Np-237+	10 ³	1
Np-239	10'	10 ²
Np-240	10 ⁶	10
Pu-234	10 ⁷	10^{2}
Pu-235	10'	10 ²
Pu-236	10 ⁴	10
Pu-237	10 ⁷	10 ³
Pu-238	104	1
Pu-239	10^{4}	1
Pu-240	10^{3}	1
Pu-241	10 ⁵	10^{2}
Pu-242	10^{4}	1
Pu-243	10 ⁷	10 ³
Pu-244	10^{4}	1
Am-241	10^{4}	1
Am-242	10 ⁶	10^{3}
Am-242m+	10 ⁴	1
Am-243+	10 ³	1
Cm-242	10 ⁵	10 ²
Cm-243	10 ⁴	1
Cm-244	10 ⁴	10
Cm-245	10 ³	1
Cm-246	10 ³	1
Cm-247	10 ⁴	1
Cm-248	10^{3}	1
Bk-249	10 ⁶	10 ³
Cf-246	10 ⁶	10 ³
Cf-248	10 ⁴	10
Cf-249	10 ³	1
Cf-250	10 ⁴	10
Cf-251	10^{3}	1
Cf-252	10 ⁴	10
Cf-253	10 ⁵	10^{2}
Cf-254	10^{3}	1
Es-253	10^{5}	10^{2}
Es-254	10^{4}	10
Es-254m	10^{6}	$\frac{10^{2}}{10^{2}}$
Fm-254	$\frac{10^{7}}{10^{7}}$	10^4
Fm-255	10^{6}	10^{3}
Any other radionuclide not		
listed above	103	1

1. The table 1 summation rule means the sum of the quotients of A/B where-

(a) "A" means the concentration of each radionuclide listed in column 1 of the above table that is present in the substance or article; and

(b) "B" means the concentration of that radionuclide specified in column 3 of the above table.

Table 2

Maximum values for exempt radioactive material described in article 6(g)

Radioactive material	Maximum quantity of	Maximum quantity of
	radionuclides per item of	radionuclides on any
	material	premises
A sealed radioactive	$4x10^{\circ}$ Bq of alpha activity	\sum Bq alpha/2x10' + Bq
source.	or $4 \times 10^{\circ}$ Bq of beta	$beta/2x10^8 \le 1$
	activity	12
A Class A gaseous tritium	2x10 ⁹ Bq	$5x10^{12}$ Bq
lighting device.	12	12
A Class B gaseous tritium	$1 x 10^{12} Bq$	$3 \times 10^{13} Bq$
lighting device.		
A Class C gaseous tritium	No limit	No limit
lighting device.	10	
A tritium foil source.	$2x10^{10}$ Bq	$2x10^{11}_{0}$ Bq
An electrodeposited	No limit	$6x10^{9}$ Bq Ni-63 or
source.		2x10 ⁹ Bq Fe-55
Radioactive material	4% elemental thorium by	No limit
which is or contains	mass.	
magnesium alloy, thoriated		
tungsten or dross from		
hardener alloy.		
Radioactive material	No limit	5Kg natural elemental
which is or contains		uranium or natural thorium
natural metallic uranium or		
thorium, prepared		
compounds of natural		
uranium or natural		
thorium, or natural		
minerals containing		
uranium or thorium.	2 7 10 ⁵ D G 127	2 7 10 ⁶ D C 127
An eluting source.	3./x10° Bq Cs-137	3./x10° Bq Cs-13/

SCHEDULE 2

Article 8

EXEMPTION FROM AUTHORISATION

Table 1

Maximum values for exempt radioactive waste described in article 8

Description of radioactive waste	Maximum quantity or concentration of radionuclides	Maximum quantity of the waste or radionuclides in the following periods
Radioactive waste which consists of a sealed source or a tritium foil source to be disposed of in non- radioactive refuse	$4x10^4$ Bq of all radionuclides (except tritium or C-14) per 0.1m ³ $4x10^5$ Bq of tritium or C- 14 per 0.1m ³	10 sources of [each type] [both types] per week
Radioactive refuse. Radioactive waste which consists of a Class A Gaseous Tritium Lighting Device to be disposed of in non-radioactive refuse.	1 per 0.1m^3	10 devices per week
Radioactive waste to be disposed of in non- radioactive refuse (except as described in the rows above).	$4x10^5$ Bq of all radionuclides (except tritium and C-14) per $0.1m^3$. $4x10^6$ Bq of tritium or C- 14 per $0.1m^3$	1 Te per week
Radioactive waste in aqueous solution to be disposed of to a sewer	1×10^{2} Bq/ml of all beta- emitting radionuclides	1x10 ⁸ Bq per year
Radioactive waste which consists of organic solutions and liquids to be disposed of by incineration.	1x10 ² Bq/ml of all beta- emitting radionuclides	1x10 ⁸ Bq per year
Radioactive waste which consists of magnesium alloy, thoriated tungsten or dross from hardener alloy.	4% elemental thorium by mass	No limit
Radioactive waste which consists of natural metallic uranium or thorium, prepared compounds of uranium or thorium, or natural minerals containing uranium or thorium.	No limit	0.5Kg natural elemental uranium or thorium per week.

SCHEDULE 3

Article 12

REVOCATIONS

Orders Revoked	References
The Radioactive Substances (Lead)	S.I. 1962/2762 (S.122)
Exemption (Scotland) Order 1962	
The Radioactive Substances (Storage in	S.I. 1962/2765 (S.125)
Transit) Exemption (Scotland) Order	
1962	
The Radioactive Substances (Uranium	S.I. 1962/2766 (S.126)
and Thorium) Exemption (Scotland)	
Order 1962	
The Radioactive Substances (Exhibitions)	S.I. 1962/2768 (S.128)
Exemption (Scotland) Order 1962	
The Radioactive Substances (Phosphatic	S.I. 1962/2769 (S.129)
Substances, Rare Earths etc.) Exemption	
(Scotland) Order 1962	
The Radioactive Substances (Geological	S.I. 1962/2771 (S.131)
Specimens) Exemption (Scotland) Order	
1962	
The Radioactive Substances (Prepared	S.1. 1962/2772 (S.132)
Uranium and Thorium Compounds)	
Exemption (Scotland) Order 1962	
The Radioactive Substances (Waste	S.1. 1963/1877 (S.94)
Closed Sources) Exemption (Scotland)	
Urder 1963 The Dedicection Calenter (Calenda	Q L 10(2/1979 (C 05)
The Radioactive Substances (Schools	5.1. 1963/1878 (5.95)
etc.) Exemption (Scotland) Order 1963	S L 10(2/1992 (S 00)
The Radioactive Substances (Precipitated Disambate) Exampling (Sectional) (Inden	5.1. 1963/1882 (5.99)
Phosphate) Exemption (Scotland) Order	
The Radioactive Substances (Electronic	S I 1067/1902 (S 166)
Valves) Exemption (Scotland) Order	5.1. 1907/1805 (5.100)
1967	
The Radioactive Substances (Smoke	S I 1980/1599
Detectors) Exemption (Scotland) Order	5.1. 1760/1377
1980	
The Radioactive Substances (Gaseous	S I 1985/1047
Tritium Light Devices) Exemption Order	
1985	
The Radioactive Substances (Luminous	S.I. 1985/1048
Articles) Exemption Order 1985	
The Radioactive Substances (Testing	S.I. 1985/1049
Instruments) Exemption Order 1985	
The Radioactive Substances (Substances	S.I. 1986/1002
of Low Activity) Exemption Order 1986	
The Radioactive Substances (Hospitals)	S.I. 1990/2512

Orders Revoked	References
Exemption Order 1990	
The Radioactive Substances (Smoke	S.I. 1991/563
Detectors) Exemption (Scotland)	
Amendment Order 1991	
The Radioactive Substances (Substances	S.I. 1992/647
of Low Activity) Exemption	
(Amendment) Order 1992	
The Radioactive Substances (Hospitals)	S.I. 1995/2395
Exemption (Amendment) Order 1995	
The Radioactive Substances (Natural	S.I. 2002/1177
Gas) Exemption Order 2002	

EXPLANATORY NOTE

(This note is not part of the Order)