

Carbon impacts of using biomass in bioenergy and other sectors: energy crops DECC project TRN 242/08/2011

Issued by ADAS UK Ltd, December 2011

Submitted to: Ben Davison DECC Prepared by: Dr Jeremy Wiltshire and Rachel Hughes ADAS UK Ltd Boxworth Cambridge CB23 4NN

Contact details: <u>ben.davison@decc.gsi.gov.uk</u>

jeremy.wiltshire@adas.co.uk rachel.hughes@adas.co.uk URN: 12D/083

CONTENTS

Executive	summary	.3
1. Introd	luction	.4
2. Carbo	on impacts of biomass crops	.4
2.1	BEAT ₂ Workbooks	.4
2.2	GHG Emissions	.6
2.3	Miscanthus	.7
2.4	SRC Willow	.9
2.5	Straw from wheat	11
3. Altern	hative land uses	12
3.2	2020 and 2050 Miscanthus and SRC crops - future yields and locations?	16
4. Carbo	on impacts of alternative land uses	18
4.1	Methodology	18
4.2	Carbon Impacts	18
4.3	Results Summary	20
5. Europ	pean Case Studies	21
5.1	Methodology	21
5.2	Carbon impacts of transport from importing biomass	23
6. Discu	ssion	25
Reference	es and data sources	26

ABBREVIATIONS

ar	As received
BEAT ₂	Biomass Environmental Assessment Tool
CHP	Combined heat and power
CIP	Climate Information Portal
CO ₂ e	Carbon dioxide equivalent
GHG	Greenhouse Gas
GWP	Global warming potential
ha	hectare
ILUC	Indirect land use change
LCA	Life cycle assessment
LUC	Land use change
odt	Oven dry tonnes
OSR	Oilseed rape
SRC	Short-rotation coppice
UKCIP	UK Climate Impacts Programme
UKCP09	UK Climate Projections 2009
t	tonne

EXECUTIVE SUMMARY

This study analysed the carbon impacts per hectare of growing and using energy crops and compared these impacts with those for key alternative land uses, see below:

Key Points and Recommendations

Food production has a 5 to 40-fold higher carbon impact than biomass production, but food production will be displaced by biomass, not replaced.

Carbon impacts from indirect land use change (ILUC) when biomass crops replace other crops) are uncertain but potentially large¹.

The carbon impacts of producing and using biomass for energy generation should be considered in the context of the energy obtained and this is given in the main report.

The carbon impacts of importing biomass to the UK have been estimated for transporting miscanthus by road from France and by ship from Canada. Road transport is by far the most carbon intensive compared with shipping, despite the distances involved. The carbon impacts of transport from Bourgogne, France to Dover, UK are similar to the carbon impacts of miscanthus production.

The drivers for change of land use to biomass production are mainly economic and could be considered in any future work to estimate carbon impacts of alternative land uses.

¹ Indirect emissions were not assessed, but some comment is provided.

1. INTRODUCTION

This report presents numerical results from a study to analyse the carbon impacts of growing and using a selection of energy crops, and then compares these impacts with the carbon impacts associated with the most likely alternative land uses. Direct CO_2e emissions were quantified and indirect CO_2e emissions were considered broadly to give an overview of the issues for further consideration.

A summary of the carbon impacts analysed is given in Table 1.

Carbon impact of u	Carbon Impacts	
Category	Breakdown	
	Miscanthus Bales/Chips/Pellets	Tables 3-4
Biomass Crops	SRC Willow Chips	Tables 5-6
	Straw from Wheat	Tables 7-8
	Winter Oilseed Rape	
	Winter Barley	
Alternative land	Winter Wheat	Table 9
crops	Beef	
	Dairy	
	Sheep	
	Permanent Pasture	
Land not currently used for crops	Previously cropped not cultivated idle for 5 years	Table 11
	Previously cropped land not cultivated for 10 years	

Table 1: Results – location within the report.

2. CARBON IMPACTS OF BIOMASS CROPS

We present the carbon impacts of biomass crops in units of mass (kg or tonnes) CO_2e per ha (Tables 1, 3 and 5) or per MWh (Tables 2, 4 and 6). Carbon impact values are given to two significant figures, reflecting the accuracy level for assessments of GHG emissions.

Types of biomass crop product use included:

- Heating (for SRC this was sub-divided into domestic heating and commercial and industrial heating),
- Combined heat and power (CHP)
- Electricity generation by cofiring,
- Electricity generation in a dedicated power plant

2.1 BEAT₂ Workbooks

The derivation of total GHG emissions associated with the production of bio-energy from energy crops was achieved using workbooks incorporated into the Biomass Environmental Assessment Tool (BEAT₂). These workbooks represent bio-energy chains based on miscanthus, SRC and straw. For miscanthus, workbooks were available for the production

of fuel in the form of bales, chip and pellets. For SRC, it was assumed that the most common form of production would consist of chipping during harvesting, with subsequent use either directly as chips or by processing into pellets. It was also assumed that the most likely use of straw for bio-energy purposes would be in the form of bales. Where necessary, existing workbooks were extended to cover the combustion of these fuels to produce:

- heat in domestic, commercial and industrial applications,
- CHP in commercial and industrial applications,
- existing co-fired power-only plants, and
- electricity in new dedicated biomass power-only plants.

BEAT₂ workbooks were used to generate ranges of results in the form of total GHG emissions, broken down by GHG type (CO₂, CH₄ and N₂O) and by stage in the bio-energy chain). These results were converted into kilograms (kg) equivalent CO₂ using GWPs of 25 kg CO₂e/kg CH₄ and 298 kg CO₂e/kg N₂O for a 100 year time horizon used in the Intergovernmental Panel on Climate Change Fourth Assessment Report.

More information on BEAT₂ workbooks can be found here: <u>http://www.biomassenergycentre.org.uk/</u>, while a full list of results, with breakdown by activity, can be found in Appendix 1.

2.1.1 Yield Assumptions

The ranges of results were based on current values of yields for miscanthus and SRC grown in the UK, and the yield of straw from wheat production in the UK. The assumed range of annualised yield for miscanthus was between 11.0 and 12.0 oven dry tonnes per hectare (odt/ha/yr) or between 14.3 and 17.1 tonnes as received (ar) per hectare (t ar/ha/yr) with a moisture content of 30% by weight. For SRC, the assumed range of annualised yield was taken to be between 10.0 and 11.7 odt/ha/yr, or between 20.0 and 23.4 t ar/ha/yr at 50% moisture content. In the case of both miscanthus and SRC, it was assumed that no significant amounts of artificial nitrogen fertiliser were applied to these energy crops over the duration of their perennial cultivation.

The assumed range of straw yield was between 1.9 and 4.2 t ar/ha/yr at 25% moisture content. In terms of consequential LCA, the GHG emissions associated with the cultivation and harvesting of wheat grain were excluded from the collection and provision of wheat straw as a potential fuel for bio-energy production. Rather than account for possible allocation between straw and grain, which would be relevant in attributional LCA for regulatory purposes, the necessary approach for consistency with consequential LCA for policy analysis should be based on substitution. However, this would require evaluation of alternatives to grain since the focus here is on the use of straw. Hence, to avoid such complications, it was assumed that straw was, within the scope of this work, regarded as a waste product even though it has potential uses as a material. On this basis, the alternative to straw collection was assumed to be incorporation, the effects of which were included in this analysis. It should also be noted that GHG emissions associated entirely with the collection of straw, such as baling and carting, were accounted in calculations.

2.1.2 Other Assumptions

Other major factors that were also taken into account in these ranges were possible variations in drying methods, where relevant, transport distances and end use energy efficiencies. Drying options were only considered for providing miscanthus chips and

pellets, and for SRC chips and pellets². The range of GHG emissions adopted was based on natural drying and artificial drying using diesel fuel and electricity. In BEAT₂, electricity is used for air circulation and to operate handling machine to facilitate drying (and not as a source of heat) Transport distances were chosen to reflect possible local delivery, by assuming a minimum round trip distance of 100 kilometres, and nationwide delivery, by assuming a maximum round trip distance of 600 kilometres.

Plant size was not taken into account. The net thermal efficiencies for domestic SRC wood pellet-fired heating plants were assumed to range from 90% to 94%. For commercial and industrial heating plants fired by miscanthus bales, chips or pellets, SRC wood chips or pellets, and straw bales, net thermal efficiencies were taken to be between 88% and 90%. The combinations of specifications for CHP plants fired by miscanthus bales, chips or pellets, SRC wood chips, and straw bales consisted of overall net thermal efficiencies between 54% and 88%, with a typical heat-to-power ratio of 2.5:1. The net thermal efficiencies of power only co-firing with miscanthus chips or pellets, SRC wood chips or pellets, and straw bales were assumed to range from 30% to 36%. For dedicated power only plants fired by miscanthus bales, chips or pellets, SRC wood chips or pellets, and straw bales, net thermal efficiencies ranged from 25% to 36%. It should be noted that the GHG emissions associated with construction of new bio-energy plants were included in the calculations whereas those for existing co-fired plant were excluded. All calculations incorporated estimates of GHG emissions related to maintenance.

Some combinations of biomass crop products and energy generation do not occur, and this is indicated in the tables below as not applicable (N/A). For example, miscanthus bales cannot be used as a feedstock in a power station that is co-firing with fossil fuel (coal) and biomass fuel.

Two scenarios were modelled and exact details of the assumptions behind each scenario called "Low" and "High" are give in Appendix 1.

2.2 GHG Emissions

All of the outputs from $BEAT_2$ workbook are given in Appendix 1 and a summary of results presented in kg CO₂e per ha per year is presented below with commentary as to the main findings.

The life cycle stages have been summarized into 3 main stages with an explanation of the life cycle stages in Table 2.

Description	Stages
Farm	All activities up to the farm gate encompassing the stages of cultivation and
	harvesting and chipping
D	Farm gate to end of processing. This encompasses the following stages:
Processing	transport to storage, bulk/batch drying and storage, milling and pelletising (if
Other	Transport of crop to end of life. This encompasses the following stages; transport to plant, combustion, plant, start-up fuel, ash disposal and lime displacement

Table 2: Life Cycle Stage Summaries.

² Only drying of miscanthus chips and SRC chips and pellets were taken into account when considering possible ranges of results. Straw is not normally dried and hence its drying was not accounted for. The ranges are based on the most extreme cases possible and diesel-fired chip and pellet driers do exist.

2.3 Miscanthus

2.3.1 Miscanthus (kg CO₂e/ha/yr)

There are three forms of miscanthus used for biomass in the UK; bales, chips and pellets. The largest carbon impacts arise from the carbon impacts of miscanthus pellets. This is due to the assumption that miscanthus crop is batch dried using diesel fuels and then converted to pellets.

Miscanthus bales have a lower carbon impact compared than chips and pellets because no further high-energy processes are needed before transport and combustion.

Table 3: Annual carbon impacts for miscanthus crop production and use, kg CO2e per ha	I
of crop production.	

kg CO₂e/ha/yr		Heating		СНР		Co-firing		Dedicated Power	
		Low	High	Low	High	Low	High	Low	High
	Farm	570	570	570	570	N/A	N/A	570	570
Miscanthus	Processing	150	630	150	630	N/A	N/A	150	630
Bales	Use	540	830	820	1000	N/A	N/A	530	820
	Total	1300	2000	1500	2200	N/A	N/A	1200	2000
	Farm	670	670	670	670	670	670	670	670
Miscanthus	Processing	160	1800	150	1800	160	1400	150	1800
Chips	Use	580	820	850	1200	480	1600	560	800
	Total	1400	3300	1700	3700	1300	2900	1400	3300
	Farm	670	670	670	670	670	670	670	670
Miscanthus Pellets	Processing	1900	2100	1900	2100	1900	2100	1900	2100
	Use	530	770	870	910	370	620	520	590
	Total	3100	3600	3500	3700	3000	3400	3100	3400

2.3.2 Miscanthus (kg CO₂e per MWh)

The carbon impact of miscanthus (kg CO_2e per MWh/ha) allow the efficiency of each method of energy generation to be taken into account. Heating emerges as the method with the lowest carbon impact per MWh/ha due the efficiency of conversion of fuel to heat; outputs are 37 MWh (miscanthus bales) to 40.1 MWh (miscanthus chips).

The lower energy outputs arise from miscanthus used in a dedicated power station. The outputs are 8.6 MWh for (miscanthus bales) to 9.3 MWh (miscanthus chips). These values are a quarter of the equivalent MWh outputs from heating (miscanthus bales 30.2 MWh and miscanthus chips 32.8 MWh). Consequently when each method of power generation is assessed on emissions per kg of CO_2e per MWh, heating has a far lower carbon impact (kg of CO_2e per MWh) than dedicated power.

kg CO₂e per MWh		Heating CI		CH	P Co-fi		ring	Dedicate	Dedicated Power	
(MV	(MWh/ha)		High	Low	High	Low	High	Low	High	
	Farm	15	19	16	31	N/A	N/A	38	66	
Miscanthus	Processing	4.0	21	4.1	34	N/A	N/A	10	73	
Bales	Use	15	27	23	54	N/A	N/A	36	95	
	Total	34	67	42	120	N/A	N/A	84	235	
Total MWh/ha		37.0	30.2	36.2	18.5	N/A	N/A	14.8	8.6	
	Farm	17	21	17	33	37	53	42	72	
Miscanthus	Processing	4.0	56	3.9	91	8.6	110	9.6	200	
Chips	Use	15	25	22	59	26	130	35	86	
	Total	35	100	43	180	70	230	87	350	
Total MWh/h	a	40.1	32.8	39.2	20.1	18.1	12.6	16.0	9.3	
	Farm	18	33	18	36	45	65	45	77	
Miscanthus	Processing	52	100	53	110	130	210	130	250	
Pellets	Use	14	37	24	49	25	61	35	67	
	Total	84	170	96	200	200	330	210	390	
Total MWh/h	้าล	37.4	20.6	36.5	18.8	14.8	10.3	14.9	8.7	

Table 4: Annual carbon impacts for miscanthus crop production and use, kg CO₂e per MWh. *Energy production (MWh/ha) is given in italics.*

2.4 SRC Willow

2.4.1 SRC Willow (kg CO₂e per ha/yr)

There are two main products of SRC willow used as biomass in the UK: wood chips and pellets. The highest carbon impact arises from heating (domestic and combustion) using pellets. This is because we assume that the crop will be batch dried using diesel fuel which is a very energy intensive method to dry crops. However it should be noted that the efficiency of each method of power generation needs to be taken into account as shown in Table 6.

Table 5: Annual carbon impacts for SRC willow crop production and use, kg CO₂e per ha of crop production.

kg CO₂e per ha/yr		Commercial and industrial heating		Domestic Heating by Combustion		Combined Heat and Power		Power only generation by co- firing		Dedicated Power	
		Low	High	Low	High	Low	High	Low	High	Low	High
	Farm	280	280	N/A	N/A	280	280	280	280	280	280
Chips	Processing	230	3100	N/A	N/A	230	3100	230	3100	230	3100
	Use	590	1000	N/A	N/A	760	1100	410	860	580	980
	Total	1100	4400	N/A	N/A	1300	4500	920	4300	1100	4400
	Farm	280	280	280	280	N/A	N/A	280	280	280	280
Pellets	Processing	530	4500	530	4500	N/A	N/A	530	4500	530	3100
	Use	690	990	1100	1300	N/A	N/A	360	710	580	1200
	Total	1500	5800	1900	6100	N/A	N/A	1200	5500	1400	4600

2.4.2 SRC Willow (kg CO₂e per MWh)

The carbon impacts (kg CO₂e per MWh/ha) allow the efficiency of each method of energy generation to be taken into account. The efficiency of heating rather than dedicated power generation is clear as the values (kg CO₂e /MWh per hectare) are lower than for power generation. For example for SRC willow chips, commercial and industrial heating (low value) results in 26 kg CO₂e per MWh/ha compared with 64 kg CO₂e per MWh/ha for dedicated power (low value).

kg CO₂e per MWh <i>(MWh/ha)</i>		Comn and inc hea	nercial dustrial tting	Domestic Heating by Combustion		Combined Heat and Power		Power only generation by co- firing		Dedicated Power	
		Low	High	Low	High	Low	High	Low	High	Low	High
	Farm	6.6	7.9	N/A	N/A	6.7	13	17	28	16	28
Chips	Processing	5.4	88	N/A	N/A	5.5	140	13	310	13	310
Chips	Use	14	29	N/A	N/A	18	53	24	85	34	97
	Total	26	120	N/A	N/A	31	210	54	420	64	430
Tota	I MWh/ha	42.4	35.4	N/A	N/A	41.4	21.7	17.0	10.1	19.1	10.1
	Farm	5.8	7.0	5.6	6.8	N/A	N/A	15	25	15	28
Pellets	Processing	11	110	11	110	N/A	N/A	28	390	28	310
T ellets	Use	15	25	22	32	N/A	N/A	19	62	31	120
	Total	31	140	38	150	N/A	N/A	62	480	73	460
Tota	I MWh/ha	47.9	40.0	50.0	40.9	N/A	N/A	19.1	11.4	19	10.1

2.5 Straw from wheat

2.5.1 Straw from wheat (kg CO₂e per ha/yr)

The carbon impacts of straw from wheat are shown in Tables 6 and 7. The emissions from wheat "farm" stage only include the emissions from baling the straw and do not cover the nitrogen fertiliser and other inputs used for cultivating wheat. This is because the emissions from these inputs are allocated entirely to the wheat grain. The carbon impacts from straw are therefore lower than the GHG emissions from miscanthus and SRC willow which cover the full impact of cultivation for each crop.

Table 7: Annual	l carbon impacts	for wheat bal	es production	and use,	kg CO₂e per	ha of
production.					_	

kg CO₂e per ha/yr		Неа	ating	С	HP	Dedicated Power		
		Low	High	Low	High	Low	High	
Straw Bales	Farm	380	380	380	380	380	380	
	Processing	41	92	41	92	41	92	
	Use	120	110	220	150	140	120	
	Total	540	580	640	620	560	590	

2.5.2 Straw from wheat (kg CO₂e per MWh)

The total power (MWh) output from straw is considerably lower than the power outputs from miscanthus and SRC willow. The highest MWh value produced for straw bales used for heating is 10 MWh compared with 37 MWh for miscanthus bales used for heating.

Table 8: Annual carbon impacts for wheat bales production and use, kg CO_2e per MWh. Energy production (MWh/ha) is given in italics.

kg CO₂e per MWh <i>(MWh/ha)</i>		Heating		СНР		Dedicated Power	
		Low	High	Low	High	Low	High
Straw Bales	Farm	38	86	39	140	95	290
	Processing	4.1	21	4.2	34	10	71
	Other	12	25	22	57	36	92
	Total	54	130	65	230	140	450
Total MWh/ha		10	4.4	9.8	2.7	4	1.3

3. ALTERNATIVE LAND USES

3.1.1 Introduction

To establish the alternative land uses to the biomass crops, the current spatial distribution of land for both miscanthus and SRC willow was identified and is shown in Figures 1 and 2. Alternative land uses were then identified using the ADAS 2010 landcover database.

3.1.2 *Methodology*

Defra provide regional SRC Willow and miscanthus crop areas as a percentage of total arable area from the 2010 Census returns. Using the ADAS 2010 Landcover database (1 km² resolution) the total arable area by region was summed, and the total area of SRC and miscanthus crop by region was derived.

Defra publish maps showing the location of SRC and miscanthus plantations by region. These maps were overlain with a 5 km grid and SRC and miscanthus plantations attributed to each square. For those squares containing SRC and/or miscanthus plantations, the total amount of arable land was summed, and the proportion of the land that is arable was derived. The proportion of arable land was used as the basis for distributing the total area of SRC and miscanthus to the 5km squares, such that the regional total matched the 2010 Census total.

3.1.3 Miscanthus

For miscanthus, a simple predictive model of yield was developed by ADAS, supported by yield assessment and crop physiological data from field sites (Price, et al., 2004). The model was applied in a GIS framework using weather data at a 5 km spatial resolution, allowing potential yield to be mapped across England and Wales for current climate conditions using UK CIP02 scenarios which are based on weather data from 1960 to 1990. The average model estimates of above ground dry matter yields at harvest for miscanthus on arable land in England and Wales are in the range 5.2 - 19.7 t ha⁻¹ yr⁻¹.

3.1.4 SRC Willow

For SRC, a map of potential yield was produced by Forest Research, and was based on yield estimates obtained at a network of 49 field experiments established across the UK. The yield model used to transform site specific yield estimates for five willow varieties into a national map. This took into account annual rainfall, seasonal rainfall, growing degree days, frost days, soil pH and soil texture, all based on 5km x 5km grid cells. Average yield estimates for the five willow varieties grown for two three-year cutting cycles in each 5 x 5 km grid square were calculated. The average model estimates of above ground dry matter yields at harvest for SRC on arable land in England and Wales are in the range 6 -14 t ha⁻¹ (Forest Research 1999) and personal communication 2011).

The modelled potential yield was multiplied by the area of SRC and miscanthus plantation respectively to give a total tonnage for the 5 km square for both SRC Willow and Miscanthus.

3.1.5 Identification of alternative land uses

The feedstock supply zones for identified biomass firing energy plants were used to determine alternative land uses. The ADAS 2010 Cropping and Livestock layers were overlain in a GIS environment and the agricultural land uses with the zones identified. Identification of the locations of production allowed comparison with existing land uses within the same 5 km squares using the ADAS 2010 landcover database. The top land uses by area were selected, including all agricultural uses covering more than 5% of the 5 km square area.

3.1.6 Short Rotation Coppice (SRC) – alternative land uses

Arable	Livestock
Winter wheat	Beef
Winter oilseed rape	Dairy
	Sheep
3.1.7 Miscanthus – alternative land uses	
Arable	Livestock
Wheat	Beef
Winter Barley	Dairy
Winter Oilseed Rape	

3.1.8 Wheat – alternative land use

As wheat straw is produced as a co-product of growing wheat grain, and the use of straw for biomass is unlikely to influence the area of the wheat crop, it is assumed that the alternative land use to wheat production is wheat production.

3.1.9 Summary – Alternative land uses

Six alternative land uses were identified, including alternatives to SRC willow, miscanthus and wheat straw as shown below.

In addition to these alternative land uses identified using land use data, we have also included non-cropped land to allow consideration of the carbon impacts of land that is not cropped, and that could be cultivated to grow energy crops. The set of alternative land uses was as follows. The carbon impact of these land uses are discussed in Section 4.

<u>Arable</u>	Livestock	<u>Other</u>
Wheat	Beef	Non-cropped land
Winter Barley	Dairy	
Winter Oilseed Rape	Sheep	

Figure 1: Current miscanthus cultivation modelled – UKCIP02 results.

Figure 2: Current SRC Willow cultivation modelled– UKCIP02 Results.

3.2 2020 and 2050 Miscanthus and SRC crops - future yields and locations

3.2.1 Miscanthus 2020 and 2050

The predictive model of miscanthus yield that was used for the current scenario was used to predict future yields. The model was run using UKCIP modelling results (2002) for 2020 and 2050. A straight line interpolation between the values for 2020 and 2050 was performed to provide potential yields for 2030.

It was assumed that 10% of the arable land in each 5 km square would become available for energy crop cultivation³. The total potential tonnage of miscanthus as a feedstock for energy production was therefore derived by taking 10% of the arable land in the 5 km square and multiplying this by the modelled yields for 2020, 2030, and 2050 respectively.

The resultant feedstock layers were then used, in conjunction with the location and feedstock requirements of miscanthus fired power plants, to create supply zones around the power plants. These zones realistically represent the potential future areas of miscanthus cultivation as an energy crop. Initially, the power plant feedstock requirement was calculated by converting capacity in kWh to Gigajoules, and using a standard conversion of 13 Gigajoules of energy from each tonne of miscanthus (fresh weight), and a factor of 277.78 kWh per Gigajoule of energy using assumptions in the Environment Agency (2009) review.

Buffer zones around each plant were then grown by small incremental distances, until enough feedstock had been sourced to satisfy the capacity of all the plants in the simulation. Zones around plants that compete for the same feedstock were grown simultaneously such that the combined feedstock for both would be satisfied, and the supply zones merged. When an individual plant reached its feedstock requirement from the land in the designated supply zone, the supply zone stopped growing.

The maps in Figure 3 show the potential growing areas for miscanthus for 2020, 2030, and 2050. Areas where the modelled miscanthus yields exceeded 20 t/ha were designated potential growing areas, and are visualised in the maps as green 5 km squares.

3.2.2 SRC Willow 2020 and 2050

SRC Willow was not modelled as expert opinion from Forest Research indicates that climate will not be the driving factor for crop locations. Economics and the scale of the power stations are expected to have a greater influence on SRC production, but these factors were not modelled within this project. Competition from the heat market should also be considered when considering the future growth of SRC willow crop area. Currently there is no evidence that alternative land uses in future will be different from the main alternative land uses at present.

³ This is based on the approach taken in the 2009 Bioenergy review. Please see References for further details of this work.

Figure 3: Predicted future yields of miscanthus - 2020, 2030, 2050.

4. CARBON IMPACTS OF ALTERNATIVE LAND USES

4.1 Methodology

The carbon impacts of alternative land uses (Table 7) were assessed using data from a previous Defra project (FO0404), in which carbon impacts of many food products were assessed. The values and production information from that work were impacts per product unit (e.g. 1 tonne of wheat), and these were used to calculate carbon impacts per ha of land.

4.1.1 Cradle to Farm Gate approach

The assessments used a lifecycle approach, up to the farm gate (i.e. excluding processing and use). Processing and use were excluded because (a) the values will vary very greatly depending on the chosen use and (b) it is assumed that food use will still occur if the land is used for biomass crops – the food crops will be grown elsewhere and use will be unchanged.

The arable carbon impact values are given as a single value rather than a range because upper and lower limits were not available from the data source.

The livestock values have been adjusted to include land used to grow the main feed crops, using results of Defra project FO0404 (Wiltshire et al., 2008), and expert knowledge of ADAS consultants to provide typical stocking rates for lowland farming systems. The range of carbon impact values derives from the range in stocking densities used in the calculations, and from consideration of relatively intensive and extensive farming systems.

4.1.2 Adjustment to consider capital goods

All values for agricultural land uses were adjusted to take account of emissions associated with production of capital goods (e.g. tractors and farm buildings). This was done to maintain consistency with the BEAT₂ method used for assessment of carbon impacts of growing and using the biomass crops, which included embedded emissions in capital goods. The adjustment was based on a published estimate of the contribution of capital goods to GHG emissions from agriculture (Frischknecht et al., 2007).

4.1.3 Carbon Impacts of Energy Counterfactuals

To provide additional context, carbon impacts of energy generation are given as additional counterfactuals to the biomass land uses because if the land is not used for growing biomass for energy, there will be an associated carbon impact from generating energy by another means. As an example, the other means in this case has been assumed to be UK grid average electricity for and the value 362 kgCO₂e per MWh has been used. More detailed analysis to identify counterfactual energy production emissions from alternative energy sources is beyond the scope of this project.

4.2 Carbon Impacts

The carbon impacts (t CO_2e per ha of land) are given in Table 9, for land uses that are alternatives to biomass crop production, and for biomass crop production and use, for comparison.

In Table 10 we present the carbon impacts of generating electricity (UK grid average) as additional counterfactuals to the biomass land uses. The counterfactual values are different depending on the biomass system that is replaced by an alternative land use (because biomass systems produce vary in the amount of energy produced), so values are presented for the miscanthus and SRC biomass systems considered in this project.

	t CO ₂ e per ha of land								
Land use	Production		Processin	Processing and use ¹		Total			
	Low	High	Low	High	Low	High			
Alternative Land Use	es								
Winter wheat	4.6	6	N/A	N/A	N/A	N/A			
Winter OSR	3.4	4	N/A	N/A	N/A	N/A			
Winter barley	4.5		N/A	N/A	N/A	N/A			
Beef	4.7	9.7	N/A	N/A	N/A	N/A			
Sheep	5.8	9.8	N/A	N/A	N/A	N/A			
Dairy	9.7	11	N/A	N/A	N/A	N/A			
Energy crop product	ion (excluding	processing a	nd use)						
Miscanthus bales	0.57	0.57	0.68	1.5	1.3	2.1			
Miscanthus chips	0.67	0.67	0.63	3.0	1.3	3.7			
Miscanthus pellets	0.67	0.67	2.5	3.1	3.2	3.8			
SRC chips	0.28	0.28	0.64	4.1	0.92	4.4			
SRC pellets	0.28	0.28	4.4	5.5	4.7	5.8			

Table 9: Carbon impacts: Alternative land uses and Energy crop production (excluding processing and use).

¹ The range is derived from the range of energy crop uses, and the consequent range of energy generation carbon impact values.

Table 10: Carbon impacts for provision of energy using biomass, and for an example of alternative energy generation: ranges of emissions values for energy crop production and use, and for energy from national grid electricity at a value of 362 kg CO2e/MWh.

Land use	t CO₂e /ha/yr		T CO ₂ e to replace energy from 1 ha using a fossil fuel (example counterfactual for UK grid average energy generation)		
	Low	High	Low	High	
Miscanthus bales	1.3	2.2	3.1	13	
Miscanthus chips	1.3	3.7	3.4	15	
Miscanthus pellets	3.1	3.7	3.1	14	
SRC willow chips	0.92	4.5	3.7	15	
SRC willow pellets	1.2	6.1	3.7	18	

The carbon impacts of non cropped land were also estimated, as indicative values for the UK only. In this context, uncropped land means either (1) land that is not used for agricultural production, is not cultivated, and is growing vegetation (e.g. land in an agri-environment scheme), or (2) permanent pasture. Carbon impacts of non-cropped land (Table 11) were considered by estimating the additional contribution to the carbon impacts of growing a biomass crop on land that was not cropped immediately before the use for a biomass crop. Three scenarios were considered to indicate the range of possible values:

- 1. Land cropped, then un-cropped for 5 years, then used for a biomass crop;
- 2. Land cropped, then un-cropped for 10 years, then used for a biomass crop;
- 3. Permanent pasture is cultivated and used for a biomass crop.

We applied a typical rate of carbon sequestration from a recent review (0.6 t/C/ha/year; Dawson & Smith, 2007), for scenarios 1 and 2, for the period between the previous crop and the biomass crop.

For emissions associated with cultivation of permanent pasture, we used land use change values given in PAS 2050:2011.

For each scenario we assumed that emissions associated with cultivation and loss of soil carbon are allocated to the land use over a period of 20 years after cultivation. This approach is in line with most accepted methods for estimation of carbon impacts from growing crops.

 Table 11: Carbon impacts of non-cropped land.

Scenario	t CO ₂ e/ha, additional to other emissions from biomass crop production
1. Previously cropped land not cultivated for 5 years	0.55
 Previously cropped land not cultivated for years 	1.1
3. Permanent pasture	7.0

4.3 Results Summary

Figure 4: Results Summary Diagram.

5. EUROPEAN CASE STUDIES

5.1 Methodology

5.1.1 Location of production and transport

An international comparison of biomass feedstock carbon impacts was made using three case studies in European countries where there is significant biomass cultivation, based on the possibility that biomass crop products could be exported to the UK. Biomass energy plants were identified to indicate locations suitable for production of biomass crops. The chosen plants, located at Przechlewo in Poland, Bourgogne in France, and Sanguesa in Spain, are shown in Table 12 and Figure 5.

Table 12: European Case Studies.

Name	Location	Feedstock
Sangüesa Biomass Power Plant	Navarra, Spain	Straw
Przechlewo Straw Biomass Power Plant	Przechlewo Poland	Straw
Bourgogne Power Plant	Aiserey France	Miscanthus

The carbon impacts of the biomass crop production near these plants were assumed to be similar to carbon impacts for the same crops in the UK. Additional carbon impacts for transport to the UK were calculated based on standard emission factors for the most likely transport type and the distance to a UK port.

5.1.2 Alternative land uses

Alternative Land Uses

Alternative land uses were identified as additional background information. To do this, a notional 50 km radius buffer was created around the location of each of these three energy plants and the European land use database (CORINE) was then overlain, and the CORINE land uses within each of the buffers were identified.

It should be noted that the CORINE database used for the land cover for Europe does not have the same level of detail as the UK dataset used for other parts of this study, hence the broader terms used for describing land use.

The most likely alternative land uses (i.e. the land uses with the highest proportions of the area within the 50 km radius buffers) are shown below.

Spain
Non irrigated arable land (assumed to be predominantly wheat given that this was the feedstock for two of the case study plants)
Forest
Natural vegetation

The carbon impacts of these alternative land uses are not have not been assessed within this study, although the carbon impacts of wheat production are likely to be similar in magnitude to impacts in the UK (Table 9) and natural vegetation is likely to sequester

carbon at a rate highly dependent on the vegetation type and other local factors. The important carbon impacts in the context of this study are the impacts of biomass production, plus transport impacts, giving the comparison with biomass crop production in the UK, which imports could replace.

Figure 5: European Biomass Case Studies.

5.2 Carbon impacts of transport from importing biomass

5.2.1 Carbon Impacts of transport from France to UK of biomass crops

It is extremely unlikely that the UK will import wheat straw for energy generation because it has a low bulk density making it expensive to transport. Furthermore, wheat is currently the most prevalent UK arable crop with 1.79 million hectares of wheat cultivated in the UK in 2010 (Defra June Survey 2011), and not all of this straw is baled and used. Thus, further supplies of straw for energy generation could be sourced from the UK with lower transport costs than imports. Accordingly the emissions from transport from the two Polish and Spanish wheat straw plant case studies have not been assessed.

It is possible, but unlikely with current economic incentives, that miscanthus will be imported into the UK in significant quantities. Accordingly we have estimated transport emissions from the French miscanthus power plant (Bourgogne Power Plant) case study to the UK.

For additional context and to allow comparison of carbon impacts of transport by road with transport by sea we have calculated emissions from shipping miscanthus bales from Canada to the UK. Emissions from shipping are the only emissions that have been calculated in the case study of emissions from Canada.

Both transport carbon impacts have been calculated using Defra 2011 emission factors (Defra 2011).

5.2.2 France – Transport Assumptions

The assumptions for the French examples are for a one way journey by 17 tonne lorry assuming an average load of 52% (Defra 2011) from Bourgogne to Calais.

5.2.3 Canada – Transport Assumptions

The assumptions for Canada transport are for a one way journey of 5,744 km of a container ship from Toronto to Liverpool.

5.2.4 Transport Results

Figure 6 shows the breakdown and shows the total CO₂e impacts per hectare for two different journeys and the vast efficiencies of shipping compared to road transport are clearly shown. The distance from Canada to the UK is 10 times the distance from France to the UK yet the carbon impact of transport from Canada is around a quarter of the carbon impact of transport from France to the UK.

For imports from France, transport carbon impacts would be: $0.79 \text{ t } \text{CO}_2\text{e}$ per hectare assuming a yield of 10 t/ha; and $0.95 \text{ t } \text{CO}_2\text{e}$ per hectare assuming a yield of 12 t/ha.

For imports from Canada, transport carbon impacts would be: $0.2 \text{ t } \text{CO}_2\text{e}$ per hectare assuming a yield of 10 t/ha; and $0.3 \text{ t } \text{CO}_2\text{e}$ per hectare assuming a yield of 12 t/ha.

Figure 6: Carbon impacts of France–UK transport of biomass and Canada–UK transport of biomass.

6. **DISCUSSION**

The aim of this report was to identify the main alternative land uses to biomass crops grown within the UK and identify the carbon impacts of (a) biomass production and use for energy generation, and (b) alternative land uses.

Energy from biomass crops has a lower carbon impact (0.9 to 4.4 t CO_2e per ha/yr) than food crop production (3.1 to 11 t CO_2e per ha/yr). However, the ranges are large, and they overlap to some extent.

This headline result requires considerable qualification because the actual changes in land use when biomass crops are grown in place of food, or food production occurs in place of biomass crops, are very uncertain.

When biomass crops are grown in place of food, the food is likely to be grown elsewhere as market demand stimulates adequate production. It is not clear that the replacement area of food production will be the same as the area displaced because it is possible that increased competition for land will stimulate production efficiency and therefore higher yields, with replacement production on a smaller area of land. However, despite these uncertainties, it is highly likely that carbon impacts of the food production displaced by biomass crops will occur elsewhere and be on a similar scale to the displaced emissions.

A further qualification to the comparison between carbon impacts of energy from biomass crops and carbon impacts of food production is the possibility of indirect land use change (ILUC). This is land use change (LUC) that occurs as a consequence of changes elsewhere. When food production is displaced by another activity a chain of consequences may be triggered with very unpredictable changes in land use. Carbon impacts of LUC can be very high (e.g. 7 t CO₂e per ha/yr for change from permanent pasture to cropland). For any individual case, there is large uncertainty for whether or not ILUC will occur, and also the land types involved are highly uncertain.

When food production occurs in place of biomass crops the energy produced by use of biomass must be produced another way. If that energy production has the same carbon impact as national grid electricity, the carbon impacts will be greater (3.1 to 18 kg CO₂e per ha/yr) than the carbon impacts of generation using biomass (0.9 to 4.4 kg CO₂e per ha/yr). Again, the ranges are large and they overlap.

REFERENCES AND DATA SOURCES

Acciona Energia (2011) Sangüesa Biomass Power Plant Project Navarra, Spain Available from

http://www.accionaenergia.com/activity_areas/biomass/installations/plantasangues a/planta-de-biomasa-de-sangueesa-(25-mw).aspx?id=1&desde=

Bourgogne Pellets (2010) Available from http://www.bourgogne-pellets.fr/la-societe

- Dawson, J.J.C., Smith, P. (2007). Carbon losses from soil and its consequences for landuse management. Science of the Total Environment 382, 165-190.
- Defra, (2007). Opportunities and optimum sitings for energy crops. (Accessed October 2011). Available from http://archive.defra.gov.uk/foodfarm/growing/crops/industrial/energy/opportunities/i ndex.htm
- Defra (2010) June Survey "County level crops areas/livestock numbers/labour force 2010" spreadsheet Available from <u>http://www.defra.gov.uk/statistics/foodfarm/landuselivestock/junesurvey/junesurvey</u> <u>results/</u>
- Defra (2011) "2011 Guidelines to Defra/DECC's GHG conversion factors for company reporting" Available from http://www.defra.gov.uk/environment/economy/business-efficiency/reporting/
- Environment Agency (2009) "Bioenergy Review Mapping Work". Bristol: Environment Agency. Available from <u>http://publications.environment-</u> <u>agency.gov.uk/PDF/SCHO0809BQUQ-E-E.pdf</u>
- European Environment Agency, (2011). CORINE Land Cover 2006 raster data version 15. Available from http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-1
- European Commission Energy (2011) Case study on Przechlewo Straw Biomass Power Plant Available from http://www.managenergy.net/resources/289
- Forest Research, 1999. Yield models for energy coppice of poplar and willow. Project NF0407 for Defra. Available from: http://randd.defra.gov.uk/Document.aspx?Document=nf0407_4251_FRP.pdf [accessed 1 October 2011].
- Frischknecht R, Althaus H-J, Bauer C, Doka G, Heck T, Jungbluth N, Kellenberger D, Nemecek T (2007) 'The Environmental Relevance of Capital Goods in Life Cycle Assessments of Products and Services.' Int J LCA, DOI: http://dx.doi.org/10.1065/lca2007.02.308
- Garstang, J., et al. (2009) Bioenergy Review. Environment Agency publication. Available from http://publications.environment-agency.gov.uk/PDF/SCHO0809BQUQ-E-E.pdf
- Ofgem (2011) Figures see http://www.ofgem.gov.uk/Pages/MoreInformation.aspx? . docid=318&refer=Sustainability/Environment/RenewablObl/FuelledStations
- Price L., Bullard, M., Lyons, H., Anthony, S. and Nixon, P., 2004. Identifying the yield potential of Miscanthusx giganteus: an assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales. Biomass and Bioenergy, 26 (1) 3-13.

Wiltshire, J. et al. (2008). Scenario building to test and inform the development of a BSI method for assessing greenhouse gas emissions from food. Technical annex to the final report for Defra project FO0404.

Appendix 1

DECC CARBON IMPACTS OF USING BIOMASS IN BIO-ENERGY AND OTHER SECTORS

Preliminary Greenhouse Gas Emissions Results for Energy Crops (28.10.11)

Main Sources of Results:BEAT2 workbooks (modified where necessary)Global Warming Potentials:25 kg eq. CO2/kg CH4298 kg eq. CO2/kg N2O

Miscanthus

Miscanthus Bales at Farm Gate

Basic Assumption:

Nitrogen fertiliser application rate = 0 kg N/ha.a

Contribution	Greenhouse Gas Emissions					
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhouse Gases		
	kg CO ₂ /ha.a		kg N₂O/ha.a	kg eq. CO ₂ /ha.a		
Cultivation	289	0.134	0.00633	294		
Harvesting and Baling	270	0.124	0.00423	274		
Totals	559	0.258	0.01056	568		

Assumption for Low Case:

High Yield = 12 t (oven dry)/ha.a

=

17.1 t (as received)/ha.a (at 30% moisture content by weight)

Contribution	Greenhouse Gas Emissions					
	Carbon Dioxide	Methane	Nitrous Oxide	Total Greenhouse Gases		
	kg CO ₂ /t (ar)	kg Ori ₄ /t (ar)	kg N ₂ O/t (ar)	kg eq. CO ₂ /t (ar)		
Cultivation	16.9	0.00784	0.000370	17.2		
Harvesting and Baling	15.8	0.00725	0.000247	16.0		
Totals	32.7	0.01509	0.000617	33.2		

Assumption for High Case:

Low Yield = 11 t (oven dry)/ha.a

= 14.3 t (as received)/ha.a (at 30% moisture content by weight)

Contribution	Greenhouse Gas Emissions				
	Carbon Dioxide	Methane kg CH₄/t (ar)	Nitrous Oxide	Total Greenhouse Gases	
	kg CO ₂ /t (ar)		kg N ₂ O/t (ar)	kg eq. CO ₂ /t (ar)	
Cultivation	20.2	0.00937	0.000443	20.6	
Harvesting and Baling	18.9	0.00867	0.000296	19.1	
Totals	39.1	0.01804	0.000739	39.7	

Miscanthus Chips at Farm Gate

Basic Assumption:

Nitrogen fertiliser application rate = 0 kg N/ha.a

Contribution	Greenhouse Gas Emissions					
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhouse Gases		
	kg CO₂/ha.a	-	kg N₂O/ha.a	kg eq. CO₂/ha.a		
Cultivation	299	0.134	0.00633	304		
Harvesting and Chipping	370	0.173	0.00591	376		
Totals	669	0.307	0.01224	680		

Assumption for Low Case:

High Yield = 12 t (oven dry)/ha.a

17.1 t (as received)/ha.a (at 30% moisture content by weight)

Chipping losses = 7%

=

Contribution		s		
	Carbon Dioxide	Methane kg CH₄/t (ar)	Nitrous Oxide	Total Greenhouse Gases
	kg CO ₂ /t (ar)		kg N ₂ O/t (ar)	kg eq. CO ₂ /t (ar)
Cultivation	18.8	0.0084	0.000398	19.1
Harvesting and Chipping	23.3	0.0109	0.000371	23.7
Totals	42.1	0.0193	0.000769	42.8

Assumption for High Case:

Low Yield = 11 t (oven dry)/ha.a

7%

14.3 t (as received)/ha.a (at 30% moisture content by weight)

Chipping losses =

=

Contribution		S		
	Carbon Dioxide	Methane kg CH₄/t (ar)	Nitrous Oxide	Total Greenhouse Gases
	kg CO ₂ /t (ar)		kg N ₂ O/t (ar)	kg eq. CO ₂ /t (ar)
Cultivation	22.5	0.01008	0.000476	22.9
Harvesting and Chipping	27.8	0.01301	0.000444	28.3
Totals	50.3	0.02309	0.000920	51.2

Commercial and Industrial Heating by Combustion: Miscanthus Bales

Assumptions for Low Case:

High Yield	=	12 t (oven dry)/ha.a				
	=	17.1 t (as rece	eived)/h	a.a (at 3	30% moisture	content by weight)	
Transport Mod	de to St	orage/Fuel Pro	cessing	I	=	road	
Round Trip Transport Distance to Storage/Fuel Processing = 100 km							
Natural Drying)						
Transport Mod	de to Er	nd Use		=	road		
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km		
Net Output Ra	ating of	Heating Plant	=	0.8 MV	V		
Load Factor o	f Heatir	ig Plant	=	65%			
Thermal Effici	ency of	Heating Plant	=	90%			
Output:	Heat		=	37.0 N	IWh/ha.a		

Contribution		Greenhouse Gas Emissions					
	Carbon	Methane	Nitrous	Total			
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse			
	kg CO ₂ /ha.a		kg	Gases			
			N₂O/ha.a	kg eq. CO ₂ /ha.a			
Cultivation	289	0.134	0.00632	294			
Harvesting and Baling	270	0.126	0.00425	274			
Transport to Storage	111	0.070	0.02640	121			
Natural Drying in Storage	26	0.043	0.00259	28			
Transport to Plant	87	0.054	0.02048	94			
Combustion	0	0.296	0.73937	228			
Plant	77	0.113	0.00451	81			
Start-Up Fuel	61	0.164	0.22680	133			
Ash Disposal	3	0.002	0.00070	3			
Lime Displacement	- 4	-0.009	-0.00018	- 4			
Totals	920	0.993	1.03124	1252			

Assumptions for High Case:

Low Yield	=	11 t (oven dry)/ha.a				
	=	14.3 t (as rece	eived)/h	a.a (at 3	30% moisture	content by weight)	
Transport Mod	de to St	orage/Fuel Pro	cessing	J	=	road	
Round Trip Transport Distance to Storage/Fuel Processing = 600 km							
Natural Drying)						
Transport Mod	de to Er	nd Use		=	road		
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km		
Net Output Ra	ating of	Heating Plant	=	0.8 MV	V		
Load Factor o	f Heatir	ig Plant	=	65%			
Thermal Effici	ency of	Heating Plant	=	88%			
Output:	Heat		=	30.2 N	IWh/ha.a		

Contribution	Greenhouse Gas Emissions					
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhouse		
	kg CO₂/ha.a		kg N₂O/ha.a	Gases kg eq. CO ₂ /ha.a		
Cultivation	290	0.134	0.00635	295		
Harvesting and Baling	270	0.125	0.00423	274		
Transport to Storage	559	0.352	0.13241	607		
Natural Drying in Storage	22	0.036	0.00212	24		
Transport to Plant	433	0.273	0.10278	470		
Combustion	0	0.248	0.61820	190		
Plant	56	0.082	0.00323	59		
Start-Up Fuel	50	0.134	0.18546	109		
Ash Disposal	2	0.002	0.00060	2		
Lime Displacement	- 3	-0.008	-0.00030	- 4		
Totals	1679	1.378	1.05508	2026		

Commercial and Industrial Heating by Combustion: Miscanthus Chips

Assumptions for Low Case:

High Yield	=	12 t (oven dry)/ha.a			
	=	17.1 t (as rece	eived)/h	a.a (at 3	30% moisture	content by weight)
Transport Mod	de to St	orage/Fuel Pro	cessing	I	=	road
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =	100 km
Natural Drying	9					
Transport Mod	de to Er	nd Use		=	road	
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km	
Net Output Ra	ating of	Heating Plant	=	0.8 MV	V	
Load Factor of Heating Plant =				65%		
Thermal Effici	ency of	Heating Plant	=	90%		
Output:	Heat		=	40.1 N	IWh/ha.a	

Contribution	Greenhouse Gas Emissions						
	Carbon	Methane	Nitrous	Total			
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse			
	kg CO ₂ /ha.a	0	kg	Gases			
			N₂O/ha.a	kg eq. CO ₂ /ha.a			
Cultivation	290	0.134	0.00633	295			
Harvesting and Chipping	370	0.173	0.00593	376			
Transport to Storage	115	0.073	0.02728	125			
Natural Drying in Storage	27	0.044	0.02644	36			
Transport to Plant	77	0.048	0.01827	84			
Combustion	0	0.321	0.80128	239			
Plant	108	0.160	0.00641	114			
Start-Up Fuel	66	0.178	0.24579	144			
Ash Disposal	2	0.002	0.00521	4			
Lime Displacement	- 3	-0.007	-0.00016	- 3			
Totals	1052	1.126	1.11634	1414			

Assumptions for High Case:

Low Yield	=	11 t (oven dry)/ha.a					
	=	14.3 t (as rece	eived)/h	a.a (at 3	30% moistu	re content by weig	ht)	
Transport Mod	de to St	orage/Fuel Pro	cessing	J	=	road		
Round Trip Tr	Round Trip Transport Distance to Storage/Fuel Processing = 600 km							
Batch Drying	with Die	sel Fuel						
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km			
Net Output Ra	ating of	Heating Plant	=	0.8 MV	V			
Load Factor o	f Heatir	ig Plant	=	65%				
Thermal Effici	ency of	Heating Plant	=	88%				
Output:	Heat		=	32.8 M	Wh/ha.a			

Contribution	Greenhouse Gas Emissions					
	Carbon	Methane	Nitrous	Total		
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse		
	kg CO ₂ /ha.a		kg			
			N ₂ O/ha.a	kg eq. CO ₂ /ha.a		
Cultivation	290	0.134	0.00632	295		
Harvesting and Chipping	370	0.173	0.00593	376		
Transport to Storage	577	0.364	0.13695	627		
Batch Drying and Storage	1160	0.994	0.02538	1192		
Transport to Plant	387	0.243	0.09168	420		
Combustion	0	0.268	0.66983	206		
Plant	68	0.100	0.00400	72		
Start-Up Fuel	54	0.146	0.20095	118		
Ash Disposal	2	0.001	0.00046	2		
Lime Displacement	- 2	-0.006	-0.00013	- 2		
Totals	2906	2.417	1.14107	3306		

Commercial and Industrial Heating by Combustion: Miscanthus Pellets

Assumptions for Low Case:

High Yield	=	12 t (oven dry)/ha.a			
	=	17.1 t (as rece	eived)/h	a.a (at 3	30% moisture	content by weight)
Transport Mod	de to St	orage/Fuel Pro	cessing	ļ	=	road
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =	100 km
Bulk Drying w	ith Elec	tricity				
Transport Mod	de to Er	nd Use		=	road	
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km	
Net Output Ra	ating of	Heating Plant	=	0.8 MV	V	
Load Factor o	f Heatir	ig Plant	=	65%		
Thermal Effici	ency of	Heating Plant	=	90%		
Output:	Heat		=	37.4 M	Wh/ha.a	

Contribution	Greenhouse Gas Emissions					
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO₂/ha.a		
Cultivation	290	0.135	0.00632	295		
Harvesting and Chipping	370	0.172	0.00590	376		
Transport to Storage	115	0.071	0.02728	125		
Bulk Drying and Storage	1446	3.337	0.06487	1549		
Milling	42	0.090	0.00127	45		
Pelletising	205	0.531	0.00732	221		
Transport to Plant	74	0.045	0.01753	80		
Combustion	0	0.299	0.74738	230		
Plant	78	0.114	0.00456	82		
Start-Up Fuel	62	0.166	0.22907	134		
Ash Disposal	2	0	0.00052	2		
Lime Displacement	- 3	-0.007	-0.00015	- 3		
Totals	2681	4.903	1.11187	3136		

Assumptions for High Case:

Low Yield	=	11 t (oven dry)/ha.a						
	=	14.3 t (as rece	eived)/h	a.a (at 3	30% moist	ure c	ontent by v	weight)	
Transport Mod	1	=		road					
Round Trip Transport Distance to Storage/Fuel Processing = 600 km									
Bulk Drying with Electricity									
Transport Mode to End Use				=	road				
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km				
Net Output Rating of Heating Plant =				0.8 MV	V				
Load Factor of Heating Plant =				65%					
Thermal Efficiency of Heating Plant			=	88%					
Output:	Heat		=	30.6 M	Wh/ha.a				

Contribution	Greenhouse Gas Emissions						
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO ₂ /ha.a			
Cultivation	289	0.134	0.00633	294			
Harvesting and Chipping	370	0.174	0.00593	376			
Transport to Storage	577	0.364	0.13695	627			
Bulk Drying and Storage	1209	2.790	0.05428	1295			
Milling	35	0.076	0.00104	37			
Pelletising	172	0.443	0.00614	185			
Transport to Plant	371	0.235	0.08805	403			
Combustion	0	0.250	0.61125	188			
Plant	64	0.094	0.00373	67			
Start-Up Fuel	51	0.136	0.18750	110			
Ash Disposal	2	0	0.00043	2			
Lime Displacement	- 2	-0.006	-0.00012	- 2			
Totals	3138	4.690	1.10151	3582			
Combined Heat and Power Generation by Combustion: Miscanthus Bales

High Yield	=	12 t (oven dry)/ha.a						
	=	17.1 t (as rece	eived)/ha	a.a (at 3	30% mo	isture c	ontent	by weig	ht)
Transport Mod	de to Sto	orage/Fuel Pro	cessing			=	road		
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing	=	100 kn	า	
Natural Drying)								
Transport Mod	de to En	d Use		=	road				
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km	า			
Net Output Ra	ating of (Combined Hea	t and Po	ower Pl	ant:	Heat	=		31 MW
						Electric	city	=	12.5 MW
Load Factor o	f Combi	ned Heat and	Power F	Plant		=	55%		
Thermal Effici	ency of	Combined Hea	at and P	ower P	lant	=	88%		
Output:	Heat		=	25.8 N	Wh/ha.	a			
	Electric	city	=	10.4 M	Wh/ha	a			

Contribution		Greenhouse	Gas Emission	S
	Carbon	Methane	Nitrous	Total
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse
	kg CO ₂ /ha.a		kg	Gases
			N ₂ O/ha.a	kg eq. CO ₂ /ha.a
Cultivation	290	0.134	0.00615	295
Harvesting and Baling	270	0.124	0.00434	274
Transport to Storage	111	0.070	0.02639	121
Natural Drying in Storage	26	0.043	0.00253	28
Transport to Plant	86	0.055	0.02061	94
Combustion	0	0.296	0.73933	228
Plant	489	0.001	0.00002	489
Start-Up Fuel	4	0.009	0.00001	4
Ash Disposal	3	0.002	0.00072	5
Lime Displacement	- 4	-0.009	-0.00036	- 4
Totals	1275	0.725	0.79974	1534

Low Yield	=	11 t (oven dry))/ha.a						
	=	14.3 t (as rece	eived)/ha	a.a (at 3	30% mo	isture c	ontent k	by weig	ht)
Transport Mod	de to Sto	orage/Fuel Pro	cessing			=	road		
Round Trip Tra	ansport	Distance to St	orage/F	uel Pro	cessing	=	600 km	า	
Natural Drying	l								
Transport Mod	de to En	d Use		=	road				
Round Trip Tra	ansport	Distance to Er	nd Use	=	600 km	ı			
Net Output Ra	ting of (Combined Hea	t and Po	ower Pla	ant:	Heat	=		20 MW
						Electric	city	=	8 MW
Load Factor of	f Combi	ned Heat and I	Power F	Plant		=	55%		
Thermal Efficie	ency of	Combined Hea	at and P	ower P	lant	=	54%		
Output:	Heat		=	13.2 M	Wh/ha.a	a			
	Electric	city	=	5.3 MV	Vh/ha.a				

Contribution		Greenhouse	Gas Emission	S
	Carbon	Methane	Nitrous	Total
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse
	kg CO ₂ /ha.a		kg	Gases
			N₂O/ha.a	kg eq. CO ₂ /ha.a
Cultivation	290	0.134	0.00631	295
Harvesting and Baling	270	0.124	0.00427	274
Transport to Storage	559	0.352	0.13244	607
Natural Drying in Storage	22	0.036	0.00223	24
Transport to Plant	434	0.273	0.10276	465
Combustion	0	0.247	0.61825	190
Plant	348	0.001	0.00002	348
Start-Up Fuel	4	0.008	0.00001	4
Ash Disposal	3	0.002	0.00056	3
Lime Displacement	- 3	-0.008	-0.00019	- 3
Totals	1927	1.169	0.86666	2207

Combined Heat and Power Generation by Combustion: Miscanthus Chips

High Yield	=	12 t (oven dry)/ha.a						
	=	17.1 t (as rece	eived)/h	a.a (at 3	30% mo	isture c	ontent	by weig	ht)
Transport Mod	de to Sto	orage/Fuel Pro	cessing	l		=	road		
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing	=	100 kn	า	
Natural Drying)								
Transport Mod	de to En	d Use		=	road				
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km	า			
Net Output Ra	ating of (Combined Hea	t and P	ower Pl	ant:	Heat	=		31 MW
						Electric	city	=	12.5 MW
Load Factor o	f Combi	ned Heat and	Power F	Plant		=	55%		
Thermal Effici	ency of	Combined Hea	at and P	ower P	lant	=	88%		
Output:	Heat		=	27.9 M	Wh/ha.a	a			
	Electric	city	=	11.3 M	Wh/ha	a			

Contribution		Greenhouse	Gas Emission	S
	Carbon	Methane	Nitrous	Total
	Dioxide	kg CH₄/ha.a	Oxide	Greennouse
	kg CO ₂ /ha.a		kg	
			N ₂ O/ha.a	kg eq. CO ₂ /ha.a
Cultivation	289	0.134	0.00635	294
Harvesting and Chipping	370	0.173	0.00591	376
Transport to Storage	115	0.072	0.02730	125
Batch Drying and Storage	27	0.044	0.00266	29
Transport to Plant	77	0.049	0.01825	84
Combustion	0	0.320	0.80102	247
Plant	513	0.001	0.00002	513
Start-Up Fuel	4	0.009	0.00001	4
Ash Disposal	2	0.002	0.00055	2
Lime Displacement	- 3	-0.007	-0.00016	- 3
Totals	1394	0.797	0.86191	1671

Low Yield	=	11 t (oven dry))/ha.a						
	=	14.3 t (as rece	eived)/ha	a.a (at 3	30% mo	isture c	ontent k	oy weig	ht)
Transport Mod	de to Ste	orage/Fuel Pro	cessing			=	road		
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing	=	600 km	า	
Batch Drying	with Die	sel Fuel							
Transport Mod	de to En	id Use		=	road				
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km	1			
Net Output Ra	ating of (Combined Hea	t and Po	ower Pl	ant:	Heat	=		20 MW
						Electric	city	=	8 MW
Load Factor o	f Combi	ined Heat and	Power F	Plant		=	55%		
Thermal Effici	ency of	Combined Hea	at and P	ower P	lant	=	54%		
Output:	Heat		=	14.4 M	Wh/ha.a	a			
	Electric	city	=	5.7 MV	Vh/ha.a				

Contribution		Greenhouse	Gas Emission	S
	Carbon	Methane	Nitrous	Total
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse
	kg CO₂/ha.a	-	kg	Gases
			N₂O/ha.a	kg eq. CO ₂ /ha.a
Cultivation	289	0.134	0.00633	294
Harvesting and Chipping	370	0.173	0.00591	376
Transport to Storage	577	0.364	0.13696	627
Batch Drying and Storage	1160	0.995	0.02539	1192
Transport to Plant	386	0.243	0.91678	665
Combustion	0	0.268	0.66995	206
Plant	310	0.001	0.00001	310
Start-Up Fuel	2	0.004	0	2
Ash Disposal	2	0.001	0.00044	2
Lime Displacement	- 2	-0.006	-0.00012	- 2
Totals	3094	2.177	1.76165	3672

Combined Heat and Power Generation by Combustion: Miscanthus Pellets

High Yield	=	12 t (oven dry)/ha.a						
	=	17.1 t (as rece	eived)/ha	a.a (at 3	30% mo	isture c	ontent	by weig	ht)
Transport Mod	de to Sto	orage/Fuel Pro	cessing			=	road		
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing	=	100 kn	า	
Bulk Drying w	ith Elect	ricity							
Transport Mod	de to En	d Use		=	road				
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km	า			
Net Output Ra	ating of (Combined Hea	t and Po	ower Pl	ant:	Heat	=		31 MW
						Electric	city	=	12.5 MW
Load Factor o	f Combi	ned Heat and	Power F	Plant		=	55%		
Thermal Effici	ency of	Combined Hea	at and P	ower P	lant	=	88%		
Output:	Heat		=	26.0 M	Wh/ha.	a			
	Electric	city	=	10.5 M	Wh/ha	a			

Contribution		Greenhouse	Gas Emission	S
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N ₂ O/ba a	Total Greenhouse Gases
Cultivation	289	0.134	0.00632	294
Harvesting and Chipping	370	0.173	0.00592	376
Transport to Storage	115	0.072	0.02730	125
Bulk Drying and Storage	1446	3.338	0.06491	1549
Milling	42	0.091	0.00124	45
Pelletising	206	0.531	0.00735	222
Transport to Plant	74	0.047	0.01754	80
Combustion	0	0.299	0.74744	230
Plant	561	0.001	0.00002	561
Start-Up Fuel	4	0.010	0.00001	4
Ash Disposal	2	0.001	0.00051	2
Lime Displacement	- 3	-0.007	-0.00015	- 3
Totals	3106	4.690	0.87841	3485

Low Yield	=	11 t (oven dry)	/ha.a						
	=	14.3 t (as rece	ived)/ha	a.a (at 3	80% mo	isture c	ontent k	oy weig	ht)
Transport Mod	de to Sto	orage/Fuel Pro	cessing			=	road		
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing	=	600 km	ı	
Bulk Drying w	ith Elect	ricity							
Transport Mod	de to En	d Use		=	road				
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km	l			
Net Output Ra	ating of (Combined Hea	t and Po	ower Pla	ant:	Heat	=		20 MW
						Electric	city	=	8 MW
Load Factor o	f Combi	ned Heat and I	Power F	Plant		=	55%		
Thermal Effici	ency of	Combined Hea	at and P	ower P	lant	=	54%		
Output:	Heat		=	13.4 M	Wh/ha.a	a			
	Electric	city	=	5.4 MV	Vh/ha.a				

Contribution		Greenhouse	Gas Emission	S
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO ₂ /ha.a
Cultivation	290	0.134	0.00632	295
Harvesting and Chipping	370	0.173	0.00591	376
Transport to Storage	577	0.364	0.13697	627
Bulk Drying and Storage	1209	2.791	0.05428	1295
Milling	35	0.078	0.00011	37
Pelletising	172	0.444	0.00613	185
Transport to Plant	371	0.234	0.08803	403
Combustion	0	0.250	0.62509	193
Plant	316	0.008	0.00001	316
Start-Up Fuel	2	0.004	0	2
Ash Disposal	2	0.001	0.00043	2
Lime Displacement	- 2	-0.005	-0.00011	- 2
Totals	3342	4.476	0.92317	3729

Power Only Generation by Co-firing: Miscanthus Chips

High Yield	=	12 t (oven dry)/ha.a			
	=	17.1 t (as rece	eived)/h	a.a (a	t 30% moisture c	content by weight)
Transport Mod	de to Ste	orage/Fuel Pro	cessing	l	=	road
Round Trip Tr	ansport	Distance to St	orage/F	uel P	rocessing =	100 km
Natural Drying)					
Transport Mod	de to En	nd Use		=	road	
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km	
Thermal Effici	ency of	Power Plant	=	36%		
Output:	Electric	city	=	18.1	MWh/ha.a	

Contribution		Greenhouse	e Gas Emissior	าร
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhouse
	kg CO₂/ha.a		kg N₂O/ha.a	kg eq. CO ₂ /ha.a
Cultivation	290	0.134	0.00632	295
Harvesting and Chipping	370	0.173	0.00596	376
Transport to Storage	116	0.072	0.02727	126
Natural Drying in Storage	27	0.044	0.00271	29
Transport to Plant	87	0.055	0.02059	95
Combustion	0	0.361	0.90302	278
Grinding Electricity and Plant Spares	67	0.156	0.00217	72
Ash Disposal	3	0.001	0.00054	3
Totals	960	0.996	0.96858	1274

Low Yield	=	11 t (oven dry)/ha.a				
	=	14.3 t (as rece	eived)/h	a.a (at 3	30% moistu	re conte	ent by weight)
Transport Mod	de to St	orage/Fuel Pro	cessing	l	=	roa	d
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =	600) km
Batch Drying	with Die	sel Fuel					
Transport Mod	de to Er	nd Use		=	road		
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km		
Thermal Effici	ency of	Power Plant	=	30%			
Output:	Electric	city	=	12.6 M	Wh/ha.a		

Contribution	Greenhouse Gas Emissions						
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhouse			
	kg CO₂/ha.a		kg N₂O/ha.a	kg eq. CO ₂ /ha.a			
Cultivation	290	0.134	0.00629	295			
Harvesting and Chipping	370	0.173	0.00592	376			
Transport to Storage	577	0.364	0.13694	627			
Batch Drying and Storage	782	0.994	0.02542	814			
Transport to Plant	435	0.274	0.10334	473			
Combustion	0	0.302	0.75519	232			
Grinding Electricity and Plant Spares	56	0.131	0.00176	60			
Ash Disposal	2	0.001	0.00050	2			
Totals	2512	2.373	1.0356	2879			

Power Only Generation by Co-firing: Miscanthus Pellets

High Yield	=	12 t (oven dry)/ha.a			
	=	17.1 t (as rece	eived)/h	a.a (at 3	30% moisture o	content by weight)
Transport Mod	de to Ste	orage/Fuel Pro	cessing		=	road
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =	100 km
Bulk Drying w	ith Elect	tricity				
Transport Mod	de to En	id Use		=	road	
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km	
Thermal Effici	ency of	Power Plant	=	36%		
Output:	Electric	city	=	14.8 M	Wh/ha.a	

Contribution	Greenhouse Gas Emissions						
	Carbon	Methane	Nitrous	Total			
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse			
	kg CO ₂ /ha.a		kg N₂O/ha.a	Gases			
				kg eq. CO ₂ /ha.a			
Cultivation	290	0.134	0.00632	295			
Harvesting and Chipping	371	0.173	0.00591	377			
Transport to Storage	115	0.073	0.02729	125			
Bulk Drying and Storage	1447	3.338	0.06491	1550			
Milling	42	0.091	0.00126	45			
Pelletising	206	0.533	0.00736	222			
Transport to Plant	74	0.047	0.01760	80			
Combustion	0	0.296	0.73877	228			
Grinding Electricity and Plant Spares	57	0.133	0.00183	61			
Ash Disposal	2	0.002	0.00046	2			
Totals	2604	4.820	0.87171	2985			

Low Yield	=	11 t (oven dry)/ha.a				
	=	14.3 t (as rece	eived)/h	a.a (at 3	30% moisture	content by weight)	
Transport Mod	de to St	orage/Fuel Pro	cessing	l	=	road	
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =	600 km	
Bulk Drying w	ith Elect	tricity					
Transport Mod	de to En	nd Use		=	road		
Round Trip Tr	Round Trip Transport Distance to End Use = 600 km						
Thermal Effici	ency of	Power Plant	=	30%			
Output:	Electric	city	=	10.3 M	Wh/ha.a		

Contribution	Greenhouse Gas Emissions						
	Carbon	Methane	Nitrous	Total			
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse			
	kg CO ₂ /ha.a	-	kg N ₂ O/ha.a	Gases			
				kg eq. CO ₂ /ha.a			
Cultivation	289	0.134	0.00632	294			
Harvesting and Chipping	371	0.173	0.00591	377			
Transport to Storage	578	0.364	0.13695	628			
Bulk Drying and Storage	1210	2.791	0.05427	1296			
Milling	35	0.076	0.00105	37			
Pelletising	172	0.446	0.00615	185			
Transport to Plant	372	0.235	0.08832	404			
Combustion	0	0.247	0.61779	190			
Grinding Electricity and Plant Spares	25	0.112	0.00153	28			
Ash Disposal	2	0.002	0.00038	2			
Totals	3054	4.580	0.91867	3441			

High Yield	=	12 t (oven dry	/)/ha.a					
	=	17.1 t (as rece	eived)/h	a.a (at 3	30% moisture	content by weight)		
Transport Mode to Storage/Fuel Processing = road								
Round Trip Tr	ansport	Distance to St	torage/F	uel Pro	cessing =	100 km		
Natural Drying	9							
Transport Mo	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to E	nd Use	=	100 km			
Net Output Ra	ating of	Power Plant	=	25 MW	1			
Load Factor o	f Power	⁻ Plant	=	85%				
Thermal Effici	ency of	Power Plant	=	36%				
Output:	Electri	city	=	14.8 N	IWh/ha.a			

Contribution	Greenhouse Gas Emissions						
	Carbon	Methane	Nitrous	Total			
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse			
	kg CO₂/ha.a		kg	Gases			
			N ₂ O/ha.a	kg eq. CO ₂ /ha.a			
Cultivation	289	0.134	0.00636	294			
Harvesting and Baling	270	0.125	0.00429	274			
Transport to Storage	111	0.070	0.02647	121			
Natural Drying in Storage	26	0.043	0.00251	28			
Transport to Plant	86	0.054	0.02056	93			
Combustion	0	0.296	0.73943	228			
Plant	212	0	0.00001	212			
Start-Up Fuel	0	0	0	0			
Ash Disposal	3	0.002	0.00074	3			
Lime Displacement	- 4	-0.009	-0.00015	- 4			
Totals	993	0.715	0.80022	1249			

Low Yield	=	11 t (oven dry)/ha.a					
	=	14.3 t (as rece	eived)/h	a.a (at 3	30% moistu	re co	ntent by weigh	nt)
Transport Mo	de to St	orage/Fuel Pro	cessing	l	=	r	oad	
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =	6	600 km	
Natural Drying	9							
Transport Mo	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km			
Net Output Ra	ating of	Power Plant	=	25 MV	/			
Load Factor c	f Power	Plant	=	85%				
Thermal Effici	ency of	Power Plant	=	25%				
Output:	Electric	city	=	8.6 MV	Vh/ha.a			

Contribution	ution Greenhouse Gas Emissions						
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhouse			
	kg CO₂/ha.a		kg N⊦O/ba a	Gases			
			N ₂ O/Ha.a	ky eq. 002/11a.a			
Cultivation	290	0.134	0.00636	295			
Harvesting and Baling	270	0.124	0.00421	274			
Transport to Storage	559	0.352	0.13251	607			
Natural Drying in Storage	22	0.036	0.00215	24			
Transport to Plant	434	0.273	0.10288	471			
Combustion	0	0.247	0.61834	190			
Plant	157	0	0.00001	157			
Start-Up Fuel	0	0	0	0			
Ash Disposal	2	0.002	0.00060	2			
Lime Displacement	- 3	-0.008	-0.00017	- 3			
Totals	1731	1.160	0.86689	2017			

High Yield	=	12 t (oven dry	/)/ha.a					
	=	17.1 t (as rece	eived)/h	a.a (at 3	30% moisture	content by weight)		
Transport Mode to Storage/Fuel Processing = road								
Round Trip Tr	ansport	Distance to St	torage/F	uel Pro	cessing =	100 km		
Natural Drying)							
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to E	nd Use	=	100 km			
Net Output Ra	ating of	Power Plant	=	25 MW	1			
Load Factor of Power Plant = 85%								
Thermal Effici	ency of	Power Plant	=	36%				
Output:	Electri	city	=	16.0 M	Wh/ha.a			

Contribution		Greenhouse	Gas Emission	S	
	Carbon Dioxide	Methane	Nitrous Oxide	Total Greenhouse	
	kg CO₂/ha.a	ng On #ma.a	kg	Gases	
			N₂O/ha.a	kg eq. CO ₂ /ha.a	
Cultivation	290	0.134	0.00633	295	
Harvesting and Chipping	370	0.174	0.00591	376	
Transport to Storage	115	0.072	0.02729	125	
Natural Drying in Storage	27	0.044	0.00266	29	
Transport to Plant	77	0.049	0.01827	84	
Combustion	0	0.320	0.80115	247	
Plant	230	0.001	0.00001	230	
Start-Up Fuel	0	0	0	0	
Ash Disposal	2	0.001	0.00052	2	
Lime Displacement	- 3	-0.007	-0.00014	- 3	
Totals	1108	0.788	0.86200	1385	

Low Yield	=	11 t (oven dry)/ha.a					
	=	14.3 t (as rece	eived)/h	a.a (at 3	30% mois	ture c	content by weight)	
Transport Mod	de to St	orage/Fuel Pro	cessing	l	=	:	road	
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing=		600 km	
Batch Drying	with Die	sel Fuel						
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km			
Net Output Ra	ating of	Power Plant	=	25 MW	/			
Load Factor o	f Power	Plant	=	85%				
Thermal Effici	ency of	Power Plant	=	25%				
Output:	Electri	city	=	9.3 MV	Vh/ha.a			

Contribution	Greenhouse Gas Emissions					
	Carbon Dioxide	Methane	Nitrous Oxide	Total Greenbouse		
	kg CO ₂ /ha.a	kg CH₄/ha.a	kg	Gases		
			N ₂ O/ha.a	kg eq. CO ₂ /ha.a		
Cultivation	289	0.134	0.00633	294		
Harvesting and Chipping	370	0.173	0.00592	376		
Transport to Storage	577	0.364	0.13695	627		
Batch Drying and Storage	1160	0.994	0.02538	1192		
Transport to Plant	386	0.244	0.09166	419		
Combustion	0	0.261	0.66995	206		
Plant	170	0	0	170		
Start-Up Fuel	0	0	0	0		
Ash Disposal	2	0.001	0.00045	2		
Lime Displacement	- 2	-0.006	-0.00013	- 2		
Totals	2952	2.165	0.93651	3284		

High Yield	=	12 t (oven dry	/ha.a			
	=	17.1 t (as rece	eived)/h	a.a (at 3	30% moisture	content by weight)
Transport Mod	de to St	orage/Fuel Pro	cessing	I	=	road
Round Trip Tr	ansport	Distance to St	torage/F	uel Pro	cessing =	100 km
Bulk Drying w	ith Elec	tricity				
Transport Mod	de to Er	nd Use		=	road	
Round Trip Tr	ansport	Distance to E	nd Use	=	100 km	
Net Output Ra	ating of	Power Plant	=	25 MW	1	
Load Factor of Power Plant = 85%						
Thermal Effici	ency of	Power Plant	=	36%		
Output:	Electri	city	=	14.9 M	Wh/ha.a	

Contribution		Greenhouse Gas Emissions					
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO ₂ /ha.a			
Cultivation	289	0.134	0.00632	294			
Harvesting and Chipping	370	0.173	0.00592	376			
Transport to Storage	115	0.073	0.02730	125			
Bulk Drying and Storage	1446	3.337	0.06490	1549			
Milling	42	0.091	0.00125	45			
Pelletising	205	0.531	0.00733	220			
Transport to Plant	74	0.047	0.01755	80			
Combustion	0	0.299	0.74750	230			
Plant	214	0	0	214			
Start-Up Fuel	0	0	0	0			
Ash Disposal	2	0.001	0.00051	2			
Lime Displacement	- 3	-0.007	-0.00015	- 3			
Totals	2754	4.679	0.87848	3132			

Low Yield	=	11 t (oven dry)/ha.a					
	=	14.3 t (as rece	eived)/h	a.a (at 3	30% mois	sture c	ontent by weig	ht)
Transport Mod	de to St	orage/Fuel Pro	cessing	J	=	=	road	
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =	=	600 km	
Bulk Drying w	ith Elec	tricity						
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km			
Net Output Ra	ating of	Power Plant	=	25 MV	/			
Load Factor o	f Power	Plant	=	85%				
Thermal Effici	ency of	Power Plant	=	25%				
Output:	Electri	city	=	8.7 MV	Vh/ha.a			

Contribution		Greenhouse Gas Emissions						
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO₂/ha.a				
Cultivation	289	0.134	0.00633	294				
Harvesting and Chipping	370	0.173	0.00591	376				
Transport to Storage	577	0.364	0.13695	627				
Bulk Drying and Storage	1209	2.791	0.05427	1295				
Milling	35	0.076	0.00105	37				
Pelletising	172	0.444	0.00613	185				
Transport to Plant	371	0.234	0.08804	403				
Combustion	0	0.250	0.06251	24				
Plant	159	0	0	159				
Start-Up Fuel	0	0	0	0				
Ash Disposal	2	0.001	0.00043	2				
Lime Displacement	- 2	-0.005	-0.00012	- 2				
Totals	3182	4.462	0.36150	3400				

Short Rotation Coppice

SRC Wood Chips at Farm Gate

Basic Assumptions:

Nitrogen fertiliser application rate = 0 kg N/ha.a

Chip harvesting

Contribution	Greenhouse Gas Emissions				
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhouse Gases	
	kg CO₂/ha.a	CO ₂ /ha.a		kg eq. CO ₂ /ha.a	
Cultivation	205.1	0.0286	0.029389	214.6	
Harvesting and Chipping	65.4	0.0167	0.000460	66.0	
Totals	270.5	0.0453	0.029849	280.6	

Assumption for Low Case:

High Yield = 11.7 t (oven dry)/ha.a

=

23.4 t (as received)/ha.a (at 50% moisture content by weight)

Contribution	Greenhouse Gas Emissions						
	Carbon	Methane	Nitrous	Total Greenhouse			
	Dioxide	kg CH₄/t (ar)	Oxide	Gases			
	kg CO ₂ /t (ar)	g CO ₂ /t (ar)		kg eq. CO ₂ /t (ar)			
Cultivation	8.7	0.00122	0.00126	9.1			
Harvesting and Chipping	2.8	0.00071	0.00002	2.8			
Totals	11.5	0.00193	0.00128	11.9			

Assumption for High Case:

Low Yield = 10.0 t (oven dry)/ha.a

= 20.0 t (as received)/ha.a (at 50% moisture content by weight)

Contribution		Greenhouse	e Gas Emission	is Emissions		
	Carbon DioxideMethane kg CH4/t (ar)kg CO2/t (ar)kg		Nitrous Oxide	Total Greenhouse Gases		
			kg N ₂ O/t (ar)	kg eq. CO ₂ /t (ar)		
Cultivation	10.3	0.00143	0.00147	10.8		
Harvesting and Chipping	3.3	0.00083	0.00002	3.3		
Totals	13.6	0.00226	0.00170	14.1		

High Yield	=	11.7 t (oven dry)/ha.a						
	=	23.4 t (as rece	23.4 t (as received)/ha.a (at 50% moisture content by weight)					
Transport Mod	de to St	orage		=	road			
Round Trip Tr	ansport	Distance to St	orage	=	100 km			
Natural Drying	9							
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km			
Net Output Ra	ating of	Heating Plant	=	0.8 MV	V			
Load Factor o	f Heatir	ng Plant	=	65%				
Thermal Effici	ency of	Heating Plant	=	90%				
Output:	Heat		=	42.4 N	<mark>IWh/ha.a</mark>			

Contribution		Greenhouse	Gas Emission	S
	Carbon Dioxide	Methane	Nitrous Oxide	Total Greenhouse
	kg CO ₂ /ha.a	ng on ₄ ma.a	kg	Gases
			N₂O/ha.a	kg eq. CO ₂ /ha.a
Cultivation	205	0.029	0.029	214
Harvesting and Chipping	65	0.017	0	65
Transport to Storage	169	0.107	0.040	184
Natural Drying in Storage	40	0.065	0.004	43
Transport to Plant	109	0.069	0.026	118
Combustion	0	1.695	0.508	194
Plant	120	0.181	0.007	127
Start-Up Fuel	70	0.188	0.260	152
Ash Disposal	2	0.001	0	2
Lime Displacement	- 2	-0.006	0	- 2
Totals	778	2.346	0.874	1097

Low Yield	=	10.0 t (oven d	ry)/ha.a	l			
	=	20.0 t (as rece	eived)/h	a.a (at s	50% moistu	ure content by	weight)
Transport Mod	de to St	orage		=	road		
Round Trip Tr	ansport	Distance to St	orage	=	600 km		
Batch Drying with Diesel Fuel							
Transport Mod	de to Er	nd Use		=	road		
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km		
Net Output Ra	ating of	Heating Plant	=	0.8 MV	V		
Load Factor o	f Heatir	ng Plant	=	65%			
Thermal Effici	ency of	Heating Plant	=	88%			
Output:	Heat		=	35.4 N	<mark>IWh/ha.a</mark>		

Contribution		Greenhouse	Gas Emission	S
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhouse
	kg CO₂/ha.a		kg N₂O/ha.a	kg eq. CO ₂ /ha.a
Cultivation	205	0.029	0.029	214
Harvesting and Chipping	65	0.017	0	65
Transport to Storage	868	0.547	0.206	943
Batch Drying and Storage	2119	1.767	0.044	2176
Transport to Plant	561	0.354	0.133	609
Combustion	0	1.449	0.435	166
Plant	105	0.154	0.006	111
Start-Up Fuel	59	0.157	0.217	128
Ash Disposal	1	0.001	0	1
Lime Displacement	- 2	-0.005	0	- 2
Totals	3981	4.470	1.070	4411

High Yield	=	11.7 t (oven d	ry)/ha.a				
	=	23.4 t (as rece	eived)/h	a.a (at s	50% moist	ture content b	y weight)
Transport Mod	de to St	orage		=	road		
Round Trip Tr	ansport	Distance to St	orage	=	100 km		
Natural Drying)						
Transport Mod	de to Er	nd Use		=	road		
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km		
Net Output Ra	ating of	Heating Plant	=	0.8 MV	V		
Load Factor o	f Heatir	ng Plant	=	65%			
Thermal Effici	ency of	Heating Plant	=	90%			
Output:	Heat		=	47.9 N	<mark>IWh/ha.a</mark>		

Contribution		Greenhouse	Gas Emission	S
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO₂/ha.a
Cultivation	205	0.029	0.029	214
Harvesting and Chipping	65	0.017	0	65
Transport to Storage	169	0.107	0.040	184
Natural Drying in Storage	40	0.065	0.004	43
Milling	42	0.115	0.001	45
Pelletising	241	0.651	0.009	260
Transport to Plant	86	0.054	0.021	93
Combustion	0	0.096	0.766	231
Plant	187	0.274	0.293	281
Start-Up Fuel	79	0.213	0.011	88
Ash Disposal	0	0	0	0
Lime Displacement	0	-0.001	0	0
Totals	1114	1.620	1.174	1504

Low Yield	=	10.0 t (oven d	ry)/ha.a			
	=	20.0 t (as rece	eived)/h	a.a (at s	50% moisture content by weig	ht)
Transport Mod	de to St	orage		=	road	
Round Trip Tr	ansport	Distance to St	orage	=	600 km	
Batch Drying	with Die	esel Fuel				
Transport Mod	de to Er	nd Use		=	road	
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km	
Net Output Ra	ating of	Heating Plant	=	0.8 MV	N	
Load Factor o	f Heatir	ng Plant	=	65%		
Thermal Effici	ency of	Heating Plant	=	88%		
Output:	Heat		=	40.0 N	1Wh/ha.a	

Contribution	Greenhouse Gas Emissions						
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO ₂ /ha.a			
Cultivation	205	0.029	0.029	214			
Harvesting and Chipping	65	0.017	0	65			
Transport to Storage	868	0.547	0.206	943			
Batch Drying and Storage	3243	2.592	0.061	3326			
Milling	36	0.098	0.001	39			
Pelletising	206	0.556	0.007	222			
Transport to Plant	440	0.277	0.104	478			
Combustion	0	0.082	0.655	197			
Plant	160	0.235	0.010	169			
Start-Up Fuel	66	0.178	0.245	143			
Ash Disposal	0	0	0	0			
Lime Displacement	0	-0.001	0	0			
Totals	5289	4.610	1.318	5796			

Domestic Heating by Combustion: Wood Pellets from SRC Chip Harvesting

High Yield	=	11.7 t (oven d	ry)/ha.a	l	
	=	23.4 t (as rece	eived)/h	a.a (at t	50% moisture content by weight)
Transport Mo	de to St	orage		=	road
Round Trip Tr	ansport	Distance to St	orage	=	100 km
Natural Drying	9				
Transport Mo	de to Er	nd Use		=	road
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km
Net Output Ra	ating of	Heating Plant	=	0.03 M	/W
Load Factor c	f Heatir	ng Plant	=	25%	
Thermal Effici	ency of	Heating Plant	=	94%	
Output:	Heat		=	50 MW	Vh/ha.a

Contribution	Greenhouse Gas Emissions						
	Carbon Dioxide kg CO₂/ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO₂/ha.a			
Cultivation	205	0.029	0.029	214			
Harvesting and Chipping	65	0.017	0	65			
Transport to Storage	169	0.107	0.040	184			
Natural Drying in Storage	40	0.065	0.004	43			
Milling	42	0.115	0.001	45			
Pelletising	241	0.651	0.009	260			
Transport to Plant	86	0.054	0.021	94			
Combustion	0	0.096	0.766	231			
Plant	486	0.714	0.029	512			
Start-Up Fuel	120	0.323	0.446	261			
Ash Disposal	0	0	0	0			
Lime Displacement	0	-0.002	0	0			
Totals	1454	2.209	1.345	1909			

Low Yield	=	10.0 t (oven d	ry)/ha.a	l			
	=	20.0 t (as rece	eived)/h	a.a (at s	50% moistu	ure content b	oy weight)
Transport Mod	de to St	orage		=	road		
Round Trip Tr	ansport	Distance to St	orage	=	600 km		
Batch Drying with Diesel Fuel							
Transport Mod	de to Er	nd Use		=	road		
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km		
Net Output Ra	ating of	Heating Plant	=	0.03 N	IW		
Load Factor o	f Heatir	ng Plant	=	25%			
Thermal Effici	ency of	Heating Plant	=	90%			
Output:	Heat		=	40.9 N	<mark>IWh/ha.a</mark>		

Contribution		Greenhouse	Gas Emission	S
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO₂/ha.a
Cultivation	205	0.029	0.029	214
Harvesting and Chipping	65	0.017	0	65
Transport to Storage	868	0.547	0.206	943
Batch Drying and Storage	3242	2.579	0.061	3325
Milling	36	0.099	0.001	39
Pelletising	206	0.556	0.007	222
Transport to Plant	440	0.277	0.104	478
Combustion	0	0.082	0.655	197
Plant	416	0.610	0.024	438
Start-Up Fuel	98	0.264	0.365	213
Ash Disposal	0	0	0	0
Lime Displacement	0	-0.001	0	0
Totals	5576	5.059	1.452	6134

Combined Heat and Power Generation by Combustion: Wood Chips from SRC Chip Harvesting

High Yield	=	11.7 t (oven d	ry)/ha.a						
	=	23.4 t (as rece	eived)/ha	a.a (at 5	50% mo	oisture c	ontent l	by weig	ht)
Transport Mod	de to Ste	orage		=	road				
Round Trip Tr	ansport	Distance to St	orage	=	100 km	า			
Natural Drying)								
Transport Mod	de to En	id Use		=	road				
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km	า			
Net Output Ra	ating of (Combined Hea	it and Po	ower Pla	ant:	Heat	=		31 MW
						Electri	city	=	12.5 MW
Load Factor o	f Combi	ined Heat and	Power F	Plant		=	55%		
Thermal Effici	ency of	Combined Hea	at and P	ower P	lant	=	88%		
Output:	Heat		=	29.5 M	Wh/ha.	a			
	Electric	city	=	11.9 M	Wh/ha.	a			

Contribution		Greenhouse	Gas Emission	S
	Carbon	Methane	Nitrous	Total
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse
	kg CO ₂ /ha.a	U	kg	Gases
			N₂O/ha.a	kg eq. CO ₂ /ha.a
Cultivation	205	0.029	0.029	214
Harvesting and Chipping	65	0.017	0	65
Transport to Storage	169	0.106	0.040	183
Natural Drying in Storage	40	0.065	0.004	43
Transport to Plant	109	0.069	0.026	118
Combustion	0	0	0	0
Plant	637	0.002	0	637
Start-Up Fuel	1	0.002	0	1
Ash Disposal	0	0	0	0
Lime Displacement	- 2	-0.006	0	0
Totals	1224	0.284	0.099	1261

Low Yield	=	10.0 t (oven di	y)/ha.a						
	=	20.0 t (as rece	ived)/ha	a.a (at s	50% mo	isture c	ontent l	oy weig	ht)
Transport Mod	de to St	orage		=	road				
Round Trip Tr	Round Trip Transport Distance to Storage			=	600 km	n			
Batch Drying	with Die	sel Fuel							
Transport Mode to End Use				=	road				
Round Trip Tr	ansport	Distance to Er	ld Use	=	600 km	า			
Net Output Ra	ating of	Combined Hea	t and Po	ower Pl	ant:	Heat	=		20 MW
						Electric	city	=	8 MW
Load Factor o	f Comb	ined Heat and I	Power F	Plant		=	55%		
Thermal Effici	ency of	Combined Hea	t and P	ower P	lant	=	54%		
Output:	Heat		=	15.5 N	<mark>1Wh/ha.a</mark>	a			
	Electri	city	=	6.2 MV	Vh/ha.a				

Contribution		Greenhouse	Gas Emission	S
	Carbon	Methane	Nitrous	Total
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse
	kg CO ₂ /ha.a		kg	Gases
			N₂O/ha.a	kg eq. CO ₂ /ha.a
Cultivation	205	0.029	0.029	214
Harvesting and Chipping	65	0.017	0	65
Transport to Storage	868	0.547	0.206	943
Batch Drying and Storage	2119	1.767	0.043	2176
Transport to Plant	561	0.354	0.133	609
Combustion	0	0	0	0
Plant	536	0.001	0	536
Start-Up Fuel	1	0.002	0	1
Ash Disposal	2	0.002	0	2
Lime Displacement	- 2	-0.005	0	- 2
Totals	4355	2.714	0.411	4544

Power Only Generation by Co-firing: Wood Chips from SRC Chip Harvesting

High Yield	=	11.7 t (oven dry)/ha.a					
	=	23.4 t (as rece	3.4 t (as received)/ha.a (at 50% moisture content by weight)				
Transport Mod	de to St	orage		=	road		
Round Trip Transport Distance to Storage			orage	=	100 km		
Natural Drying							
Transport Mod	de to Er	nd Use		=	road		
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km		
Thermal Effici	ency of	Electricity Plan	nt	=	36%		
Output:	Electri	city	=	17.0 N	<mark>IWh/ha.a</mark>		

Contribution		Greenhouse C	Bas Emissions	
	Carbon	Methane	Nitrous	Total
	Dioxide	kg CH₄/ha.a	Oxide	Greenhous
	kg CO ₂ /ha.a		kg N₂O/ha.a	e Gases
				kg eq.
				CO ₂ /ha.a
Cultivation	205	0.029	0.029	214
Harvesting and Chipping	65	0.017	0.001	66
Transport to Storage	169	0.107	0.040	184
Natural Drying in Storage	40	0.065	0.004	43
Transport to Plant	109	0.069	0.026	118
Combustion	0	0.085	0.678	204
Grinding Electricity and Plant Spares	84	0.197	0.003	90
Ash Disposal	2	0.002	0.001	2
Totals	674	0.571	0.782	921

Low Yield	=	10.0 t (oven d	0.0 t (oven dry)/ha.a					
	=	20.0 t (as rec	0.0 t (as received)/ha.a (at 50% moisture content by weight)					
Transport Mod	de to St	orage		=	road			
Round Trip Tr	ansport	Distance to S	torage	=	600 km			
Batch Drying	with Die	sel Fuel						
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to E	nd Use	=	600 km			
Thermal Effici	ency of	Electricity Plai	nt	=	25%			
Output:	Electri	citv	=	10.1	MWh/ha.a			

Contribution	Greenhouse Gas Emissions						
	Carbon	Methane	Nitrous	Total			
	Dioxide	kg CH₄/ha.a	Oxide	Greenhous			
	kg CO ₂ /ha.a	0	kg N ₂ O/ha.a	e Gases			
				kg eq.			
				CO ₂ /na.a			
Cultivation	205	0.029	0.029	214			
Harvesting and Chipping	65	0.017	0.001	66			
Transport to Storage	868	0.547	0.206	943			
Batch Drying and Storage	2119	1.767	0.044	2176			
Transport to Plant	561	0.354	0.133	609			
Combustion	0	0.072	0.580	175			
Grinding Electricity and Plant Spares	72	0.168	0.002	77			
Ash Disposal	2	0.002	0	2			
Totals	3892	2.956	0.995	4262			

High Yield	=	11.7 t (oven dry)/ha.a				
	=	23.4 t (as rece	ived)/ha	a.a (at	50% mois	sture content by weight
Transport Mod	de to St	orage		=	road	
Round Trip Transport Distance to Storage			=	100 km		
Natural Drying						
Transport Mod	de to Er	nd Use		=	road	
Round Trip Tr	ansport	Distance to En	d Use	=	100 km	
Thermal Effici	ency of	Electricity Plant	t	=	36%	
Output:	Electri	city	=	19.1 N	/Wh/ha.a	

Contribution	Greenhouse Gas Emissions Carbon Methane Nitrous Tota				
	Carbon	Methane	Nitrous	Total	
	Dioxide	kg CH₄/ha.a	Oxide	Greenhous	
	kg CO ₂ /ha.a		kg N₂O/ha.a	e Gases	
				kg eq. CO₂/ha.a	
Cultivation	205	0.029	0.029	214	
Harvesting and Chipping	65	0.017	0	65	
Transport to Storage	169	0.107	0.040	184	
Natural Drying in Storage	40	0.065	0.004	43	
Milling	42	0.115	0.002	45	
Pelletising	241	0.651	0.009	260	
Transport to Plant	86	0.054	0.020	93	
Combustion	0	0.096	0.767	231	
Grinding Electricity and Plant Spares	37	0.076	0.001	39	
Ash Disposal	0	0.001	0	0	
Totals	885	1.211	0.872	1174	

Low Yield	=	10.0 t (oven d	0.0 t (oven dry)/ha.a						
	=	20.0 t (as rec	0.0 t (as received)/ha.a (at 50% moisture content by weight						
Transport Mod	de to St	orage		=	road				
Round Trip Tr	ansport	Distance to S	torage	=	600 km				
Batch Drying	with Die	sel Fuel							
Transport Mod	de to Er	nd Use		=	road				
Round Trip Tr	ansport	Distance to E	nd Use	=	600 km				
Thermal Effici	ency of	Electricity Plai	nt	=	25%				
Output:	Electri	citv	=	11.4 N	Wh/ha.a				

Contribution		Greenhouse G	Bas Emissions	
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhous e Gases
	kg CO ₂ /ha.a		kg N₂O/ha.a	kg eq. CO₂/ha.a
Cultivation	205	0.029	0.029	214
Harvesting and Chipping	65	0.017	0	65
Transport to Storage	868	0.547	0.026	889
Batch Drying and Storage	3242	2.580	0.061	3325
Milling	36	0.098	0.001	39
Pelletising	206	0.556	0.007	222
Transport to Plant	440	0.277	0.104	478
Combustion	0	0.082	0.656	198
Grinding Electricity and Plant Spares	32	0.065	0.001	34
Ash Disposal	0	0	0	0
Totals	5094	4.251	0.885	5464

High Yield	=	11.7 t (oven dry)/ha.a					
	=	23.4 t (as rece	23.4 t (as received)/ha.a (at 50% moisture content by weight)				
Transport Mode to Storage/Fuel Processin				J	=	road	
Round Trip Transport Distance to Storage				uel Pro	cessing =	100 km	
Natural Drying							
Transport Mode to End Use				=	road		
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km		
Net Output Ra	ating of	Power Plant	=	25 MW	/		
Load Factor o	f Power	⁻ Plant	=	85%			
Thermal Effici	ency of	Power Plant	=	36%			
Output:	Electri	city	=	17.0 M	Wh/ha.a		

Contribution	Greenhouse Gas Emissions					
	Carbon Dioxide	Methane	Nitrous Oxide	Total Greenhouse		
	kg CO₂/ha.a	ng on ₄ ma.a	kg	Gases		
			N₂O/ha.a	kg eq. CO ₂ /ha.a		
Cultivation	205	0.029	0.029	214		
Harvesting and Chipping	65	0.017	0	65		
Transport to Storage	169	0.107	0.040	184		
Natural Drying in Storage	40	0.064	0.004	43		
Transport to Plant	109	0.070	0.026	118		
Combustion	0	0.085	0.678	204		
Plant	243	0.541	0.008	260		
Start-Up Fuel	2	0.004	0	2		
Ash Disposal	2	0.002	0	2		
Lime Displacement	- 2	-0.005	0	- 2		
Totals	833	0.914	0.785	1090		

Low Yield	=	10.0 t (oven d	ry)/ha.a				
	=	20.0 t (as rece	eived)/h	a.a (at t	50% moistu	re content by we	ight)
Transport Mod	de to St	orage/Fuel Pro	cessing	l	=	road	
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =	600 km	
Batch Drying	with Die	sel Fuel					
Transport Mod	de to Er	nd Use		=	road		
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km		
Net Output Ra	ating of	Power Plant	=	25 MV	1		
Load Factor o	f Power	Plant	=	85%			
Thermal Effici	ency of	Power Plant	=	25%			
Output:	Electri	city	=	10.1 N	Wh/ha.a		

Contribution	Greenhouse Gas Emissions					
	Carbon	Methane	Nitrous	Total		
	Dioxide	kg CH₄/ha.a	Oxide	Greennouse Gases		
	kg CO ₂ /ha.a		kg N₂O/ha.a	kg eq. CO ₂ /ha.a		
Cultivation	205	0.029	0.029	214		
Harvesting and Chipping	65	0.017	0	65		
Transport to Storage	868	0.547	0.206	943		
Batch Drying and Storage	2119	1.767	0.044	2176		
Transport to Plant	561	0.354	0.133	609		
Combustion	0	0.072	0.580	175		
Plant	184	0.410	0.006	196		
Start-Up Fuel	1	0.002	0	1		
Ash Disposal	2	0.001	0	2		
Lime Displacement	- 2	-0.005	0	- 2		
Totals	4003	3.194	0.998	4379		

High Yield	=	11.7 t (oven d	ry)/ha.a					
	=	23.4 t (as rece	eived)/h	a.a (at 5	50% moist	ure c	ontent by w	eight)
Transport Mod	de to St	orage/Fuel Pro	cessing	l	=		road	
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =		100 km	
Natural Drying	9							
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km			
Net Output Ra	ating of	Power Plant	=	25 MW	1			
Load Factor o	f Power	Plant	=	85%				
Thermal Effici	ency of	Power Plant	=	36%				
Output:	Electri	city	=	19.1 M	Wh/ha.a			

Contribution		Greenhouse	Gas Emission	S
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO₂/ha.a
Cultivation	205	0.029	0.029	214
Harvesting and Chipping	65	0.017	0	65
Transport to Storage	169	0.107	0.040	184
Natural Drying in Storage	40	0.064	0.004	43
Milling	42	0.115	0.002	45
Pelletising	241	0.651	0.009	260
Transport to Plant	109	0.070	0.026	118
Combustion	0	0.085	0.678	204
Plant	243	0.541	0.008	260
Start-Up Fuel	2	0.004	0	2
Ash Disposal	2	0.002	0	2
Lime Displacement	- 2	-0.005	0	- 2
Totals	1116	1.680	0.796	1395

Low Yield	=	10.0 t (oven d	ry)/ha.a					
	=	20.0 t (as rece	eived)/h	a.a (at 5	50% moistu	ure c	ontent by weig	ht)
Transport Mod	de to St	orage/Fuel Pro	cessing	l	=		road	
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =		600 km	
Batch Drying	with Die	sel Fuel						
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km			
Net Output Ra	ating of	Power Plant	=	25 MW	1			
Load Factor o	f Power	Plant	=	85%				
Thermal Effici	ency of	Power Plant	=	25%				
Output:	Electric	city	=	10.1 M	Wh/ha.a			

Contribution	Greenhouse Gas Emissions						
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg N₂O/ha.a	Total Greenhouse Gases kg eq. CO ₂ /ha.a			
Cultivation	205	0.029	0.029	214			
Harvesting and Chipping	65	0.017	0	65			
Transport to Storage	868	0.547	0.206	943			
Batch Drying and Storage	2119	1.767	0.044	2176			
Transport to Plant	561	0.354	0.133	609			
Milling	36	0.098	0.001	39			
Pelletising	206	0.556	0.007	222			
Combustion	0	0.072	0.580	175			
Plant	184	0.410	0.006	196			
Start-Up Fuel	1	0.002	0	1			
Ash Disposal	2	0.001	0	2			
Lime Displacement	- 2	-0.005	0	- 2			
Totals	4245	3.802	1.006	4640			

Wheat Straw

Basic Assumption:

Straw treated as a residue (no allocation between wheat grain and straw)

No account taken of subsequent effects of straw removal relative to incorporation and impact on subsequent crops.

Contribution	Greenhouse Gas Emissions					
	Carbon	Methane	Nitrous	Total Greenhouse		
	Dioxide	kg CH₄/ha.a	Oxide	Gases		
	kg CO₂/ha.a		kg N₂O/ha.a	kg eq. CO ₂ /ha.a		
Baling and Carting	373	0.153	0.00503	378		
Totals	373	0.153	0.00503	378		

Assumption for Low Case:

High Yield = 4.2 t (as received)/ha.a (at 25% moisture content by weight)

Contribution	Greenhouse Gas Emissions					
	Carbon	Methane	Nitrous	Total Greenhouse		
	Dioxide	xide kg CH₄/t (ar)		Gases		
	kg CO ₂ /t (ar)	0 ,	kg N ₂ O/t (ar)	kg eq. CO ₂ /t (ar)		
Baling and Carting	88.8	0.0364	0.00120	90.1		
Totals	88.8	0.0364	0.00120	90.1		

Assumption for High Case:

Low Yield = 1.9 t (as received)/ha.a (at 25% moisture content by weight)

Contribution	Greenhouse Gas Emissions					
	Carbon Dioxide	Methane	Nitrous Oxide	Total Greenhouse Gases		
	kg CO₂/t (ar)	kg CH₄/t (ar)	kg N₂O/t (ar)	kg eq. CO ₂ /t (ar)		
Baling and Carting	196.3	0.0805	0.00265	199.1		
Totals	196.3	0.0805	0.00265	199.1		

Commercial and Industrial Heating by Combustion: Straw Bales

High Yield	=	4.2 t (as recei	ved)/ha	.a (at 2	5% moist	ure co	ontent by w	eight)
Transport Mod	de to St	orage/Fuel Pro	cessing)	=	=	road	
Round Trip Tr	ansport	Distance to St	orage/F	uel Pro	cessing =	=	100 km	
Natural Drying)							
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to Er	nd Use	=	100 km			
Net Output Ra	ating of	Heating Plant	=	0.8 MV	V			
Load Factor o	f Heatir	ng Plant	=	65%				
Thermal Effici	ency of	Heating Plant	=	90%				
Output:	Heat		=	10.0 N	IWh/ha.a			

Contribution	Greenhouse Gas Emissions						
	Carbon Dioxide	Methane	Nitrous Oxide	Total Greenhouse			
	kg CO ₂ /ha.a	ky Ch4/ha.a	kg	Gases			
			N ₂ O/ha.a	kg eq. CO ₂ /ha.a			
Baling and Carting	373	0.153	0.00503	378			
Transport to Storage	30	0.019	0.00714	33			
Natural Drying in Storage	7	0.012	0.00070	8			
Transport to Plant	23	0.015	0.00549	25			
Combustion	0	0.199	0.11964	41			
Plant	19	0.028	0.00110	20			
Start-Up Fuel	16	0.044	0.06117	35			
Ash Disposal	2	0.001	0.00036	2			
Lime Displacement	- 2	-0.005	-0.00010	- 2			
Totals	468	0.466	0.20053	540			

Low Yield	=	1.9 t (as recei	ved)/ha	.a (at 2	5% moisture	content by weight)		
Transport Mode to Storage/Fuel Processing					=	road		
Round Trip Tr	ansport	Distance to St	uel Pro	cessing =	600 km			
Natural Drying								
Transport Mode to End Use				=	road			
Round Trip Transport Distance to End Use				=	600 km			
Net Output Rating of Heating Plant =					0.8 MW			
Load Factor of Heating Plant =			65%					
Thermal Efficiency of Heating Plant =			=	88%				
Output:	Heat		=	4.4 MV	Vh/ha.a			

Contribution	Greenhouse Gas Emissions					
	Carbon Dioxide	Methane kg CH₄/ha.a	Nitrous Oxide	Total Greenhouse Gases		
	kg CO ₂ /ha.a		kg N₂O/ha.a	kg eq. CO ₂ /ha.a		
Baling and Carting	373	0.153	0.00503	378		
Transport to Storage	82	0.051	0.01936	89		
Natural Drying in Storage	3	0.005	0.00031	3		
Transport to Plant	63	0.040	0.01492	68		
Combustion	0	0.090	0.05414	18		
Plant	8	0.012	0.00047	8		
Start-Up Fuel	7	0.020	0.02706	16		
Ash Disposal	1	0	0.00016	1		
Lime Displacement	- 1	-0.002	-0.00004	- 1		
Totals	536	0.369	0.12141	580		
Combined Heat and Power Generation by Combustion: Straw Bales

Assumptions for Low Case:

High Yield = 4.2 t (as received)/ha.a (at 25% moisture content by weight)									
Transport Mod	de to Sto	orage/Fuel Pro	cessing			=	road		
Round Trip Tra	ansport	Distance to St	orage/F	uel Pro	cessing	=	100 kn	า	
Natural Drying	I								
Transport Mod	de to En	id Use		=	road				
Round Trip Tra	ansport	Distance to Er	nd Use	=	100 km	า			
Net Output Ra	ting of (Combined Hea	it and Po	ower Pl	ant:	Heat	=		31 MW
						Electric	city	=	12.5 MW
Load Factor of	f Combi	ned Heat and	Power F	Plant		=	55%		
Thermal Efficie	ency of	Combined Hea	at and P	ower P	lant	=	88%		
Output:	Heat		=	6.9 MV	Vh/ha.a				
	Electric	city	=	2.9 MV	Vh/ha.a				

Contribution	Greenhouse Gas Emissions					
	Carbon	Methane	Nitrous	Total		
	Dioxide	kg CH₄/ha.a	Oxide	Greenhouse		
	kg CO ₂ /ha.a	U	kg	Gases		
			N₂O/ha.a	kg eq. CO ₂ /ha.a		
Baling and Carting	373	0.153	0.00503	378		
Transport to Storage	30	0.019	0.00714	33		
Natural Drying in Storage	7	0.012	0.00069	8		
Transport to Plant	23	0.015	0.00550	25		
Combustion	0	0.199	0.11967	41		
Plant	150	0	0.00001	150		
Start-Up Fuel	1	0.003	0	1		
Ash Disposal	1	0.001	0.00026	1		
Lime Displacement	- 1	-0.003	-0.00008	- 1		
Totals	584	0.408	0.13822	636		

Assumptions for High Case:

Low Yield = 1.9 t (as received)/ha.a (at 25% moisture content by weight)									
Transport Mode to Storage/Fuel Processing =									
Round Trip Transport Distance to Storage/Fuel Processing =							600 km	า	
Natural Drying	1								
Transport Mod	de to Er	nd Use		=	road				
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km	n			
Net Output Ra	ating of	Combined Hea	t and Po	ower Pl	ant:	Heat	=		20 MW
						Electric	city	=	8 MW
Load Factor of	f Comb	ined Heat and I	Power F	Plant		=	55%		
Thermal Effici	ency of	Combined Hea	at and P	ower P	lant	=	54%		
Output:	Heat		=	1.9 MV	Vh/ha.a				
	Electric	city	=	0.8 MV	Vh/ha.a				

Contribution	Greenhouse Gas Emissions					
	Carbon	Methane	Nitrous	Total Greenhouse		
	Dioxide	kg CH₄/ha.a	Oxide			
	kg CO ₂ /ha.a	U	kg	Gases		
			N ₂ O/ha.a	kg eq. CO ₂ /ha.a		
Baling and Carting	373	0.153	0.00503	378		
Transport to Storage	82	0.051	0.01937	89		
Natural Drying in Storage	3	0.005	0.00031	3		
Transport to Plant	63	0.040	0.01492	68		
Combustion	0	0.090	0.05414	18		
Plant	67	0	0	67		
Start-Up Fuel	1	0.002	0	1		
Ash Disposal	1	0	0.00012	1		
Lime Displacement	- 1	-0.002	-0.00003	- 1		
Totals	589	0.339	0.09386	624		

Power Only Generation (Dedicated) by Combustion: Straw Bales

Assumptions for Low Case:

High Yield	=	4.2 t (as recei	ved)/ha	.a (at 3	0% moist	ure co	ontent by w	eight)
Transport Mo	de to St	orage/Fuel Pro	cessing	9	=	=	road	
Round Trip Tr	ansport	Distance to St	orage/F	Fuel Pro	cessing =	=	100 km	
Natural Drying	9							
Transport Mo	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to E	nd Use	=	100 km			
Net Output Ra	ating of	Power Plant	=	25 MV	/			
Load Factor o	of Power	r Plant	=	85%				
Thermal Effici	ency of	Power Plant	=	36%				
Output:	Electri	city	=	4.0 MV	Vh/ha.a			

Contribution	Greenhouse Gas Emissions						
	Carbon Dioxide	Methane	Nitrous Oxide	Total Greenhouse			
	kg CO ₂ /ha.a	kg On 4 na.a	kg	Gases			
			$N_2O/na.a$	kg eq. $CO_2/na.a$			
Baling and Carting	373	0.153	0.00503	378			
Transport to Storage	30	0.019	0.00714	33			
Natural Drying in Storage	7	0.012	0.00068	8			
Transport to Plant	23	0.015	0.00550	25			
Combustion	0	0.080	0.19944	61			
Plant	57	0	0	57			
Start-Up Fuel	0	0	0	0			
Ash Disposal	2	0.001	0.00036	2			
Lime Displacement	- 2	-0.005	-0.00012	- 2			
Totals	490	0.275	0.21803	562			

Assumptions for High Case:

Low Yield	=	1.9 t (as recei	ved)/ha	.a (at 2	5% moist	ture co	ntent by weight)
Transport Mod	de to St	orage/Fuel Pro	cessing	l	:	=	road	
Round Trip Tr	ansport	Distance to St	torage/F	uel Pro	cessing	=	600 km	
Natural Drying)							
Transport Mod	de to Er	nd Use		=	road			
Round Trip Tr	ansport	Distance to Er	nd Use	=	600 km			
Net Output Ra	ating of	Power Plant	=	25 MW	Ι			
Load Factor of Power Plant = 85%								
Thermal Effici	ency of	Power Plant	=	25%				
Output:	Electric	city	=	1.3 MV	Vh/ha.a			

Contribution	Greenhouse Gas Emissions						
	Carbon Dioxide kg CO ₂ /ha.a	Methane kg CH₄/ha.a	Nitrous Oxide kg	Total Greenhouse Gases			
			N ₂ O/ha.a	kg eq. CO ₂ /ha.a			
Baling and Carting	373	0.153	0.00504	378			
Transport to Storage	82	0.052	0.01938	89			
Natural Drying in Storage	3	0.005	0.00031	3			
Transport to Plant	63	0.040	0.01493	68			
Combustion	0	0.036	0.09024	28			
Plant	23	0	0	23			
Start-Up Fuel	0	0	0	0			
Ash Disposal	1	0	0.00016	1			
Lime Displacement	- 1	-0.002	-0.00005	- 1			
Totals	544	0.284	0.13001	589			