

Urban search and rescue personal protective equipment specification for high dust environments

Fire research report: 6/2010

Urban search and rescue personal protective equipment specification for high dust environments

Fire research report: 6/2010

Health and Safety Laboratory
December 2010

Department for Communities and Local Government

Disclaimer

This research was commissioned by the previous government. The findings are those of the authors and do not necessarily represent the views or recommendations of the Department for Communities and Local Government. Its contents, including any opinions and/or conclusions expressed or recommendations made, do not necessarily reflect policy or views of the Health and Safety Executive.

© Queen's Printer and Controller of Her Majesty's Stationery Office, 2010

Copyright in the typographical arrangement rests with the Crown.

You may re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/ or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or e-mail: psi@nationalarchives.gsi.gov.uk.

This document/publication is also available on our website at www.communities.gov.uk

If you require this publication in an alternative format please email: alternativeformats@communities.gsi.gov.uk

Any enquiries regarding this document/publication should be sent to us at:

Department for Communities and Local Government Eland House Bressenden Place London SW1E 5DU Telephone: 030 3444 0000

December 2010

ISBN: 978-1-4098-2669-9

Contents

EXI	ECUTIVE SUMMARY	. 2
1	Introduction	. 5
2	Helmets	14
3	Clothing	19
4	Hearing protection	34
5	Respiratory protective equipment	39
6	Footwear	55
7	Gloves	61
8	Elbow and knee protection	69
9	Eye and face protection	75
10	Fall arrest	76
11	Personal protective equipment ensembles	81
12	Summary	88
13	References	90
14	APPENDIX 1 - List of representative CBR materials	91
15	APPENDIX 2 - Normative references	94
16	APPENDIX 3 - Glossary 1	03

Executive summary

Objectives

This report contains the results of the work conducted by Health and Safety Laboratory (HSL) for the Department of Communities and Local Government (DCLG) on urban search and rescue (USAR) personal protective equipment (PPE). USAR operations are divided into three separate scenarios:

Scenario 1

Level 2 (minor/significant) structural collapse (and possibly the lower end of Level 3 without hazardous materials (HAZMAT) contamination), with no exceptional contamination by chemical, radioactive or microbiological substances. Moderate levels of airborne and settled dust without enhanced concentrations of highly hazardous or toxic components can be expected, together with the mechanical, thermal, electrical and climatic hazards inherent in USAR activity.

Scenario 2

Level 3 (major) and Level 4 (catastrophic) collapse without either HAZMAT or chemical, biological, radiological, nuclear (CBRN) contamination. Concentrations of airborne and settled dusts may be exceptionally high, and as a result potential exposures to the inherent low hazard components of the dust reach damaging concentrations.

Scenario 3 - Level 3 (major) or Level 4 (catastrophic) collapse with either or both of HAZMAT and chemical, biological, radiological, nuclear (CBRN) materials present.

HSL have extended the existing specification for USAR PPE, which broadly covers Scenario 1, to cover Scenarios 2 and 3 (Vaughan *et al* 2007a, 2007b), and assessed options for enhancing current USAR PPE (Webb et al, 2008) for:

- hazards generated in large scale dust clouds arising from building collapse (Scenario 2); and
- hazards from the release of toxic materials including CBR materials with or without structural collapse (including those hazards generated in large scale dust clouds arising from building collapse) (Scenario 3).

This report draws on the work and develops a stand-alone performance based specification for PPE ensembles for Scenario 2, high dust levels. This specification will assist manufacturers, certification bodies and procurement authorities in producing and sourcing appropriate PPE for these applications. Wherever possible, the specifications relate to existing PPE standards and test methods for commercial off-the-shelf (COTS) equipment.

Use of this report for selection and procurement

The layout of this report is modelled closely on the format of product performance standards used by British, European and International standards bodies. This form is readily understood by and familiar to equipment manufacturers and testing/certification authorities. To aid clarity, more explanatory text has been incorporated than is usual in standards.

The key feature of the specification is that a skin protection factor of 50 and a respiratory protection factor of 2000 are required from a PPE ensemble if it is to be considered suitable for high dust level Scenario 2.

The specifications for individual items of PPE ensure that each individual item is capable of the performance required to form part of such an ensemble. There are two main reasons for these individual item specifications:

- 1. to allow procurers and manufacturers/suppliers to assess the suitability of COTS equipment for inclusion in ensembles; and
- 2. to allow procurers and manufacturers/suppliers to screen new equipment designs for their suitability for inclusion in ensembles without running full ensemble tests.

The approach of using individual item specifications as a filter for equipment to be included in PPE ensembles is well established in PPE selection and procurement.

Having established that individual items are capable of the performance required to form part of an ensemble, the specification then gives performance requirements for the ensemble. These requirements cover not only protection, but also the suitability of the ensemble for likely USAR work tasks (including ergonomic and physiological considerations). The ensemble specification uses principles and reasoning from BS 8469:2007 Personal protective equipment for firefighters – Assessment of ergonomic performance and compatibility – Requirements and test methods, adapted to be more specific to USAR applications.

One particularly important advantage of ensemble testing is that it can generate simulated workplace protection factors (SWPFs). In a SWPF test, the measured levels of protection may be taken as representative of likely workplace protection, and will supersede any generally accepted or assigned protection factors (APF) for individual items of equipment (such as assigned protection factors for respiratory protective equipment (RPE)). A SWPF needs the duration of the test and activities carried out as test exercises to be sufficiently close to operational use to be considered as representative of the performance of the ensemble in a real deployment. The ensemble tests of barrier performance in this specification would form such a SWPF test.

As an example, in this specification one RPE option is a full face mask respirator (negative pressure). This has an assigned protection factor (APF) of 40 if used with particle filters alone, and 20 if gas/vapour filters are fitted. It is likely that such a device, if fitted and used correctly, will achieve a SWPF greater than 2000 for both filter types. Without any SWPF tests, selection should use the APF, making the device unsuitable for USAR work. The SWPF data resulting from ensemble testing is likely to demonstrate that the device is suitable for USAR work. This shows the potential importance of the ensemble testing, and the resulting SWPFs, for USAR PPE selection.

Selection and procurement of ensembles can be a complex, time-consuming and expensive process. There are two main approaches:

- allow manufacturers/suppliers to submit suitable individual items so that potential users/procurers can assess all the combinations of these considered appropriate; and
- follow a turnkey approach where a single manufacturer/supplier (or consortium) submits a full PPE ensemble to be assessed by the user/procurer.

There may be rules or legal liability issues which affect the choice of approach. If there is a choice between the two approaches the turnkey approach is likely to be most cost-effective for a potentially complex ensemble such as USAR high dust level Scenario 2. The turnkey approach can also have advantages when the provision of consumable items, spares, maintenance, training and product support are considered as there is one clear manufacturer/supplier responsible.

Recommendations

HSL recommends that the specification in this report is used as part of the process for selection and procurement of USAR PPE for Scenario 2, high dust levels. Where there is the need for input from USAR teams or others, it is recommended that a wide-ranging consultation is conducted so that the best information can be gathered on the relative importance of aspects of ensemble performance, including more subjective characteristics like comfort and usability. It is also recommended that the assumptions on USAR operations that have been used to inform this specification are regularly reviewed.

SECTION 1

Introduction

1.1 Introduction

HSL were contracted by the Department of Communities and Local Government (DCLG) to undertake a development to the existing specification for urban search and rescue (USAR) personal protective equipment (PPE) [Contract no. FR71-01]. This work was reported in Vaughan et al (2007a, 2007b). HSL were further contracted [Contract no. CPD/004/078/062] (Webb et al, 2008) to evaluate options for enhancing current USAR PPE to cope with:

- those hazards generated in large scale dust clouds arising from building collapse (Scenario 2); and
- hazards from the release of toxic materials including chemical, biological or radiological (CBR) materials with or without structural collapse (including those hazards generated in large scale dust clouds arising from building collapse) (Scenario 3).

This report draws on these previous pieces of work to develop a stand-alone performance based specification for PPE ensembles for Scenario 2 and, to assist manufacturers, certification bodies and procurement authorities in producing and sourcing appropriate PPE for these applications. Wherever possible, the specifications relate to existing PPE standards and test methods for commercial off-the-shelf (COTS) equipment.

1.2 Background

DCLG document, *Protecting the Public – New Dimension programme: National Seminar Briefing,* includes three levels of incident which have been further defined by internal DCLG documents:

Level 2 - Minor/significant – Collapse of buildings up to four storeys; traditional construction; fewer than 10 persons trapped; less than 1000m² of debris; normal contamination only.

Level 3 - Major – Collapse of buildings between 4 and 10 storeys; concrete or modular construction; between 10 and 100 persons trapped; 1000 to 10000m² of debris; HAZMAT contamination.

Level 4 - Catastrophic – Collapse of buildings over 10 storeys; steel frame or reinforced concrete; more than 100 persons trapped; over 10000m² of debris; CBRN involved.

The operations considered in the USAR PPE specification are considered to fall into three separate scenarios.

Scenario 1

Level 2 (minor/significant) structural collapse (and possibly the lower end of Level 3 without hazardous materials (HAZMAT) contamination), with no exceptional contamination by chemical, radioactive of microbiological substances. Moderate levels of airborne and settled dust without enhanced concentrations of highly hazardous or toxic components can be expected, together with the mechanical, thermal, electrical and climatic hazards inherent in USAR activity.

Scenario 2

Level 3 (major) and Level 4 (catastrophic) collapse without either HAZMAT or CBRN contamination. Concentrations of airborne and settled dusts may be exceptionally high, and as a result potential exposures to the inherent low hazard components of the dust reach damaging concentrations.

Scenario 3

Level 3 (major) or Level 4 (catastrophic) collapse with either or both of HAZMAT and CBRN materials present.

This report contains the PPE specifications for Scenario 2 applications. The PPE specifications for Scenario 3 applications are given in a DCLG report "Urban search and rescue personal protective equipment specification for high dust and chemical, biological, radiological, nuclear environments".

1.3 Layout

The layout of this document has been modelled closely on the established format of product performance standards used by British, European and International standards bodies. This is the form which is most readily understood by and familiar to equipment manufacturers, testing and certification authorities. To aid clarity, rather more in the way of explanatory text has been incorporated than is usual in standards.

In the following sections, individual parts and variants that form a PPE ensemble are specified in turn, referring wherever possible to existing standard test methods, and drawing performance requirements from comparable forms of equipment to those being considered. In a relatively small proportion of instances, the need to assess a particular type of performance has necessitated the proposal of new tests to address the unique combination of hazards which the PPE may have to mitigate.

For those ensemble components which together make up the barrier between environmental contaminants and the wearer, testing of protective performance must be carried out with all these components used together and correctly interfaced. Section 11.5 of this report gives more detail on how this can be achieved. Where relevant for individual items of PPE, these performance requirement are flagged as needing to be tested "as part of a compatible ensemble".

In line with the objective to produce the performance specification in "standards format", the requirements it contains are worded in normative language (i.e. requirement X "shall" be tested according to test method Y). Where such requirements refer one of our suggested new test methods, this normative requirement must be relaxed. Our suggested methods are based on experience of what may be possible and meaningful to carry out, but they have not at this stage been practically assessed or validated in any way. Alternative, as yet unknown, means of testing may be equally or more valid, and cannot be excluded at this stage.

In general, specification of particular materials has been avoided, relying on the performance specification to determine whether or not a given item is acceptable or not. The general requirement for innocuousness of PPE materials (materials and parts must not adversely affect user hygiene or health; freedom from roughness and sharp edges) applies for all PPE types described here.

Unless specifically addressed by performance requirements called up for the separate PPE items described in the specification, the equipment covered can be expected to be capable of operation normally over an ambient temperature range of at least 5 °C to 40 °C (for example, where low temperatures may adversely affect PPE performance, requirements already included in the specification address the problem). Whether this range of operating conditions which PPE can withstand will also be safe for the users of this equipment requires separate and careful consideration in terms of thermal stress potential, strategies for alleviating the environmental conditions, and maximum working durations.

Subject to agreement by a notified body, this specification may form the basis of a technical file, for the purposes of CE-marking of the items and/or ensembles described.

Appendix 2 lists the referenced standards for each of the types of PPE covered. In most cases, the reference is to a specific clause or clauses within the listed standards, and not the entire referenced document. Standards may be revised or superceded at any time, so checks should be made of the referenced standards status when this report is used. However, even if a standard has been revised or superceded, the dated references to clauses in this report will remain technically consistent and valid.

When the performance requirements or test methods in this report refer to another section of this report the section number only is given (e.g. "tested as described in 3.4.4"). Where reference is to part of a published standard, this is referred to as clause x and the standard number given (e.g. the requirements of EN ISO 20345:2004 clause 6.2.3.2).

Throughout this report the term "chemical" is used to mean general chemicals and not CBR materials – CBR materials or CBR chemicals are always referred to with the prefix CBR. Also, if needed for any reason, Appendix 1 gives a list of representative CBR materials – some of these are "common industrial" chemicals.

1.4 Assumptions

Previous reports (Vaughan et al, 2007a; 2007b, Webb et al, 2008) have sought not to limit the means by which a PPE manufacturer or specifier could satisfy the necessary performance requirements for USAR activities. Table 1.1, adapted from Vaughan et al (2007a) shows the full range of possible approaches which were considered. The notation (e.g. A1b; D2e) used to describe the options, which was developed in Vaughan et al (2007a) is used throughout this document. Scenario 1 and 3 recommendations, which are not covered in this report, are included in Table 1.1 (greyed text) to give a full picture.

In this document we have taken a pragmatic view of the most likely means by which these requirements may be most easily satisfied in practice, and have restricted the options accordingly. Table 1.2 summarises these more restricted PPE options which would meet the operational needs in Scenario 2. The similarly selected options for Scenario 3 situations are included so that the similarities and differences between our recommendations for the two scenarios can be seen.

There may be further scope for reduction of these options if Scenario 3 (catastrophic collapse with CBR contamination) equipment is procured and deployed in both Scenario 2 (catastrophic collapse without CBR contamination) and Scenario 3 operations. This is likely to be practicable for all the listed items of PPE except for some clothing and RPE filters, which are likely to be relatively high cost and short operational lifetime items.

The drivers behind this reduction of options include:

- allows USAR operatives to have a simplified and more practical approach to the selection of PPE
- reduced overall purchase cost by avoidance of equipment duplication
- reduction of storage space required
- logistics of supply and resupply; and
- reduced training requirement.

Table 1.1 The full range of possible PPE types anticipated to be required for USAR – The PPE Matrix (adapted from Vaughan et al, 2007a)

		` '	·	
	PPE Type	Scenario 1	Scenario 2	Scenario 3
		Conventional collapse with no exceptional aspects	Additional exceptional dust / microorganisms	Additional exceptional toxic hazards inc. CBRN
А	Helmet	A1a lower protection A1b higher protection	A1b	A1b as compatible with CBRN
В	Clothing	B1a (<u>+</u> thermal layer)	B2a	ВЗа
		B1b (B1a + waterproof layer)		
С	Hearing	C1a (plug – sound restoration)	C1a	C1a
		,	C1b	C1b
		C1b (plug – no electronics)	C1c	
		C1c (muff – sound restoration)	C1d	
		C1d (muff – no electronics)		
D	RPE	D1a (SCBA)	D2a	D3a
		D1b (CCBA)	D2b	D3c
		D1c (CABA)	D2c	D3d
		D1d (PAPR)	D2d	D3e
		D1e (FFM)	D2e	
		D1f (FFP3)		
Е	Boots	E1a	E1a	E3a (Overboots)
				E3b (Wellington)
				E3c (CBRN sock)

Table 1.1 The full range of possible PPE types anticipated to be required for USAR – The PPE Matrix (adapted from Vaughan et al, 2007a)

F	Gloves	F1a (basic + mech)	F1a (mech)	F1a (mech)
		F1b (biohaz)	F1b (biohaz)	F3a (full chem)
G	Elbow / Knee	G1a	G1a	G1a
Н	Eye / Face	H1a – spectacle H1b – goggle	H1c	H1c CBRN uses full face RPE
		H1c – faceshield RPE if incorporates a visor	RPE incorporating a visor	1400 111 2
I	Fall arrest	l1a	l1a	l1a

Table 1.2 PPE options considered. Items under Scenario 2 are described in this report

Item	Scenario 2	Scenario 3	Comments
	High dust	CBR	
Helmet	A1b	A1b	Higher protection helmet option.
Clothing	B2a (includes B1b)	ВЗа	CBR chemical barrier for hands and feet incorporated into the B3a garment.
Hearing	C1a	C1a	Sound restoration earplug worn inside hood of garment. Optional communications built in.
RPE	D2a	D3a	
	D2d	D3d	
	D2e	D3e	
	ABEK/P3 filters and P3 pre-filters	CBR/P3 filters	
Footwear	E1a	E1a	E1a provides mechanical protection to the CBR sock barrier component of the garment.
Gloves	F1a	F1a	F1a provides mechanical
	F1b		protection to the CBR glove barrier component of the garment
Elbow/knee pads	G1a	G1a	
Eye / face	N/A	N/A	Relevant mechanical and vision aspects included in RPE facemask specification.
Fall arrest	l1a	l1a	

1.5 Use of this specification for selection and procurement

This specification is intended to provide requirements for PPE ensembles suitable for high dust level Scenario 2. As described in Section 1.3, the specification includes requirements for both individual types of PPE and ensembles.

The key feature of the specification is that a skin protection factor of 50 and a respiratory protection factor of 2000 are required from an ensemble if it is to be considered suitable for high dust level Scenario 2.

The specifications for individual items of PPE (sections 2 to 10) ensure that each individual item is capable of the performance required to form part of such an ensemble. There are two main reasons for the individual item specifications:

to allow procurers and manufacturers/suppliers to assess the suitability of COTS equipment for inclusion in ensembles; and

to allow procurers and manufacturers/suppliers to screen new equipment designs for their suitability for inclusion in ensembles without running full ensemble tests.

This approach of using individual item specifications as a filter for equipment to be included in PPE ensembles is well established in PPE selection and procurement. Notified bodies and test houses can advise on the most cost-effective and logical testing sequences.

Having established that individual items are capable of the performance required to form part of an ensemble, the specification then gives performance requirements for the ensemble (section 11). These requirements cover not only protection, but also the suitability of the ensemble for likely USAR work tasks (including ergonomic and physiological considerations). The ensemble specification uses principles and reasoning from BS 8469:2007 Personal protective equipment for firefighters – Assessment of ergonomic performance and compatibility – Requirements and test methods, adapted to be more specific to USAR applications.

One particularly important aspect of ensemble testing is that it can act as a simulated workplace protection factor (SWPF) test. In a SWPF test, the measured levels of protection may be taken as representative of likely workplace protection, and will supersede any generally accepted or assigned protection factors for individual items of equipment, such as APFs for respiratory protective equipment (RPE). A SWPF needs the duration of the test and activities carried out as test exercises to be sufficiently close to operational use to be considered as representative of the performance of the ensemble in a real deployment. The ensemble tests of barrier performance specified in Section 11 would form such a SWPF test.

For example, in this specification RPE option D2e RPE is a full face mask respirator (negative pressure). This has an assigned protection factor (APF) of 40 if used with particle filters alone, and 20 if gas/vapour filters are fitted. It is likely that such a device, if fitted and used correctly, will achieve a SWPF greater than 2000 for both filter types. Without any SWPF tests, selection should use the APF, making the device unsuitable for USAR work. The SWPF data resulting from ensemble testing is likely to demonstrate that the device is suitable for USAR work. This shows the potential importance of the ensemble testing, and resulting SWPFs, for USAR PPE selection.

Selection and procurement of ensembles can be a complex, time-consuming and expensive process. There are two main approaches to this:

allow manufacturers/suppliers to submit suitable individual items so that potential users/procurers can assess all the combinations of these considered appropriate; and

follow a turnkey approach where a single manufacturer/supplier (or consortium) submits a full PPE ensemble to be assessed by the user/procurer.

There may be rules or legal liability issues which affect the choice of approach. For example, in Option 1, from a safety regulation perspective the user/procurer becomes the "manufacturer" of the ensembles that are created, whereas in Option 2 the "manufacturer" remains the manufacturer/supplier/consortium.

If there is a choice between the two approaches the turnkey approach is likely to be most cost-effective for a potentially complex ensemble such as USAR high dust level Scenario 2. The turnkey approach can also have advantages when the provision of consumable items, spares, maintenance, training and product support are considered as there is one clear manufacturer/supplier responsible.

SECTION 2

Helmets

2.1 General introduction

This section describes the minimum performance specification for helmets. Performance levels incorporated here are largely based on requirements in existing standards for equipment for use in comparable activities (firefighting, mountaineering, equestrian and industrial).

Helmets provide protection to the wearer against:

- striking their head against stationary objects
- falling objects
- heat and flame
- molten metal splash; and
- accidental contact with live electrical conductors.

A helmet will have a retention system that is designed to be effective under the likely conditions of use for the helmet. If the retention system uses a chinstrap it can be:

- 1. designed not to release during impact where there is a risk of multiple impacts (e.g. where the wearer is mostly off the ground)
- designed to release when subject to a given (relatively low) force where there is a risk of strangulation (e.g. where the wearer is mostly on the ground); and
- designed to release when subject to a given force higher than option 2 where there is a risk of both strangulation and multiple impacts (e.g. where the wearer works both on and off the ground and works in enclosed or other spaces with projections that might catch the helmet).

Option 3 is the most suitable for urban search and rescue (USAR), where there are both risks of the wearer falling and of the helmet being caught and strangling the wearer. The standard firefighters helmet to EN 443:2008 has a chinstrap which is required to release between 500 and 1000 N. In contrast, the industrial safety helmet (EN 397:1995) has a chinstrap which is required to release between 150 and 250 N because it is not intended for multiple impact (e.g. fall) protection.

Helmets can incorporate mountings for other head-mounted personal protective equipment (PPE), or even the head mounted PPE itself.

The wearing of a helmet will reduce, but not eliminate, the likelihood of head injury. There are limits to the amount of protection that can be provided. In the workplace, it remains the responsibility of the employer to judge the helmet's suitability for its particular purpose.

2.2 Scope

The specifications in this section use both new performance requirements and those from existing standards. In turn, these require test methods that are both new and based on existing standards.

The specification for use in USAR Scenario 2 is based upon the current BS/EN/ISO product standards with some additional requirements. Laboratory and practical performance tests are included for the assessment of compliance with the requirements.

Helmets will be used with other head-mounted PPE. All the PPE in a head-mounted ensemble needs to be selected such that it still offers its full individual protection, i.e. so that there is compatibility between the different items of PPE. The same applies where other PPE such as clothing overlaps with head-mounted PPE. PPE ensembles and ensemble testing are discussed further in Section 11.

2.2.1 Full protection helmet A1b

This helmet is intended for use in scenarios where the hazards to the head are relatively severe, and includes the heat and flame protection of a structural fire-fighting helmet. The higher level of protection and head coverage that it offers means that the helmet is likely to be heavier and less comfortable in use. (If the need can be identified and justified for a helmet with less protection (which is likely to be more comfortable) then a specification can be created based on the options given in Section 2 of report Urban search and rescue PPE – Final report Volume 2: Specification (IR/PE/07/04/2) Vaughan *et al.* 2007.)

The helmet has additional performance requirements over those in existing standards to specify its performance after exposure to chemicals.

It may be possible to use a two helmet system where a lower protection lightweight helmet (e.g. A1a in Vaughan et al, 2007a) is worn all the time and A1b can be added over the top of A1a for more hazardous environments. Such systems can also cater for strangulation avoidance by allowing the outer helmet to come off while the inner helmet remains in place.

2.3 Performance requirements for A1b helmets

2.3.1 Innocuousness and design

The helmet shall meet EN 443:2008 clause 4.1 for general characteristics.

The helmet shall meet the following clauses of EN 443:2008:

- clause 4.14, field of vision
- clause 4.11, flame resistance
- clause 4.10, heat resistance
- clause 4.7, radiant heat (resistance)
- clause 4.9, protection against molten metals
- clause 4.8, protection against hot solids
- clause 4.12.1, electrical properties; and
- clause 4.15, extent of protection.

2.3.2 Retention system

When selecting a retention system the risks of strangulation and the helmet coming off the head during multiple impacts must be considered. This allows the selection of a retention system which addresses whichever of the two represents the greater risk.

The retention system shall meet the requirements of EN 443:2008 clauses 4.5 and 4.6.

This is suitable for USAR, where there are both risks of the wearer falling and of the helmet being caught and strangling the wearer. The helmet chinstrap is required to release between 500 and 1000 N.

2.3.3 Impact protection

The helmet shall meet the impact requirements of EN 443:2008 clauses 4.2 and 4.3, and the area tested for impact shall be as defined in that standard.

2.3.4 Mechanical rigidity

The helmet shall meet the requirements of EN 443:2008 clause 4.4.

2.3.5 General chemical resistance

This covers general chemicals which may be encountered in non-chemical, biological or radiological (CBR) USAR work.

After being subjected to any pre-conditioning requirements, and after exposure to a given chemical, the helmet shall continue to meet the requirements for:

- flame resistance
- radiant heat resistance
- heat resistance
- electrical properties
- molten metals
- hot solids
- impact protection; and
- mechanical rigidity.

Note: this performance requirement is intended to give a helmet whose impact protection, heat/flame and electrical resistance are not compromised by exposure to chemicals.

This performance requirement needs new test methods as it extends beyond the requirements of EN 443:2008 clause 4.13. Options for these new test methods are suggested in clause 2.4.2.

2.4 New helmet test methods needed

2.4.1 General introduction

These new test methods are given where there are none in existing standards which can be used to completely assess the new performance requirements given in this specification.

These new test methods are given as suggestions only, and have not been evaluated with the thoroughness required to use them "as written". Where possible, these new test methods use, or give as examples, those from existing standards. If alternative test methods are available to assess these performance requirements, and they are considered appropriate, they can be used where necessary.

2.4.2 Test method for helmet general chemical resistance

The chemicals used for testing are as given in clause 5.6.2.1, Table 5.1.

The test method is similar in principle to that in clause 5.6.2.2. It can be adapted for a helmet as follows:

"Test chemicals shall be at a temperature of (20 ± 2) °C. The chemical shall be applied with the helmet mounted in the in-use position, oriented as though being worn by a standing subject.

100 ml of the test chemical shall be poured onto the outer surface of the helmet. The chemical shall be poured moving from one side to the other using half the amount of chemical, and the rest going back, thus covering the assembly twice. This operation shall take (10 ± 3) seconds.

Five minutes after having applied the chemical, residues shall be removed (using any appropriate method such as rinsing in clean water and drying). The helmet shall then be subjected to examination and testing as required by 2.3.5."

SECTION 3

Clothing

3.1 General introduction

This section describes the minimum performance specification for the garment(s) providing protection to the body, including the arms to the wrists and the legs to the ankles. Clothing may also provide protection against contact with chemicals to the hands by the inclusion of suitable gloves, the feet with the inclusion of suitable bootees/socks or to the head with the inclusion of a suitable hood. Boots attached to clothing are not considered here – these are covered by Section 6, Footwear. (Note that if the boots were attached they would need to be included in the barrier assessment.) The performance requirements may be met by a single garment, or by combinations of different garment layers worn simultaneously. Garment performance should be achieved with the minimum practical physiological burden to the wearer.

Performance levels incorporated here are largely based on requirements in existing standards for equipment for use in comparable activities (firefighting, welding and allied processes, first response, chemical and nuclear industry). To evaluate durability of the protection provided against contaminants, more rigorous pre-conditioning of garments has been included in the test procedures, by requiring measurement of protection after suits have been subjected to ambient or low temperature practical performance testing.

3.2 General scope

Type B2a clothing provides:

- limited protection to the wearer from rough surfaces and abrasions and has levels of mechanical strength and conspicuity consistent with intended urban search and rescue (USAR) applications
- basic levels of protection against rain, wet surfaces, and relatively low hazard liquid spray exposures
- protection against exceptional high levels of dusts, including commonly occurring microbiological substances which are not of highly infectious nature.

Clothing of this type will reduce exposure to solid particles by a nominal factor of 50. Clothing type B2a will provide basic skin protection against limited contact with alcohols, alkalis, acids and hydrocarbons but will not provide protection against more toxic chemicals. (Note that the helmet and similar items of an

ensemble do not provide protection for the skin, so they only have to "resist" chemicals in terms of maintaining their protective functions after exposure.)

This clothing is not intended to protect the skin of the wearer from hazards associated with gases vapours or immersion in liquids. Neither does it guarantee complete protection against liquid spray exposure.

3.3 Performance requirements for B2a clothing

3.3.1 Introduction

Garments shall conform to the general requirements of EN 340:2003 concerning:

- innocuousness
- design
- comfort
- ageing
- dimensional change due to cleaning (if relevant)
- washing and dry cleaning methods (if relevant)
- size designation
- marking, and
- information supplied by the manufacturer.

Where appropriate, design of garments shall also take the following aspects into consideration:

EN 510:1993 – Clothing for use where there is a risk of entanglement.

EN ISO 11611:2007 Clause 4, where there is a risk of exposure to molten spatter.

Where garments may be used in a flammable/explosive atmosphere, they shall have no exposed light alloys which may on frictional impact give rise to incendive sparks.

These aspects shall be assessed by visual inspection and by means of practical performance testing. Basic ergonomic performance during practical performance testing shall be assessed in accordance with the guidance in EN 340:2003 Annex C.

3.3.2 Sampling, conditioning and pre-treatment

Numbers of samples, pre-treatment and conditioning of samples, shall be as described in the standards referenced, unless specified differently in this document.

3.3.3 Resistance to minor impacts

The garment shall incorporate integral padding to knees/elbows. The position and performance of this padding shall be deemed adequate during practical performance testing according to 3.4.2 and 3.4.3.

Note: Specific additional protection to knees and elbows is covered by Clause 8 of this specification.

3.3.4 Mechanical strength

Materials from which garments are made shall meet at least the performance levels given in Table 3.1, when tested as specified in the relevant standard, subject to any variations given in Table 3.1.

Table 3.1 Mechanical performance requirements for clothing materials				
Property	Standard reference	Minimum performance level	Variations from referenced standard	
Abrasion	EN 14325:2004, 4.4	5 (>1500 cycles)	Use visual end point if pressure pot method inappropriate	
Flex cracking resistance	EN 14325:2004, 4.5	5 (>40000 cycles)	Use visual end point if pressure pot method inappropriate	
Flex cracking resistance at low temperature	EN 14325:2004, 4.6	5 (>2000 cycles)	Shall be conducted at one or more of –10, -20 or -30°C. Marking and Manufacturer's instructions to state lowest successful test temperature.	
Tear resistance:				
Non-woven material	EN 14325:2004, 4.7	3 (>40N)	Use EN ISO 9073-4:1997	
Non-coated textiles	EN 469:2005, 6.7	>25N >25N	Use EN ISO 13937-2:2000 Use EN ISO 4674-1:2003	
Coated textiles	EN 469:2005, 6.7	22314	method B	
Bursting resistance	EN 14325:2004, 4.8	3 (>160kPa)	Apply to materials and seams.	
Tensile strength	EN ISO 13934- 1:1999	>450N	-	
Puncture resistance	EN 14325:2004, 4.10	4 (>100N)	-	

Seams, joins and assemblages shall achieve at least strength class 5 (>300N) of EN 14325:2004, clause 5.5.

3.3.5 Heat and flame resistance

3.3.5.1 MATERIALS HEAT RESISTANCE

Garment materials, or material assemblages for multi-layered construction, shall achieve at least the performance levels given in Table 3.2, when tested as specified in the relevant standard, subject to any variations given in Table 3.2.

Table 3.2 Clothing materials heat resistance				
Property	Standard reference	Minimum performance level	Variations from referenced standard	
Contact heat resistance	ISO 12127:1996	Threshold time >5s	Test at 250°C	
Radiant heat resistance	ISO 6942:2002	RHTI >7s	Method B at 20 kW/m ²	
Molten spatter resistance	EN ISO 11611:2007, 6.8	Class 1	-	

3.3.5.2 FLAME RESISTANCE

Garment materials, or material assemblages for multi-layered construction, shall achieve the performance levels given in Table 3.3, when tested as specified in the relevant standard, subject to any variations given in Table 3.3. For garments of multi-layer construction, samples of the complete assemblage shall be tested.

Table 3.3 Flame resistance				
Property	Standard reference	Minimum performance level	Variations from referenced standard	
Materials flame resistance	EN 469:2005, 6.1	EN 469:2005, 6.1	Only outer face tested	
Seams and closures	EN 469:2005, 6.1	EN 469:2005, 6.1	Only outer face tested.	
Hardware (e.g. non-fabric items of the garment such as buttons, zip fasteners and similar closure systems, and rank/identification markings)	EN 469:2005, 6.1	EN 469:2005, 6.1. After testing, the main closure system shall operate once.	6.1.6 replaced by: If hardware is used on the protective clothing, this shall be tested as attached to the garment material, by applying the flame to the outer surface of the hardware item. Hardware of the main closure system shall be tested in the configuration in which it is present in the donned garment.	

3.3.5.3 GARMENT FLAME PROTECTION (OPTIONAL)

If users/specifiers (or DCLG in consultation with these groups) determine the need for information on how garments will perform in the event of accidental exposure to flame engulfment, garments shall be subjected to the test procedure of EN 469:2005 6.15, using exposure conditions of 4s at 84kW/m². The reporting requirements stated in EN 469:2005 for this test shall be fulfilled.

Note: this is the complete flame engulfment test of the entire garment (or preferably the whole PPE ensemble) in a fireball, with prediction of the burn injury to the wearer. Simple flame resistance is required by 3.3.5.2.

Note: As the performance of the clothing in an in-use flame engulfment situation will be very significantly affected by the performance of other items of equipment used at the same time, consideration should be given to subjecting the complete ensemble to this test, and not just the clothing - see Section 11.

3.3.6 Cold resistance

Note: Requirements in this clause may be met with the addition of thermal insulative/protective layers, including defined underwear, to the garment. Manufacturer's instructions should make clear when to use such layers, and include a warning against providing excessive insulation in situations where high work rate may cause overheating of the wearer.

3.3.6.1 COLD CONTACT PROTECTION

Areas of the garment likely to be subjected to pressure against cold surfaces (e.g. knees or elbows) shall achieve at least level 2 of EN 511:2006 clause 4.6, when tested as described in 5.6 of that standard.

3.3.6.2 RESISTANCE TO COLD CONDITIONS

In addition to the flex cracking resistance tests at low temperature (3.3.4 above), the complete garment shall be subjected to practical performance tests according to 3.4.3 at the lowest temperature claimed by the manufacturer for flex cracking resistance (-10°C, -20°C or -30°C).

No failure or degradation of materials, seams or closures shall be observed, and no test subject shall report the clothing to be unusable or withdraw from the test as a result of problems with the clothing.

Note: For natural environmental conditions -10° C is likely be adequate. However, some USAR teams may have artificial environments in their area where direct intervention at lower temperatures may be required (e.g. collapse of large racking system in a -30° C coldstore with people trapped). If this is the case, the individual USAR teams should ascertain if this specification provides adequate cold protection and if not make separate arrangements to meet this specific need.

3.3.6.3 PROTECTION AGAINST COLD CONDITIONS

Protection against cold conditions shall be assessed as given in Table 3.4. Where the garment includes removable thermal layer(s), performance shall be reported for the garment with and without the layer(s) present, where indicated in Table 3.4.

Table 3.4 Protection against cold conditions				
Property	Standard reference	Minimum performance level	Variations from referenced standard	
Garment insulation	EN 342:2004, 4.2	Report I _{cle}	For each garment configuration	
Garment breathability	EN 31092:1993	<40 m ² .Pa/W	For assembled garment configuration only	
Air permeability	EN 342:2004, 4.3	Class 3	For each garment configuration	

Based on the information in Annex B of EN 342:2004, the manufacturer shall provide advice on the limitations to use of the garment in cold conditions.

3.3.7 Visibility and conspicuity

3.3.7.1 **GENERAL**

The requirements of 3.3.7 apply to the outermost layer of any garment assemblage. Where separate layers may be worn independently, the requirements shall apply to each possible outer layer.

3.3.7.2 RETROREFLECTIVE MATERIAL

Retroflective material shall as a minimum meet the following requirements of EN 471:2003:

- a) 4.1 minimum visible area class 2 (0.13 m²)
- b) 4.2.2 (minimum width 50 mm)
- c) 6.1 coefficient of reflection level 2
- d) 6.2 (performance after pre-treatment).

3.3.7.3 BACKGROUND / FLUORESCENT MATERIAL

Background fluorescent material shall as a minimum meet the following requirements of EN 471:2003:

- a) 4.1 minimum visible area class 2 (0.5 m²)
- b) 4.2.1 location of material
- c) 5.1 colour performance
- d) 5.2 colour after xenon test
- e) 5.3 colour fastness after pre-treatment.

Note: Consideration should be given to the colours/patterns in which retroreflective / fluorescent materials are arranged, to assist with individual and role identification.

3.3.8 Electrical properties

3.3.8.1 RESISTANCE TO LIVE ELECTRICAL CONTACT

Note: The requirement below minimises the possibility of electrical shock by short term, accidental contact with live electric conductors at low voltages, up to approximately 100V DC. It will not prevent injury or electrocution by longer contacts or higher voltages.

Note also that: This performance requirement is likely to be suitable for protection against brief accidental contact with 240V AC. The requirement comes from the welding clothing standard (EN 470-1) requirement for arc welding uses voltages up to 100V DC. (EN 470-1 has been superseded by EN ISO 11611.) According to the as-written requirement 100V DC at 10⁵ ohms will give a "safe" current of 0.1mA. It is generally accepted that the minimum current which can be felt by a human is not less than 1mA, so there is a factor of 10 safety margin here – probably because repeatability of the test is only within about 1 order of magnitude.

To a first order approximation, based on information on equivalent performances for insulating gloves against AC and DC (EN 60903), equivalent dc voltage is 50 per cent higher than AC voltage. On this basis 240V AC approximates to 360V DC, which at 10⁵ ohms gives a current of 0.36mA, reducing the safety margin to about 3. Raising the resistance requirement to 10⁶ ohms would reduce the current to 0.036mA, which is below the previously accepted "safe value".

If formal 240V AC protection is considered necessary, the requirements and test methods could be changed to conform with relevant parts of EN 50286 (Electrical insulating protective clothing for low-voltage installations). However, it is important to be aware that this standard contains onerous additional design and performance requirements which may be incompatible with USAR garments. Insulation is assessed by a "low voltage" proof test in this standard at 2.5kV for dry samples and 1.5kV for wet ones, which may be considered to be excessive protection for brief accidental contact with 240V AC.

The test called up in EN ISO 11611 clause 6.10 is identical to the "vertical resistance" test in 3.3.8.2 below, bracketing the garment resistance between 10⁵ (currently) and 10⁸ ohms.

Garment materials shall meet the requirements of EN ISO 11611:2007, clause 6.10 (>10⁵ ohms).

3.3.8.2 ANTISTATIC PROPERTIES

Garment materials shall satisfy the following requirements in Table 3.5 for vertical and surface resistance.

Table 3.5 Electrostatic properties of materials				
Property	Standard reference	Minimum performance level	Variations from referenced standard	
Surface resistivity	EN 1149-1:2006	<10 ¹¹ ohms	-	
Vertical resistance	EN 1149-2:1997	<10 ⁸ ohms	-	

3.3.9 Water resistance of materials and seams

Materials and seams shall achieve level 3 of EN 343:2003 clause 4.2 following pre-treatment according to clause 5.1.3 of that standard.

3.3.10 Liquid penetration resistance of garment

Garments worn as part of a compatible ensemble shall achieve the requirements of EN 14605:2005 clause 4.3.4.2 ("Type 4") when tested according to EN 468:1994, omitting the seven movement sequence preconditioning. Four suits shall be tested; two after conducting the ambient temperature practical performance test (3.4.2) and two after conducting the low temperature practical performance test (3.4.3).

3.3.11 Resistance of materials and seams to penetration of liquid chemicals

The chemicals listed in Table 5.1 shall be used for both the following tests.

Garment materials and seams shall pass ISO 13994:1998, procedure C1, or C2 if the specimen requires additional support.

Materials shall achieve at least class 1 repellency of EN 14325:2004 clause 4.12.

3.3.12 Resistance of materials and seams to permeation by liquid chemicals

When tested against at least the chemicals listed in Table 9 of EN 14325:2004, materials and seams of the garment shall achieve at least class 4 permeation resistance of EN 14325:2004 clause 4.11.

3.3.13 Chemical degradation resistance

Separate samples of garment materials shall be chemically preconditioned by 30 minutes continuous contact exposure to each of the chemical listed in Table 5.1. The samples shall then be tested according to EN 14325:2004, 4.10, in comparison with unexposed samples (required at 3.3.4). There shall be no change to the measured puncture resistance class, or significant visible degradation.

3.3.14 Resistance to penetration of infectious agents

Garment materials shall pass both ISO16603:2004, and ISO 16604:2004. In both cases, procedure A shall be used, or procedure B if the samples require support.

3.3.15 Clothing B2a protection against solid particles

Garments worn as part of a compatible ensemble shall be tested as described in 3.4.4. This test method does not require the clothing to be tested as part of an ensemble – additional PPE is used following the manufacturer's instructions.

The test could be conducted using a USAR ensemble, to reduce the overall testing for new PPE designs. However, a manufacturer might have clothing which has passed this requirement for a non-USAR ensemble, and consider that the results indicate that the clothing will also be suitable for a USAR ensemble. In this case they would probably propose moving directly to the ensemble testing described in Section 11.

Testing of inward leakage shall be carried out on six subjects immediately after completion of the practical performance tests detailed in 3.4.2 and 3.4.3, using the same subjects, without removal and refitting of the garments. (A total of six sets of total inward leakage (TIL) measurements shall be made, three after ambient temperature practical performance testing, and three after low temperature practical performance testing.)

Inward leakage performance shall meet the requirements in Table 3.6. TIL_A corresponds to a skin protection factor of 50.

Table 3.6 Inward leakage of solid particles for clothing B2a		
Inward leakage measured (see EN 1073-2:2002)	Inward leakage shall not exceed:	
TIL _E (exercise mean)	3%	
TIL _A (overall mean)	2%	

3.4 New clothing test methods needed

3.4.1 General introduction

All the new test methods in this section are given where there are none in existing standards which can be used to completely assess the new performance requirements given in this specification.

As noted in Section 1.3, these new test methods are given as suggestions only, and have not been practically evaluated. They describe the principles involved, and are not fully defined and ready to be used "as written". Where possible, these new test methods use, or give as examples, test methods from existing standards. If alternative test methods are available to assess these performance requirements, and they are considered appropriate, they can be used where necessary.

3.4.2 Test method for practical performance testing at ambient temperature

3.4.2.1 **GENERAL**

Practical performance testing is essential to assess aspects of garment performance which cannot be determined by other forms of testing. In addition, this testing is used as preconditioning of the garments before assessment of protective capabilities; it simulates a consistent level of wear and tear to assess durability of the measured protection.

The tests will use an ensemble as instructed by the manufacturer (3.4.2.4). As noted in 3.3.15 this may or may not be a USAR ensemble.

These tests are not intended to be an assessment of ergonomic usability for USAR. They are only a mechanical stressor and basic function test of the garment. Full usability trials for USAR-relevant activities are covered in Section 11.

3.4.2.2 TEST CONDITIONS

Testing shall take place at (23±5)°C and (45±15)% relative humidity. The actual test conditions shall be reported. These conditions are readily achievable in test houses (being called up in existing standard tests) and are not unreasonable for practical use conditions.

3.4.2.3 TEST SUBJECTS

For the test, persons shall be selected who are familiar with the use of this or similar protective equipment and whose medical history is known to be satisfactory. Before performing tests involving human subjects, account shall be taken of any national or local regulations concerning medical history, examination, monitoring or supervision of the test subject.

3.4.2.4 TEST PROCEDURE

The following procedure shall be undertaken by each test subject.

- a) The subject shall read the manufacturer's instructions, and select the appropriate size of garment accordingly.
- b) The subject shall don the garment (and any identified accessory equipment to be used at the same time, including sampling lines which may be required for tests conducted immediately subsequent to the practical performance tests) according to the manufacturer's instructions.
- c) The seven-movement sequence from EN 14605:2005 clause 4.3.4.1 shall be carried out.

- d) Exercise c) of EN 943-1:2002 clause 6.2.1 shall be carried out, but with a duration 5 minutes instead of 10 minutes, filling and emptying the basket 7 to 10 times.
- e) Items c) and d) above shall be repeated a further two times.

The subject shall rest for (3±2) minutes between repetitions.

3.4.2.5 ASPECTS TO BE ADDRESSED DURING PRACTICAL PERFORMANCE TESTING

Points to be addressed during practical performance testing include:

- design, sizing, comfort, adequacy of padding to knees/elbows
- marking, information, and user instructions
- mechanical robustness, security of fastenings
- subject withdrawal related to clothing
- donning/disrobing/doffing procedures
- ergonomic aspects according to EN 340:2003 Annex C.

3.4.3 Test method for practical performance at low temperature

3.4.3.1 **GENERAL**

In addition to the purposes of ambient temperature practical performance testing, these tests dynamically assess the resistance of garment materials to mechanical damage caused by low temperatures.

The tests will use an ensemble as instructed by the manufacturer (3.4.2.4). As noted in 3.3.15 this may or may not be a USAR ensemble.

3.4.3.2 TEST CONDITIONS

Testing shall take place at the lowest temperature claimed by the manufacturer for operation, from the options of –10°C, -20°C or -30°C. The test temperature shall be maintained within 1°C during tests.

3.4.3.3 TEST SUBJECTS

Clause 3.4.2.3 shall apply. In addition, particular attention shall be given to the medical screening for fitness to work at reduced temperatures, and any need for additional monitoring of subject condition during tests.

3.4.3.4 TEST PROCEDURE

Clause 3.4.2.4 shall apply.

3.4.3.5 ASPECTS TO BE ADDRESSED DURING PRACTICAL PERFORMANCE TESTING

Clause 3.4.2.5 shall apply, together with:

cold-induced damage to the garment.

3.4.4 Test method for protection against high levels of airborne particles

The method described in EN ISO 13982-2:2004 shall be used, with the following modifications. There shall be three separate sampling points:

- a) within the hood of the garment
- b) in the upper right chest region of the garment
- c) in the right leg of the garment at knee level.

The sampling probe used shall be as described in EN ISO 13982-2:2004 clause 5.5. When sampling any one position, an equivalent volume of clean air shall be returned to the garment through the nearest alternative sampling line.

The tests will use an ensemble as instructed by the manufacturer (3.4.2.4). As noted in 3.3.15 this may or may not be a USAR ensemble.

SECTION 4

Hearing protection

4.1 General introduction

Under the *Control of Noise at Work Regulations 2005* there are two indicators of the risk to hearing; the daily overall noise exposure and the instantaneous peak level exposure. There are lower and upper action values and limit values for both these quantities.

For the daily noise exposure 80dB(A), 85dB(A), and 87dB(A) are the lower, upper and limit values respectively. These values are the overall daily noise exposure calculated as the equivalent steady level if all the sound occurred over 8 hours.

For the instantaneous peak level 135dB(C), 137dB(C) and 140dB(C) are the lower, upper and limit values respectively. These are instantaneous values and apply regardless of how often or how long the exposure occurs.

Hearing protection is required to be provided to anyone whose noise exposure is likely to exceed the lower action value but they are not required to use this hearing protection until there is a risk of exceeding the upper exposure action value.

Hearing protection should be sufficient to reduce the noise exposure below the upper exposure action values. If this is impossible the limit values apply.

You may also find EN 458:2004 Hearing protectors - Recommendations for selection, use, care and maintenance - Guidance document useful.

4.2 General scope

Hearing protectors are available in two basic types, muffs and plugs. Both attenuate the passage of sound through the ear canal and so attenuate the sound level at the ear. Muffs may be more suitable if helmet mounted, while plugs are more suitable where muffs cannot be worn with other head mounted PPE. As for the helmet (section 2.2), it is important that hearing protection is compatible with other head-worn PPE.

Hearing protectors provide protection but also impair hearing. Over or unnecessary protection should be avoided.

Some protectors are designed to provide a flat response, and deliberately reduce the attenuation of high frequencies to improve clarity of sound heard

with the protector worn. Sound restoration protectors contain electronics that enhances the frequencies important for clarity at lower levels. These types of protector will reduce hearing impairment effects.

4.2.1 Types of hearing protection

4.2.1.1 SOUND RESTORATION HEARING PROTECTION

Sound restoration protectors mitigate some of the risks associated with the hearing impairment. Sound restoration protectors use microphones on the outside of the protector and speakers inside to reproduce the outside sound at the ear. As the outside level increases the gain of the sound restoration system decreases. This allows the wearer to hear clearly the sounds around them when it is quiet but to be protected against high levels, even sudden blast noise, up to the full attenuation of the protector. Sound restoration hearing protectors should be specified to EN 352-4:2001 (muffs) or EN 352-7:2002 (plugs). For USAR applications, battery type, life and ease of replacement will also be important.

4.2.1.2 INCORPORATION OF COMMUNICATIONS EQUIPMENT

Sound restoration protectors can also incorporate communications equipment (communications equipment is an option, section 4.3.3), which may be important for USAR activities. Muffs designed for essential communication should be specified to EN 352-6:2002 and will allow the user to select the level they require for clear communication. A similar standard for plugs (prEN 352-9) is in preparation. For USAR applications, battery type, life and ease of replacement will also be important.

Where hearing protectors incorporate communications equipment any CE marking and hearing protection performance should apply to the whole unit, and not to the hearing protector without communications equipment.

4.2.1.3 HEARING PROTECTION FOR EXPLOSIVE ATMOSPHERES

Sound restoration protectors will give the best audibility where sound levels are varying and should be the preferred choice. As sound restoration protectors contain electronics they may not be suitable for explosive atmospheres. Therefore protectors without electronics have also been specified with regard to both hearing impairment and attenuation.

4.2.1.4 MUFFS OR PLUGS?

Muffs are easier to fit than plugs and there is a wider range of protectors with both sound restoration and communication facilities. Muff attenuation may be reduced when other head worn clothing or personal protective equipment is used, and if not worn correctly. Using a purpose built combination of muffs with the other PPE ensures the best fit.

Plugs can usually be used with other head worn clothing and personal protective equipment without loss of attenuation. Plugs are available with both sound restoration and communication facilities but there is possibly a smaller range than for muffs.

Plugs can be difficult to fit correctly. Plugs moulded to the users ears usually provide the easiest and best fit. These custom moulded types are the ones most commonly available with sound restoration and communication facilities. If custom moulded plugs are not used a variety of plugs should be available to enable users to find the one giving the best fit. Users require training in fitting plugs to obtain the specified attenuation.

4.2.2 Relationship between this and previous USAR hearing protection specification

Previous USAR guidance had recommended using hearing protection with a Single Number Rating (SNR) value of at least 30dB. A 30dB SNR value is usual for protectors designed for use in noisy heavy industry (see Table 4.1). SNR values usually extend only to about 35dB and such protectors are designed for the most extreme environments. In some cases such heavy-duty protectors will over protect users, and provide an unnecessary hearing impairment.

In addition, previous guidance had suggested the H value should be at least 30dB. The H value is an indication of the protection provided to high frequency sound. High frequencies are easily attenuated and even lightweight protectors will meet this requirement. However there is little advantage in high attenuation of high frequencies as it muffles sounds for the users of hearing protection giving a loss of clarity especially to speech. In addition apart from compressed air discharges such high frequencies are not a significant component of machine noise.

Table 4.1 Indication of protector factors		
A- weighted noise level dB	Select a protector with an SNR of	
85 - 90	20 or less	
90 - 95	20 - 30	
95 - 100	25 - 35	
100 - 105	30 or more	

4.3 Performance requirements for C1a hearing protection

4.3.1 General introduction

C1a hearing protection is a plug with sound restoration and, if desired, communications.

Note: Sound restoration hearing protectors have H, M and L criterion levels specified (these are not to be confused with the H, M and L attenuation values). These criterion levels are the outside level at which the level at the ear first reaches 85dB(A) when the sound restoration is set to full volume in high, medium and low frequency noise.

4.3.2 Performance

The earplug shall be specified to EN 352-7:2002 Hearing protectors - Safety requirements and testing - Part 7: Level-dependent ear-plugs.

Sound restoration protectors shall have H, M and L criterion values not lower than 115dB(A), 105dB(A), and 90dB(A) respectively. In the passive mode (sound restoration off) they shall have a SNR value of at least 30dB.

Note: This will ensure they provide sufficient attenuation for those working in steady noise such as that from most hand held power tools when the sound restoration is at full volume. The sound restoration feature will ensure that the protector does not overprotect those using the protector at lower levels. The SNR value ensures a minimum protection against high level blast noise when the passive attenuation dominates.

The battery life shall be at least 300 hours.

4.3.3 Communications (optional)

At this time (December 2008) there is only a draft standard for the specification of ear plugs with audio communication. This draft standard is prEN 352-9 "Hearing protectors - Safety requirements and testing - Part 9: Ear-plugs with electrical audio input". Plugs purchased with audio communication should be specified to this standard once it is published

The battery life shall be at least 300 hours.

SECTION 5

Respiratory protective equipment

5.1 General introduction

A range of types of respiratory protective equipment (RPE) is described, which is intended to provide protection against either airborne contaminants (solid particles, micro-organisms, mists, fumes, gases and vapours), or oxygen deficiency, or both, which are relevant to Scenario 2 operations. Although this is a high dust level scenario, the chemicals etc. which might be present in Scenario 1 are also possible in Scenario 2. So, there need to be requirements for protection against, and equipment resistance to such chemicals etc. This should not be confused with CBR protection and resistance.

This range has been based on types of equipment which are currently on the market, but the performance does not exclude innovative designs from being developed for urban search and rescue (USAR) activities. Final selection of appropriate devices for deployment will balance choice of design with the necessary protection in likely use environments.

The terms respiratory protective equipment (RPE) and respiratory protective device (RPD) are used interchangeably in this document.

5.2 General scope

Section 5 specifies minimum performance requirements for three forms of RPDs including both filtration types (respirators) and supplied breathable gas types (breathing apparatus - BA). The specifications are based upon the current EN RPD product standards with additions where these are deemed necessary. Escape apparatus and diving apparatus are not included within the specification.

Laboratory and practical performance tests are included for the assessment of compliance with the requirements. Unless otherwise specified in this document, prior environmental and other conditioning of samples tested shall be according to the referenced standards.

If USAR teams hold more than one type of RPE, then the selection of the most suitable type of RPE to be deployed will depend upon an on-site risk assessment of the incident. Assessment of likely scenarios and their associated risks and hazards will be needed for USAR teams to decide which types of RPE to hold.

Note: If USAR teams hold more than one type of RPE, then they have a choice of selecting the most appropriate. If they have only one type it will have to meet the highest level of performance. In some situations it will provide excessive levels of performance, and may be more burdensome or interfere more with effective operations than is necessary.

5.2.1 Type D2a RPE

5.2.2 Self-contained open-circuit compressed air breathing apparatus with full face mask

This apparatus comprises valved pressure vessel(s) and typically body harness, lung governed demand valve, pressure indicator(s), warning device(s), connecting hoses and tubes and full face mask. It may include a pressure reducer, pressure reducer relief valve, supplementary air supply, second medium pressure connector, ambient air bypass device or other components and parts. The apparatus functions by enabling the wearer to breathe compressed air on demand. The exhaled air from the wearer then passes without re-circulation to the ambient atmosphere.

Additional requirements over and above current EN standards are included to cope with high dust levels.

Equipment of this type has an assigned protection factor (APF) of 2000.

5.2.3 Type D2d RPE

5.2.4 Power assisted filtering device incorporating a full face mask or hood

This device typically consists of:

one or more filters through which all the air supplied to the facepiece passes

a power operated turbo unit which supplies filtered ambient air to the facepiece directly or by means of a breathing hose. The energy supply for the turbo unit may be carried on the person

a full face mask or hood

one or more exhalation valves or other outlets through which exhaled air and air in excess of the wearer's demand is discharged.

Additional requirements over and above current EN standards are included to cope with high dust levels.

Equipment of this type has an assigned protection factor (APF) of 40. (See section 11.5 which explains how Simulated Work Place Factors can be used instead of APF.)

5.2.5 Type D2e RPE

5.2.6 Full face mask respirator (negative pressure)

This device consists of a full face mask with one or more exhalation valves. One or more filters connect to the facepiece through which all the incoming air passes.

Additional requirements over and above current EN standards are included to cope with high dust levels.

Equipment of this type has an assigned protection factor (APF) of 40 if used with particle filters alone, and 20 if gas/vapour filters are fitted. (See section 11.5 which explains how Simulated Work Place Factors can be used instead of APF.)

5.2.7 Filters for Type D2 respirators

Particle filters or particle filtering components of combined gas/vapour/particle filters for use with D2 respirator variants shall achieve P3 performance when tested according to EN 143:2000 or the relevant device standard referenced below for the RPE variants.

If dust pre-filters are recommended by a manufacturer, then they shall also achieve P3 performance when tested according to EN 143:2000 or the relevant device standard referenced below for the RPE variants.

Gas/vapour filters for use with D2 devices shall meet the requirements of EN 14387:2004 type ABEK to class 2. Performance against additional chemicals may be specified by the manufacturer.

Note: Class 2 is defined in EN 14387, and is the higher of the two capacity classes for filters which will be able to attach directly to a mask. There is a class 3 defined, but it will be too big and heavy to attach directly to a mask in practice.

5.3 Performance requirements for RPE type D2a

5.3.1 General

This device shall comply with EN 136:1998, EN 137:2006 and the requirements of 5.3.2 to 5.3.8. It shall not be used in atmospheres containing dust levels greater than 400mg/m³, which was the maximum level identified in phase 1 of this work (Vaughan *et al*, 2007a and 2007b).

5.3.2 Face mask visor

5.3.2.1 VISOR IMPACT

After being subjected to any pre-conditioning requirements, the apparatus shall continue to function and provide respiratory protection after an impact on the facepiece visor and associated components in accordance with:

EN 166:2001 clause 7.2.2 "Protection against high-speed particles" - medium energy impact; and

EN 166:2001 clause 7.3.4 "Protection against high speed particles at extremes of temperature" – medium energy impact.

In addition, visibility through the visor after each impact test shall be such as to enable a sign with characters 100mm high to be read from a distance of 6m in accordance with EN 403:2004 clause 6.17.2.

Note: this performance requirement is intended to give a facepiece visor that is strong enough to continue providing full respiratory protection after a 6 Joule impact from a projectile at –5°C and +55°C. After such an impact, in addition to continued respiratory protection, the vision through the visor is intended, at worst, to be sufficient for the wearer to be able to move safely out of the hazardous area.

This requirement is the same as that for currently available EN 136 masks.

This performance requirement uses tests from existing standards. These are given in 5.6.4.

5.3.2.2 FACE MASK VISOR CHEMICAL RESISTANCE

After being subjected to any pre-conditioning requirements, and after exposure to a given chemical (e.g. the test method at 5.6.2), the visibility through the visor shall be such as to enable a sign with characters 100mm high to be read from a distance of 6m in accordance with EN 403:2004 clause 6.17.2.

After being subjected to any pre-conditioning requirements, and after exposure to a given chemical, the face mask visor shall meet the impact performance requirements for respiratory protection and visibility as given in 5.3.2.1.

Note: this performance requirement is intended to give a face mask visor whose impact resistance and visor visibility are not compromised by exposure to chemicals. As for "Face mask visor impact", after exposure to a chemical the vision through the visor is intended, at worst, to be sufficient for the wearer to be able to move safely out of the hazardous area.

This performance requirement needs new test methods. Options for these new test methods are suggested in 5.6.2.

5.3.2.3 FACE MASK VISOR ABRASION RESISTANCE

After the visor is subjected to the abrasion test the visibility through the visor shall be such as to enable a sign with characters 100mm high to be read from a distance of 6m in accordance with EN 403:2004 clause 6.17.2.

Note: this performance requirement is intended to give a face mask visor whose visor visibility is not compromised by cleaning large quantities of abrasive dust from the visor when working in a high dust level. As for "Face mask visor impact", after abrasion the vision through the visor is intended, at worst, to be sufficient for the wearer to be able to move safely out of the hazardous area.

This performance requirement needs new test methods. Options for these new test methods are suggested in 5.6.12.

5.3.3 Faceblank

The faceblank shall be tested in accordance with EN 14325:2004, clause 4.11 and shall, as a minimum, meet the requirement for class 4 as defined in that clause.

This performance requirement will need new test methods based on modifying those in existing standards. These are given in 5.6.3.

5.3.4 Dust induced malfunction of valves and connections

The apparatus shall continue to meet the breathing resistance requirements of EN 137:2006 during exposure to an atmosphere containing 400mg/m³ of dust and shall remain leak tight afterwards.

Testing in accordance with clause 5.6.5.

5.3.5 Performance of demand valve at high dust levels

The apparatus shall continue to meet the breathing resistance requirements of EN 137:2006 during exposure to an atmosphere containing 400mg/m³ of dust and shall remain leak tight afterwards.

Testing in accordance with 5.6.6.

5.3.6 Performance of warning system at high dust levels

The apparatus shall continue to meet the audible warning requirements of EN 137:2006 during and after exposure to an atmosphere containing 400mg/m³ of dust.

Testing in accordance with 5.6.7.

5.3.7 Liquid chemical resistance of apparatus

The apparatus shall continue to meet the breathing resistance requirements of EN 137:2006 during and after exposure to a given chemical, and shall remain leak tight after exposure.

This performance requirement will need new test methods based on modifying those in existing standards. These are given in 5.6.2.

5.3.8 Gas/vapour induced malfunction of valves and connections

The apparatus shall continue to meet the breathing resistance requirements of EN 137:2006 during and after exposure to a given chemical, and shall remain leak tight after exposure.

This performance requirement will need new test methods based on modifying those in existing standards. These are given in 5.6.9.

5.4 Performance requirements for RPE type D2d

5.4.1 General

This device shall comply with EN 12942:1998 class TM3 with full face mask to EN 136:1998 or hood to EN 12941:1998 class TH3, and the requirements of 5.4.2 to 5.4.10. It shall not be used in atmospheres containing dust levels greater than 400mg/m³.

5.4.2 Facepiece visor

5.4.2.1 VISOR IMPACT

After being subjected to any pre-conditioning requirements, the apparatus shall continue to function and provide respiratory protection after an impact on the facepiece visor and associated components in accordance with:

EN 166:2001 clause 7.2.2 "Protection against high-speed particles" - medium energy impact; and

EN 166:2001 clause 7.3.4 "Protection against high speed particles at extremes of temperature" – medium energy impact.

In addition, visibility through the visor after each impact test shall be such as to enable a sign with characters 100mm high to be read from a distance of 6m in accordance with EN 403:2004 clause 6.17.2.

Note: this performance requirement is intended to give a facepiece visor that is strong enough to continue providing full respiratory protection after a 6 Joule impact from a projectile at –5°C and +55°C. After such an impact, in addition to continued respiratory protection, the vision through the visor is intended, at worst, to be sufficient for the wearer to be able to move safely out of the hazardous area.

This requirement is the same as that for currently available EN 136 masks.

This performance requirement uses tests from existing standards. These are given in 5.6.4.

5.4.2.2 FACEPIECE VISOR CHEMICAL RESISTANCE

After being subjected to any pre-conditioning requirements, and after exposure to a given chemical, the visibility through the visor shall be such as to enable a sign with characters 100mm high to be read from a distance of 6m in accordance with EN 403:2004 clause 6.17.2.

After being subjected to any pre-conditioning requirements, and after exposure to a given chemical, the facepiece visor shall meet the impact performance requirements for respiratory protection and visibility as given in 5.4.2.1.

Note: this performance requirement is intended to give a facepiece visor whose impact resistance and visor visibility are not compromised by exposure to chemicals. As for "Facepiece visor impact", after exposure to a chemical the vision through the visor is intended, at worst, to be sufficient for the wearer to be able to move safely out of the hazardous area.

This performance requirement needs new test methods. Options for these new test methods are suggested in 5.6.2.

5.4.2.3 FACEPIECE VISOR ABRASION RESISTANCE

After the visor is subjected to the abrasion test the visibility through the visor shall be such as to enable a sign with characters 100mm high to be read from a distance of 6m in accordance with EN 403:2004 clause 6.17.2.

Note: this performance requirement is intended to give a facepiece visor whose visor visibility is not compromised by cleaning large quantities of abrasive dust from the visor when working in a high dust level. As for "Facepiece visor impact", after abrasion the vision through the visor is intended, at worst, to be sufficient for the wearer to be able to move safely out of the hazardous area.

This performance requirement needs new test methods. Options for these new test methods are suggested in 5.6.12.

5.4.3 Faceblank or hood material

The mask faceblank or hood material shall be tested in accordance with EN 14325:2004, clause 4.11 and shall, as a minimum, meet the requirement for class 4 as defined in that clause.

This performance requirement will need new test methods based on modifying those in existing standards. These are given in 5.6.3.

5.4.4 Strength of connections

The connection(s) between the filter(s) and the turbo unit and between the power source (battery) and the turbo unit shall withstand an axial pull of 250N for 10s. The connection(s) shall not fail and there shall be no significant damage to any of the components.

Testing in accordance with 5.6.10.

5.4.5 Robustness of the breathing hose

The breathing hose shall be sufficiently robust to withstand a 5 Joule impact and shall remain leak tight.

The breathing hose shall meet the requirements of EN 12942:1998, clause 6.10.2 but with an applied force of 250N.

Testing in accordance with 5.6.11.

5.4.6 Liquid penetration of valves and connections

The apparatus shall continue to function and keep liquid out when subjected to the spray test described in EN 468:1994.

5.4.7 Testing in accordance with 5.6.8.

5.4.8 Dust induced malfunction of filters, valves and connections

5.4.8.1 MASK BASED DEVICES

The apparatus shall continue to meet the breathing resistance requirements of EN 12942:1998 during exposure to an atmosphere containing 400mg/m³ of dust and shall remain leak tight afterwards. Dust concentration inside the mask shall not exceed an average of 0.2mg/m³ during the test. Warning devices shall still continue to function.

Note: The in-facepiece concentration limit set here represents protection to at least the specified NPF for this device against a challenge of 400mg/m³.

Testing in accordance with 5.6.5.

5.4.8.2 HOOD BASED DEVICES

The apparatus shall continue to meet the breathing resistance requirements of EN 12941:1998 during exposure to an atmosphere containing 400mg/m³ of dust. Dust concentration inside the hood shall not exceed an average of 0.8mg/m³ during the test. Warning devices shall still continue to function.

Note: The in-facepiece concentration limit set here represents protection to at least the specified NPF for this device against a challenge of 400mg/m³.

Testing in accordance with 5.6.5.

5.4.9 Dust clogging of filters at high dust levels

The apparatus shall continue to meet the requirements of EN 12942:1998 clause 6.8 (masks) or EN 12941:1998 clause 6.8 (hoods) when exposed to an atmosphere of 400mg/m³.

Testing in accordance with EN 12942:1998 clause 7.9 (masks), or EN 12941:1998 clause 7.8 (hoods).

5.4.10 Liquid chemical resistance of apparatus

The apparatus shall continue to meet the breathing resistance requirements of EN 12942:1998 (masks) or EN 12941:1998 (hoods) during and after exposure to a given chemical. Masks shall remain leak tight after exposure.

This performance requirement will need new test methods based on modifying those in existing standards. These are given in 5.6.2.

5.4.11 Gas/vapour induced malfunction of filters, valves and connections

The apparatus shall continue to meet the breathing resistance requirements of EN 12942:1998 (masks) or EN 12941:1998 (hoods) during and after exposure to a given chemical. Masks shall remain leak tight after exposure.

This performance requirement will need new test methods based on modifying those in existing standards. These are given in 5.6.9.

5.5 Performance requirements for RPE type D2e

5.5.1 General

This device shall have a full face mask which complies with EN 136:1998 and shall be fitted with one or more P3 particle filter(s) which comply with EN143:2000 (incorporating corrigendum A1) or one or more gas/vapour or combined filter(s) which comply with EN14387 with the addition of the filter penetration and storage test as specified in EN143:2000 clauses 7.12 and 7.10, and the requirements in 5.5.2 to 5.5.7. It shall not be used in atmospheres containing dust levels greater than 400mg/m³.

5.5.2 Face mask visor

5.5.2.1 VISOR IMPACT

After being subjected to any pre-conditioning requirements, the apparatus shall continue to function and provide respiratory protection after an impact on the facepiece visor and associated components in accordance with:

- EN 166:2001 clause 7.2.2 "Protection against high-speed particles" medium energy impact; and
- EN 166:2001 clause 7.3.4 "Protection against high speed particles at extremes of temperature" medium energy impact.

In addition, visibility through the visor after each impact test shall be such as to enable a sign with characters 100mm high to be read from a distance of 6m in accordance with EN 403:2004 clause 6.17.2.

Note: this performance requirement is intended to give a facepiece visor that is strong enough to continue providing full respiratory protection after a 6 Joule impact from a projectile at –5°C and +55°C. After such an impact, in addition to continued respiratory protection, the vision through the visor is intended, at worst, to be sufficient for the wearer to be able to move safely out of the hazardous area.

This requirement is the same as that for currently available EN 136 masks.

This performance requirement uses tests from existing standards. These are given in 5.6.4.

5.5.2.2 FACE MASK VISOR CHEMICAL RESISTANCE

After being subjected to any pre-conditioning requirements, and after exposure to a given chemical, the visibility through the visor shall be such as to enable a sign with characters 100mm high to be read from a distance of 6m in accordance with EN 403:2004 clause 6.17.2.

After being subjected to any pre-conditioning requirements, and after exposure to a given chemical, the face mask visor shall meet the impact performance requirements for respiratory protection and visibility as given in 5.5.2.1.

Note: this performance requirement is intended to give a face mask visor whose impact resistance and visor visibility are not compromised by exposure to chemicals. As for "Face mask visor impact", after exposure to a chemical the vision through the visor is intended, at worst, to be sufficient for the wearer to be able to move safely out of the hazardous area.

This performance requirement needs new test methods. Options for these new test methods are suggested in 5.6.2.

5.5.2.3 FACE MASK VISOR ABRASION RESISTANCE

After the visor is subjected to the abrasion test the visibility through the visor shall be such as to enable a sign with characters 100mm high to be read from a distance of 6m in accordance with EN 403:2004 clause 6.17.2.

Note: this performance requirement is intended to give a face mask visor whose visor visibility is not compromised by cleaning large quantities of abrasive dust from the visor when working in a high dust level. As for "Face mask visor impact", after abrasion the vision through the visor is intended, at worst, to be sufficient for the wearer to be able to move safely out of the hazardous area.

This performance requirement needs new test methods. Options for these new test methods are suggested in 5.6.12.

5.5.3 Faceblank

The faceblank shall be tested in accordance with EN 14325:2004, clause 4.11 and shall, as a minimum, meet the requirement for class 4 as defined in that clause.

This performance requirement will need new test methods based on modifying those in existing standards. These are given in 5.6.3.

5.5.4 Liquid penetration of valves and connections

The apparatus shall continue to function and keep liquid out when subjected to the spray test described in EN 468:1994.

Testing in accordance with 5.6.8.

5.5.5 Dust induced malfunction of filters, valves and connections

The apparatus shall continue to meet the breathing resistance requirements of the Standards referenced in 5.5.1 during exposure to an atmosphere containing 400mg/m3 of dust and shall remain leak tight afterwards.

Testing in accordance with 5.6.5.

5.5.6 Dust clogging of filters at high dust levels

Covered by EN 143:2000.

The apparatus shall continue to meet the breathing resistance requirements of the relevant standards listed in 5.5.1 during and after exposure to a given chemical, and shall remain leak tight after exposure.

This performance requirement will need new test methods based on modifying those in existing standards. These are given in 5.6.2.

5.5.7 Gas/vapour induced malfunction of filters, valves and connections

The apparatus shall continue to meet the breathing resistance requirements of the relevant standards listed in 5.5.1 during and after exposure to a given chemical, and shall remain leak tight after exposure.

This performance requirement will need new test methods based on modifying those in existing standards. These are given in 5.6.9.

5.6 New RPE test methods needed

5.6.1 General

All the new test methods in this section are given where there are none in existing standards which can be used to completely assess the new performance requirements given in this specification.

As noted in section 1.3, these new test methods are given as suggestions only, and have not been practically evaluated. They describe the principles involved, and are not fully defined and ready to be used "as written". Where possible, these new test methods use, or give as examples, test methods from existing standards. If alternative test methods are available to assess these performance requirements, and they are considered appropriate, they can be used where necessary.

5.6.2 Facepiece visor chemical resistance test

5.6.2.1 CHEMICALS USED FOR TESTING

The chemicals used for testing should be representative of the range to be encountered when the PPE is in use.

Table 5.1 is a good example of a basic list of general chemicals for such testing (as given in EN 14458:2004 clause 5.2.16).

Table 5.1 - List of chemicals for resistance testing of visor assemblies			
Chemical	Concentration weight %	Temperature of chemical °C (± 2 °C)	
Sulphuric acid	30 (aqueous)	20	
Sodium hydroxide	10 (aqueous)	20	
p-Xylene	Undiluted	20	
Butan-1-ol	Undiluted	20	
n-Heptane	Undiluted	20	

Note: these chemicals are, in tabled order, representative of an acid, a base, a cyclic organic solvent, an aliphatic organic solvent and organic solvents found in transport fuels.

Details of the chemicals used for any test should be given in the information provided by the manufacturer with the PPE.

5.6.2.2 TEST METHOD

EN 14458:2004 clause 6.10 contains a suitable sequence for applying the chemicals to the visor. This text can be adapted for a face mask visor as follows:

"Test chemicals shall be at a temperature of (20±2)°C. The chemical shall be applied with the visor assembly mounted in the in-use position, oriented as though being worn by a standing subject.

100ml of the test chemical shall be poured onto the visor and any exposed parts of the means of fixing. The chemical shall be poured along the upper exposed edges of the visor assembly, moving from one side to the other using half the amount of chemical, and the rest going back, thus covering the assembly twice. This operation shall take (10±3) seconds.

Five minutes after having applied the chemical, residues shall be removed (using any appropriate method such as rinsing in clean water and drying). The device shall then be subjected to examination and testing as required."

5.6.3 Faceblank or hood material chemical resistance test

EN 14325:2004 clause 4.11 calls on either:

- the test method in EN 374-3:2003; or
- test methods A or B in EN ISO 6529:2001.

These methods need to be modified from their use for clothing materials to their use for faceblank/hood materials. Procedures similar to those used for glove or footwear materials may be appropriate.

Table 5.1 is a good example of a basic list of general chemicals for such testing.

5.6.4 Facepiece visor impact test

EN 166:2001 clauses 7.2.2 and 7.3.4 both invoke the test method in EN 168:2001 clause 9.

EN 403:2004 clause 6.17.2 invokes the test method in EN 403:2004 clause 7.5.

5.6.5 Test method for dust induced malfunction of (filters), valves and connections

Based on 13274-8:2002 Dolomite dust clogging with a suitable means of measuring in-facepiece dust concentration.

5.6.6 Test method for performance of demand valve at high dust levels

Based on 13274-8:2002 Dolomite dust clogging.

5.6.7 Test method for performance of warning system at high dust levels

Based on 13274-8:2002 Dolomite dust clogging.

5.6.8 Test method for Liquid penetration of (filters), valves and connections

Based on spray test described in EN 468:1994.

5.6.9 Test method for gas/vapour induced malfunction of (filters), valves and connections

One suitable approach is given in clause 14 "Test for protection against gases and fine dust particles" of EN 168:2001, where ammonia is used as the chemical vapour. (This method is called on by the performance requirement in clause 7.2.6 "Protection against gases and fine dust particles" of EN 166:2001.)

This method would need to be modified to use different chemical vapours. The chemical vapours used for testing should be representative of the range to be encountered when the PPE is in use.

Table 5.1 is a good example of a basic list of general chemicals for such testing (as given in EN 14458:2004 clause 5.2.16).

Details of the chemicals used for any test should be given in the information provided by the manufacturer with the PPE.

5.6.10 Strength of connections

Mount the turbo unit on a dummy torso using additional restraining straps if required to ensure that the load is applied to the turbo unit/filter connection as directly as possible, then apply an axial load of 250N for 10 seconds to the filter.

Repeat the test for each additional filter and the power source (battery).

Note: It may be necessary to use a dummy power source to enable the test force to be applied.

5.6.11 Robustness of the breathing hose

Based on EN 397:1995 clause 6.7.

5.6.12 Facepiece visor abrasion test

There are two suggested approaches to this test method.

5.6.12.1 OPTION 1 – ABRASION BY FALLING MATERIAL

One method used in existing standards is to subject the visor material to falling abrasive material and measure the effect on visibility through the visor.

An example of this approach is found in the test method described in clause 15 "Test for resistance to surface damage by fine particles" of EN 168:2001, where sand is used as the abrasive material. This method is called on by the performance requirement in clause 7.3.1 "Resistance to surface damage by fine particles" of EN 166:2001.

While this approach is repeatable as a test method, it is not viewed by experts as a "good" test method. The falling sand only imparts minimal impact and friction on the visor surface, and this does not replicate the pressures and forces which may be applied when wiping a dirty visor to clean it.

5.6.12.2 OPTION 2 – ABRASION BY CONTROLLED WIPING WITH ABRASIVE MATERIAL

An alternative is to wipe the visor in a controlled manner with a defined abrasive material, and measure the effect on visibility through the visor. For a reliable test method the stroke, application force, duration and location of the wiping action should be defined. A fixed type of abrasive material should also be defined.

An example of this type of test is the Taber abrasion test, applied to planar samples of visor material in Annex A of EN 14458:2004.

5.6.13 Test for high level liquid penetration resistance

Based on EN 468:1994.

SECTION 6

Footwear

6.1 General introduction

This section describes the minimum performance specification for footwear providing protection to the feet below the ankle, and possibly to the lower leg. The performance requirements may be met by a single item of footwear, or by combinations of different footwear layers designed to be worn simultaneously.

Requirements in this section are based where possible on existing standards covering safety footwear, and footwear protecting against chainsaws, chemicals, electrical or firefighting hazards.

6.2 General scope

Type E1a footwear provides levels of mechanical strength consistent with intended USAR applications. It provides limited protection to the wearer from impact, crushing, rough surfaces and abrasions, non-hazardous airborne and settled dusts, heat and flame, water and a small number of liquid chemicals. These properties apply as a minimum to all USAR activities. Footwear of this type, when used as part of a compatible ensemble, will reduce exposure to solid particles by a nominal factor of 50.

Footwear can only provide limited protection against impacts and compression. In particular, for practicality of use, only the toe region of the footwear is specifically designed to provide significant levels of protection to the wearer against such mechanical hazards. While some limited protection is also specified below against hazards such as electricity, chain saws or molten metal splash, there may be operational situations where additional specific protection will be required against such hazards.

6.3 Performance requirements for E1a footwear

6.3.1 Introduction

In addition to the general and type-specific requirements set our below, the usability, performance and protection of footwear depends strongly on comfort and compatibility with both the user and the other items of the protective ensemble. Practical performance testing of the footwear as part of a protective ensemble is essential. Relevant practical performance tests are called up in other sections of this specification (some of which are referenced under distinct

footwear requirements), and for complete ensembles in section 11. Such practical performance testing shall include assessment of the marking, information and user instructions provided by the manufacturer (required by EN ISO 20345:2004 clauses 7 and 8).

6.3.2 Footwear general basic requirements

Footwear shall meet the requirements of EN ISO 20345:2004 clause 5.

Where footwear may be used in a flammable/explosive atmosphere, they shall have no exposed light alloys which may on frictional impact give rise to incendive sparks.

6.3.3 Footwear general additional mechanical requirements

Footwear or its component parts shall meet the requirements in Table 6.1, where applicable.

Note: Establishment of applicability will be assisted by reference to Table 14 of EN ISO 20345:2004.

Table 6.1 Additional mechanical requirements for footwear E1a			
Requirement	Clause (EN ISO 20345:2004 unless otherwise stated)	EN ISO 20345 symbol	
Penetration resistance	6.2.1	Р	
Energy absorbing seat	6.2.4	Е	
Ankle protection	6.2.7	AN	
Resistance to chainsaw cutting, Level 2	EN ISO 17249:2004, 5.2, 5.3, 5.4	-	

6.3.4 Footwear general heat and flame protection

Footwear materials or material assemblages shall achieve at least the performance levels given in Table 6.2, when tested as specified in the relevant standard, subject to any variations given in Table 6.2.

Table 6.2 Heat and flame requirements for footwear			
Property	Standard reference	Minimum performance level	Variations from referenced standard
Flame resistance	EN 15090:2006	6.3.3	-
Contact heat insulation of sole	EN 15090:2006, 6.3.1	HI ₁	Test at 150°C
Heat resistance of sole	EN 15090:2006, 6.3.1	HI₁	Test at 150°C
Radiant heat protection	EN 15090:2006, 6.3.2	RHTI >40s	-
Resistance to molten metal	BS 4676:2005	Table 2	Tested as Annex A, but with (200±30) cm ³ of metal.

6.3.5 Footwear general cold performance

6.3.5.1 COLD CONTACT PROTECTION

Materials of the sole assembly shall meet the requirements of EN ISO 20345:2004 clause 6.2.3.2.

6.3.5.2 RESISTANCE TO COLD CONDITIONS

The complete footwear shall be subjected to practical performance tests according to 3.4.3 at the lowest operating temperature claimed by the manufacturer, as part of the garment ensemble.

Note: Low temperature garment ensemble tests are conducted at -10°C, -20°C or -30°C.

No failure or degradation of materials, seams or closures shall be observed for the footwear, and no test subject shall report the footwear to be unusable or withdraw from the test as a result of problems with the footwear. **Note:** Visual assessment for damage may be conducted according to the guidance in EN 15090:2006 Annex B, clause B.2.

6.3.6 Footwear general visibility and conspicuity (optional)

Where affixed to the footwear, retroflective material shall encircle the leg of the footwear and as a minimum meet the following requirements of EN 471:2003:

- a) 4.2.2 (minimum width 50mm)
- b) 6.1 coefficient of reflection level 2
- c) (performance after pre-treatment).

6.3.7 Footwear general slip resistance

6.3.7.1 SOLE PROPERTIES

Footwear soles shall conform to the requirements of EN ISO 20345:2004 clauses 6.4.1, 6.4.2 and 6.4.3.

6.3.7.2 FOOTWEAR SLIP RESISTANCE PERFORMANCE

Footwear shall achieve a coefficient of friction of at least 0.36 when tested according to 6.4.2.

6.3.8 Footwear general electrical properties

6.3.8.1 ELECTRICALLY INSULATING FOOTWEAR

Footwear shall meet at least the requirements for Class 0 insulation of EN ISO 20345:2004 clause 6.2.2.3.

6.3.8.2 ANTISTATIC FOOTWEAR

Footwear shall meet the requirements of EN ISO 20345:2004 clause 6.2.2.2.

6.3.9 Footwear E1a protection against solid particles

Footwear shall be considered to protect against solid particles if it satisfies the requirements of 6.3.10 applicable to the footwear design (see EN ISO 20345:2004 Tables 2 and 14).

6.3.10 Footwear E1a protection against liquids

Footwear shall meet the requirements in Table 6.3 applicable to the footwear design (see EN ISO 20345:2004 Tables 2 and 14).

Table 6.3 Footwear E1a protection against liquids			
Requirement	Reference, clause	Comments	
Leakproofness	EN ISO 20345:2004, 5.3.3	-	
Water penetration and absorption	EN ISO 20345:2004, 6.3.1	-	
Water resistance	EN ISO 20345:2004, 6.3.1	-	
Liquid penetration resistance	This specification, 3.5.3	Test as part of the garment ensemble.	

6.3.11 Footwear E1a chemical permeation resistance

Footwear shall achieve at least level 3 permeation resistance of EN 13832-3:2006 when tested using the liquid chemicals given in Table 5.1.

6.3.12 Footwear E1a chemical degradation resistance

Footwear shall meet the requirements of EN 13832-3:2006 clause 6.2.2 when tested using the liquid chemicals given in Table 5.1.

The outsole shall also meet the requirements of EN ISO 20345:2004 clause 5.8.7 for fuel oil.

6.4 Footwear test methods needed

6.4.1 General introduction

All the new test methods in this section are given where there are none in existing standards which can be used to completely assess the new performance requirements given in this specification.

As noted in section 1.3, these new test methods are given as suggestions only, and have not been practically evaluated. They describe the principles involved, and are not fully defined and ready to be used "as written". Where possible, these new test methods use, or give as examples, test methods from existing standards. If alternative test methods are available to assess these performance requirements, and they are considered appropriate, they can be used where necessary.

6.4.2 Test method for slip resistance of complete footwear

The method of DIN 51130:2004 shall be used to assess the performance of the footwear, but using representative flooring surfaces (e.g. steel and smooth concrete with defined surface roughness properties) with water as the contaminant. The tangent of the angle of the ramp at which slip occurs gives the coefficient of friction.

SECTION 7

Gloves

7.1 General introduction

This section describes the minimum performance specification for gloves providing protection to the hands from the wrists. The requirements for the different types of performance may be met by a single glove, or by combinations of different gloves worn simultaneously. For practical reasons, the outermost glove of two or more gloves worn at the same time will be required to provide the majority of the mechanical and physical protection to the wearer, and also to chemical / biological resistant gloves / layers worn underneath.

7.2 General scope

Two different types of glove performance are described here.

Type F1a gloves essentially only specify mechanical, physical and thermal protection to the hands, and do not protect against water, or toxic or harmful solid, liquid or gaseous chemicals, but must have basic resistance to chemicals.

Type F1b gloves specify additional basic levels of protection against solid particles, rain, wet surfaces, and contact with relatively low hazard liquid chemicals.

Note: It is anticipated that all urban search and rescue (USAR) operations will require at least the combined properties of F1a and F1b. The F1a mechanical, physical and thermal properties have been specified separately here to assist those manufacturers who choose to provide this form of protection as a separate glove layer.

Gloves of type F1b will have limited duration of use depending on the types of chemicals to which they are exposed, as a result of chemical permeation.

Note: All chemical permeation requirements for other personal protective equipment (PPE) items contain an implicit assessment of duration. Their performance levels are set to ensure that rapid breakthrough against the identified substances does not occur.

Glove performance against contaminants will be limited by the quality and integrity of the interface between the cuff of the glove and the sleeve of the

garment. For this reason, critical protective performance of gloves shall be assessed in conjunction with garments as an ensemble, as detailed below.

7.3 Performance requirements common to all gloves

7.3.1 General introduction

Unless otherwise specified, gloves shall conform to applicable general requirements of EN 420:2003 concerning:

- innocuousness
- design and construction
- comfort and efficiency
- size designation
- marking, and
- information supplied by the manufacturer.

Where appropriate, design of gloves shall also take the following aspects into consideration:

- EN 510:1993 where there is a risk of entanglement.
- EN ISO 11611:2007 Clause 4, where there is a risk of exposure to molten spatter.
- Where gloves may be used in a flammable/explosive atmosphere, they shall have no exposed light alloys which may on frictional impact give rise to incendive sparks.

These aspects shall be assessed by visual inspection and by means of practical performance testing (as part of a clothing ensemble). Basic ergonomic performance during practical performance testing shall be assessed in accordance with the guidance in EN 340:2003 Annex C.

7.3.2 Gloves general – sampling, conditioning and pretreatment

Numbers of samples, pre-treatment and conditioning of samples, shall be as described in the standards referenced, unless specified differently in this document.

7.3.3 Gloves general – dexterity

Single gloves and combinations of gloves worn together to provide protection shall be assessed for finger dexterity according to EN 420:2003 clause 5.2. Gloves and intended combinations shall achieve at least level 1 performance.

Note 1: Higher levels of performance in this test are always desirable.

Note 2: Section 11 describes means of conducting more comprehensive assessments of dexterity, applied to complete ensembles.

7.4 Performance requirements for gloves F1a

7.4.1 General introduction

Type F1a gloves essentially only specify mechanical, physical and thermal protection to the hands, and do not protect against water, or toxic or harmful solid, liquid or gaseous chemicals. Requirements in this clause are likely to be required for the majority of USAR glove applications. Where additional properties of types F1b are required, a single glove, or a layered approach using more than one glove simultaneously may provide the combined protection. The requirement of this clause shall be met by the single glove or outermost layer used for protection.

7.4.2 Gloves F1a resistance to minor impacts

The glove shall be designed and constructed to provide resistance to minor knocks and abrasions to the hand, particularly the palm and knuckles. The position and performance of this protection shall be deemed adequate during practical performance testing according to 3.4.2 and 3.4.3.

7.4.3 Gloves F1a mechanical strength

Materials from which gloves are made shall meet at least the performance levels given in Table 7.1, when tested as specified in the relevant standard, subject to any variations given in Table 7.1.

Table 7.1 Mechanical performance requirements for glove materials			
Property	Standard reference	Minimum performance level	Variations from referenced standard
Abrasion	EN 659:2003, 3.3	3	-
Blade cut	EN 659:2003, 3.4	2	-
Tear	EN 659:2003, 3.5	3	-
Puncture	EN 659:2003, 3.6	3	-

Seams shall achieve at least a strength of 350N when tested according to ISO 13935-2:1999.

7.4.4 Gloves F1a protection against vibration (optional)

Note: The ability of gloves to provide effective protection against vibration is at best considered to be doubtful. This requirement has been included as an option for situations where an adequate risk assessment has determined that vibration risks (e.g. arising from power tool use) can be mitigated by the use of this type of equipment.

Gloves shall optionally conform to the anti-vibration requirements of EN 10819:1996.

7.4.5 Gloves F1a heat and flame resistance

7.4.5.1 MATERIALS HEAT RESISTANCE

Glove materials, or material assemblages for multi-layered construction, shall achieve at least the performance levels given in Table 7.2, when tested as specified in the relevant standard, subject to any variations given in Table 7.2.

Table 7.2 Glove materials heat resistance			
Property	Standard reference	Minimum performance level	Variations from referenced standard
Contact heat resistance	EN 407:2004, 5.2	Threshold time >15s	Test at 250°C
Molten spatter resistance	EN 12477:2001, 5.8	Level 2 (15 drops)	-
Heat shrinkage	EN 659:2003, 3.12	<5% shrinkage	-

7.4.5.2

7.4.5.3 FLAME RESISTANCE

Glove materials, or material assemblages for multi-layered construction, shall achieve the performance levels given in Table 7.3, when tested as specified in the relevant standard, subject to any variations given in Table 7.3. For gloves of multi-layer construction, samples of the complete assemblage shall be tested.

Table 7.3 Flame resistance			
Property	Standard reference	Minimum performance level	Variations from referenced standard
Materials flame resistance	EN 407:2004, 5.1	4	3 second exposure only.
Seam flame resistance	EN 407:2004, 5.1	Seams to remain intact	3 second exposure only.

7.4.6 Gloves F1a cold resistance

Note: Requirements in this clause may be met with the addition of thermal insulative/protective layers or liners, to the glove. Manufacturer's instructions should make clear when to use such layers.

7.4.6.1 COLD CONTACT PROTECTION

Materials of the glove shall achieve at least level 2 of EN 511:2006 clause 4.6, when tested as described in clause 5.6 of that standard.

7.4.6.2 RESISTANCE TO COLD CONDITIONS

The complete glove shall be subjected to practical performance tests according to 3.4.3 at the lowest operating temperature claimed by the manufacturer.

Note: Low temperature garment tests are conducted at -10°C, -20°C or -30°C. For compatibility, gloves to be used in such an ensemble should be similarly tested.

No failure or degradation of materials, seams or closures shall be observed, and no test subject shall report the glove to be unusable or withdraw from the test as a result of problems with the glove.

7.4.6.3 PROTECTION AGAINST COLD CONDITIONS

Protection against cold conditions shall be assessed as given in Table 7.4. Where the glove includes removable thermal layer(s), performance shall be reported for the glove with and without the layer(s) present, where indicated in Table 7.4.

Table 7.4 Glove protection against cold conditions			
Property	Standard reference	Minimum performance level	Variations from referenced standard
Convective cold	EN 511:2006, 4.5	Level 2	For each glove configuration
Air permeability	EN 342:2004, 4.3	Class 3	For each glove configuration

Based on the information in Annex B of EN 511:2006, the manufacturer shall provide advice on the limitations to use of the glove in cold conditions.

7.4.7 Glove F1a electrical properties

7.4.7.1 RESISTANCE TO LIVE ELECTRICAL CONTACT

Note: The requirement below minimises the possibility of electrical shock by short term, accidental contact with live electric conductors at low voltages, up to approximately 100V DC. It will not prevent injury or electrocution by longer contacts or higher voltages.

Glove materials shall meet the requirements of EN ISO 11611:2007, 6.10 (>10⁵ ohms).

7.4.7.2 ANTISTATIC PROPERTIES

Glove materials shall satisfy the following requirements in Table 7.5 for vertical and surface resistance.

Table 7.5 Electrostatic properties of materials			
Property	Standard reference	Minimum performance level	Variations from referenced standard
Surface resistivity	EN 1149-1:2006	<10 ¹¹ ohms	-
Vertical resistance	EN 1149-2:1997	<10 ⁸ ohms	-

7.4.8 Glove F1a chemical degradation resistance

Separate samples of glove materials shall be chemically preconditioned by 30 minutes continuous contact exposure to each of the chemical listed in Table 5.1. The samples shall then be tested according to EN 14325:2004, clause 4.10, in comparison with unexposed samples (7.4.3 may generate data for unexposed samples which can be used here). There shall be no change to the measured puncture resistance class, or significant visible degradation.

7.5 Performance requirements for gloves F1b

7.5.1 General introduction

Type F1b gloves provide basic levels of protection against solid particles, rain, wet surfaces, and contact with relatively low hazard liquid chemicals. Operationally, gloves with these properties are likely to also require the performance specified for Type F1a gloves. This may be achieved with either a single glove, or by layering of protective gloves. Where more than one glove is used, the requirements in this clause shall apply only to that layer intended to provide protection against harmful substances.

7.5.2 Glove F1b protection against solid particles

Gloves shall be tested as described in 3.4.4 as part of a compatible garment ensemble.

Testing of inward leakage shall be carried out on 6 subjects immediately after completion of the practical performance tests detailed in 3.4.2 and 3.4.3, using the same subjects, without removal and refitting of the gloves or clothing. (A total of 6 sets of inward leakage measurements shall be made, 3 after ambient

temperature practical performance testing, and 3 after low temperature practical performance testing.)

Inward leakage performance of the glove / garment combination shall meet the requirements in Table 3.6.

7.5.3 Glove F1b liquid penetration resistance, gloves, materials and seams

Glove materials and seams shall be tested according to EN 374-1:2003 clause 5.2, and shall achieve AQL 3 of EN 374-2:2003 Annex A.

Gloves shall be assessed as part of a clothing ensemble as described in 3.3.10, and shall meet the requirements of that clause (Type 4 spray resistance).

7.5.4 Glove F1b resistance to permeation of liquid chemicals

Glove materials and seams shall meet the requirements of at least level 4 of EN 374-1:2003 clause 5.3, when tested with the liquid chemicals given in Table 5.1.

7.5.5 Glove F1b chemical degradation resistance

Separate samples of glove materials shall be chemically preconditioned by 30 minutes continuous contact exposure to each of the chemical listed in Table 5.1. The samples shall then be tested according to EN 14325:2004, 4.10, in comparison with unexposed samples (may already be required at 7.4.3). There shall be no change to the measured puncture resistance class, or significant visible degradation.

7.5.6 Glove F1b resistance to penetration of infectious agents

Glove materials shall pass both ISO16603:2004, and ISO 16604:2004. In both cases, procedure A shall be used, or procedure B if the samples require support.

SECTION 8

Elbow and knee protection

8.1 General introduction

Kneeling and crawling will expose workers to possible discomfort and immediate injuries, or their garments to possible damage, from rough and hard surfaces, small stones and sharps, or hot/cold surfaces. This section describes specific additional protection to these vulnerable areas, intended to reduce the possibilities of such injury/damage during urban search and rescue (USAR) operations.

8.2 General scope

A single type of elbow/knee protective performance (G1a) is described. This provides protection against minor impacts and abrasion, compression, puncture and contact with moderately hot/cold surfaces. It resists electrical conduction, build-up of electrostatic charge and flame, and has basic chemical resistance.

The principal requirements of EN 14404:2004 (covering knee protectors) are adapted and extended within clause 8 of this specification to apply to elbow protectors. Aspects of performance not covered in EN 14404:2004 are adapted from footwear standards.

Two relevant forms of knee protector are defined in EN 14404:2004:

- Pads which are independent of other clothing and fasten around the limb (EN 14404:2004 Type 1);
- Pads which are inserted in pockets on garments or are permanently attached to the garment (EN 14404:2004 Type 2).

Either of these forms may be provided.

Where protectors are inserted into pockets in the garment and are entirely covered by garment material, the following clauses need not be tested:

- 8.3.7 Resistance to flame
- 8.3.8 Resistance to molten droplets
- 8.3.9.2 Antistatic properties
- 8.3.11 Resistance to water penetration
- 8.3.12 Resistance to chemical degradation.

8.3 Performance requirements for G1a elbow and knee protectors

8.3.1 General requirements

Unless otherwise specified, elbow/knee protectors shall conform to applicable general requirements of EN 14404:2004 concerning:

- innocuousness
- design and construction
- comfort and efficiency
- size designation
- marking, and
- information supplied by the manufacturer.

Where pads may be used in a flammable/explosive atmosphere, they shall have no exposed light alloys which may on frictional impact give rise to incendive sparks.

These aspects shall be assessed according to Table 1 of EN 14404: 2004, by visual inspection and by means of practical performance testing (as part of a clothing ensemble). Basic ergonomic performance during practical performance testing shall be assessed in accordance with the guidance in EN 340:2003 Annex C.

8.3.2 Elbow/knee protectors – sampling, conditioning and pretreatment

Numbers of samples, pre-treatment and conditioning of samples, shall be as described in the standards referenced, unless specified differently in this document.

8.3.3 Elbow and knee protection G1a dimensions

8.3.3.1 KNEE PROTECTORS

Dimensions of knee protectors shall conform to the requirements of clause 5.2.4 of EN 14404:2004, Type 1 or Type 2 as appropriate.

8.3.3.2 ELBOW PROTECTORS

Dimensions of elbow protectors shall conform to the requirements of DD CEN/TS 15256;2005 clause 5.4.2.

Note: These dimensions are for elbow protectors for ice hockey players other than goalkeepers. No other suitable specification could be identified, but the combination of necessary mobility and required anatomical protection are probably comparable with USAR.

8.3.4 Elbow and knee protection G1a mechanical properties

Elbow and knee protectors shall meet at least the performance levels given in Table 8.1, when tested as specified in the relevant standard, subject to any variations given in Table 8.1.

Table 8.1 Mechanical properties of elbow / knee protectors			
Property	Standard reference	Minimum performance level	Variations from referenced standard
Penetration resistance	EN 14404:2004, 5.2.5	2	-
Force distribution	EN 14404:2004, 5.2.6	<30N	For elbow protectors, substitute a suitable test elbow for the "Kandy" knee in EN 14404:2004, 6.6.1
Peak transmitted force	EN 14404:2004, 5.2.7	2	-

8.3.5 Elbow and knee protection G1a restraint

8.3.5.1 GENERAL RESTRAINT

The requirements of EN 14404:2004 clause 5.2.8.1 shall apply to both knee and elbow protectors.

8.3.5.2 RESTRAINT BY STRAPS

The requirements of EN 14404:2004 clause 5.2.8.2 shall apply to both knee and elbow protectors. (Reference to "knee" and "leg" shall also apply to "elbow" and "arm", as appropriate.)

The requirements of EN 14404:2004 clause 5.4.2 shall be met by restraint straps.

The performance requirements of EN 14404:2004 clause 6.10.1 shall be met, substituting the exercise procedure at 8.4.2.

8.3.5.3 RESTRAINT BY POCKETS OR ATTACHMENT TO GARMENT

The requirements of EN 14404:2004 clause 5.2.8.3 shall apply to both knee and elbow protectors. (Reference to "knee" and "trouser" shall also apply to "elbow" and "sleeve", as appropriate.)

The performance requirements of EN 14404:2004 clause 6.10.2 shall be met, substituting the exercise procedure at 8.4.2. (Reference to "knee" and "trouser" shall also apply to "elbow" and "sleeve", as appropriate.)

8.3.6 Elbow/knee protectors G1a resistance to hot contact

Elbow/knee protectors shall achieve a threshold time of >15 s when tested according to EN 407:2004 clause 5.2 at 250°C.

8.3.7 Elbow/knee protectors G1a resistance to flame

Elbow/knee protectors shall achieve level 2 when tested according to EN 407:2004 clause 5.1.

8.3.8 Elbow/knee protectors G1a resistance to molten droplets

Elbow/knee protectors shall achieve level 2 when tested according to EN 407:2004 clause 5.5. There shall be no melting of the internal surface of the protector, and no ignition if the droplets adhere to the outside.

8.3.9 Elbow/knee protectors G1a electrical properties

8.3.9.1 RESISTANCE TO LIVE ELECTRICAL CONTACT

The elbow/knee protector shall meet the requirements of EN ISO 20345:2004 clause 6.2.2.3 for at least level 00.

8.3.9.2 ANTISTATIC PROPERTIES

The elbow/knee protector shall meet the requirements of EN ISO 20345:2004 clause 6.2.2.2.

8.3.10 Elbow/knee protectors G1a resistance to hot contact

Elbow/knee protectors shall meet the requirements of EN ISO 20345:2004 clause 6.4.4.

8.3.11 Elbow/knee protectors G1a resistance to water penetration

Elbow/knee protectors shall meet the requirements of EN 14404:2004 clause 5.3.

8.3.12 Elbow/knee protectors G1a chemical degradation resistance (optional)

Separate samples of elbow/knee protector pad materials shall be chemically preconditioned by 30 minutes continuous contact exposure to each of the chemicals listed in Table 5.1. The samples shall then be tested according to EN 14404:2004 clause 5.2.5, in comparison with unexposed samples (already required at 8.3.4). The requirement for penetration resistance shall still be met.

Straps similarly exposed shall remain elastic. The force required to stretch the strap by 4cm shall not differ from the value measured at 8.3.5.2 by more than 20 per cent, and shall not exceed 11N.

8.4 New elbow and knee protection test methods needed

8.4.1 General introduction

All the new test methods in this section are given where there are none in existing standards which can be used to completely assess the new performance requirements given in this specification.

As noted in section 1.3, these new test methods are given as suggestions only, and have not been practically evaluated. They describe the principles involved, and are not fully defined and ready to be used "as written". Where possible, these new test methods use, or give as examples, test methods from existing standards. If alternative test methods are available to assess these performance requirements, and they are considered appropriate, they can be used where necessary.

8.4.2 Test method for ergonomic wearer trials

This test shall be conducted while wearing at least the garment, footwear and gloves which are intended to be used with the knee/elbow protectors.

A subject who is medically fit and with no knee or elbow injuries, and of an appropriate size, shall put on knee and elbow protectors. The subject shall adjust the straps or other fixings according to the manufacturer's instructions. The subject shall walk around for (15±1) min and during this time get down on knees and elbows and stand up ten times. The subject shall also shuffle

forwards for (10 \pm 1) m on their knees and elbows on a smooth concrete surface at about the tenth minute during the test. The subject shall not adjust or reposition the knee or elbow protectors during the test, and on one occasion shall remain on knees/elbows for (5 \pm 0.5) min.

Eye and face protection

No separate requirements are given here for eye/face protection for USAR applications. In the operational scenarios being considered these areas of the wearer are covered by the full face respiratory protective device. Requirements contained in Section 5 of this specification document address the mechanical strength and vision requirements of these facepieces.

There may be specific operational activities (e.g. chainsaw use and hot cutting) where additional eye/face protection is necessary. Available occupational equipment will need to be utilised, after assessment of adequacy, suitability and compatibility with the rest of the USAR ensemble.

Fall arrest

10.1 General introduction

This section specifies the requirements, test methods, marking, and information supplied by the manufacturer, for full body harnesses.

10.2 General scope

A full body harness provides support primarily for fall arrest purposes, as part of a fall arrest system. The harness may comprise straps, fittings, buckles or other elements, suitably arranged and assembled to support the whole body of a person and to restrain during a fall, after fall arrest, or during rope supported access work.

A single type (I1a) of harness performance is described for all the urban search and rescue (USAR) applications.

10.3 Performance requirements for I1a fall arrest

10.3.1 General introduction

The principal performance requirements for fall arrest harness are contained in EN 361:2002. A number of further requirements address the specific hazards of USAR environment.

Unless otherwise specified, fall arrest harness shall conform to applicable general requirements of EN 361:2002 concerning:

- design and ergonomics
- materials and construction
- marking
- information supplied by the manufacturer.

Where harnesses may be used in a flammable / explosive atmosphere, they shall have no exposed light alloys which may on frictional impact give rise to incendive sparks.

Where necessary, these aspects shall be assessed by visual inspection and by means of practical performance testing. Basic ergonomic performance during practical performance testing shall be assessed in accordance with the guidance in EN 340:2003 Annex C.

10.3.2 Fall arrest general I1a sampling, conditioning and pretreatment

Numbers of samples, pre-treatment and conditioning of samples, shall be as described in the standards referenced, unless specified differently in this document.

10.3.3 Fall arrest I1a static strength

The requirements of EN 361:2002 clause 4.3 shall be met.

10.3.4 Fall arrest I1a dynamic performance

The requirements of EN 361:2002 clause 4.4 shall be met.

10.3.5 Fall arrest I1a additional elements

The requirements of EN 361:2002 clause 4.5 shall be met.

10.3.6 Fall arrest I1a resistance to flame

Harness materials shall achieve the performance levels given in Table 10.1, when tested as specified in the relevant standard, subject to any variations given in Table 10.1.

Table 10.1 Flame resistance			
Property	Standard reference	Minimum performance level	Variations from referenced standard
Materials flame resistance	EN 469:2005, 6.1	EN 469:2005, 6.1	Only outer face tested
Seams and fastenings	EN 469:2005, 6.1	EN 469:2005, 6.1	Only outer face tested.
Hardware	EN 469:2005, 6.1	EN 469:2005, 6.1. After testing, the main closure system shall operate once.	6.1.6 replaced by: If hardware is used on the protective clothing, this shall be tested as attached to the garment material, by applying the flame to the outer surface of the hardware item. Hardware of the main closure system shall be tested in the configuration in which it is present in the donned garment.

10.3.7 Fall arrest I1a resistance to low temperature

The requirements of 10.3.3, 10.3.4 and 10.3.5 shall be met after conditioning the harness (pre-fitted on the dummy torso if appropriate) at the lowest temperature stated by the manufacturer of the garment with which the harness is intended to be used (-10°C, -20°C or -30°C). Conditioning shall be for at least 4 hours at this temperature, and testing shall take place within 5 minutes of removing the harness/torso from the conditioning environment.

10.3.8 Fall arrest I1a chemical degradation resistance

The mean tensile strength of test-pieces (prepared as specified in 10.4.2) shall be measured using the procedure at 10.4.3. Three samples shall be tested as received, and three after exposure using the procedure at 10.4.4, for each of the chemicals given in Table 5.1. Mean tensile strength of the test-pieces shall

not decrease by more than 10per cent after exposure, and elongation at break shall not increase by more than 5 per cent.

10.4 New fall arrest test methods needed

10.4.1 General introduction

All the new test methods in this section are given where there are none in existing standards which can be used to completely assess the new performance requirements given in this specification.

As noted in section 1.3, these new test methods are given as suggestions only, and have not been practically evaluated. They describe the principles involved, and are not fully defined and ready to be used "as written". Where possible, these new test methods use, or give as examples, test methods from existing standards. If alternative test methods are available to assess these performance requirements, and they are considered appropriate, they can be used where necessary.

10.4.2 Manufacture of test-piece for chemical degradation testing

Test-pieces shall be representative of the materials and seams/connections used in the construction of the harness. The form of the test-piece shall be linear, with an overall length of 600mm between terminations suitable for connection to the testing machine. The test-piece shall be formed from two lengths of strap, joined in the centre by a typical seam construction. Separate test-pieces shall be provided for each material/joining construction used in the harness.

10.4.3 Test method for assessing chemical degragation

Test-pieces shall be tested to failure on a static testing machine in accordance with EN 364:1992 clause 4.1. Tensile force at breakage and elongation at break shall be measured.

10.4.4 Method for exposure of test-piece to chemicals

Appropriate safety procedures shall be applied to control the health and safety risks to operators during this chemical conditioning. These will vary according to the chemical substance being used.

The central seamed portion of the test-piece shall be placed in a shallow chemically resistant dish, and 1 ml of the test chemical shall be pipetted onto the centre of the seamed area. The exposed test-piece shall be allowed to stand for (300±10) second before being removed by suitable means (e.g. blotting, rinsing in clean distilled water if appropriate). The test-piece shall be

conditioned at $(23\pm5)^{\circ}$ C and $(45\pm15)\%$ relative humidity for at least 12 hours before testing.

Personal protective equipment ensembles

11.1 General introduction

Note: Sections 11.1 and 11.2 are largely based on the introductory sections of BS 8469:2007, adapted to be more specific to urban search and rescue (USAR) applications.

The potentially severely adverse environments in which USAR teams can be called upon to operate, present considerable challenges in protecting the operator. The personal protective equipment (PPE) provided by employers offers a high degree of technical performance thereby helping to minimize the risk of injuries.

Almost by definition, any item of PPE introduces a barrier between part or parts of the body and the external environment. Whilst this barrier is essential for protecting the body, it has long been recognised that this can have unwanted side-effects on the wearer in terms of imposing additional physical workload, hindering movement, impairing sensory perception or in some cases causing considerable discomfort. Such side-effects can reduce the efficiency of task performance and/or encourage the user not to wear the PPE correctly thereby impairing the level of protection afforded.

This problem has been recognised in legislation. The EC Directive on personal protective equipment enacted in the UK by The Personal Protective Equipment Regulations 2002 places duties on PPE manufacturers to take account of ergonomic requirements, whilst the associated EC Directive on the use by workers of personal protective equipment at the workplace enacted in the UK by The Personal Protective Equipment at Work Regulations 1992 (as amended) places similar duties on employers providing PPE for use.

To facilitate compliance with such legislation, European technical product standards for individual items of PPE, large numbers of which are called up in this specification, are gradually introducing tests for ergonomic characteristics. However, such standards are for testing individual products and seldom include the assessment of interactions with other items of PPE except in isolated cases (e.g. helmet-mounted ear-muffs conforming to EN 352-3) where they are an essential element of their use.

This specification includes additional forms of test exercises aimed at assessing the performance, compatibility and usability of single or small numbers of combined items. However, in use, it is the complete ensemble that operators will be required to wear to carry out their work. There is no substitute for a

thorough dedicated assessment of the complete ensemble. Such ensemble tests are not intended to be used in place of methods for assessing the performance of individual items of PPE, either contained in their product standards or in this specification. Complete ensembles should be tested so that the compatibility of the numerous individual items can be evaluated and any adverse interactions between the individual items can be identified.

11.2 Aspects to be addressed

Specific aspects of ensembles which can be investigated using this type of methodology include:

- restriction of movement
- physiological burden
- donning, disrobing and doffing procedures
- communications
- comfort and operational efficiency.

Particularly problematic with regard to PPE interfacing and compatibility problems are the head region, and where other items of PPE must be used in conjunction with garments for body protection.

11.3 Suggested methodology

British Standard BS 8469:2007 specifies requirements and test methods for the objective and subjective evaluation of the ergonomic and thermal impact of personal protective equipment (PPE) ensembles, including gloves, footwear, clothing, helmets and respiratory protective equipment (RPE), on wearers. It specifies requirements for testing by either assessing the performance of a PPE ensemble against a benchmark condition (i.e. benchmark testing) or assessing the performance of two or more PPE ensembles against each other (i.e. comparative testing). The standard incorporates practical performance testing as well as laboratory-based testing.

The results of the testing in this standard can assist employers who use PPE to demonstrate compliance with the EC Directive on personal protective equipment at the workplace, enacted in the UK by The Personal Protective Equipment at Work Regulations 2002.

The general approach and the testing methodology included in BS 8469:2007 incorporate practical experience gained during a major contemporary assessment of firefighters' PPE ensembles, including those intended for non-

fire activities. The principles and test methods outlined are likely to be applicable to PPE ensembles utilised in other circumstances, e.g. USAR.

11.4 Procedures for use

PPE manufacturers are required to provide clear and sufficient instructions on how to use their equipment correctly and safely, including donning and doffing. Where, as anticipated in the case of USAR ensembles, items of PPE are sourced from a number of manufacturers for simultaneous use, the responsibility for developing suitable donning and disrobing/doffing procedures falls on the organisation requiring the combination. Development of suitable processes and procedures for use of ensembles will require expert evaluation and development, and probably input from the manufacturers of individual items.

Aspects such as ability to remove contaminated ensembles cleanly (i.e. disrobing), without contaminating the wearer, dressing assistants or others who may subsequently come into contact with the equipment, will definitely require separate dedicated study. Qualitative and quantitative approaches to this evaluation are possible.

Qualitative – observation and assessment by experienced practitioners from emergency services, nuclear industry or military spheres.

Quantitative – existing protocols have been developed to track and measure cross-contamination during use/disrobing using tracer materials.

While development and evaluation of these procedures is outside the scope of this specification, they may have an iterative effect on the materials, design, construction or interfacing of the PPE involved, which may require re-evaluation of the protection or function of the components according to the requirements of this specification.

11.5 Measurement of ensemble protection

11.5.1 Introduction

Sections 3, 5, 6 and 7 of this report indicate that the various separate components of the ensemble which comprise the barrier layer between the wearer and their contaminated environment must be tested together so that the ensemble respiratory and skin protection can be measured and the suitability of the ensemble for the intended work tasks assessed. This section outlines the procedures which will be needed to carry out this form of assessment. Although the PPE in sections 2, 4, 8 and 10 do not form part of this barrier, the inclusion of some or all of these items in ensembles for testing may be necessary to

ensure that they do not adversely affect the performance of the PPE which does form the barrier layer.

When assessed as described below, the protective performance of the ensemble is in effect being measured using a simulated workplace protection factor (SWPF) protocol. The duration of the test and activities carried out as test exercises should be sufficiently close to operational use to be considered as representative of the performance of the ensemble in a real deployment. As a result, the measured levels of protection may be taken as representative of likely workplace protection, and will supersede any generally accepted or assigned protection factors for individual items of equipment, such as assigned protection factors (APFs) for respiratory protective equipment (RPE).

We have defined the required skin protection factor for Scenario 2 as 50, and the required respiratory protection factor for Scenario 2 as 2000. Ensemble items making up the barrier to exposure of the body which satisfy the total inward leakage (TIL) requirements in this document can be assumed to provide at least a SWPF of 50. Respiratory protection meeting the requirements in this document can be assumed to provide at least a SWPF of 2000.

11.5.2 PPE items to be included in the assessment

All components of the ensemble which provide part of the barrier to ingress of contaminant shall be included in this assessment. These shall be worn as instructed by the manufacturer taking particular care over the interfacing of the separate components together. Typically, this will include:

- clothing
- gloves
- RPE.

Depending on design, it may also include any separate components required to complete the barrier layer, such as:

- separate hood
- separate bootees/socks/boots.

Where use of additional items of PPE is mandatory (e.g. mechanically robust boots covering integral socks on a garment) these shall also be worn during testing. Other items which may possibly affect protective performance may be included at the discretion of the test house, taking a precautionary approach.

Individual sections of the report detail the pre-conditioning required before undertaking assessment of protective performance – this will normally include either ambient or cold temperature practical performance tests immediately prior to protection measurement.

11.5.3 Measurement approach for particle protection

The test method for particle protection is based on measuring the ingress of a standardised salt particle aerosol into the clothing or respiratory zone of the protective ensemble. The method uses that same generation system, test chamber and principles as described in EN 136 and EN 13982-2. Refer to these standards for detail of probes, probe locations, sampling flow rates and sampling times. Measurements of salt concentration drawn from inside the PPE are compared with that drawn from the challenge in the chamber, while the wearer carries out a series of test exercises.

Sampling probes for assessing protection to the body shall be as described in EN 13982-2 and located:

- a) within the hood of the garment;
- b) in the upper right chest region of the garment;
- c) in the right leg of the garment at knee level.

(Where the hood forms an integral part of the respiratory protective device (i.e. is part of a powered hood-type respirator), the garment hood probe may be omitted.) Additional probe locations may be used if desired, but note that this will prolong the test period.

Sampling probes for the breathing zone of RPE shall be as described in EN 136 for masks, or EN 12941 for hoods.

When sampling from within the garment, an equivalent volume of clean air shall be fed into the garment through the nearest alternative probe position to that being sampled. No such make-up air is required when sampling from within RPE.

11.5.4 Exercise and sampling sequence

Test subjects shall carry out a pre-determined sequence of test exercises, such as that outlined in Table 11.1. Those listed here are drawn from the suite of practical performance test exercises detailed in EN 13274-2 and in EN 943-1. (The exact exercises included in the sequence may be varied to reflect differing operational activities and functions, but must be agreed between the test house, and the customer.)

For each exercise, samples shall be drawn sequentially from each of the clothing/RPE probes in the order – Knee; Chest; Hood; RPE, taking care where necessary to supply make-up air and to allow sufficient time for the sample concentration to stabilise after switching. Following stabilisation, the salt concentration at each sampling point shall be averaged over a period of 100s before moving on to the next exercise or sampling point.

Note that this type of test sequence is more physically demanding and protracted than "standard" PPE tests. Subject safety and well-being will need to be monitored more stringently as a result. Building in rest periods may allow subjects to partially recover from exertion, but also prolongs the overall test duration.

Table 11.1 Example exercise sequence for measurement of ensemble performance		
Exercise	Duration (approx) (min)	Origin
Walk on level treadmill, 6 km/hr.	12	EN 13274-2 Table 1, No.2
Fill, lift and tip a basket of chippings at a rate of twice per minute.	12	EN 13274-2 Table 1, No.14
3 vertical pulls per minute on a work machine each lifting 25kg.	12	EN 13274-2 Table 1, No.15
Carrying and stacking 20 sandbags, each 12kg, from one end of the test chamber to the other, one at a time.	12	EN 13274-2 Table 1, No.16
Subject using a gas sampling hand pump.	12	EN 943-1, A.9.2, m.

Additional or alternative exercises of similar duration may be used where these are considered to be a more accurate representation of the USAR work rates and procedures. Such activities are best identified and agreed in consultation with end-users.

11.5.5 Data treatment

11.5.5.1 PROTECTION TO THE BODY

For assessment of particle protection to the body, for each subject, sampling position and test exercise there will be a separate measurement of inward leakage (based on the exercise protocol above there would be 6 subjects x 3 probe positions x 5 exercises = 90 separate measurements). Calculate:

TIL_E = the arithmetic mean of results for a single exercise, across all subjects and sampling positions.

TIL_A = the arithmetic mean of all results across all exercises, subjects and sampling positions.

Compare values of TIL_E and TIL_A with the requirements in Table 3.6.

11.5.5.2 PROTECTION TO THE RESPIRATORY SYSTEM

For assessment of respiratory protection, for each subject and test exercise there will be a separate measurement of inward leakage. None of these values shall exceed 0.05%. This corresponds to a respiratory protection factor of 2000.

Summary

In this report a stand-alone performance based specification for personal protective equipment (PPE) ensembles for urban search and rescue (USAR) Scenario 2, high dust levels, has been developed. Previous Health and Safety Laboratory (HSL) work on the specification of USAR PPE has formed the basis for this work. The specification will assist manufacturers, certification bodies and procurement authorities in producing and sourcing appropriate PPE for these applications. Wherever possible, the specifications relate to existing PPE standards and test methods for commercial off-the-shelf (COTS) equipment.

The key feature of the specification is that a skin protection factor of 50 and a respiratory protection factor of 2000 are required from a PPE ensemble if it is to be considered suitable for high dust level Scenario 2. Specifications for individual items of PPE are followed by specifications for ensembles of the PPE.

The specifications for individual items of PPE ensure that each individual item is capable of the performance required to form part of such an ensemble. There are two main reasons for this:

- 1. to allow procurers and manufacturers/suppliers to assess the suitability of COTS equipment for inclusion in ensembles; and
- 2. to allow procurers and manufacturers/suppliers to screen new equipment designs for their suitability for inclusion in ensembles without running full ensemble tests.

Having created a specification that can be used to establish that individual items are capable of the performance required to form part of an ensemble, the specification then gives performance requirements for the ensemble. These requirements cover not only protection, but also the suitability of the ensemble for likely USAR work tasks (including ergonomic and physiological aspects). The ensemble specification uses principles and reasoning from BS 8469:2007 "Personal protective equipment for fire-fighters – Assessment of ergonomic performance and compatibility – Requirements and test methods", adapted to be more specific to USAR applications. Input on the best choice of simulated work tasks that will replicate USAR operations will be needed from USAR teams and others.

An important advantage of ensemble testing is that it can be used to generate simulated workplace protection factors (SWPFs). In a SWPF test, the measured levels of protection may be taken as representative of likely workplace protection, and so will supersede any generally accepted or assigned protection factors for individual items of equipment (such as assigned protection factors (APFs) for respiratory protective equipment (RPE)). A SWPF needs the duration

of the test and activities carried out as test exercises to be sufficiently close to operational use to be considered as representative of the performance of the ensemble in a real deployment. The ensemble tests of barrier performance in this specification will form such a SWPF test.

As an example, consider the RPE option of a full face mask respirator (negative pressure). This has an assigned protection factor (APF) of 40 if used with particle filters alone, and 20 if gas/vapour filters are fitted. Without any SWPF tests, selection should use the APF, making the device unsuitable for USAR work. However, it is likely that such a device, if fitted and used correctly, will achieve a SWPF greater than 2000 for both filter types. The SWPF data resulting from ensemble testing is, therefore, likely to demonstrate that the device is suitable for USAR work. This shows the potential importance of the ensemble testing, and the resulting SWPFs, for USAR PPE selection.

Selection and procurement of ensembles can be a complex, time-consuming and expensive process. There are two main approaches:

- allow manufacturers/suppliers to submit suitable individual items so that potential users/procurers can assess all the combinations of these considered appropriate; and
- follow a turnkey approach where a single manufacturer/supplier (or consortium) submits a full PPE ensemble to be assessed by the user/procurer.

There may be rules or legal liability issues which affect the choice of approach. If there is a choice between the two approaches the turnkey approach is likely to be most cost-effective for a potentially complex ensemble such as USAR high dust level Scenario 2. The turnkey approach can also have advantages when the provision of consumable items, spares, maintenance, training and product support are considered as there is one clear manufacturer/supplier responsible.

Recommendations

HSL recommends that the specification in this report is used as part of the process for selection and procurement of USAR PPE for Scenario 2, high dust levels. Where there is the need for input from USAR teams or others, it is recommended that a wide-ranging consultation is conducted so that the best information can be gathered on the relative importance of aspects of ensemble performance, including more subjective characteristics like comfort and usability. It is also recommended that the assumptions on USAR operations that have been used to inform this specification are regularly reviewed.

References

Vaughan, N, Bee, C, Bolsover, J, Clayton, M, Crook, B, Ferguson, I, Webb, D, (2007a) Urban search and rescue PPE – Final report Volume 1: Explanation. HSL Internal report PE/07/04/1

Vaughan, N, Bee, C, Bolsover, J, Clayton, M, Crook, B, Ferguson, I, Webb, D, (2007b) Urban search and rescue PPE – Final report Volume 2: Specification. HSL Internal report PE/07/04/2

Webb, D, Vaughan, N and Bolsover, J (2008) FRS USAR PPE for high dust and/or CBR hazards. HSL Internal Report PE/08/07 A

Note that this reference is taken to include information in Webb, D, Vaughan, N and Bolsover, J (2008) FRS USAR PPE for high dust and/or CBR hazards – Supporting information. HSL Internal Report PE/08/07B

Appendix 1 - List of representative chemical, biological and radiological materials

ASTM F1001 (shaded area) and European Standard EN 943-2

List of liquid test chemicals		
Common name	Synonym	Chemical Abstract Registry Service (CAS) number
Acetone	2-propanone, dimethyl ketone	[67-64-1]
Acetonitrile	cyanomethane, methyl cyanide	[75-05-8]
Carbon Disulfide	carbon bisulfide	[75-15-0]
Dichloromethane	methylene chloride/dichloride	[75-09-2]
Diethylamine	N,N-diethylamine	[109-89-7]
Dimethylformamide	DMF	[68-12-2]
Ethyl Acetate	ethyl ethanoate, acetic ester, acetic ether	[141-78-6]
n-Hexane	-	[110-54-3]
Methanol	methyl alcohol, carbinol, wood alcohol	[67-56-1]
Nitrobenzene	oil of mirbane	[98-95-3]
Sodium Hydroxide (50 % w/w)	caustic soda, lye	[1310-73-2]
Sulfuric Acid (93.1 % sp gr 1.84, 66° Be8)	electrolyte acid, hydrogen sulfate	[7664-93-9]
Tetrachloroethylene	perchloroethylene, carbon dichloride	[127-18-4]

List of liquid test chemicals		
Tetrahydrofuran	THF, 1,4-epoxybutane, diethylene oxide	[109-99-9]
Toluene	toluol, methyl benzene	[108-88-3]

List of gaseous test chemicals		
Common name (minimum purity)	Synonym	Chemical Abstracts Service (CAS) number
Ammonia, anhydrous, (99.99 %)	-	[7664-41-7]
1,3-Butadiene, inhibited, (99.0 %)	bivinyl, vinylethylene, biethylene, divinyl	[106-99-0]
Chlorine, (99.5 %)	-	[7782-50-5]
Ethylene Oxide, (99.7 %)	oxirane, 1,2-epoxyethane	[75-21-8]
Hydrogen Chloride, (99.0 %)	hydrochloric acid	[7647-01-0]
Methyl Chloride, (99.5 %)	chloromethane, monochlormethane	[74-87- 3]

Additional test chemical		
Hydro Fluoride Acid (80%)	hydrofluoric acid	[7664-39-3]

Additions to above list (to assess effective respiratory protection)		
Cyclohexane	hexamethylene	[110-82-7]
Sulphur Dioxide	sulfurous acid	[7446-09-5]
Hydrogen Sulphide	sulferetted hydrogen	[7783-06-4]

Chemical Warfare Agents		
GB	Sarin, isopropyl methylphosphonofluoridate/methylphosphonofluoridate/methylfluorophosphonate	[107-44-8]
GD	Soman, pinacolyl methylphonofluoridate/methylphonophosphonate	[96-64-0]
VX	O-ethyl-S-2-diisopropylaminoethyl methyl phosponothioate	[50782-69-9]
HD	Mustard, bis(2-chloroethyl) sulphide	[505-60-2]

Additions to above list (to assess effective respiratory protection)	
Hydrogen Cyanide (HCN) [74-90-8], Cyanogen Chloride (CK) [506-7-4], Phosgene (CG, Carbonyl Chloride) [75-44-5]	Low boiling point materials
Chloropicrin (PS trichloronitromethane) [76-06-2] and dimethylmethylphosphonate (DMMP) [756-79-6]	High boiling point materials

Radiological and nuclear hazards

Alpha and beta particles

Biological warfare agents		
BG (Bacillus subtilis var. niger)	Simulant for the causative agent for anthrax	
MS2 Bacteriophage	Simulant for smallpox and viral haemorrhagic fevers	

Appendix 2 - Normative references

Standards listed under each personal protective equipment (PPE) type are referenced in the relevant section of the specification. In most instances, only certain clauses of the referenced standards are called up by the specification, and not the entire standard. In addition to the referenced standards, newly defined requirements and test methods may apply – see main text for details.

Where different variants of the same type of PPE call up the same standard (either explicitly by appearance of the standard number under more than one variant heading, or implicitly by the statement that this variant includes the references of another variant), the referenced clauses may differ in detail.

Standards may be revised or superceded at any time, so checks should be made of the referenced standards status when this report is used. However, even if a standard has been revised or superceded, the dated references to clauses in this report will remain technically consistent and valid.

HELMETS

A₁b

EN 397:1997 Specification for Industrial safety helmets

EN 443:2008 Helmets for fire fighting in buildings and other structures Note that previous HSL reports to DCLG on USAR PPE referred to the previous version of this standard EN 443:1997.

EN 1384:1997 Specification for Helmets for equestrian activities

EN 12492:2000 Mountaineering equipment - Helmets for mountaineers -

Safety requirements and test methods

EN 14052:2005 High performance industrial helmets

EN 14572:2005 High Performance Helmets for Equestrian Activities

CLOTHING

B₂a

EN 340:2003 Protective clothing: general requirements

EN 342:2004 Protective clothing. Ensembles and garments for protection against cold

EN 343:2003 Protective clothing. Protection against rain

EN 468:1994 Protective clothing for use against liquid chemicals. Test method. Determination of resistance to penetration by spray (Spray Test)

EN 469:2005 Protective clothing for firefighters. Performance requirements for protective clothing for firefighting

EN 471:2003 High-visibility warning clothing for professional use. Test methods and requirements

EN 510:1993 Specification for protective clothing for use where there is a risk of entanglement with moving parts

EN 511:2006 Protective gloves against cold

EN 943-1:2002 Protective clothing against liquid and gaseous chemicals, including liquid aerosols and solid particles - Part 1:Performance requirements for ventilated and non-ventilated "gas-tight" (Type 1) and "non-gas-tight" (Type 2) chemical protective suits

EN 1073-2:2002 Protective clothing against radioactive contamination – Part 2: Requirements and test methods for non-ventilated protective clothing against particulate radioactive contamination

EN 1149-1:2006 Protective clothing. Electrostatic properties. Test method for measurement of surface resistivity

EN 1149-2:1997 Protective clothing. Electrostatic properties. Test method for measurement of the electrical resistance through a material (vertical resistance)

EN 14325:2004 Protective clothing against chemicals. Test methods and performance classification of chemical protective clothing materials, seams, joins and assemblages

EN 14605:2005 Protective clothing against liquid chemicals. Performance requirements for clothing with liquid-tight (type 3) or spray-tight (type 4) connections, including items providing protection to parts of the body only (types PB [3] and PB [4])

EN 31092:1993 Textiles. Determination of physiological properties. Measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hotplate test)

EN 50286:1999 Electrical insulating protective clothing for low-voltage installations

EN 60903:2003 Live working. Gloves of insulating material

EN ISO 4674-1:2003 Rubber or plastics-coated fabrics. Determination of tear resistance. Constant rate of tear methods

EN ISO 9073-4:1997 Textiles. Test methods for nonwovens. Determination of tear resistance

EN ISO 11611:2007Protective clothing for use in welding and allied processes

EN ISO 13934-1:1999 Textiles. Tensile properties of fabrics. Determination of maximum force and elongation at maximum force using the strip method.

EN ISO 13937-2:2000 Textiles. Tear properties of fabrics. Determination of tear force of trouser-shaped test specimens (single tear method)

EN ISO 13982-2:2004 Protective clothing for use against solid particulates. Test method of determination of inward leakage of aerosols of fine particles into suits

ISO 6942:2002 Protective clothing. Protection against heat and fire. Method of test: Evaluation of materials and material assemblies when exposed to a source of radiant heat

ISO 12127:1996 Textiles. Fabrics. Determination of mass per unit area using small samples

ISO 13994:1998 Clothing for protection against liquid chemicals. Determination of the resistance of protective clothing materials to penetration by liquids under pressure

ISO16603:2004 Clothing for protection against contact with blood and body fluids. Determination of the resistance of protective clothing materials to penetration by blood and body fluids. Test method using synthetic blood

ISO 16604:2004 Clothing for protection against contact with blood and body fluids. Determination of resistance of protective clothing materials to penetration by blood-borne pathogens. Test method using Phi-X174 Bacteriophage

HEARING PROTECTION

C1a

EN 352-7:2002 Hearing protectors - Safety requirements and testing - Part 7: Level-dependent ear-plugs

prEN 352-9 In preparation - "Hearing protectors - Safety requirements and testing - Part 9: Ear-plugs with electrical audio input"

EN 458:2004 Hearing protectors - Recommendations for selection, use, care and maintenance - Guidance document

RPE

D₂a

EN 136:1998 Respiratory protective devices - Full face masks - Requirements, testing, marking

EN 137:2006 Respiratory protective devices - Self-contained open-circuit compressed air breathing apparatus with full face mask - Requirements, testing, marking

EN 166:2001 Personal eye-protection - Specifications

EN 168:2001 Personal eye-protection - Non-optical test methods

EN 403:2004 Respiratory protective devices for self-rescue - Filtering devices with hood for escape from fire - Requirements, testing, marking

EN 468:1994 Protective clothing - Protection against liquid chemicals - Test method: Determination of resistance to penetration by spray (Spray Test)

EN 12021:1998 Respiratory protective devices - Compressed air for breathing apparatus

EN 13274-8:2002 Respiratory protective devices - Methods of test - Part 8: Determination of dolomite dust clogging

EN 14325:2004 Protective clothing against chemicals - Test methods and performance classification of chemical protective clothing materials, seams, joins and assemblages

D2d

EN 166:2001 Personal eye-protection - Specifications

EN 168:2001 Personal eye-protection - Non-optical test methods

EN 397:1995 Industrial safety helmets

EN 403:2004 Respiratory protective devices for self-rescue - Filtering devices with hood for escape from fire - Requirements, testing, marking

EN 468:1994 Protective clothing - Protection against liquid chemicals - Test method: Determination of resistance to penetration by spray (Spray Test)

EN 12941:1998 Respiratory protective devices - Powered filtering devices incorporating a helmet or a hood - Requirements, testing, marking

EN 12942:1998 Respiratory protective devices - Power assisted filtering devices incorporating full face masks, half masks or quarter masks - Requirements, testing, marking

EN 13274-8:2002 Respiratory protective devices - Methods of test - Part 8: Determination of dolomite dust clogging

EN 14325:2004 Protective clothing against chemicals - Test methods and performance classification of chemical protective clothing materials, seams, joins and assemblages

EN 14387:2004 Respiratory protective devices - Gas filter(s) and combined filter(s) - Requirements, testing, marking

D₂e

EN 136:1998 Respiratory protective devices - Full face masks - Requirements, testing, marking

EN 143:2000 Respiratory protective devices - Particle filters - Requirements, testing, marking

EN 166:2001 Personal eye-protection - Specifications

EN 168:2001 Personal eye-protection - Non-optical test methods

EN 403:2004 Respiratory protective devices for self-rescue - Filtering devices with hood for escape from fire - Requirements, testing, marking

EN 468:1994 Protective clothing - Protection against liquid chemicals - Test method: Determination of resistance to penetration by spray (Spray Test)

EN 13274-8:2002 Respiratory protective devices - Methods of test - Part 8: Determination of dolomite dust clogging

EN 14325:2004 Protective clothing against chemicals - Test methods and performance classification of chemical protective clothing materials, seams, joins and assemblages

EN 14387:2004 Respiratory protective devices - Gas filter(s) and combined filter(s) - Requirements, testing, marking

FOOTWEAR

E1a

BS 4676:2005 Protective clothing. Footwear and gaiters for use in molten metal foundries. Requirements and test methods

DIN 51130: 2004 testing of floor coverings; determination of the anti-slip properties; workrooms and fields of activities with slip danger; walking method; ramp test

EN 471:2003 High-visibility warning clothing for professional use. Test methods and requirements

EN 13832-3:2006 Footwear protecting against chemicals. Requirements for footwear highly resistant to chemicals under laboratory conditions

EN 15090:2006 Footwear for firefighters

EN ISO 17249:2004 Safety footwear with resistance to chainsaw cutting

EN ISO 20345:2004Personal protective equipment. Safety footwear

GLOVES

F1a

EN 340:2003 Protective clothing: general requirements

EN 342:2004 Protective clothing. Ensembles and garments for protection against cold

EN 407:2004 Protective gloves against thermal risks (heat and/or fire)

EN 420:2003 Protective gloves. General requirements and test methods

EN 510:1993 Specification for protective clothing for use where there is a risk of entanglement with moving parts

EN 511:2006 Protective gloves against cold

EN 659:2003 Protective gloves for firefighters

EN1149-1:2006 Protective clothing. Electrostatic properties. Test method for measurement of surface resistivity

EN 1149-2:1997 Protective clothing. Electrostatic properties. Test method for measurement of the electrical resistance through a material (vertical resistance)

EN 10819:1996 Mechanical vibration and shock. Hand-arm vibration. Method for the measurement and evaluation of the vibration transmissibility of gloves at the palm of the hand

EN 12477:2001 Protective gloves for welders

EN 14325:2004 Protective clothing against chemicals. Test methods and performance classification of chemical protective clothing materials, seams, joins and assemblages

EN ISO 11611:2007 Protective clothing for use in welding and allied processes

ISO 13935-2:1999 Textiles. Seam tensile properties of fabrics and made-up textile articles. Determination of maximum force to seam rupture using the grab method

F₁b

Used in conjunction with F1a.

EN 374-1:2003 Protective gloves against chemicals and micro-organisms. Terminology and performance requirements

EN 374-2:2003 Protective gloves against chemicals and micro-organisms. Determination of resistance to penetration

EN 14325:2004 Protective clothing against chemicals. Test methods and performance classification of chemical protective clothing materials, seams, joins and assemblages

ISO16603:2004 Clothing for protection against contact with blood and body fluids. Determination of the resistance of protective clothing materials to penetration by blood and body fluids. Test method using synthetic blood

ISO 16604:2004 Clothing for protection against contact with blood and body fluids. Determination of resistance of protective clothing materials to penetration by blood-borne pathogens. Test method using Phi-X174 Bacteriophage

ELBOW AND KNEE

G1a

DD CEN/TS 15256:2005 Protective clothing. Hand, arm, leg, genital and neck protectors for use in ice hockey. Protectors for players other than goalkeepers. Requirements and test methods

EN 340:2003 Protective clothing: general requirements

EN 407:2004 Protective gloves against thermal risks (heat and/or fire)

EN 14404:2004 Personal protective equipment. Knee protectors for work in the kneeling position

EN ISO 20345:2004Personal protective equipment. Safety footwear

EYE AND FACE

Not applicable - see RPE

FALL ARREST

l1a

EN 340:2003 Protective clothing: general requirements

EN 361:2002 Personal protective equipment against falls from a height. Full body harnesses

EN 364:1992 Personal protective equipment against falls from a height. Test methods

EN 469:2005 Protective clothing for firefighters. Performance requirements for protective clothing for firefighting

PPE ENSEMBLES

BS 8469:2007 Personal protective equipment for firefighters – Assessment of ergonomic performance and compatibility – Requirements and test methods

EN 136:1998 Respiratory protective devices - Full face masks - Requirements, testing, marking

EN 943-1:2002 Protective clothing against liquid and gaseous chemicals, including liquid aerosols and solid particles - Part 1:Performance requirements for ventilated and non-ventilated "gas-tight" (Type 1) and "non-gas-tight" (Type 2) chemical protective suitsEN 12941

EN 13274-2 Respiratory protective devices – Methods of test – Part 2: Practical performance tests

EN ISO 13982-2:2004 Protective clothing for use against solid particulates. Test method of determination of inward leakage of aerosols of fine particles into suits

Appendix 3 - Glossary

APF	Assigned protection factor: for RPE. The level of protection that 95 per cent of properly trained and supervised users of well maintained and correctly fitted RPE can expect to achieve or exceed in real use situations. APF is conventionally represented by the 5 th percentile of valid workplace or simulated workplace protection factor measurements. The APF is the correct value to use when selecting RPE which is capable of providing adequate levels of protection. See also NPF, PF and WPF.
ВА	Breathing apparatus. Respiratory protective equipment which supplies breathable gas to the wearer from a source independent of the surrounding atmosphere.
CAT	Cable Avoidance Tools.
CBR(N)	Chemical, Biological, Radiological (or Nuclear). Representative CBR materials are detailed in Appendix 1.
COTS	Commercial off-the-shelf
DCLG	Department of Communities and Local Government.
EDBA	Extended duration breathing apparatus. This usually takes either the form of open-circuit BA with large air storage capacity, or closed circuit breathing apparatus.
EN	European Norm. European Standard generated by the European Standardisation Committee (CEN) e.g. EN 340:2003.
EREGs	Emergency Responder Exposure Guidelines.

T	
Ensemble	The assemblage of specific PPE items intended and designed to be used together to provide complex protection to the wearer. The individual items must interface correctly and be compatible in terms of their capabilities and performance. Testing of ensembles against specific hazards may be achievable without having every item present. For example, when assessing barrier performance of an ensemble, the presence of earplugs worn inside the garment, or kneepads worn outside the garment will have no bearing on the gas / liquid / particle ingress into the garment, and may be omitted for this test. When assessing ergonomic or physiological performance or burden however, the complete ensemble must be used.
FFP3	Filtering facepiece respirator achieving class 3 performance against airborne particles.
FR	Flame retardant. Materials demonstrated to have burning behaviour which does not spread flame, and self-extinguishes on removal from a source of ignition.
GTS	Gas-tight-suit
IS equipment	Intrinsically safe equipment. Electrical equipment designed and certified for safe use in flammable or explosive atmospheres.
ISO	International Standards Organisation, or a prefix denoting the standards they generate, e.g. ISO 16603:2004.
MOU	Memorandum of understanding.

NPF NPV/HEPA	Nominal protection factor. The level of protection achieved in laboratory certification tests, assuming the maximum leakage permitted in the performance requirement applied. Being measured under ideal laboratory conditions, this level of protection is unlikely to be achieved in real-use situations, and should not be used in the selection of equipment. See also APF, PF and WPF. Negative pressure ventilation combined with high
VI V/IILI /\	efficiency particle air filters, used as a means to control or contain airborne dust.
ODPM	Office of the Deputy Prime Minister (forerunner to CLG).
PAPR	Powered air purifying respirator. A self-contained filtering device incorporating a battery powered fan unit which draws air through suitable filters and supplies this to a facepiece, which may be either a mask or hood.
PF	Protection factor. A measure of the level of protection provided by an item of equipment (or ensemble) against a particular type or form of contaminant hazard (gas, particle or liquid). See also APF, NPF and WPF.
PPE	Personal protective equipment. Items that are worn or carried to protect the wearer against one or more hazards to their health or safety.
PPT	Practical performance test. Means of assessing the ergonomic, physiological and interfacial aspects of one or more items of equipment. Also used in this specification as a means of pre-stressing equipment and ensembles prior to barrier performance testing.
PPV	Positive pressure ventilation. Forced air movement used to remove airborne contaminants and/or introduce fresh air into an area or enclosed space.
PTSD	Post-traumatic stress disorder.

	T	1
RPE		Respiratory protective equipment.
SNR		A reduction value measured in dB, describing the sound attenuation properties of hearing protection (determined from the octave-band sound attenuation data of a hearing protector – see EN ISO 4869-2:1995). The SNR value is used in calculations that will provide a reasonably accurate estimate of the effective A-weighted sound pressure level to aid in the selection and specification of hearing protectors.
STF		Slips, trips and falls.
SWPF		Simulated workplace protection factor. Level of protection achieved by experienced operatives when carrying out representative working activities but under controlled laboratory test conditions. Properly generated SWPF data can be acceptable for establishing the level of protection likely to be achieved in real working situations in place of published generic APF values for dome forms of equipment.
TIL		Inward leakage applies to PPE which provides a barrier between the wearer and a hazardous substance in the atmosphere as particle, vapour or gas. It is the amount of substance (or its test surrogate) passing through the barrier by a given route. Total Inward Leakage is a measurement which includes all the inward leakage from different paths that is experienced by the PPE wearer. It is the ratio (sometimes given as a percentage) between the substance concentration inside the PPE and the substance "challenge" concentration in the atmosphere outside the PPE.
USAR		Urban search and rescue.

WPF	Workplace protection factor. The level .of protection provided by an item of PPE or ensemble, measured in real use conditions using appropriate methodology. With a sufficient body of WPF data, the assigned protection factor (APF) is taken as the fifth percentile of ranked WPF data. For technical or ethical reasons, it may be impractical to measure WPF in real use situations. Simulation of realistic working activity with a suitable tracer challenge agent is considered to be an acceptable substitute for real WPF data.
	substitute for real WPF data.