

Frac Treatment Revisions for Resumption of Hydraulic Fracturing Operations in the Bowland Basin

January 25, 2012

- Reduced job size compared to PH-1 well
- Proposed main fracs of approximately 4,700 bbl (747 m3)
- PH-1 stage 2 frac was 14,100 bbl (2,242 m3) which is 3 times the size of the proposed fracs
- The mini-fracs in front of the main fracs will be in the 100 bbl to 200 bbl range (16-32 m3) as compared to PH-1 minifrac of 590 bbl (94 m3)

- Initial mini-frac will be observed overnight to monitor for unusual seismicity
- Initial main frac will be observed at least 24 hours to monitor for unusual seismicity
- Flowbacks will be performed between all stages to reduce seismic risk
- Barree and Associates compared the initial PH-1 frac to a model using the smaller job size

- Barree and Associates compared the initial PH-1 stage 2 frac to a model using the smaller job size
- PH-1 Stage 2 pressure match showed no fracture height growth out of the perforated interval
- Reducing proppant volume and pump rate reduced the created fracture half length with no change in fracture height

- Restricted fracture height growth with slickwater in shale reservoirs is commonly observed from diagnostic techniques including radioactive tracer, temperature surveys and production logs
- Microseismic events displaced large distances vertically are commonly observed during hydraulic fracturing – these events are caused by induced deformation but are not indicators of physical fracture height growth

Smaller Frac Schedule

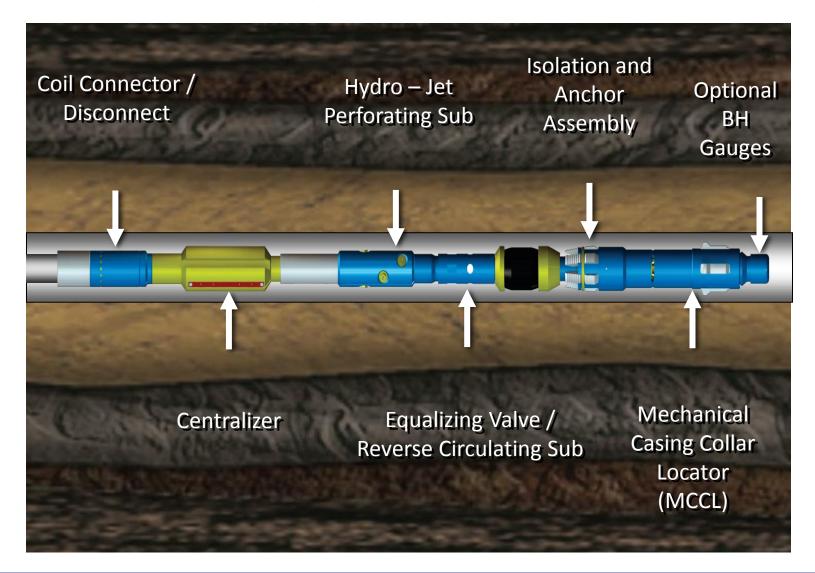
		Stage Clean	Total Clean	Prop	Slurry	Total		Chem 1
Stage	Comments	Fluid bbl	Fluid bbl	Conc ppa	Rate bpm	Prop tonnes	ET min	FR-40 usg/1000
FR Pad		350	0	PP-	35.0		0	0.40
100 Mesh Chelford		50	350	0.50	35.0	-	10.0	0.40
FR Pad		200	400		35.0	0.5	11.5	0.40
100 Mesh Chelford		100	600	0.50	35.0	0.5	17.2	0.40
100 Mesh Chelford		200	700	1.00	35.0	1.4	20.1	0.40
FR Pad		200	900	0.00	35.0	5.2	26.1	0.40
100 Mesh Chelford		400	1,100	1.00	35.0	5.2	31.8	0.40
FR Pad		200	1,500	0.00	35.0	12.9	43.7	0.40
40/70 Chelford		300	1,700	0.50	35.0	12.9	49.4	0.40
40/70 Chelford		300	2,000	1.00	35.0	15.7	58.2	0.40
FR Pad		200	2,300	0.00	35.0	21.4	67.2	0.40
40/70 Chelford		500	2,500	1.00	35.0	21.4	72.9	0.40
FR Pad		200	3,000	0.00	35.0	31.0	87.8	0.40
40/70 Chelford		500	3,200	1.00	35.0	31.0	93.5	0.40
FR Pad		200	3,700	0.00	35.0	40.5	108.5	0.40
40/70 Chelford		500	3,900	1.00	35.0	40.5	114.2	0.40
FR Flush		280	4,400	0.00	35.0	50.0	129.1	0.40
Stop		0	4,680	0.00	0.0	50.0	137.1	0.00

On the Fly Additives	Name	Unit	Total	
Chem 1	FR-40	usg	78.62	

Total by Proppant	lbs	mt
100 Mesh Chelford	28,350	12.9
40/70 Chelford	81,900	37.1
	0	0.0
Total	110,250	50.0

Mongoose Frac System

- Abrasive Jet Perforating No explosives required
- Abrasive Jetting is performed down coil tubing with returns up the annulus
- Frac zonal isolation with multi-set packer on coil tubing– No bridge plugs
- Frac treatment is pumped down coil tubing/casing annulus
- Allows realtime monitoring of bottom hole pressure via dead string
- Memory gauges will be set below backer to monitor for downward frac growth



Multi-Stage Frac Completions Methods Comparison

Feature	Sand Plugs	Plug & Perf	Packers/Sleeves	Mongoose Frac ™
Reduced HorsePower	X	X	X	√
No stage limits	\checkmark	\checkmark	X	\checkmark
Positive Test Between Fracs	?	✓	✓	√
Single Trip	\checkmark	X	\checkmark	\checkmark
Ability to Reverse Sand-Out	\checkmark	X	X	\checkmark
AbilityTo Circulate Acid	\checkmark	X	X	\checkmark
Well Control During Operations	X	X	\checkmark	\checkmark
Control Of Frac Initiation	\checkmark	?	X	\checkmark
Bulb Perf Tunnel	\checkmark	X	X	\checkmark
Pressure Rating	?	12K	5-12K	10K
Dead Leg While Fracing	\checkmark	X	X	\checkmark
Clean out or Drill-Out Required	X	X	X	\checkmark
Work-Over Ability	\checkmark	?	X	\checkmark

Mongoose Frac System

Run in hole, locate collars with Mechanical Casing Collar Locater (MCCL) Position on depth, reciprocate BHA to set Packer Establish circulation down the coil tubing at the calculated perforating rates, prior to pumping sand laden fluid

Circulate abrasive slurry to cut the casing

Pump sand laden fluid through jet sub to cut casing and formation Approximately 10 minutes of cut time is required Displace the abrasive slurry up hole or out of well

Execute the fracture treatment while monitoring the tubing deadleg pressure, as per schedule or as the observed net pressure dictates

Real time Bottom Hole Pressure

Straight pull on the tubing opens equalizing valve and unsets packer, Hoist the tools to the next interval to be treated Reciprocate BHA to Cycle the Jay back into the setting position Set tools at next stage and pressure test BHA

Repeat the isolation, perforation and fracing process for the remaining intervals

Straight pull on the tubing opens equalizing valve and unsets packer, Hoist the tools to the next interval to be treated Reciprocate BHA to Cycle the Jay back into the setting position Set tools at next stage and pressure test BHA

Repeat the isolation, perforation and fracing process for the remaining intervals