Title:

Fast-track review of Feed-in Tariffs for small scale low carbon electricity

Lead department or agency:

DECC

Other departments or agencies:

Impact Assessment (IA)

IA No: DECC0059

Date: 16/03/2011

Stage: Development/Options

Source of intervention: Domestic

Type of measure: Secondary Legislation

Contact for enquiries: Lily Tang / Birgit Wosnitza

Summary: Intervention and Options

What is the problem under consideration? Why is government intervention necessary?

Since the Feed-in Tariff scheme was launched in April 2010, the capital cost of solar PV has fallen substantially, with costs now approximately 30% lower than assumed at the time of scheme development. The modelling undertaken over a year ago predicted uptake of solar PV solely at the domestic scale for the first three years of the scheme and no large scale PV deployment. However, there is now evidence that uptake of large solar PV is likely to be significant if Government does not intervene to reduce tariffs. At the same time, deployment of farm-scale AD has been lower than expected, potentially as a result of higher than expected technology costs, but also due to non-tariff related reasons.

What are the policy objectives and the intended effects?

The objective of the fast track FITs review is to prevent a substantial increase in the subsidy costs of the FITs scheme as a result of unforeseen significant uptake of large scale (50kW-5MW) solar PV, including solar farms and industrial scale solar PV on rooftops. This in turn will limit the impact of the scheme on electricity bills and ensure that Government can deliver the 10% saving in 2014/15 as announced at the Spending Review. In addition, the fast track consultation aims to establish the reasons underlying slower than expected uptake of farm-scale AD. We are also proposing a small additional tariff for AD up to 500kW to provide additional incentive for smaller AD.

What policy options have been considered, including any alternatives to regulation? Please justify preferred option (further details in Evidence Base)

The impacts of the 'Do-Nothing' have been assessed in this impact assessment. The fast track review proposal of reducing tariffs for large solar PV and increasing tariffs for farm-scale AD has also been assessed.

The analysis shows that the fast track proposal for PV and AD yields a significant positive NPV, justifying this as the preferred option. To note that there is uncertainty about the impact in the Do-Nothing case as there is uncertainty about the level of large scale PV that might get built and the impact of FITs on AD. Estimates here do not take account of any changes that might be expected through the comprehensive review of FITs that is currently underway. The Do-Nothing case measures the cost of higher uptake of FITs by large scale solar PV and the cost of AD under current tariffs to 2020 with no assumed changes. Estimates of higher than expected uptake of other technologies (for example solar PV on social housing) have not been included in this Impact Assessment.

Will the policy be reviewed? It will/will not be reviewed. If applicable, set review date:

What is the basis for this review? Please select. If applicable, set sunset clause date:

Are there arrangements in place that will allow a systematic collection of monitoring information for future policy review?

Yes

SELECT SIGNATORY Sign-off For consultation stage Impact Assessments:

I have read the Impact Assessment and I am satisfied that, given the available evidence, it represents a reasonable view of the likely costs, benefits and impact of the leading options.

Classed by the reenengible CFL FCT CICKIATODY: \sim \sim \sim \sim \sim \sim \sim 40/00/0044	Signed by the responsible SELECT SIGNATORY:	S	Date:	16/03/2011	
	Signed by the responsible SELECT SIGNATORY.	` > `	Dale	10/0.3/2011	
Signed by the responsible SELECT Signature ——— , > Date 16/03/2011	eighted by the responsible eller is being the			10/00/2011	
Signed by the responsible SELECT SIGNATURY: Date:Date:Date:Date:Date:					

Summary: Analysis and Evidence

Description:

Price Base	PV Base	Time Period	Net	ue (PV)) (£m)	
Year 2011	Year 2011	Years 10	Low: £2.1bn	High:£3.9bn	Best Estimate: £2.9bn

COSTS (£m)	Total Tra (Constant Price)	ansition Years	Average Annual (excl. Transition) (Constant Price)	Total Cost (Present Value)
Low	Optional		Optional	Optional
High	Optional		Optional	Optional
Best Estimate	n/a		£25m	£230m

Description and scale of key monetised costs by 'main affected groups'

The costs of the fast track proposal are in the form of 1) foregone carbon saving benefits as a result of reducing the amount of large PV deployment; and 2) the additional resource cost to the economy of enabling higher deployment of farm-scale AD.

Other key non-monetised costs by 'main affected groups'

BENEFITS (£m)	Total Tra (Constant Price)	ansition Years	Average Annual (excl. Transition) (Constant Price)	Total Benefit (Present Value)
Low	Optional		Optional	Optional
High	Optional		Optional	Optional
Best Estimate	n/a		£375m	£3.1bn

Description and scale of key monetised benefits by 'main affected groups'

The core benefit of the fast track proposal is the avoided resource costs associated with higher than expected uptake of large PV, together with the monetised carbon saving associated with enabling greater deployment of farm-scale AD.

Other key non-monetised benefits by 'main affected groups'

Key non-monetised benefits include 1) the wider benefits of on-farm AD such as reduced methane and N20 emissions and 2) the prevention of significant sums of 'available FITs spend' being diverted away (as a result of higher than expected uptake of large PV) from more cost effective FIT technologies and/or from smaller scale installations which provide wider benefits of consumer engagement and behavioural change.

Key assumptions/sensitivities/risks

Discount rate (%)

Assumptions on technology costs and potential deployment rates have been taken from a range of sources including industry and other stakeholders, independent research and evidence from the current FITs model. It should be noted that there will be an inherent level of uncertainty in estimating uptake and hence costs under the Feed-in Tariffs given that it is a demand-led scheme. There is uncertainty in particular over the level of large scale PV that might be incentivised and the impact of new tariffs on AD. The Do Nothing case gives the cost of large scale PV and AD on the assumption that there has not been any change in tariffs, but using higher than anticipated estimates of uptake. It does not pre-empt any conclusions from the comprehensive review of FITs that is now underway. Estimates of higher than expected uptake of other technologies (for example PV on social housing) have not been included here.

Direct impact on business (Equivalent Annual) £m):			In scope of OIOO?	Measure qualifies as
Costs:	Benefits:	Net:	No	NA

Enforcement, Implementation and Wider Impacts

What is the geographic coverage of the policy/option?				ritain			
From what date will the policy be implemented?)11			
Which organisation(s) will enforce the policy?				Ofgem			
What is the annual change in enforcement cost (£m)?				Unknown			
Does enforcement comply with Hampton principles?				Yes			
Does implementation go beyond minimum EU requirements?				Yes			
What is the CO ₂ equivalent change in greenhouse gas (Million tonnes CO ₂ equivalent)	Traded: -10Mt to 2020	-10Mt to n/a					
Does the proposal have an impact on competition?			No				
What proportion (%) of Total PV costs/benefits is direct primary legislation, if applicable?	Costs:		Ben	efits:			
Distribution of annual cost (%) by organisation size (excl. Transition) (Constant Price)	Micro	< 20	Small	Small Medium		Large	
Are any of these organisations exempt?	Yes	Yes	No	No		No	

Specific Impact Tests: Checklist

Set out in the table below where information on any SITs undertaken as part of the analysis of the policy options can be found in the evidence base. For guidance on how to complete each test, double-click on the link for the guidance provided by the relevant department.

Please note this checklist is not intended to list each and every statutory consideration that departments should take into account when deciding which policy option to follow. It is the responsibility of departments to make sure that their duties are complied with.

Does your policy option/proposal have an impact on?	Impact	Page ref within IA
Statutory equality duties ¹	No	
Statutory Equality Duties Impact Test guidance		
Economic impacts		
Competition Competition Assessment Impact Test guidance	No	
Small firms Small Firms Impact Test guidance	No	
Environmental impacts		
Greenhouse gas assessment Greenhouse Gas Assessment Impact Test guidance	No	
Wider environmental issues Wider Environmental Issues Impact Test guidance	No	
Social impacts		
Health and well-being Health and Well-being Impact Test guidance	No	
Human rights Human Rights Impact Test guidance	No	
Justice system Justice Impact Test guidance	No	
Rural proofing Rural Proofing Impact Test guidance	No	
Sustainable development	No	
Sustainable Development Impact Test guidance		

The Final Impact Assessment for the Fast Track Review will consider further whether any of the above impacts are expected to arise as a result of the fast track proposals.

¹

¹ Public bodies including Whitehall departments are required to consider the impact of their policies and measures on race, disability and gender. It is intended to extend this consideration requirement under the Equality Act 2010 to cover age, sexual orientation, religion or belief and gender reassignment from April 2011 (to Great Britain only). The Toolkit provides advice on statutory equality duties for public authorities with a remit in Northern Ireland.

Evidence Base (for summary sheets) – Notes

Use this space to set out the relevant references, evidence, analysis and detailed narrative from which you have generated your policy options or proposal. Please fill in **References** section.

References

Include the links to relevant legislation and publications, such as public impact assessments of earlier stages (e.g. Consultation, Final, Enactment) and those of the matching IN or OUTs measures.

No.	Legislation or publication
1	http://www.decc.gov.uk/en/content/cms/consultations/elec_financial/elec_financial.aspx
2	http://www.decc.gov.uk/en/content/cms/consultations/fit_review/fit_review.aspx
3	
4	

⁺ Add another row

Evidence Base

Ensure that the information in this section provides clear evidence of the information provided in the summary pages of this form (recommended maximum of 30 pages). Complete the **Annual profile of monetised costs and benefits** (transition and recurring) below over the life of the preferred policy (use the spreadsheet attached if the period is longer than 10 years).

The spreadsheet also contains an emission changes table that you will need to fill in if your measure has an impact on greenhouse gas emissions.

Annual profile of monetised costs and benefits* - (£2011m, discounted to 2011)

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Transition costs	0	0	0	0	0	0	0	0	0	0
Annual recurring cost	<5	<5	5	5	10	20	30	40	55	60
Total annual costs	<5	<5	5	5	10	20	30	40	55	60
Transition benefits	0	0	0	0	0	0	0	0	0	0
Annual recurring benefits	15	40	80	125	195	310	455	555	635	700
Total annual benefits	15	40	80	125	195	310	455	555	635	700

^{*} For non-monetised benefits please see summary pages and main evidence base section

^{*}Figures in the table are rounded.

Evidence Base (for summary sheets)

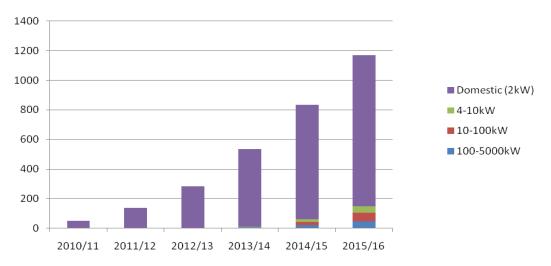
A. Strategic overview

- 1. A new system of feed-in tariffs (FITs) was introduced in Great Britain on 1 April 2010 to incentivise small scale (up to 5MW), low carbon electricity generation. These FITs work alongside the Renewables Obligation (RO), which is the primary mechanism to incentivise deployment of large-scale renewable electricity generation, and the Renewable Heat Incentive (RHI) which will incentivise generation of heat from renewable sources.
- 2. FITs are intended to encourage deployment of additional low carbon electricity generation, particularly by organisations, businesses, communities and individuals who are not traditionally engaged in the electricity market. This is on the basis that many people will be able to invest in small scale low carbon electricity, in return for the guaranteed payment provided by FITs both for the electricity they generate and the electricity that they export.
- 3. On 7 February 2011, the Secretary of State for Energy and Climate Change announced the start of the first comprehensive review of the FITs scheme for small scale low carbon electricity generation. As confirmed by the Spending Review in October 2010, the review will determine how the efficiency of FITs will be improved to deliver £40 million of savings, around 10%, in 2014/15. The comprehensive review will consider all aspects of the scheme including:
 - a. Tariff levels
 - b. Degression rates and methods
 - c. Eligible technologies
 - d. Arrangements for exports
 - e. Administrative and regulatory arrangements
 - f. Interaction with other policies
 - g. Accreditation and certification issues
- 4. The comprehensive review will be completed by the end of 2011, with tariffs remaining unchanged until April 2012 (unless the review reveals a need for greater urgency).
- 5. The Secretary of State's announcement also confirmed that the review will include fast-track consideration of large scale solar photovoltaic (PV) projects (over 50kW) with a view to making any resulting changes to tariffs as soon as practical, subject to consultation and Parliamentary scrutiny as required by the Energy Act 2008. And that, alongside the fast track review of large scale solar PV, a short study would be taken into the take-up of FITs for farm-scale (up to 500kW) Anaerobic Digestion (AD) plants. This Consultation Stage Impact Assessment focuses on proposals that take forward the fast-track review of FITs for large-scale solar PV (over 50kW) and farm-scale AD plants (up to 500kW).

B. Problem under consideration

6. As the Secretary of State's announcement on the FITs review made clear, it is crucial that we take a more responsible and efficient approach to public subsidy to ensure that consumers receive value for money. That is why last year's Spending Review committed to improving the efficiency of FITs and finding £40 million of savings, around 10% in 2014/15.

- 7. We are already aware of evidence suggesting that there is a real risk that uptake of FITs could soon exceed expectations. In particular, the deployment of large scale solar PV projects was not fully anticipated at the outset of the FITs scheme until 2013. This higher than expected deployment could push FITs uptake considerably above trajectory, make the Spending Review savings difficult to achieve, and substantially reduce the amount of money available to smaller PV installations and other FIT technologies. The unanticipated prospect of large-scale solar seems to have been driven by the costs of solar PV falling much faster than anticipated. The global investment in production, in response to previously high prices, has brought far lower prices. Emerging evidence suggests that PV system costs are now approximately 30% lower than assumed in the original FITs modelling. Because of these concerns, last month's announcement confirmed that the review would include fast-track consideration of large scale solar projects (over 50kW).
- 8. Furthermore, there is evidence to suggest that the current tariffs for Anaerobic Digestion (AD) installations of up to 500kW, often described as "farm-scale" AD, are set too low and are not incentivising uptake and the associated benefits of AD. The current tariffs for farm-scale AD are 11.5p/kWh, and 9p/kWh for installations above 500kW (which would be expected to include larger, food waste based plants). The higher tariff for farm-scale AD was intended to reflect the higher costs that would be incurred by these generators. The tariffs were intended to deliver returns at the top end of the 5-8% return on capital envisaged for FITs. This reflected the higher assumed hurdle rates for investors in AD arising, for example, from the long lead in times, requirements for planning permission and grid connection. This was in contrast with the relative simplicity of deploying other FIT technologies such as solar PV.
- 9. This Impact Assessment considers the costs and benefits associated with consultation proposals designed to address these concerns.


C. Rationale for intervention

Solar PV

- 10. From its establishment in April 2010, the FITs scheme was intended to encourage deployment of additional small scale low carbon electricity generation, particularly by individuals, householders, organisations, businesses and communities who have not traditionally engaged in the electricity market. For these investors, delivering a mechanism which is easier to understand and more predictable than the Renewables Obligation, as well as delivering additional support required to incentivise smaller scale and more expensive technologies, were the main drivers behind the development of this policy.
- 11. In choosing the range of technologies supported by FITs, the focus was on small-scale low-carbon electricity with the primary intention of supporting the widespread deployment of proven technologies now and up to 2020, rather than to support development of unproven technologies. PV was seen as a well developed technology that could be deployed at scale in domestic, community and small business settings. While it is a relatively high cost technology, it has broad public acceptance, can be easily incorporated into the built environment and generally does not require expensive grid connection or reinforcement costs. PV was also seen as having the potential for significant cost reductions in the future, something that has already proved to be the case since the start of the FITs scheme.

12. The expected rates of return for the tariffs were set with all of these factors in mind. The tariffs for solar PV were set to provide a 5% rate of return on capital, which would be expected to provide reasonable returns to householders and small businesses who were interested in generating their own electricity, but not to provide sufficient incentive for speculative investors. The modelling undertaken prior to the start of the FITs scheme projected that the vast majority of PV incentivised by FITs would be at the domestic or small scale and did not predict any solar PV above 10kW in the early years of the scheme. This is shown by the figure below.

13. In the first nine months of the scheme, uptake was broadly in line with the modelling for PV installations that are under 4kW. This is shown in the table below.

Number of PV FiT installations as at 31st December 20101

PV capacity	Projected	Actual
New build (sub 4kW)	135	225
Retrofit (sub 4kW)	15,096	14,132
4-10kW	0	208
10-100kW	0	51
[Of which 50-100kW]		2
100kW-5MW	0	0
Stand alone	0	28
Total	15,231	14,644

14. Although the deployment of PV is generally within expectations, there is already some evidence of installations which were not foreseen by the DECC modelling undertaken prior to the start of the scheme. As the table above shows these include 53 PV installations of between 10kW and 100kW, 2 of which are above 50kW. There is though also evidence of many more large scale installations in the pipeline, which paints a picture of solar PV uptake under FITs that could rapidly exceed expectations.

¹ Installations transferred from the RO onto the Exgen (9p/kWh) tariff are excluded. Projections were made on a financial year basis. To compare the projected uptake with actual uptake for the first 9 months of the scheme (i.e. to end December 2010) the projected figures for the first year were multiplied by 0.75. This is approximate as uptake maybe skewed towards the end of the year.

- 15. Therefore last month's announcement confirmed that all PV over 50kW was in the scope of the fast-track review. 50kW is the threshold used in the statutory definition of Microgeneration. It is also the threshold for Permitted Development Rights for domestic PV i.e. domestic PV installations above 50kW will need to apply for planning permission. A variety of types of installation will be within the 50kW to 5MW range. At the smaller end of this scale, installations could include installations on community buildings such as schools or hospitals. At the larger end of this scale are large solar "farms" of anything from 250kW up to 5MW.
- 16. Evidence from the planning system underpins the concerns about solar PV at the larger end of the scale. Data obtained from various local planning authority databases suggests that between the launch of the FITs scheme in April 2010 and the announcement of the FITs review (7th February 2011), proposals for at least 10 solar farms (between 250kW and 5MW) received planning permission. The total capacity of those with planning permission is around 27MW. Of these schemes, six are in Cornwall, and the other four are in Wales, Lincolnshire, Buckinghamshire and Somerset. We are also aware that a 2.5MW solar farm has also received planning permission in Cornwall since the FITs review was announced on 7th February.
- 17. In addition to the proposals with planning permission, at the time of the FITs review announcement, at least 31 planning applications for solar farms (between 250kW and 5MW) had been made and were under consideration. Of these applications, 24 were for proposed schemes at the maximum capacity of 5 MW. We are also aware that, since the FITs review was announced, a planning application has been made for at least one further scheme.
- 18. As well as evidence from the planning system, a range of industry sources have provided details of what they consider to be credible projections of industry interest in PV development over the next few years, including considerable interest in large scale PV. The sources of this information include the Renewable Energy Association, the Micropower Council and the Country Land and Business Association.
- 19. The information has been compiled by individuals and groups from confidential and published industry sources, so it is subject to a caveat that there will be an inherent level of uncertainty in the estimates i.e. it may represent intentions and aspirations of market participants rather than actual projections. There is also considerable uncertainty as to the number of proposed schemes that would ultimately obtain financing, as well as planning and grid connection.
- 20. Whilst there is not currently precise pipeline information, even the existence of the expectations summarised above, together with the evidence from the planning system, points to a market that is at risk of overheating. This in turn suggests that there may be a number of factors that have changed since the original DECC modelling undertaken prior to the start of the FITs scheme. These may include:
 - a. technology costs that are lower, or that are reducing more quickly than modelled;
 - b. economies of scale for larger installations that are greater than modelled;
 - c. lower hurdle rates of return for large scale FITs development than modelled, e.g. driven by financing strategies; and/or
 - d. changes in economic circumstances that may favour the security of FITs investment over alternatives.

- 21. It is likely that all of these factors may be relevant. Indeed, factors such as falling technology costs appear to have prompted widely reported reductions in tariffs for PV elsewhere in Europe. For example, Germany, France, Spain, Italy and Belgium have all announced reductions in tariffs for solar PV in the last year.²
- 22. Taken together, the risk of rapid expansion of large scale PV over the next few years could have a significant impact on whether the FITs scheme as a whole is able to deliver the savings committed to as part of the 2010 Spending Review and operate within the spending constraints that the Spending Review confirmed. This trend could potentially draw funding from other technologies and scales of generation, such as community and domestic installations, and undermine the value for money of the scheme as a whole.

ΑD

23. The rationale for a short study into the lack of uptake of FITs for farm scale to date has been based on currently only 2 AD installations having been accredited for FITs. Whilst we understand that both of these installations were on farms, only one of them was under 500kW (the current tariff band designed specifically with farm-based AD installations in mind). This is less than the uptake of farm-scale AD installations projected in the FITs model, the short study is supposed to investigate whether the tariff rates currently given for AD are enough to make such schemes worthwhile.

The key questions that this short study has been considering are:-

- a. Is the current tariff for farm-scale AD delivering the expected 8% return on capital?
- b. If not, why not? What changes in/corrections to assumptions need to be made in order for an 8% return to be delivered?
- c. If an 8% return on capital is being delivered, why is uptake not as projected?
- 24. Uptake of AD as projected is important as it can play a key part in delivering a zero waste to landfill society, one in which we increase amount that reduce, reuse, recycle and produce energy from waste. Its ability to process wastes such as those from food production, animal husbandry and sewage treatment means that it can be used to deal with local and community waste management problems as well as producing renewable energy for local and community use. In addition, AD can bring climate change benefits; by capturing the methane normally produced when these wastes decay, AD can deliver net greenhouse gas reduction.
- 25. Use of AD on-farm also delivers further benefits: The digestate produced as a bi-product of the process, can provide a direct replacement to fertilizers, so helping to conserve critical resources such as phosphorus as well as reducing reliance on fertilizers requiring fossil fuels for their production. This brings benefits in terms of manure management and the control of diffuse water pollution. Compared to the raw slurry or manure, the AD process also reduces bacterial (including pathogen) numbers in the digestate.

C. Objectives

26. The primary objective for the FITs fast-track review of large-scale PV is to ensure that DECC is able stay within the SR envelope for FITs spend. By way of illustration, the £40

² See for example, p.319 of the International Energy Agency's "World Energy Outlook 2010" which is available from www.iea.org

million annual savings that the FITs scheme is required to deliver as a result of the 2010 Spending Review, would be cancelled out by around 150 MW of large scale solar or only around 30 installations at the maximum capacity of 5 MW. There is already 169 MW in the planning system (i.e. both schemes which have applied for planning permission, and those which have received planning permission). The objective is therefore to reduce long term pressure on FITs costs through higher than anticipated uptake of large scale solar PV, and to allow DECC to keep its commitment in the 2010 Spending Review that the FITs scheme will save £40 million in 2014/15.

- 27. This will reduce the risk of large scale PV potentially diverting funding away from community and domestic installations, and more cost-effective technologies currently supported under the FITs.
- 28. The fast track review is also intended to address the slower than expected uptake farm-scale AD.

D. Options under consideration

29. Our analysis considers a Do-Nothing scenario, i.e. no fast-track review. The comprehensive review of FITs will be subject to a separate consultation and is due to be completed by the end of the year, with tariffs remaining unchanged until April 2012 (unless the review reveals a need for greater urgency). The other option considered is one fast-track review scenario consisting of proposals to adjust the tariffs for large-scale solar PV and farm-scale AD. Our chosen/preferred scenario is policy option 2 i.e. the fast-track review proposals.

Option 1: Do Nothing

30. The Do-Nothing scenario involves leavings tariffs unchanged for large scale (50kW-5MW) solar PV. The Do-Nothing also involves leavings tariffs unchanged for farm-scale (up to 500kW) AD. Table 1 below sets out the current generation tariffs for large PV and for farm-scale AD.

Table 1 – Unchanged tariffs for 2011/12

Do-Nothing						
PV			AD			
Scale	Tariff p/kWh	Scale		Tariff p/kWh		
10-100kW 100kW-5MW Stand alone	32.9 30.7 30.7	Up to 500kW		12.1		

NB: Tariffs are for 2011/12 and are expressed in 2011/12 prices (as also published by Ofgem; please see: http://www.ofgem.gov.uk/Pages/MoreInformation.aspx?docid=16&refer=Sustainability/Environment/fits). These tariffs are equivalent to the 2010/11 tariffs in real terms. Installations also receive a 3.1p/kWh export tariff for any electricity exported back to the grid (in 2011/12 prices, equivalent to the 3p export tariff in 2010/11).

The costs and benefits of the Do-Nothing Option are set out in section E below.

It should be noted that the Do-Nothing scenario does not make any assumptions on what changes may be made to the scheme as a result of the Comprehensive FITs review i.e. this IA only assesses costs and benefits in relation to the fast track review.

Option 2: Fast Track Review

- 31. The fast track proposal looks to reduce the generation tariff for large scale (50kW-5MW) solar PV in order to reflect recent significant reductions in the capital cost of the technology. The proposal also involves a change to the tariff bands compared to the current tariff bands.
- 32. This proposal does still aim to provide an approximate 5% rate of return on capital for PV in the 50kW to 150kW band, and aims to reduce support for 250kW to 5MW and stand alone PV installations to a level consistent with that for offshore wind under the RO. The proposed tariff bands and generation tariff levels are set out in Table 2 below.
- 33. The fast track proposal also looks to marginally increase the generation tariff for farm-scale AD in the light of evidence that the current tariff is not providing the envisaged return on capital for these smaller, farm-scale installations. The proposal also involves a change to the tariff bands compared to the current tariff bands

Table 2 – Proposed tariff levels and tariff bands for 2011/12 under fast track review

Fast Track Proposal							
PV		AD					
Scale	Tariff	Scale	Tariff				
	p/kWh		p/kWh				
50-150kW	19.0	Up to 250kW	14.0				
150kW-250kW	15.0	250kW-5MW	13.0				
250kW-5MW	8.5						
Stand alone	8.5						

NB: Tariffs are for 2011/12 and are expressed in 2011/12 prices; it should be noted that the 8.5p/kWh tariff for 250kW-5MW and stand alone solar PV plants is presented on the basis of ROC and LEC values expressed in 2010/11 prices. Installations also receive a 3.1p/kWh export tariff for any electricity exported back to the grid (in 2011/12 prices, equivalent to the 3p export tariff in 2010/11).

- 34. The costs and benefits of the fast track proposal scenario are set out in section E below.
- 35. We propose that all PV installations above 250 kW and stand-alone installations should receive a tariff which is broadly equivalent, in terms of financial support per unit energy output, to the level allocated to what is currently considered to be the marginal cost effective technology required to deliver the UK's 15% renewable target, offshore wind. This results in a support level of 8.5p/kWh³.
- 36. Whilst we consider that there is a case for reducing the level of support for all new PV installations above 50kW, we recognise that there is a distinction to be made between large industrial scale solar farms and large building integrated systems that could for example be installed on schools and hospitals. Therefore, we propose introducing a further two new tariff bands for PV installations between 50kW and 150kW; and those between 150kW and 250kW. Using emerging evidence of a steep drop in PV capital costs of around 30% from levels assumed in the original FITs modelling from both industry sources and from preliminary research undertaken by Mott Macdonald (as yet unpublished), we propose tariffs for these bands of 19p/kWh and 15p/kWh respectively.

³ This is based on the assumptions of average expected ROC prices of approximately £40.69 and LEC value of approximately £5/MWh (all in 2010/2011 prices).

The impacts of these proposed tariffs have been estimated by adjusting the original FITs modelling in the light of evidence of falling costs of PV.

- 37. Evidence on the slower than expected uptake for farm-scale AD has been wide and varied. Reasons put forward by industry for lack of deployment range from current tariffs being insufficient to deliver a 5-8% return on capital, to wider issues (many of which aren't related to FITs) such as difficulties in accessing capital (because AD is still not well understood and seen as a relatively 'risky' technology e.g. compared to PV). It should be noted that the fast-track review of FITs and this Impact Assessment only focuses on the FITs issues. The wider issues are being considered through work on a joint industry/Government AD strategy and it is expected that information/evidence gathered from this will feed into the comprehensive review.
- 38. Since the start of the FITs scheme, the most frequently cited explanation for the current farm-scale AD tariffs not delivering a 5-8% return have centred on the original FITs modelling not accounting for the cost of energy crops as a feedstock. However more recent evidence from industry suggests that current tariffs may be too low because the original modelling underestimated the extent of capital and operating costs. Given that the range of evidence that we have received over recent months has been varied, this suggests that there still remains a high level of uncertainty over why uptake of farm-scale AD has been lower than expected. Part of the explanation for low uptake does appear to be related to tariffs being 'insufficient' to deliver an 8% return on capital. This is particularly the case for very small plant i.e. plant below 250kW, which have relatively higher capital costs (in £/kW terms) than larger plant. This fast-track review therefore proposes to split the current tariff band for 'farm-scale' AD into two separate bands, with a tariff of 13p/kWh for 250kW-500kW plants and a slightly higher tariff of 14p/kWh for plants up to 250kW (the proposed bandings and tariff levels should better target support accordingly to technology scale - with smaller plants requiring a higher p/kWh tariff to yield any given rate of return. The small additional tariff for small scale AD is intended to provide a small additional incentive for smaller AD. We consider that this adjustment is justified on the basis of the evidence we have seen to date that an increase to the tariffs is needed; and is cautious enough given the wide variety of evidence that has been received to date. In the meantime, we will continue to monitor take-up of AD and will use the comprehensive review of FITs to further explore any other reasons for the apparent underperformance of the tariffs for farm-scale AD to date.

E. Costs and benefits: PV

(i) Do nothing

<u>Methodology – Large scale solar PV</u>

- 39. Two sources of information were used to estimate the level of deployment of large scale solar PV under FITs for the Do-nothing scenario:
 - a. Industry estimates of large solar PV uptake, which are based on market information of what is currently in the pipeline, have been used to provide one set of estimates for this IA. The industry estimates were provided to DECC on the basis of current PV tariffs and current PV costs. The estimated uptake is higher than the levels projected under the original FITs modelling.
 - b. Estimates of large PV uptake from the FITs model, based on current PV tariffs but adjusted to take account of new information on PV costs, have been used to provide a second set of estimations for this IA.

Both estimation methodologies have their pros and cons as explained below, but using both approaches ensures that a robust range of estimates is provided, which reflects the uncertainty behind the assumptions.

- 40. The industry estimates are short term estimates of uptake until 2013 only (provided to DECC on the basis of current tariffs and current costs) industry also provided DECC with an indicative figure for 2020. DECC has interpolated these figures to estimate annual uptake. These projections together with preliminary PV cost data received from industry sources and Mott Macdonald are then combined to produce overall cost/benefit estimates.
- 41. The FITs model has a fixed set of tariff bands, capturing the following installation sizes for large PV:

New build 10-100kW

Retrofit 10-100kW

New build 100-5000kW

Retrofit 100-5000kW

Stand alone system

- 42. This means that it has not been possible to precisely model the uptake and cost implications of a 30% reduction in costs for all >50kW installations. Instead we have modelled 2 cases, which should provide the range within which costs are expected to lie:
 - (1) 30% reduction in capex for all installations between 10kW and 5MW
 - (2) 30% reduction in capex for all installations between 100kW and 5MW
- 43. We have also changed the constraints within the model to provide a maximum estimate of the cost of large PV this 'unconstrained scenario' loosens the constraints on PV build, resulting in significantly higher uptake (also shown in the table below). Without altering the constraints in the model, uptake would be lower. The range of results from the model are given in the tables below the lower end of the range is from a constrained run, assuming a 30% reduction in capex for installations of 100kW to 5MW and the latter is an unconstrained run, assuming a 30% reduction in capex for all >10kW installations.
- 44. Table 3 below gives the potential range of estimates of cumulative PV uptake to 2014 under the different assumptions and also provides a figure in 2020, although estimated potential uptake for the second half of the decade will be particularly uncertain.

Table 3: Cumulative large PV MW uptake under current tariffs

rabio o. Camalative large i			J		
	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2020</u>
Large scale PV only					
FITs central run Large scale PV	0	0	5	40	175
Industry estimate Large scale PV (Buildings, Fields)	230	620	1,115	1,470	8,145
Fits Model constrained/unconstrained range Large scale PV	110 to 155	235 to 325	445 to 610	815 to 1,095	7,540 to 11,380

Note 1: Figures in the table are rounded.

Note 2: This Impact Assessment only considers higher uptake of large scale solar PV. There could also be similarly higher than expected uptake of small solar PV as a result of the recent fall in solar system costs. PV below 50kW, together with all other elements of the FITs scheme, will be considered as part of the comprehensive review of FITs.

Note 3: Industry figures have been provided to 2013 and an indicative figure for 2020 also provided. DECC has interpolated these figures to estimate annual uptake.

Estimated costs and benefits

- 45. Estimates of the cost to consumers of large scale solar PV uptake under the 'Do-Nothing' option, based on the uptake assumptions above, are provided in Table 4 below. The table shows higher costs than those estimated for the *Impact Assessment of Feed-in Tariffs for Small-Scale, Low Carbon, Electricity Generation* (Feb 2010) (e.g. zero costs for large PV were estimated under the previous IA because projected uptake was purely at the domestic scale large scale PV uptake under the original IA is shown in Table 3 above {FITs central run}). Table 4 includes a range of costs from the FITs model based on assumptions explained in paragraphs 42 and 43 above. Estimated consumer costs under the industry uptake projections are also very significant and lie above the FITs model estimates for 2012 and 2013, but are within the range of the FITs model estimates in later years.
- 46. It needs to be noted that the evidence of falling PV costs means that there is also a risk of higher than anticipated uptake of small scale solar PV (i.e. below 50kW). However, this is outside the scope of this fast-track review but will be considered as part of the comprehensive FITs review.

Table 4: Solar PV costs to consumers under current tariffs (£m, 2011 prices, discounted to 2011)

	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2020</u>
Large scale PV only					
Costs based on industry uptake estimates Large scale PV (Buildings, Fields)	35	90	155	195	890
Fits Model constrained/unconstrained range Large scale PV	25 to 40	55 to 75	95 to 130	155 to 215	805 to 1,225

ote 1: Figures in the table are rounded

Note 2: a) FITs model costs are presented in net terms i.e. net of the value of electricity exported back to the grid; and b) costs are additional-to-BAU, where BAU impacts are impacts that would occur in the absence of FITs (i.e. under the RO). Subsidy costs are equivalent to the ONS definition of tax and spend.

Further costs and benefit considerations for large scale solar PV

- 47. In view of the high potential cost impact of large-scale solar PV and the associated risk that this could absorb a high proportion of funding from the FITs scheme as a whole, it is important to consider whether there is a wider policy justification for including support for these installations in the FITs scheme.
- 48. The primary focus of the FITs scheme is on non-energy professionals, especially householders and communities. This was reflected in the Impact Assessment supporting the introduction of FITs scheme which described the objectives of the scheme as being to "drive uptake of a range of small-scale low carbon electricity technologies by a range

of target groups in order to deliver a higher rate of deployment; and to pursue broader aims of engaging the general public in low carbon electricity generation. This will enable broad participation of individuals and communities, as well as energy professionals, in the big energy shift to a low carbon economy."

- 49. Solar PV is one of the more costly technologies supported by FITs. Consequently, the broader engagement aims described above are particularly important in justifying support for PV under FITs in the first place. These benefits are most evident at the domestic and community scale and generally become less discernible as installations become larger, more commercial and more remote from individuals and communities.
- 50. Additionally, at the non-microgeneration scale, the other benefits of FITs such as simple deployment without the need for expensive grid connection costs, are less apparent. Therefore, even though it is true that large scale PV can offer economies of scale and performs better in pure terms of cost effectiveness than PV at the microgeneration scale, it is generally considered to be less effective at delivering the wider benefits. Large PV is also still four to five times more expensive (in £/MWh resource cost terms in 2020) than large AD or large wind plants supported under FITs.
- 51. Another range of advantages cited for FITs include the technology and cost-reduction effects of deploying at scale, and the associated opportunities for jobs in manufacturing and installation. It can be argued that the demand for panels and installation expertise for large scale installations will lead to enhanced industrial capacity in the UK, a more mature market for imports, and lower costs. Developers at all scales would benefit from these. We consider however, that the industry expansion that would flow from domestic and community scale alone would deliver these benefits. There is also a limited range of skills that could be transferred from the large industrial-scale installations to the domestic scale where the individual installations are smaller by a factor of 2000 or more.
- 52. All in all, whilst supporting large scale solar PV through FITs does have benefits, these benefits would be lessened if delivering them meant distorting funding away from microgeneration PV, which is better placed to deliver the broader aims of FITs; and other FIT technologies which can produce renewable electricity more cost effectively.

<u>Methodology – Anaerobic Digestion (AD)</u>

- 53. We have used two methodologies/data sources to estimate the deployment of AD under FITs:
 - a. Estimates of farm-scale (up to 500kW) AD uptake from the original FITs modelling, based on current FITs tariffs have been used to estimate <u>Do-Nothing</u> <u>impacts</u>. We have also used the FITs model to estimate <u>lower bound impacts of</u> <u>the fast track proposal</u>.
 - b. Industry have provided initial <u>high level</u> projections for farm-scale (up to 500kW) AD uptake to 2014. These uptake projections are higher than those assumed under the original FIT modelling given that the figures have been provided to DECC based on tariffs being increased 'sufficiently' to drive investment. These figures have been used to estimate <u>upper bound impacts of the fast track proposal</u>.
- 54. As for solar PV, the industry estimates are short term estimates of <u>potential</u> uptake over the next few years therefore an assumption has been made to extrapolate uptake out to 2020.

55. Table 5 below shows estimates of potential cumulative MW of AD uptake to 2014 under the "Do-Nothing" option and a cumulative total in 2020 using the FITs model central projections. The rounded up uptake figure for 2011 might imply a slight overestimate of uptake given evidence of AD installations currently in the pipeline.

Table 5: Cumulative AD MW uptake under current tariffs

	<u>2011</u>	2012	<u>2013</u>	<u>2014</u>	<u>2020</u>
FITs central run AD	5	5	10	15	50

Note 1: Figures in the table are rounded.

Note 2: Uptake figures are additional-to-BAU, where BAU impacts are impacts that would occur in the absence of FITs (i.e. under the RO).

Estimated costs and benefits

56. The cost to consumers of AD uptake under the 'Do-Nothing' option, based on the uptake assumptions under the original FITs modelling, is provided in Table 6 below. As uptake is the same as estimated for the Impact Assessment of Feed-in Tariffs for Small-Scale, Low Carbon, Electricity Generation (Feb 2010), costs to consumers are also unchanged.

Table 6: AD costs to consumers under current tariffs (£m, 2011 prices, discounted to 2011)

	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2020</u>
FITs central run AD	5	5	10	10	30

Note 1: Figures in the table are rounded.

Note 2: a) FITs model costs are presented in net terms i.e. net of the value of electricity exported back to the grid; and b) costs are additional-to-BAU, where BAU impacts are impacts that would occur in the absence of FITs (i.e. under the RO). Subsidy costs are equivalent to the ONS definition of tax and spend.

(ii) Fast-track review

Methodology – Large scale solar PV

- 57. Under Option 2, it is proposed that tariffs for solar PV should be reduced as follows (please also refer to Table 2 above):
 - 19p/kWh for 50kW to 150kW
 - 15p/kWh for 150kW to 250kW and
 - 8.5p/kWh for 250kW to 5MW
- 58. The impact of these reductions in tariffs have been estimated using 2 data sources, as explained above:
 - a. Estimates of large scale PV in the pipeline provided by industry;
 - b. Estimates from the FITs model.
- 59. Again there are pros and cons of each approach. The data from industry sources is based on uptake assuming current as opposed to reduced tariffs, and so will overstate build, particularly in the early years. The FITs model on the other hand does not

- necessarily reflect information on new schemes in the pipeline, and is not sufficiently disaggregated to make precise estimates of impacts by installation size.
- 60. As explained above the FITs model does not feature the same size breakdowns as the proposed tariffs. Therefore, we have modelled two different sets of reductions in tariffs, which provides a proxy for the uptake and costs that the above tariff bands and tariff levels would result in. The two sets of tariff reductions have been carried out as follows:
 - (A) Tariff for 10-100kW installations unchanged and 8.5p/kWh for 100kW-5MW installationsn
 - (B) 19p/kWh for 10-100kW installations and 8.5p/kWh for 100kW-5MW installations
- 61. These reduced tariff rates are combined with the constrained and unconstrained FITs model runs, above, which both assume a one-off drop in large scale PV costs of 30% from 2010 onwards. These assumptions result in the MW uptake estimates shown in Table 7 below.

Table 7: Cumulative PV MW uptake under proposed new tariffs

	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2020</u>
Large scale PV only					
Industry estimate Large scale PV - (Buildings)	80	210	455	505	890
Fits Model constrained/unconstrained range Large scale PV	35 to 60	35 to 60	35 to 60	40 to 75	330 to 965

Note 1: Figures in the table are rounded.

Note 2: For the industry figures, we have assumed that the 8.5p/kWh tariff for 250kW-5MW PV would result in no uptake of solar farms (although in reality there could be some level of uptake). Therefore only industry's uptake projections for buildings are used until 2013 and DECC has extrapolated uptake post 2013. It should be noted that the fast track review only considers higher than expected uptake of large PV. There could also be similarly higher than expected uptake of small solar PV as a result of falling PV costs. PV up to 50kW, together with all other elements of the FITs scheme, will be considered as part of the comprehensive review of FITs.

62. Table 7 shows that the impact of lower than expected costs of large scale PV could result in significant uptake of large scale solar PV in the long term, even under proposed new tariffs. Industry estimates are higher than FITs model estimates in the short term but within the FITs model range by 2020. Industry uptake projections are assumed to reduce significantly under the proposed new tariffs (because solar farms are assumed to no longer be financially viable). Large building integrated solar PV is assumed to remain viable under the new tariffs, however given that projections have been held constant for building integrated PV between the Do-Nothing option and the fast track proposal, uptake is likely to be slightly over-estimated under the fast track assessment.

Estimated costs and benefits

63. Table 8 shows the corresponding impact on consumer costs. It can be seen that by reducing tariffs as outlined above, costs to consumers from large scale Solar PV come down substantially in the constrained, unconstrained FITs model runs, but also using industry's large scale Solar PV estimates.

Table 8: Solar PV costs to consumers with new tariffs (£2011m, discounted to 2011)

	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2020</u>
Large scale PV only					
Costs based on industry uptake estimates Large scale PV (Buildings)	10	25	50	55	75
Fits Model constrained/unconstrained range Large scale PV	10 to 15	10 to 15	10 to 15	10 to 15	20 to 110

ote 1: Figures in the table are rounded.

Note 2: a) FITs model costs are presented in net terms i.e. net of the value of electricity exported back to the grid; and b) costs are additional-to-BAU, where BAU impacts are impacts that would occur in the absence of FITs (i.e. under the RO). Subsidy costs are equivalent to the ONS definition of tax and spend.

64. Comparing cost estimates in Table 4 and Table 8 above demonstrates that the fast track proposal of reduced tariffs for large PV should substantially reduce costs to consumers compared to leaving tariffs unchanged.

<u>Methodology – Anaerobic Digestion (AD)</u>

- 65. Table 9 below sets out high level estimates for farm-scale AD uptake under the new tariff proposals of 14p/kWh for 0-250kW plants and 13p/kWh for 250kW-500kW plants. The table shows a range of estimates, based on:
 - (a) preliminary figures from industry
 - (b) DECC's FITs model.
- 66. Industry information was provided on the basis of 'sufficiently' increased tariffs and was a projection to 2014 only. Early year estimates are therefore likely to overstate the cost of the new tariffs in the early years, as proposed tariffs are lower than those upon which the industry uptake estimates are based. DECC has applied a conservative 5% increase in annual build from 2014, in order to provide annual uptake figures to 2020. Estimates to 2014 are therefore uncertain, and are likely to provide an upper bound of AD uptake following the tariff changes likewise our associated cost estimates (provided in Table 10) are also likely to be upper bound estimates. Increased tariffs in the FITs model do not change uptake in early years of the scheme due to uptake barriers in the model, but the model predicts an increase in uptake post 2015 when barriers reduce. FITs model estimates are likely to represent a lower bound on costs.

Table 9: Cumulative AD MW uptake under proposed new tariffs

	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2020</u>
Industry estimate AD	5	20	50	85	115
FITs model AD - Higher tariffs	5	5	10	15	75

Note1: Figures in the table are rounded.

Note 2: Figures from industry have only been provided to 2014 – an assumption has been made to extrapolate uptake figures out to 2020.

Note 3: FITs model estimates are additional to BAU, where BAU impacts are impacts that would occur in the absence of FITs (i.e. under the RO)

Estimated costs and benefits

67. The estimated costs in Table 10 show that the fast track proposal is expected to lead to higher costs to consumers than under the 'Do-Nothing' (Table 6). However, it should be noted that there will be additional CO₂ savings from the higher uptake and there are significant wider benefits associated with AD including abatement of fugitive methane emissions from manure handling, reduced N2O emissions from poorly-quantified application of manure to land, displacement of GHG emissions from mineral fertiliser manufacture, and incentivising better nutrient management and resource protection (reduced bacterial/nutrient pollution of watercourses).

Table 10: AD costs to consumers under proposed new (£2011m, discounted to 2011)

	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2020</u>
Costs based on industry estimates of uptake AD	5	20	40	70	75
FITs model AD - Higher tariffs	5	5	10	10	50

N

ote 1: Figures in the table are rounded.

Note 2: a) FITs model costs are presented in net terms i.e. net of the value of electricity exported back to the grid; and b) costs are additional-to-BAU, where BAU impacts are impacts that would occur in the absence of FITs (i.e. under the RO). Subsidy costs are equivalent to the ONS definition of tax and spend.

Note 3: Uptake figures from industry have only been provided to 2014 – an assumption has been made to extrapolate uptake figures out to 2020.

Summary of impacts - Results

- 68. The table below provides a summary of the impacts under Option 1 "Do-Nothing" and Option 2 "Fast track proposal". The table summarises the two sources considered, i.e. industry estimates and the FITs model. It gives information on resource costs, costs to consumers, tonnes of CO₂ saved, NPV and electricity generation in each case for solar PV and AD. These estimates have been used to complete the summary sheet for this Impact Assessment:
 - a. In the IA summary sheet the 'best' estimate refers to our central NPV estimate, which is the benefit from solar PV estimated using the FITs model constrained run, and the cost of AD estimated using the FITs model: NPV (£2.9bn)
 - b. The 'high' estimate refers to our high NPV estimate, which is the benefit from solar PV estimated using the FITs model unconstrained run, and the cost of AD estimated using the FITs model: NPV (£3.9bn)
 - c. The 'low' estimate refers to our low NPV estimate, which is based on industry estimates both for PV and AD: NPV (£2.1bn)
- 69. To note that the 'best estimate' is the central estimate for the period 2010 to 2020, which is the unconstrained FITs model run, combined with the FITs model estimate of AD costs. This may not be consistent with the 'best' estimate for the period 2011 to 2014: it gives the lowest cost for that period. The central estimate of costs for this period is that consistent with the FITs unconstrained model run.

Key costs and benefits

Large scale only (>10kW)	D	Do-nothing			Fast track proposal		
£2011, discounted to 2011	Large scale Solar PV (>	10kW)	Farm-scale AD	Large scale Solar PV (>10kW)		Farm-scale AD	
	FITs model	Industry uptake estimates	FITs model uptake	FITs model	Industry uptake estimates	FITs model/ industry uptake estimates	
Annual resource cost in 2020	£735m to £1,065m	£870m	£25m	£35m to £70m	£140m	£35m to £50m	
Resource cost in 2020	£80/MWh to £115/MWh	£125/MWh	£65/MWh	£85/MWh to £320/MWh	£185/MWh	£65/MWh	
Cumulative resource cost to 2020	£3.4bn to £4.9bn	£3.5bn	£130m	£0.28bn to £0.58bn	£0.97bn	£155m to £385m	
Annual cost to consumers in 2020	£805m to £1.2bn	£890m	£30m	£20m to £110m	£75m	£50m to £75m	
Cumulative cost to consumers to 2020	£3.7bn to £5.3bn	£3.6bn	£0.2bn	£0.16bn to £0.33bn	£0.5bn	£230m to £580m	
Cumulative tonnes CO2 saved to 2020	10.3m to 20.2m	11.0m	0.8m	0.3m to 0.9m	2.0m	1m to 2.3m	
Value of Cumulative CO2 savings to 2020	£205m to £405m	£220m	£15m	£5m to £15m	£40m	£20m to £45m	
Policy Net Present Value to 2020	-£3.2bn to -£4.5bn	-£3.3bn	-£110m	-£0.27bn to -£0.56bn	-£0.93bn	-£135m to -£340m	
Electricity generation in 2020	6.3TWh to 13.4TWh	6.9TWh	0.4TWh	0.1TWh to 0.8TWh	0.8TWh	0.5TWh to 0.8TWh	

Note 1: Figures in the table are rounded.

Note 2: The industry uptake figures for large solar PV under the "Fast track" proposal are based on the Do-Nothing uptake profile and therefore costs are likely to be overstated (i.e. estimates based on industry deployment figures yield an NPV of -£0.93bn cumulative to 2020 versus -£0.27bn to -£0.56bn under the FIT model runs). For this reason our best estimate for the NPV of the fast track proposal for large solar PV is represented by the lower bound FITs model estimate. A similar reasoning applies for the fast track proposal for AD where we use the FIT model to provide our central NPV estimate.

Annexes

Annex 1 should be used to set out the Post Implementation Review Plan as detailed below. Further annexes may be added where the Specific Impact Tests yield information relevant to an overall understanding of policy options.

Annex 1: Post Implementation Review (PIR) Plan

A PIR should be undertaken, usually three to five years after implementation of the policy, but exceptionally a longer period may be more appropriate. If the policy is subject to a sunset clause, the review should be carried out sufficiently early that any renewal or amendment to legislation can be enacted before the expiry date. A PIR should examine the extent to which the implemented regulations have achieved their objectives, assess their costs and benefits and identify whether they are having any unintended consequences. Please set out the PIR Plan as detailed below. If there is no plan to do a PIR please provide reasons below.

Basis of the review: This measure will be reviewed as part of the comprehensive review of FITs to be consulted on later in the summer (2011).
Review objective: The review will assess costs and deployment of technologies supported through the FITs. It will also consider the cost effectiveness of the FITs scheme.
Review approach and rationale: This will involve reviewing monitoring data, consideration of technology costs and resource potential, and an assessment of uptake rates. Modelling of FIT tariff levels will also be undertaken to provide estimates for overall costs of the FITs scheme.
Baseline: Baseline is current FITs take up and costs, as produced by Ofgem and latest projections of the costs of FITs as set out in previous Impact Assessments.
Success criteria: That FITs supports technologies that contribute to meeting the renewable energy target, and that costs are projected to remain within the levy envelope.
Monitoring information arrangements: Ofgem data (3 monthly intervals) + data collated by DECC statisticians.
Reasons for not planning a review:
Add annexes here.

21