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EXECUTIVE SUMMARY

This document is a technical annex to R&D project W6-064, ‘Probability distributions for
x-day daily mean flow events’. It provides guidance on best practice for frequency analysis
of annual minimum flows.

The general issues to be considered when contemplating a frequency analysis are
discussed with a strong emphasis on likely sources of error and uncertainty. In order to
encourage a consistent methodology to be adopted in the UK a single parametric approach
for estimating the probability of occurrence of low flow events is recommended. This
approach is based on the use of L-moments with a Pearson Type III probability distribution
to estimate the flow - return period relationship for annual minima of different durations.
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LIST OF SYMBOLS

X Observed annual minimum flow

Xi Annual minimum flow of rank i (in ascending order)
n Number of sampled values

X Random variable corresponding to annual minimum flow
D Duration of low flow period (in days)

T Return period or recurrence interval

p Probability of non-exceedance

F(x) Cumulative distribution function

Q) Quantile function

k Shape parameter

o Scale parameter

& Location parameter

r Gamma function

G Incomplete Gamma Function

Ps Spearman Rank correlation coefficient

¥ Chi-square goodness of fit parameter

LIST OF ABBREVIATIONS

p.d.f. Cumulative probability distribution function

AM Annual minima

MAM(D) Mean annual minimum flow at duration D.

MF Mean flow

LFFA Low Flow Frequency Analysis

RMSE Root mean square error

Q95 The one-day discharge exceeded 95% of the time
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1. INTRODUCTION

1.1 Objectives and Applicability

This document provides guidance for frequency analysis of annual minimum flows. It is
not intended as a ‘rule book’, rather its aim is to promote a consistent approach to low
flow frequency analysis in the UK. Whilst a guideline methodology is described, no
programs or software tools are provided for its implementation. However references to
appropriate software packages are provided where required.

The guidelines given are specifically for good quality flow records longer than 25 years
in length, and may give misleading and uncertain results if applied to shorter or
incomplete flow records. For example, a semi-deterministic approach, relying on
alternative sources information about the low flow regime, such as from an analogue
catchment or rainfall-runoff model might be more suitable for sites with limited (less
than 25 years) flow data. Furthermore, as the method has been derived and tested using
measured flow series, it is not necessarily best practice for synthetic or modelled data,
such as naturalised flow series. Similarly, it should be used with caution for series that
are known to be subject to large hydrometric errors, especially where these are
unquantifiable. The method is also generally inappropriate for frequency analysis of
other hydrological variables, such as annual maxima, level, velocity and so on, or for
annual minima from regimes unlike those found in the UK.

The document is pitched at those with a basic understanding of statistical principles, and
a glossary is provided for clarification where necessary. For those unfamiliar with the
subject, the main principles and assumptions of low flow frequency analysis are also
summarised later in this chapter (Section 1.3). The main aim to increase awareness of
some of the pitfalls and issues connected with frequency analysis, such as sources of
uncertainty or bias. These points are discussed in Chapter 2, whilst a detailed step-by-
step methodology is presented in Chapter 3. Finally a worked example is included in
Chapter 4.

1.2 Project Details

The recommendations presented are based on the findings of R&D project (W6-064)
entitled ‘Probability Distributions for “x-day” Daily Mean Flow Events’ (Zaidman et
al., 2002). The project reviewed the use of parametric estimation methods within low
flow frequency analysis, and examined the ability of different candidate probability
distributions to describe the occurrence of D-day annual minima flow events. The study
was based on data for 25 UK rivers having long, stable and natural flow records. It
should be noted that of these, 20 were located in upland areas, including three in Wales
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and 14 in Scotland, whilst only five were from the aquifer dominated regions to the
south east of England. The range of durations examined included D=1, 7, 30, 60, 180
and 365 days. The study also examined different methods of deriving the minima and
ensuring that these were both stationary and independent.

Three candidate distributions were considered in the study: the Generalised Extreme
Value, the Pearson Type III and the Generalised Logistic. In each case the 3-parameter
form was used. Extreme value theory suggests that the frequency behaviour of annual
minima will follow that of a Generalised Extreme Value distribution, however in
practice a number of other distributions have been shown to describe the observed
equally well. Using the method of L.-moments for parametric estimation, the parameters
of each of the three candidate distributions were determined based on the flows and
plotting positions probabilities of the observed data. A fourth distribution, the
Generalised Pareto, was also considered. Although this distribution was not
theoretically suitable for describing extreme events, it was included as a ‘control’, i.e. to
see whether this expectation was born out in the results.

All of the four distributions were able to satisfactorily represent the form of the
observed data points, to some degree or another. A method of ranking the candidates
according to their goodness-of-fit criteria, and RMSE was used to identify which
distribution best represented the observed frequency curve for each series. A number of
trends became clear from this exercise. For annual minima of short duration the
Generalised Extreme Value and Pearson Type Il distributions performed well in
responsive catchments found in upland areas. These distributions performed less well
for series based on longer durations, where short-lived extremes become averaged out.
The Generalised Logistic was best in the high-storage catchments that typify many
lowland areas of south east England. In some cases the distributions were not able to
provide physically reasonable estimates for annual minima-recurrence intervals much
beyond the observed range. Where the prescribed flow was less than 10%MF ‘sensible’
estimates of recurrence interval were, in general, obtained only for annual minima of
short duration for impermeable catchments. Where annual minima of longer duration or
catchments of high permeability were considered recurrence interval estimates were
realistic only for higher prescribed flows.

1.3 Low Flow Frequency Analysis

Low Flow Frequency Analysis (LFFA) is a stochastic approach for characterising low
flow events. The pivotal aim is to quantify the likelihood that the flow at a particular
site. will persist below a particular level over a particular duration. LFFA is thus
typically utilised where using a single statistic or index, such as the MAMY7 or Q95, is
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insufficient to describe the low-flow regime. For example in water resource planning,
where low flow events of different length and severity need to be considered within an
historical context, LFFA provides a means to quantify the flow-duration-frequency
behaviour of the site of interest. Individual low flow events can be delineated by
considering periods where the flow falls below a threshold level (i.e. LFFA is applied to
a partial duration series). However, unless the flow record is particularly short, a
simplified approach, using some representative annual value to typify the overall
character of the low flow season, is often favoured. Customarily the minimum D-day
average discharge per year is considered.

Given a set of observed annual minima {Xj, i=1..n}, the goal is to estimate the
probability of occurrence of some minima, X. Presuming that the observed values are
independent and identically distributed (i.e. that observed minima are random
realisations of a single population of annual minima), this can be achieved by finding
the cumulative distribution function, denoted by F(x), which represents the probability,
p, of any previous or future minima, X, being less than or equal to some given value, x.

p=FX) (M

Similarly the probability of x being exceeded by X, termed F’(x), is given by 1-p
1p=F(x) 2)

The corresponding quantile function, denoted by Q(p), defines the value x associated
with the pth quantile:

x=Q() 3)

and can be used to define the flow xt, associated with a recurrence interval T, where T
is the reciprocal of p (and vice versa), as follows:

- Q(%) @

As a single probability distribution function is assumed to describe all annual minima
occurring at the site of interest during the lifetime of the river, including those within
the observed series, the sample data are used to define the form of F(x). For instance the
statistical characteristics of the observed data, particularly aspects of the shape and
density (e.g. skewness and kurtosis), are assumed to be valid for the population as a

R&D TECHNICAL REPORT W6-064/TR1 3



whole. However, with few rivers having flow records longer than 50 years in length,
most annual minima series represent a relatively small fraction of the possible range for
the site of interest (i.e. there is a large sampling basis). Moreover, the observed data
provides little detail regarding the shape of the distribution function in its upper and
lower tails (at extremely high and low probabilities. Thus the problem of estimating
F(x) reliably for all possible values of x is very difficult. Ironically the interest is usually
in minima that lie well outside the range of observed values. As a result frequency
analyses predominantly rely on parametric estimation procedures.

In the parametric approach, a priori assumptions about the shape of the cumulative
distribution function are used to select an appropriate hypothetical distribution family as
the basis of the mathematical expression describing the distribution. The observed data
set are then used to constrain the parameters of this distribution (i.e. select the most
relevant family member) usually using fitting techniques such as L-moments (Hosking
& Wallis, 1997) or maximum likelihood estimation (Cox & Hinkley, 1974). The danger
of this approach lies in choosing an inappropriate hypothetic distribution that will
produce a misleading quantile estimates. To minimise the chance of using an unsuitable
distribution a number of ‘candidate’ distributions are considered. The uncertainties
associated with the resulting models are then assessed using goodness of fit tests or by
applying re-sampling techniques to produce confidence intervals (e.g. Takara &
Stedinger, 1994). Unfortunately, as most flow records are short, a number of different
distribution types may all fit the observed annual minima reasonably well and it may
not be possible to discriminate between them on an objective basis. Thus a particular
model may be favoured for practical reasons, such as computational convenience, or
because it exhibits certain characteristics that the user believes a low flow distribution
should have. For example, a distribution having a finite lower limit equal to zero (to
represent the possibility of recording a zero, but not a negative, flow) is often
considered preferable to one that does not. This lack of objectivity in LFFA, coupled
with the unparsimonious use of assumptions, has brought criticism from a number of
authors including Klemes (2000), and facilitated wider use of non-parametric function

estimation routines.

Candidate distributions are generally chosen from the extensive ‘library’ of established
distribution families - some of the more common families are summarised by Evans et
al. (1993). ‘Bespoke’ distribution functions are also sometimes used, such as those of
Gottschalk et al. (1997) based on low flow recession behaviour. Extreme value
distributions such as the EV1 (Gumbel) and EVIII (Weibull) have traditionally been
considered the most applicable of the established distribution families. This goes back
to the work of Fisher and Tippet (1928) who showed that the minima of a particular
sample will theoretically tend to one of three extreme value forms, named the EVI,
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EVII and EVIII. The Weibull distribution, advocated by Gumbel (1963), has found
particular favour in the UK (e.g. Institute of Hydrology, 1980). The Log Pearson Type
Il (Loganathan et al., 1986), the Log-Normal (Kroll & Vogel, 2002) and the Gamma
(Bobée & Ashkar, 1991) are also commonly used. A summary of recent work is given
by Tallaksen (1999) and by Zaidman et al. (2002).
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2. GENERAL CONSIDERATIONS

2.1 Introduction

This chapter discusses the general considerations which must be made when
undertaking a frequency analysis of annual minima data, outlining sources of error and
uncertainty. The various considerations are presented in order of importance, with the
need for a consistent and pragmatic approach outweighing some ‘scientific’
considerations.

Figure 1 shows the general stages that should be involved in a low flow analysis, from
deriving and manipulating the annual minimum series, through parameterisation of a
distribution selected a-priori, to the assessment of the resulting flow-recurrence
relationship derived from its quantile function.

Derive time series of annual minima D-day average flow

v

Quantify independence and homogeneity of data series

v

Derive frequency curve using plotting position estimates

I

Apply an estimation procedure to identify the member of
the distribution family which best matches the observed
data

'

Quantify the match between observed data and
parameterised distribution

'

Qualify/quantify the ability to characterise events
beyond the observed range

Figure 1: General stages of a low flow frequency analysis
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2.2 Record Length

Record length is possibly the most influential factor in frequency analysis. Decreasing
the sample size introduces sampling errors and increases the inherent uncertainty
associated with the flow and recurrence interval relationship derived from the sampled
data. This 1s because the assumption that the sampled minima are random
representations of the true low-flow distribution breaks down where the record length is
short. Whereas a large sample is likely to clearly exhibit the features (such as the level
of skew and kurtosis) of the population of interest, a small sample is highly unlikely to
be representative of the population. The level of sampling error is also influenced by the
period over which the observations were made (e.g. a 30-year record from 1940 to 1970
may contain fewer extreme events than a 30-year record from 1970 to 2000).
Furthermore, plotting position formulae are not robust for small sample sizes because
they do not take into account the range and skew of the sampled flows, and thus cannot
be thought of as unbiased estimators for short records, whilst many of the statistical
tests used within the LFFA framework are unable to provide unequivocal answers
where the sample size is small.

Ideally, to minimise sampling errors and increase the number of observed events in the
extreme tails of the distribution, only records of several hundreds of years in length
would be used for analysis. In practice, of course, most rivers in the UK have only been
gauged since the 1960’s, giving an average record length of around 40 years. Although
it 1s difficult to quantify the length at which a record becomes ‘short’, an observed
record length of 40 years is about the minimum record length that might give relatively
reliable estimates for use in water resources application. It is inadvisable to use LFFA
with records less than 25 years in length.

As a rule of thumb, a one in T year event requires a minimum record length of T/2
years, not counting missing or rejected years. If the aim is to characterise the 1 in 200
year annual minimum, then a longer record (100 years or more) is required than if the 1
in 50 year event was of interest (25 years or more). Similarly, a considerably higher
uncertainty would be associated with a one in 100 year event based on a 30 year record,
than a 1 in 100 year event estimated from a record of 60 years. Whilst uncertainties
associated with individual components may be quantified (e.g. resampling methods may
be used to provide some quantification of the sampling errors) the overall uncertainty
associated with record length is not easily quantified.
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23 Assumption of Statistical Independence and Stationarity

The assumptions that the data must be independent and originating from the same
statistical population are central to the LFFA method. The latter assumption also implies
that the data must be stationary (i.e. show no trends over time) and homogeneous, and
there must be no outliers amongst the sample data. Short records are particularly
vulnerable to the effects of short-term trends, which might average out over the long

term.

Independence

Where sample data are not independent they cannot be thought as representing a
population of random variables. Serial elements may manifest in annual minima due to
catchment storage processes (e.g. carry-over of base flow conditions from one year to
the next) and are more likely for longer duration minima, where two successive minima
have a number of days in common. Statistical dependence has an important effect on the
interpretation of the results from LFFA. Suppose for example that the analysis suggests
that an annual minimum flow has a non-exceedance probability, p. The probability that
annual minima in two consecutive years both do not exceed a particular flow will then
be p°, but if they are interdependent it would be closer to p. Thus ignoring
interdependence may lead to substantial underestimation of risks of sequences of
years with low flows. Non-independence can also influence the results of formal tests
of fit and assessment of the uncertainty in parameter estimation used within the LFFA
process.

Whilst a number of tests may be used to identify whether a data series is independent
and originating from the same population (see Chapter 3), these tests are likely to
perform poorly where the number of observations is small, and the user is advised to
apply the most powerful tests as possible. It is possible to revise the LFFA procedure to
take account of dependent data (e.g. Chung & Salas). However this will be beyond the
capabilities of most non-statisticians! It is perhaps better to be aware of the effects of
dependence on a qualitative level and take a view based on knowledge of the catchment
and the drought events concerned. Generally, in impervious catchments where the soil
moisture deficit is fully replenished during the winter, there is no serial correlation
between annual minima induced by storage (indeed there may be independent events
within the year). Storage from aquifers, reservoirs, soils that may not become saturated
in winter and areas of persistent snow will all increase the potential for serial

correlation.
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Stationarity

Causes of non-stationarity include problems with the recording process (such as
changes in rating equations, relocation of stations or changes in recording method),
changes in the catchment (such as land use change), climatic variability or climate
change. Trends are usually more evident in short records (the effects often average out
over the longer term). If the user is confident that trend effects can be removed from the
time series, the adjusted series may be used in LFFA.

Outliers

True outliers may be caused by ‘one-off” artificial influences in the catchment or by
measurement errors, and are less common for large durations, where the effects of
abnormal daily flows are averaged out. However in a frequency analysis of extreme
events it may be difficult to determine whether an outlying data point really is a true
outlier or simply an extreme rare flow. In the latter case the data point is crucial as it
will provide information that will help constrain the tail shape of the distribution
function. It is therefore important not to remove apparent outliers arbitrarily. Where
possible, outliers should be verified using circumstantial evidence, such as local
knowledge, rainfall records, or by seeing if outlying events occurred on a regional basis.
If an objective treatment is desired, a number of tests for outliers are well established in
the statistical literature (e.g. see Barnett and Lewis, 1994).

2.4 Choice of Distribution

The aim of LFFA is to choose the theoretical distribution with the most appropriate
shape for the data. However, the choice of distribution is rarely the major source of
uncertainty in the end result. Whilst it is common practice to compare one or two
different candidate distributions, there is little point in agonising over several
alternatives giving similar results, particularly as record lengths for UK rivers are
typically not long enough to ensure that a single ‘best” distribution would be
unequivocally identified in each case. We therefore advocate the Pearson Type III
distribution for use with all catchment types and all durations. As well as giving the
best performance in the study, the Pearson Type Il has some physical attributes which
make it a good choice for frequency analysis. In particular, the Pearson Type III is
unlikely to predict negative flows for high recurrence intervals.
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2.5 Fitting Technique

Within frequency analysis there is a profusion of competing estimation procedures that
can give different results, and several studies have focussed on comparing the
performance of these various techniques (e.g. Arora & Singh, 1987). However two
parameter estimation methods dominate: likelihood based techniques (i.e. maximum
likelihood), and moment based matching techniques, specifically the use of L.-Moments.
Both are well established techniques and there are many examples of their use in the
frequency analysis literature.

L-Moments are linear combinations of the probability weighted moments and use the
sample data to provide estimates of certain properties of the underlying population, which
are then matched to a member of the chosen distribution family. A full description of the
theory of the L-Moments method is beyond the scope of this document. Hosking and
Wallis (1997) provide an extremely comprehensive review of the L-Moments
methodology, although the same ideas are also discussed in a number of recent journal
papers including Hosking (1990). The advantages of L.-moments are that they have been
shown to be unbiased, have relatively small sampling variance and are relatively
insensitive to outliers (on the down side this latter point also means that large (or small)
sample values reflecting important information in the tail of the parent distribution are
given relatively little weight in the estimation procedure).

Likelihood based techniques are well established in statistical theory and practice. They
are more versatile than L-moments and can be adapted to deal with a range of
circumstances, such as dependence between observations. The estimators are known to
have certain optimal properties in the sense that, one the sample size is large enough, no
other estimators (including L-moments) have better properties. Unfortunately they do
not perform as well where the sample size is small. A number of problems can arise in
attempting to apply maximum likelihood in practise, such as the non-existence of a

maxima, or existence of several local maxima, and so on.

Generally, the choice of fitting technique is irrelevant in the context of uncertainties
generated by there being insufficient record length. Therefore from a pragmatic
perspective, we suggest that L-moments should be used for parameter estimation. L-
moments are widely applied in flood frequency estimation at present and are available
in many statistical/ hydrological packages such as WINFAP and MIKET 1.
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2.6 Hydrometric Errors

It is assumed that the data sets to be used will be free from hydrometric errors. An
analysis of errors carried out as part of the project showed that where the daily flow
series are subject to random hydrometric errors of less than + 10%, there will generally
be little effect on the results of the frequency analysis, especially where longer duration
are considered (the errors will tend to average out). However random hydrometric errors
of up to £ 20% can result in more than a 20 year uncertainty in recurrence interval.
Systematic hydrometric errors (bias) are likely to impose a systematic bias on the flow-
recurrence interval curve.
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3. RECOMMENDED METHOD

3.1 Introduction

Specific guidelines for low flow frequency analysis are presented in this chapter. As
discussed earlier, the guidelines are based on gauged flows in catchments with minimal
artificial influence and more than thirty years of record. The flow chart shown in Figure
2 gives an overview of the various stages in the recommended approach. The stages are
discussed further in Sections 3.2 to 3.6.

Derive time series of annual minima D-day average flow
using a two-step treatment of missing values as described
in Section 3.2

v

Quantify independence and homogeneity of data series
using statistical tests as described in Section 3.3

v

Construct observed frequency curve based on Gringorten
plotting positions (Section 3.4)

v

Estimate parameters using the method of L-moments with
a Pearson Type lll distribution (Section 3.5)

v

Assess the distribution function using goodness of fit
tests to quantify the match between observed and
estimated curves and resampling tests to quantify the
uncertainty associated with estimated quantiles (Section
3.6)

Figure 2: Overview of guidelines for best practice in LFFA

3.2 Computation of Minimum D-day Flow per Calendar Year

Here D-day average discharge is calculated on a running average basis for the entire
period of record. This means that a window of duration D days is moved sequentially
through the record using an increment of one-day, the mean flow over the duration
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being calculated at step. Each D-day mean is indexed to the middle day of the interval.
For any interval of length D, the index day with be the m™ day where m is defined as:

2
m = )

(Mj ,where D 1s odd

(B.I_lj ,where D is even

2

For example the 7-day average determined using flow data from 3 September 1983 to
9™ September 1983 inclusive would be indexed to the 6™ September 1983. As the
running average method is utilised with an increment of one day, 365 running average
values are determined for each calendar year, the smallest being used as the annual
minimum.

If some daily flows are missing a particular year within the flow record, the level of
uncertainty associated with the minimum D-day flow for that year increases,
particularly where the missing values occur within the low flow period or where the
number of missing values is relatively large. However, data missing from periods of
relatively high-flow are unlikely to have much influence on the annual minima calculated
for a particular year. Although missing values may be filled in by interpolation, this is
inappropriate where several consecutive values are missing and an objective and
consistent treatment of missing data is therefore required. To avoid filling in large gaps
by interpolation whilst also avoiding rejecting years unnecessarily, the annual minima
from data-poor years are rejected as a first step, whilst years with too much missing data
within the low flow period are excluded in a second step as follows:

Step 1. The number of missing data allowed per calendar year is constrained to 30 days,
l.e. an annual minimum is rejected outright if the year it represents contains 30 or more
days with missing values.

Step 2. A ‘low flow period’ is delineated for each remaining year based on the shortest
continuous period in which the lowest 20% (73 days) of daily flows are represented. For
example if the 60 smallest flows occurred between 15™ July and 15™ September, and the
next 13 lowest flows occurred between 10™ and 22" June the “low flow period’ is assumed
to span the period from 10™ June to 15" September. The year is discarded if the maximum
number of consecutive missing values within the ‘low flow period” exceeds 7 days.
However if there are less than seven consecutive missing days, the year is only discarded if
the aggregate number of missing data during the ‘low flow period’ is greater than 10 days,
otherwise missing data can be filled by interpolation.
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Although strictly not missing data, particular problems occur at the beginning and end
of the flow record. The first (D-m) days at the start of a record and the last (m-1) values at
the end of the flow record cannot be used as index days. For instance to derive a value for
1" January 1968 requires (m-1) extra days from the previous year 1967, yet if 1™ January
1968 is the first day in the record, these extra data do not exist. A similar situation arises at
the end of the flow record and results in a reduced number of running-averages being
computed for years at the end and beginning of the record. Where these years are
acceptable in Step 2, they can be included in the analysis provided that the value of m does
not exceed 75 (tests showed that the value of the annual minima was changed only if more
than 75 days were missing).

33 Validation of Independence and Stationarity

Sample data possessing serial elements cannot be thought of representing a population
of random variables, therefore the independence, stationarity and homogeneity of the
annual minimum series should be verified prior to beginning the frequency analysis
procedures. In particular, non-independence may manifest as larger durations are
considered.

The statistical literature gives examples of appropriate tests that may be applied to the
data. For instance independence may be assessed using Anderson’s Test, the Wald-
Wolfowitz Test, the Durbin-Watson method or by determining the auto-correlation
function of the data. Similarly the level of stationarity can be quantified by using tests
such as the Spearman Rank Test and the Mann-Kendall Test, as well as via a number of
non-linear methods. Tests for homogeneity include the Mann-Whitney Test. However it
1s important to note, that most of these tests do not perform well when the sample size is
small (i.e. for many stations the record length will be insufficient to ensure the tests
perform reliably).

3.4 Construction of the Observed Frequency Curve

Low flow frequency curves (probability plots) are used to depict the variation in
observed annual minima with exceedance probability. The plotting positions along the
probability axis are estimated using empirical formulae that evaluate the probability
associated with a particular observation from its rank in the sample set (i.e. the plotting
position 1s a distribution-free estimator of the probability). A number of plotting
position formulae have been suggested over the years. Some are said to be optimised for
particular distribution types, although these differences are really only evident for data
points of the very lowest and highest ranks. Reviews of plotting position formulae are
given by Cunnane (1978) and again by Cunnane (1989). Based on his
recommendations, this guidance document advocates the use of the Gringorten formula
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for estimating plotting positions. The Gringorten formula is given by
pi = (1-0.44) / (n +0.12) (6)

where p; is the estimated exceedence probability for the data point of rank i, and n is the
total number of observations. The rank, i, is calculated by reordering the set of data-
values according to size, the largest value being assigned a rank of 1, and the smallest
value a rank of n.

The probability plot is then constructed by plotting X; (vertically) against p;. The
plotting position is often expressed as a recurrence interval (i.e. reciprocally) such that
the curve describes the average interval between years in which the annual minimum D-
day falls below a given discharge. If the user does not have the facility to plot on a
probability scale a reduced variate scale may be used to ‘linearise’ the probability axis. In
this approach the variate value corresponding to each plotting position or recurrence
interval is determined, making use of the assumption that the data is likely to conform to
an extreme-value type distribution. For ease, the Weibull reduced variate given by the
following formula is recommended:

V= 4(1_e—().ZS(—ln(—lnp))) -
where V is the reduced variate value, and p is the exceedance probability.

It is important to note that whilst plotting positions are fairly accurate estimators of the
probability where n is very large (and the sampling errors are small), they are
predominantly influenced by the number of observations in the sample set where n is
small. This means that plotting positions will be equally spaced along the probability
axis, regardless of how the magnitudes of the observed flows are distributed. For
instance for a sample size of 35 years a recurrence interval of 62 years is always
assigned to the smallest flow, regardless of its size or relation to the other data.

35 Parameter Estimation

As discussed earlier, the method of L-moments is suggested as the preferred estimation
method. Parameter estimation is best attempted using existing software, rather than from a
first principle approach; commercial software packages providing L-moments include
MIKEI1, S-PLUS and WINFAP, the latter being specifically designed for regional flood
estimation procedures (Institute of Hydrology, 1999). Fortran subroutines for L-moments
are also available as freeware e.g. Hosking (2000).
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The Pearson Type III distribution family is advocated as the best all-round choice of
distribution for use in low flow frequency analysis. However where procedures for
estimation based on the Pearson Type III are not available, the three parameter Generalised
Extreme Value distribution is the next most preferred option.

When the three parameters have been determined, they can be used to define the form of
F(x). Here we present the Pearson Type III formulation given by Hosking and Wallis
(1997). The three parameters are shape, k, scale, o, and location, & Where k>0 the
appropriate cumulative distribution function is

F(x)=G (,u, X;),yj/r(ﬂ) (8)

| 2 ) .
where u= B= Ea‘k‘ and y=¢ - 7& (these do not hold true in where k=0, as in that

k_2 ’

case the distribution reduces to the normal distribution). The range of x is y <x < oo,

Similarly where k<0 the appropriate cumulative distribution function is

F)=G (ﬂ,%j/ I'(u) ©)

and the range of x is y < x < co.

G and T represent the incomplete (integrated between 0 and x) and complete (integrated
between 0 and infinity) Gamma Functions respectively, and may be estimated according to
the following relationships:

I'(x) = r e dt (10)

G(Lx) = j H e dt (11)
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3.6 Assessing the Estimation of F(x)

In assessing whether the fitted distribution is acceptable, the bias, variability and
accuracy of the parameter estimates are taken into account. As the ‘true’ form of the
distribution function for annual minima at the site of interest is always unknown, the
estimation is usually assessed in relation to the observed data points. This usually
involved some kind of comparison between the plotting position estimators of the
observed minima and those inferred from the estimated form of the distribution
function. Various goodness-of-fit tests may be used to quantify how well the
distribution fits the observed data. Equally by-eye fitting tests are often used, but should
be backed up with some quantitative justification. Resampling methods such as the
jacknife or bootstrap may be used to quantify the uncertain associated with quantile
estimates or to define confidence limits. These procedures are standard statistical
methods, and are detailed in many different statistical texts. However a comprehensive
description may be found in volumes 9 and 12 of the Handbook of Statistics (Rao,
1993; Patil & Rao, 1994).
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4. WORKED EXAMPLE

This example is based on the North Esk gauged at Dalmore Weir (station 19004),
located in the SEPA-East region. The annual minima of interest are those for durations
of 1 day and 180 days. The upstream catchment area is 81.6 km” and the flow regime is
moderately responsive - annual average rainfall is 951 mm and the Base Flow Index is
0.54. This record is of high quality and received a grade ‘A’ rating for hydrometric
quality in the study by Gustard et al. (1992).

Daily Flow Record and Mean Flow

The daily flow record is available from 01/01/1960 to 31/12/1999. The period of record
Mean Flow (MF) is 1.53 m’s’.

Derivation of Annual Minima Series

Table 1 gives the minimum D-day flow derived for each year where D=1 and D=180,
expressed both in absolute terms and as a percentage of the Mean Flow (%MF). For
1960, the annual minima where D=180 is rejected as no running average values could
be calculated for the first 90 days of that year (i.e. there is no record for the latter
months of 1959). For D=1 two or more years have the same annual minimum flow (e.g.
1961 and 1962 and 1977 and 1978). This is a feature of the data, but the same effect
may occur due to rounding up errors and so on.

Validation tests for independence and homogeneity

Figure 3 shows the annual minima series for the North Esk derived for durations of D=1
and D=180. In both cases the annual minima varies from year to year, and on visual
inspection no long term (linear) trends are apparent.
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Table 1: Annual Minima (AM) Series for the North Esk at Dalmore Weir

D=1 D=180

Year AM (m’s™) AM (%MF) AM (m’s")  AM (%MF)
1960 0.323 20.85 N/A N/A
1961 0.391 25.41 76.86 49.59
1962 0.391 25.41 113.82 73.43
1963 0.459 29.97 136.46 88.04
1964 0.416 27.36 89.2 57.55
1965 0.297 19.55 124.79 80.51
1966 0.388 25.41 111.54 71.96
1967 0.391 25.42 107.51 69.36
1968 0.549 35.83 153.74 99.19
1969 0.305 20.2 75.67 48.82
1970 0.315 20.3 93.93 60.6
1971 0.316 20.85 80.83 52.15
1972 0.233 14.98 45.34 29.25
1973 0.214 13.68 50.51 32.59
1974 0.236 15.63 51.82 33.43
1975 0.143 9.121 58.37 37.66
1976 0.24 15.64 58.64 37.83
1977 0.355 22.8 109.99 70.96
1978 0.355 22.8 92.26 59.52
1979 0.317 20.85 69.75 45
1980 0.361 23.45 84.09 54.25
1981 0.392 25.41 75.25 48.55
1982 0.298 19.55 71.63 46.21
1983 0.222 14.33 83.17 53.66
1984 0.138 9.12 49.72 32.08
1985 0.382 24.76 117.41 75.75
1986 0.29 18.89 103.2 66.58
1987 0.369 24.11 103.4 66.71
1988 0.234 14.98 106.07 68.43
1989 0.263 16.94 50.76 32.75
1990 0.276 18.24 85 54.84
1991 0.234 14.98 60.43 38.99
1992 0.1 6.515 93.16 60.1
1993 0.408 26.71 124.85 80.55
1994 0.27 17.59 57.02 36.79
1995 0.258 16.93 66.25 42.74
1996 0.263 16.94 53.38 34.44
1997 0.336 22.15 95.34 61.51
1998 0.611 39.74 159.03 102.6
1999 0.403 26.06 92.6 59.74
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Figure 3: Annual Minimum Series for the North Esk at Dalmore Weir.

A number of validation test for independence, stationarity and homogeneity of the series
are applied, in this case using the software package Systat 9 (©SPSS, 1998).

e Linear Regression Test
This shows that there is a poor linear relationship between the chronology and the
annual minimum, giving a coefficient of (R*) of 0.028 where D=1, and a value of 0.04
where D=180.

e Spearman Rank Correlation Test
The Spearman correlation coefficient between year and annual minima for D=1 is equal
to -0.236, and for D=180 is 0.127. As these values are much lower than the critical
values for the samples, the hypothesis of rank order relationship between year and flow
must be rejected.

e Autocorrelation test for independence
Fig. 4 shows partial autocorrelation plots for a) D=1 and b) D=180. Autocorrelation
measures the correlation of the series with itself shifted by a time lag. Autocorrelation
can be calculated for a lag of any length, and if autocorrelation is present at one or more
lags then the data is not independent. Partial autocorrelation plots show the relationship
of points in a series to preceding points after ‘partialing’ out the influence of intervening
points, and thus give a more conservative/ better perspective of autocorrelation.
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Values that lie outside the tramlines indicate that there is a significant correlation in the
data at the lag (in years) indicated. Figure 4 shows that for D=1 there is little or no
dependence within the data series, whilst for D=180 there seems to be some

(in days)

autocorrelation in the data at alag of five years.

Construction of Observed Frequency Curve

The Gringorten plotting position is used to estimated the exceedance probability, p,
using n =40 where D = 1, and n = 39 where D = 180. Table 2 gives details of the values

used, whilst Figure 5, shows the resulting probability plot.

Table2: Derivation of plotting positionsfor D=1 and D= 180

D=1, N=40 D=180, N=39
I AM (%MF) p AM (%MF) p
1 6.515 0.014 29.25 0.014
2 9.12 0.039 32.08 0.040
3 9.121 0.064 32.59 0.065
4 13.68 0.089 3275 0.091
5 14.33 0.114 3343 0.117
35 26.06 0.861 80.51 0.883
36 26.71 0.886 80.55 0.909
37 27.36 0.911 88.04 0.935
38 29.97 0.936 99.19 0.960
39 35.83 0.961 102.6 0.986
40 39.74 0.986 N/A N/A
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Figure5: Frequency curvesfor D=1 and D=180

Fitting the Pearson Type 11 distribution

Parameter estimation via L-Momentsis best attempted using existing software, rather than
from afirst principle approach. Severa commercia software packages can provide the L-
Moments estimation procedure with the Pearson Type |1 distribution, including MIKEL1,
SPLUS, WINFAP. In this example the Fortran subroutines of Hosking (2000) were
implemented yielding the parameters shown in Table 3.

Table 3: Parametersobtained via L-Momentsfor the Pearson Typelll distribution

Parameter D=1 D=180
a Scade 0.1 0.29
? Location 0.32 0.87
K Shape 0.13 0.53

As k>0 in both cases, the appropriate cumulative distribution functionis
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Fx) =G (%%)/T(ﬂ) (12)

For the case where D =1, the parameters are given by

u:l:iz: 236.69 (13)
B= %a\k\ =-0.0065 (14)
y:é‘—z% =-122 (15)

The range of x is -1.22 < x < oo, Substituting these parameters gives the following
analytical solution for F(x):

6(236.69, “1'22)

0.0065
1'(236.69)

F(x) = (16)

F(x) can be evaluated by solving the incomplete Gamma functions for different values of
x. Table 4 gives values of F(x) for different values of x, with corresponding recurrence
intervals (T). The fitted curves are shown in Figure 6.

Table 4: Estimation of F(x) for D =1

AM Fx) T
(9%MF) (years)
6.52 0.014 71.64
9.12 0.039 25.72
9.12 0.064 15.67
13.68 0.089 11.27
14.33 0.114 8.80
26.71 0.886 28.44
27.36 0.911 29.39
29.97 0.936 30.56
35.83 0.961 32.20
39.74 0.986 35.19
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Figure6: Fitted Curvesfor the North Esk for D=1 and D=180
Goodness of Fit Tests
The match between observed and predicted annual minima is quantified using root

mean square error (RMSE) and chi square statistics, based on the residuals (Table 5).

Table5: Comparison of observed and predicted flows, D= 180

T Observed AM Predicted AM

(years) P (%MF) (%MF) residuals
69.86 0.014 29.25 2251 -6.74
25.08 0.040 32.08 27.90 -4.18
15.28 0.065 32.59 31.11 -1.48
1099 0091 3275 3356 0.81
8.58 0.117 33.43 35.60 2.17
113 0.883 80.51 79.35 116
110 0.909 80.55 82.56 2.01
107 0935 88.04 86.64 -1.40
104  0.960 99.19 92.40 -6.79
102 0986 102.60 103.40 0.80
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Root mean square errors are 0.019 and 0.036 for D=1 and D=180 respectively, whilst
the corresponding chi-square values are 1.23 and 2.31. At this point the user should
refer to tables of critical values of the chi-square statistic, and based on the significance
level of interest, determine whether they are exceeded by the observed values. The
observed values must not exceed the critical values if the estimated curve is to be found
acceptable.

Resampling methods would also be attempted, if desired, at this stage. A full
description of resampling methods is beyond the scope of this guidance note. However
there are plenty of introductory texts on the subject such as Good (1999).

Prediction of the Annual Minima — Recurrence Interval relationship

As the goodness-of-fit tests suggest that the estimated curve is satisfactory the
distribution function, F(x), may be used to predict the probability (and thus the
recurrence interval) associated with a particular annual minimum flow, x. Similarly if
the annual minima associated with a particular recurrence interval was of interest, this

could also be determined by calculating x based on F(x).
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GLOSSARY

Accuracy — In statistical estimation, accuracy refers to the deviation of an estimate from the
true parameter value. In general, the term is used for the quality of a measurement that is both
correct and precise.

Anderson—-Darling test — A test procedure for testing the hypothesis that a given sample of
observations comes from some specified theoretical population. It is particularly sensitive to
deviations in the tails of the distribution. The combination of ease of computation and good
power makes it an attractive procedure for a goodness-of-fit test.

Probability scale — Where a graph has uniform subdivisions for the x axis but the y axis is
subdivided in such a way that a plot of the cumulative distribution appears as a straight line, it is
said to be plotted using a probability scale. For example, the arithmetic probability scale
describes a cumulative normal distribution.

Autocorrelation — In a time-series analysis autocorrelation is the internal correlation between
observations often expressed as a function of the lag time between them.

Bias — A systematic error that may distort a statistical result in one direction. A biased estimator
is one whose expected value does not equal the true value of the parameter being estimated.

Bootstrap — A nonparametric technique for estimating standard error of a statistic by repeated
resampling (with replacement) from a sample. The technique treats a random sample of data as
a substitute for the population and resamples from it a large number of times to produce sample
bootstrap estimates and standard errors.

Chi-square test — A test of statistical significance based on the chi-square distribution. The chi-
square statistic is obtained as the sum of all the quantities obtained by taking the difference
between cach observed and expected frequency, squaring the difference, and dividing this
squared deviation by the expected frequency.

Correlation coefficient — An index used to measure correlation. It is also known as the Pearson
product moment correlation coefficient. It is denoted by the letter r and its value ranges from -1
to +1. A value of +1 denotes that two sets are perfectly related in a positive sense and a value of
-1 indicates that two sets are perfectly related in a negative sense. A value close to zero
indicates that they are not linearly related.

Critical value — The theoretical value of a test statistic that leads to rejection of the null

hypothesis at a given level of significance. Thus, in a statistical test, the critical value divides
the rejection and the acceptance regions.
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Distribution function — For any random variable X, the distribution function of X, denoted by
F(x), is defined by F(x) = P(X < x); that is, the distribution function is equal to the probability
that a random variable assumes a value less than or equal to x for -oc < x < .

Durbin—-Watson test — A procedure for testing independence of error terms in least squares
regression against the alternative of autocorrelation or serial correlation. The test statistic d is a
simple linear function of residual autocorrelations, and its value decreases as the autocorrelation

Increases.

Estimation — The process of using information from sample data in order to estimate the

numerical values of unknown parameters in a population.

Gamma Function — A function generalizing the factorial expression for natural numbers, also
known as Euler’s Second Integral.

Goodness-of-fit test — A statistical procedure performed to test whether to accept or reject a
hypothesized probability distribution describing the characteristics of a population. It is
designed to ascertain how well the sample data conform to expected theoretical values. It
involves testing the fit between an observed distribution of events and a hypothetical
distribution based on a theoretical principle, research findings, or other evidence by means of a
Pearson chi-square statistic or any other test statistic.

Independence — In probability theory, two events or observations are said to be independent
when the occurrence of one event has no effect on the probability of occurrence of another
event. Thus, two events are independent if the probability of occurrence of one is the same
whether or not the other event has occurred.

Jackknife — A nonparametric technique for estimating standard error of a statistic. The
procedure consists of taking repeated subsamples of the original sample of n independent
observations by omitting a single observation at a time.

Kolmogorov-Smirnov tests — Nonparametric tests for testing significant differences between
two cumulative distribution functions. The one-sample test is used to test whether the data are
consistent with a given distribution function and the two-sample test is used to test the
agreement between two observed cumulative distributions. The test is based on the maximum
absolute difference between the two cumulative distribution functions.

Mann-Whitney U test — A nonparametric test for detecting differences between two location
parameters based on the analysis of two independent samples. The test statistic is formed by
counting all the bivariate pairs from the two samples in which one sample value is smaller than
the other. It is equivalent to the Wilcoxon rank-sum test.
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Maximum likelihood estimation — A method of estimation of one or more parameters of a
population by maximizing the likelihood or log-likelihood function of the sample with respect
to the parameter(s). The maximum likelihood estimators are functions of the sample
observations that make the likelihood function greatest. The procedure consists of computing
the probability that the particular sample statistic would have occurred if it were the true value
of the parameter. Then for the estimate, we select the particular value for which the probability
of the actual observed value is greatest. Maximum likelihood estimates are determined by using

methods of calculus for maximization and minimization of a function.

Method of moments — A method of estimation of parameters by equating the sample moments
to their respective population values. It is generally applicable and provides a fairly simple
method for obtaining estimates in most cases. The method, however, yields estimators that, in
certain cases, are less efficient than those obtained by the method of maximum likelihood.

Parametric methods — These are statistical procedures that are based on estimates of one or
more population parameters obtained from the sample data. Parametric methods are used for
estimating parameters or testing hypotheses about population parameters.

Partial autocorrelation — An autocorrelation between the two observations of a time series
after controlling for the effects of intermediate observations.

Quantiles — A general term for the (# — 1) partitions that divide a frequency or probability
distribution into #n equal parts. In a probability distribution, the term is also used to indicate the
value of the random variable that yields a particular probability.

Rank correlation — A nonparametric method for assessing association between two
quantitative variables. A rank correlation is interpreted the same way as the Pearson product
moment correlation coefficient. However, a rank correlation measures the association between
the ranks rather than the original values. Two of the most commonly used methods of rank
correlation are Kendall’s tau and Spearman’s rho.

Recurrence Interval (Return Period) — The average interval in years between two events of

equal magnitude.

Resampling — The technique of selecting a sample many times and computing the statistic of
interest with reweighted sample observations. Some commonly used resampling techniques
include bootstrap, jackknife, and their variants.

Spearman’s rho (p) — A correlation coefficient between two random variables whose paired
values have been replaced by their ranks within their respective samples or which are based on
rank order measured on an ordinal scale. It provides a measure of the linear relationship
between two variables. This measure is usually used for correlating variable(s) measured with

rank-order scores.
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Stochastic model — A mathematical model containing random or probabilistic elements.
Unbiased estimator — An estimator whose expected value or mean equals the true value of the
parameter being estimated. Thus, an unbiased estimator on the average assumes a value equal to
the true population parameter.

Uncertainty — A term denoting the lack of certainty inherent in a random phenomenon.

Wald-Wolfowitz run test — A nonparametric test for testing the null hypothesis that the
distribution functions of two continuous populations are the same.
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