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Science at the  
Environment Agency 
Science underpins the work of the Environment Agency. It provides an up-to-date 
understanding of the world about us and helps us to develop monitoring tools and 
techniques to manage our environment as efficiently and effectively as possible.  

The work of the Environment Agency’s Science Department is a key ingredient in the 
partnership between research, policy and operations that enables the Environment 
Agency to protect and restore our environment. 

The science programme focuses on five main areas of activity: 

• Setting the agenda, by identifying where strategic science can inform our 
evidence-based policies, advisory and regulatory roles; 

• Funding science, by supporting programmes, projects and people in 
response to long-term strategic needs, medium-term policy priorities and 
shorter-term operational requirements; 

• Managing science, by ensuring that our programmes and projects are fit 
for purpose and executed according to international scientific standards; 

• Carrying out science, by undertaking research – either by contracting it 
out to research organisations and consultancies or by doing it ourselves; 

• Delivering information, advice, tools and techniques, by making 
appropriate products available to our policy and operations staff. 

 

 

 

Steve Killeen 
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Executive summary 
Water quality is subject to a variety of pressures, including changes in physical habitat, 
point-source discharges, urban diffuse sources of contaminants, water abstraction, 
inputs of nutrients, and trace organics from domestic, agriculture and industrial 
sources. Understanding the impacts of these stressors on aquatic life is important in 
developing River Basin Management Plans (RBMP) as prescribed under the Water 
Framework Directive (WFD). In order to determine appropriate Programmes of 
Measures (PoM) within each RBMP we must identify those pressures on river basins 
that pose the greatest threat to water quality. Targeting remedial action toward those 
activities or emissions whose impact is large will result in the greatest environmental 
benefit, and efforts on those activities with a less significant impact will be minimised. 
To do this we need to be confident of (i) the presence of local impacts, (ii) the 
pressures that may be contributing to those impacts and (iii) the relative contribution of 
pressures from different sources in causing the impacts (where there are multiple 
sources). A source apportionment technique is required to help identify impacts and the 
causes of biological deterioration within catchments in order to inform appropriate PoM. 
The outputs of such a technique should relate to the concept of Good Ecological Status 
of the WFD. Further, results should be easy to communicate. 

A technique developed by the Dutch National Institute for Public Health and the 
Environment (RIVM) in collaboration with partners in the U.S. uses ecological and 
ecotoxicological principles to identify local impacts on ecosystems and their probable 
causes, using biological and non-biological monitoring data. The technique allows the 
relative importance of different stressors to be presented visually as geographically 
plotted pie charts, with pie sizes denoting the magnitude of local ecological impacts, 
and slice sizes the relative importance of the likely contributing causes. These are 
known as Effect and Probable Cause (EPC) pie diagrams. The EPC approach consists 
of (1) RIVPACS-type modelling to quantify local impacts and to identify expected but 
missing species, (2) ecotoxicological analyses to quantify a single summary value for 
the probable toxic pressures of local mixtures of contaminants, (3) Generalised Linear 
Modelling (GLM), to relate variation in pressure variables to variation in individual 
species’ abundances, and (4) the derivation and mapping of EPCs.  

This report describes the application of this eco-epidemiological technique using paired 
stressor- and biological data for rivers in England and Wales over a 10-year period.  
We investigate its potential for use by policy makers and river basin planning managers 
as a tool for water quality management, especially in relation to developing PoM under 
the WFD.  

Paired chemical and biological monitoring data were supplied by the Environment 
Agency for the period 1996–2004. Stressor monitoring data included: habitat 
characteristics, classical water chemistry, nutrients, industrial chemicals (primarily 
metals) and pesticides. Biological monitoring data covering 76 aquatic 
macroinvertebrate taxa (BMWP-taxa, family level) were also supplied. RIVPACS (River 
Invertebrate Prediction and Classification System) modelling performed by the 
Environment Agency yielded both the impact magnitudes for the sites (represented as 
pie sizes in the EPCs) and the identities of species that were expected but missing. 

Bioavailability modelling was used to calculate dissolved (available) concentrations per 
compound from total concentrations. Species Sensitivity Distributions (SSD) modelling 
was used to convert available concentrations into the local toxic pressure per 
compound (single-substance Potentially Affected Fraction (ssPAF) of species). 
Thereupon, the ssPAF values were aggregated with mixture toxicity models to 
represent the overall toxic pressures (multi-substance PAF (msPAF)) of the locally 
occurring mixtures. Using this approach offers a significant advantage because of the 
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enormous improvement in statistical sensitivity to distinguish signal variability (caused 
by exposure to an array of stressors) from natural variability. 

Generalised Linear Modelling was used to describe the variability of species 
abundance as functions of the stressor variables considered, including the summary 
parameter of msPAF to represent overall toxic pressure. 

An impact-attribution algorithm was used to finally determine the relative contributions 
of different stressors (slice sizes) to the overall impact (pie size) for each site, which 
includes quantification of the unexplained variance in species abundances. 

The process of data collection and analysis as well as the results were of interest in 
this scoping study, in order to consider the feasibility of the Environment Agency using 
this technique for future river basin management.  

The results show that: 

• The compilation of data for eco-epidemiological analyses is a major step that is 
of critical importance for the success of the EPC (and any other) method. This 
could be simplified if monitoring and data collection is targeted to meet the 
requirements of eco-epidemiological techniques. 

• Sufficient data was available for England and Wales to allow the EPC analysis 
to be completed. Both site-specific and national information on ecological effects 
and their probable causes is presented in the format of some selected examples; 
more comprehensive analyses and output presentations are possible. 

• The current analyses should be considered as preliminary results, to show that 
the method is operational. Further refinements in data analysis are possible, 
should more data and funding become available. 

• The results suggest that classical water chemistry parameters and habitat 
characteristics play a significant role in shaping local macrofauna assemblages, 
as compared to the set of chosen reference sites.  

• At a local scale, species loss can be attributed to a lesser or greater extent to 
mixture exposures, confirmed by a major association between (mixture) toxic 
pressure and family abundance data in the majority of taxa. The GLM analyses 
identified highly significant associations between family abundance data and 
acute toxic pressure for more than 50 per cent of the families. 

• The observed loss of families attributed to mixture exposure in field conditions 
significantly covaries with the acute toxic pressure, so that the local value of 
acute toxic pressure (msPAFEC50) seems to imply an upper limit estimate of 
family loss due to mixture exposure. 

• There are significant correlations between family abundance and toxic 
pressure, such that various opportunist families and sensitive families can be 
recognised. 

• The results are a product of the data available. They do not represent all sites 
at which the Environment Agency monitors biology and do not represent all 
pressures that may be impacting on biology at a site. Many sites were excluded 
from the analysis because of insufficient data. Further consideration should be 
given to how the data gaps can be filled and how data collection could be 
targeted to ensure the most appropriate data are collected for use in eco-
epidemiological techniques such as this. Whether EPCs can be presented for 
sites with incomplete data coverage is a subject for future investigation. 
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• Despite only limited data, diagnostic results have been obtained from the 
analysis, and these can be considered useful for addressing practical regulatory 
problems under the WFD. Further consideration of the outputs by local staff is 
now required to ‘ground truth’ the outputs and identify additional data sources 
that may be available.  
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1 Introduction 

1.1 Problem definition 
Water quality is subject to a variety of pressures, including changes in physical habitat, 
point-source discharges, urban diffuse sources of contaminants, water abstraction, 
inputs of nutrients, and trace organics from domestic, agriculture and industrial 
sources. These stressors impact on and alter ecosystems. Each stressor will contribute 
to the overall net impact, although the significance of each individual pressure will vary 
between locations. 

Prevention and minimisation of adverse alterations to ecosystems are major goals of 
environmental management. The Water Framework Directive (WFD) requires that 
waterbodies meet Good Ecological and Chemical Status by 2015. Understanding the 
impacts of stressors, their sources and their relative contribution to the overall state of 
the ecosystem is important in developing River Basin Management Plans (RBMPs) as 
prescribed under the WFD. In order to determine appropriate Programmes of 
Measures (PoMs) within each RBMP, we must identify those pressures on river basins 
that pose the greatest threat to water quality. Targeting remedial action toward those 
activities or emissions will result in the greatest environmental benefit, and efforts on 
those activities whose impact is small can be minimised. 

To do this we need to be confident of (i) the presence of local impacts, (ii) the 
pressures that may be contributing to those impacts and (iii) the relative contribution of 
pressures from different sources in causing the magnitude of impacts (where there are 
multiple sources). Tools are required to help identify impacts and causes of biological 
deterioration within catchments and thus inform appropriate PoM. 

1.2 Eco-epidemiology supports management decisions 
Eco-epidemiology is concerned with the identification of local impacts and their 
probable causes. Methods to quantify the magnitude of local degradation in aquatic 
communities are well developed (for example, Karr, 1981, Moss et al., 1987). The 
diagnosis of probable causes has typically relied on expert judgment, application of 
multivariate statistics, and weight-of-evidence methods. Such methods require 
significant expertise to use and interpret, and their results are often difficult to 
communicate. Further, mixtures of potentially toxic compounds also need to be 
considered, but are often not a part of such assessments. Considering low-level 
exposures to mixtures of toxicants in the field is too complicated for experts to judge 
directly. Modelling could help to solve this problem. 

Recently, the Dutch National Institute for Public Health and the Environment (RIVM), in 
collaboration with scientists in the U.S., has designed a method that: 

 Quantifies local ecological impacts in river ecosystems. 

 Considers the issue of mixtures of potentially toxic chemicals.  

 Assigns those local impacts to probable causes. 

 Enables easy communication of all results to river basin managers.  

The method is described by De Zwart (2006), using chemical and biological monitoring 
data from Ohio (U.S.) surface waters.  Abundance data for 96 species of fish from 
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approximately 700 sites were used to develop the method.  De Zwart et al. (2006a) use 
an eco-epidemiological method to produce ‘Effect and Probable Cause (EPC) pie 
charts’ for each sample site. The EPC charts are mapped using a Geographical 
Information System (GIS). For each of the sites, the size of the pie chart represents the 
magnitude of local ecological impact. The slice sizes represent the relative importance 
of different stressors in causing a local impact. The EPC-approach combines 
ecological, ecotoxicological, and exposure modelling to provide statistical estimates of 
the probable effects of different natural and anthropogenic stressors on assemblages 
of biological species, including mixtures of toxic compounds. 

1.3 Approach and aims 
This report describes the application of this eco-epidemiological technique to paired 
chemical and biological data for rivers in England and Wales collected over the past 10 
years. The dataset used for the work described herein does not represent all potential 
stressors to which aquatic organisms may be subjected, but was considered sufficient 
for the purposes of this scoping study. 

This project was carried out as a proof of concept study to investigate the potential of 
an eco-epidemiological technique as a water quality management tool for use by policy 
makers and river basin planning managers, especially in relation to developing PoM 
under the WFD. 

The work is a collaboration between the Environment Agency and RIVM. The 
objectives of this project were to explore the use of the EPC approach to readily 
available data for England and Wales, with specific focus on: 

• The approach to express toxicant concentrations in terms of toxic pressure 
for separate chemicals and mixtures. 

• Appraisal of the strengths and limitations of the approach. 

• Consideration of the approach in relation to other diagnostic systems 
developed by the Environment Agency. 

• Making recommendations as to the wider application of the approach. 
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2 Methods and Approaches 

2.1 Schematic outline 
In the following sections we describe the detailed preparation of the data set, 
intermediate analyses, and the simplification of these analyses to produce mapped 
EPC pie diagrams. A schematic outline of these data analysis steps is presented in 
Figure 2.1 and further description is provided in the following sections. 
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Figure 2.1  Outline of (a) the conceptual model of the Effect and Probable Cause 
(EPC) pie diagram method, and (b) the analytical steps to derive EPC-pie 

diagrams from (bio)monitoring data  

2.2 Raw data 
The EPC-analysis can only be performed when a sufficient number of sampling sites 
have complete and consistent data coverage. This is termed a ‘square data block’. For 
this reason, the entire available dataset is first screened to extract a subset of data, the 
square dataset. We compiled large sets of raw and modelled data, and screened them 
for coverage.  The number of sampling sites required can increase substantially with an 
increasing numbers of potential stressors. The use of the ecotoxicological modelling, 
such as the Potentially Affect Fraction (PAF) concept used in this work, is extremely 
useful in lowering the number of stressor variables and so increasing the statistical 
power of the diagnostic analyses. The data was provided by the Environment Agency 
and is described further in Sections 2.2.1 and 2.2.2. 
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2.2.1 Biotic data 

The biotic data consists of aquatic macroinvertebrate taxon composition and 
abundance data recorded at Biological Monitoring Working Party (BMWP) level for over 
5,000 sites.  The data were collected according to highly standardised protocols in the 
period between 1993 and 2004. Sampling locations were sampled every three years in 
spring and autumn as part of the Environment Agency’s General Quality Assessment 
(GQA) monitoring protocol.  The taxa are listed in Appendix 1. 

2.2.2 Abiotic data 

Site-specific river habitat and chemical monitoring data collected between 1995 and 
2004 were provided by the Environment Agency. Data included: 

• Sixteen habitat characteristics: Lat (latitude), Long (longitude), Alk (alkalinity-
hardness), DisS (Distance to Source), DCat (Discharge category), Width 
(width), Depth (depth), BolCob (boulders and cobbles), PebGrav (pebbles and 
gravel), Sand (sand), Silt (silt), Phi (average grain size), Slope (slope), Alt 
(altitude), MAT (mean annual temperature) and AATR (annual average 
temperature range). 

• Five classical water chemistry characteristics: CaCO3-Hardness, Cl- (chloride), 
TSS (total suspended solids), pH, and BOD (biological oxygen demand). 

• Three nutrients: phosphate (PO4
-), ammonia (NH4

+), nitrate (NO3
-). 

• Eight Industrial chemicals: lead (Pb), nickel (Ni), chromium (Cr), copper (Cu), 
cadmium (Cd), zinc (Zn), ammonia (NH3), and nitrite (NO2

-). 

• 109 pesticides  (see Appendix 2 for list). 

Dissolved oxygen was accidentally omitted during the data analyses, but is highly 
correlated with BOD so its omission was deemed unimportant. The list of variables and 
their physico-chemical and ecotoxicological properties is given in Appendix 3. A 
summary of variable names, abbreviations, units and type is given in Table 2.2.  

Additional variables pertained to land use data (such as “Urban”, “Forest”, “Crop” and 
“Cattle”). These data were not used in the analyses due to large data gaps. Including 
these data would result in significant loss of complete data blocks. 
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Table 2.2  Variables used in the assessments  

2.2.3 Toxicant data 

2.2.3.1 Industrial (measured) compounds  

Surface water concentration data that met the square dataset requirements were 
available for eight industrial compounds: the metals cadmium (Cd), chromium (Cr), 
copper (Cu), nickel (Ni), zinc (Zn), and lead (Pb), and for nitrite (NO2

- ) and ammonia 
(NH3). Measured total concentrations were converted to bioavailable concentrations as 
described in Section 2.4.3. The bioavailable fractions were used to calculate local toxic 
pressures per compound, producing Potentially Affected Fraction (PAF) values for 
each compound and subsequently multi-substance PAF values for all ‘industrial’1 
compounds at each sampling site as per Section 2.3.1. These values are coded as 
(ms)PAFI, to show that they are based on industrial chemicals. 

2.2.3.2 Modelled compounds: pesticide data 

Measured concentrations of pesticides in surface water were not consistently available 
for each sampling point, and the number of measured data points for which pesticide 
monitoring data was available consistently was too low to be considered representative 
                                                           
1 For the purposes of this report, industrial compounds are cadmium, chromium, copper, nickel, zinc, 
lead, nitrite ion and ammonia. 

# Code Meaning Units Type 
1 LAT Latitude dec. degrees Habitat
2 LONG Longitude dec. degrees Habitat
3 ALK Alkalinity mg/L CaCO3 Habitat
4 DisS Distance to Source km Habitat
5 DCat Discharge Category Category 1-10 Habitat
6 Width Width m Habitat
7 Depth Depth m Habitat
8 BolCob Boulders and Cobbles percent Habitat
9 PebGrav Pebbles and Gravel percent Habitat
10 Sand Sand percent Habitat
11 Silt Silt percent Habitat

12 Phi Average grain size - Habitat
13 Slope Slope percent Habitat
14 Alt Altitude m Habitat
15 MAT Mean Annual Temperature oC Habitat
16 AATR Annual Average Temp. Range oC Habitat
17 CaCO3 CaCO3-Hardness mg/L CaCO3 Classical water chemistry
18 Cl- Chloride mg/L Classical water chemistry
19 TSS Total Suspended Solids mg/L Classical water chemistry
20 pH Acidity - Classical water chemistry

BOD Biological Oxygen Demand mg O2 /L Skipped from analyses
21 PO4- Orthophosphate mg/L Nutrients
22 NH4+ Ammonium mg/L Nutrients
23 NO3- Nitrate mg/L Nutrients

23a Pb Lead mg/L Industrial chemicals
23b Ni Nickel mg/L Industrial chemicals
23c Cr Chromium mg/L Industrial chemicals
23d Cu Copper mg/L Industrial chemicals
23e Cd Cadmium mg/L Industrial chemicals
23f Zn Zinc mg/L Industrial chemicals
23g NH3 Ammonia mg/L Industrial chemicals
23h NO2- Nitrite mg/L Industrial chemicals
24 msPAF(i) Industrial chemicals toxic pressure fraction Industrial chemicals

25(1-109) msPAF(p) Pesticides toxic pressure (109 compounds) fraction Pesticides
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or meaningful for EPC analyses. In addition, the pesticides for which monitoring data 
were available were generally of little relevance, typically being compounds no longer 
approved for use in the UK. As pesticides were of particular interest for this trial, the 
pesticides dataset was supplemented using modelled data. The POPPIE model 
(Prediction of Pesticide Pollution In the Environment) was used to predict the surface 
water concentrations of pesticides at each sampling point.  

POPPIE uses a surface water model (SWATCATCH; Hollis et al., 1996) to assess risk 
from diffuse agricultural inputs of pesticides. The surface water model incorporates a 
number of datasets in a Geographic Information System (GIS). Model input data 
included: pesticide usage data, cropping data per region, 903 surface water 
catchments, soil types and properties, pesticide physicochemical properties (adsorption 
coefficient Koc, half-life, solubility and Henry’s constant), and MORECS (Met Office 
Rainfall and Evaporation Calculation System) and HER (hydrologically effective rainfall) 
data. POPPIE predicts the monthly mean surface water concentration of each pesticide 
at the outlet of each catchment.  

A single predicted pesticide value (annual average of the monthly values) was derived 
per catchment studied.   Because POPPIE generates modelled outputs representing 
the catchment outflow, the values may not realistically represent the pesticide exposure 
at the sampling locations.   In addition, point source inputs of agricultural pesticides and 
inputs from non-agricultural uses of pesticides such as use in parks, on railways and 
roads and industrial discharges are not taken into account in POPPIE predictions. The 
modelled values are therefore likely to underestimate the true pesticide load at some 
sites within a catchment. This is especially true in urban areas where POPPIE 
predictions will underestimate environmental concentrations of pesticides. POPPIE has 
been validated against measured environmental concentrations and further discussion 
can be found in the Environment Agency's discussion  of the model (2001).  However, 
whilst the shortcomings of the modelled data were recognised, it was agreed that the 
POPPIE predictions represented the most available national scale pesticide modelled 
data available within the timescales of this scoping study.  

 

2.3 Toxic pressure modelling 

2.3.1 Calculating toxic pressures: motives and principles 

The more variables that are included in an analysis the lower the power of the analysis 
to detect significant relationships.  Therefore, instead of using individual compound 
concentrations of toxicant in the analysis, we calculated summary indicators of risk of 
mixtures of chemical compounds that are present and may influence local macrofauna 
assemblages.  The use of this summary statistic, instead of raw concentration data per 
compound, minimises the number of predictors in the assessment and thus increases 
its statistical power. For this study, these calculations are based on the bioavailable 
fractions of the measured industrial chemicals and the modelled pesticide 
concentrations.  

The summary statistics are calculated per compound first, and then per compound 
group (defined by having the same Toxic Mode of Action, for example organic 
phosphate insecticides, photosynthesis inhibitors), and finally for the whole mixture of 
compounds and compound subgroups with similar and dissimilar Toxic Modes of 
Action. The parameter used to quantify potential influences is called ‘toxic pressure’, 
and is expressed as the fraction of species that can locally occur and that is probably 
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affected at a level higher than 50 per cent. This fraction is abbreviated as PAF: 
Potentially Affected Fraction. For mixtures, it is called the multi-substance PAF 
(msPAF). 

The analyses to calculate PAF and msPAF consist of (a) data compilation and 
collecting compound property information, (b) assessing the available fraction, 
acknowledging local exposure conditions, (c) determination of Species Sensitivity 
Distributions (SSD) for all compounds, and (d) determining toxic pressures per 
compound and for mixtures. 

This section describes these analyses, resulting in two novel parameters for further 
modelling, namely: msPAFI and msPAFP for industrial chemicals and pesticides, 
respectively. The summary variables were used in the EPC analyses, and in simple 
product-moment correlation analyses, looking into covariation between toxic pressure 
and taxon abundance. 

2.3.2 Compound property data (physico-chemical and ecotoxicity)  

Two types of data were collected for each chemical compound. Data on physico-
chemical properties were compiled to enable calculation of the dissolved, bioavailable 
concentrations from total concentrations, according to formulae given below. Data on 
the ecotoxicity of the compounds were compiled to enable derivation of SSD. The data 
originated from various sources including the RIVM e-toxBase (Wintersen et al., 2004). 

2.3.3 Availability assessment of toxicant concentrations  

The bioavailability of compounds is dependent on local exposure conditions, and is 
influenced by factors such as dissolved organic carbon, pH and water hardness. 
Existing methods to estimate exposure concentrations from total concentrations were 
used to determine local bioavailable concentrations for the selected compounds. 

Three groups of compounds were distinguished: 

• Metals. The toxicity of heavy metals to biota is strongly associated 
with the dissolved fraction in ionized form (Sorensen, 1991). This, in 
turn, depends strongly on water hardness. We estimated the 
bioavailable fractions of the metals using hardness-based availability 
correction formulae (Ohio Environmental Protection Agency (EPA), 
1996), as summarised in Equation 1.  

Equation 1.  MeBioavailable = MeTotal * 12.522 * Hardness-0.7852 (for H > 25 mg/L CaCO3) 

Where: MeBioavailable is the metal fraction calculated to be available for uptake, 
MeTotal is the total measured metal concentration, and H is hardness. 
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y = 12.522 * Hardness-0.7852
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Figure 2.2  Relationship between bioavailable fraction of heavy metals and water 
hardness. Adopted for all heavy metals (including chromium). 

 
• Organic chemicals, including the pesticides. The toxicity of organic 

chemicals is strongly influenced by the Dissolved Organic Carbon 
concentration. We estimated the bioavailable fractions of organic 
compounds (De Zwart et al., in press). 

Equation 2.  OrganicBioavailable = OrganicTotal / (1 + fDOC * KOC) 

Where: fDOC is the w/w/ fraction of dissolved organic carbon in the water 
and Koc is the partitioning coefficient of a substance between water and 
organic carbon. 

• The rest of the compounds. For the other compounds, the 
concentrations as measured were considered fully available for 
uptake.  

2.3.4 Derivation of multi-substance toxic pressure (msPAF) 

We used Species Sensitivity Distributions (SSDs) (Posthuma et al., 2002) to estimate 
toxic pressure for each compound. An SSD is defined by a log-normal function in which 
μ specifies the median log transformed toxicity (EC50) and σ the standard deviation of 
log transformed EC50’s (variability across taxa). These parameters are listed for all 
compounds in Appendix 3. 

Based on these SSDs, an extensive data set of single-substance PAF values per site 
and per year has been generated. These output data are not shown here. The data 
were used to calculate multi-substance PAF-values for industrial chemicals and 
pesticides, as well as for overall toxic pressure.  
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2.3.5 Derivation of multi-substance toxic pressures (msPAF)  

Using the local toxic pressures of each of the substances studied (single-substance 
PAF), we calculated the local toxic pressures for industrial chemicals and pesticides 
separately, and for the overall mixture.  

To obtain all msPAF-values, we applied the method described in De Zwart and 
Posthuma (2006). First, we determined the primary Toxic Mode of Action (TMoA) of 
each substance.  Substances were then grouped into subgroups with similar TMoAs 
(such as photosynthesis inhibitors, insecticides, and so on). The TMoA assignments 
are summarised in Appendix 3. For each subgroup, we calculated the local toxic 
pressure of the mixture. We aggregated these TMoA-specific toxic pressure values per 
site to give the overall toxic pressure per site induced by the total local mixture.  

2.3.6 Use of multi-substance toxic pressures (msPAF) in impact 
modelling  

The multi-substance toxic pressure data were now treated as summary parameters for 
ecotoxicity in the EPC analyses, and replaced the original total concentrations of each 
of the separate compounds in the project dataset. 

By reducing the number of parameters in this way the statistical power of the eco-
epidemiological analysis is enhanced, as fewer sampling sites are required to 
recognise signal in the natural variability. “Simpson’s rule of thumb”, also known as the 
“curse of dimensionality” (Bellman, 1961), implies that to minimise error in regression 
analysis, an absolute minimum of 10 observations are needed for each predictor 
variable (Vaughan and Ormerod, 2003). Safer interpretations of this rule of thumb 
mention a requirement of 20, 50 or even 100 observations (in this case, sampling sites) 
per predictor. Reducing the number of input parameters is therefore beneficial to the 
analysis. 

Summarising data on individual compounds into a single parameter may seem to imply 
loss of information on local impacts per compound. This is counteracted by the ability 
to disaggregate the net toxic pressure of mixtures into the TMoA-specific toxic 
pressures for subgroups of compounds, and finally to single-substance toxic pressures 
when needed.  

2.4 Combining abiotic and biotic data 
The two sets of data (biotic and abiotic) are not directly suited for EPC analysis. 
Selection of variables and sites are needed, to identify those combinations of sites and 
variables that would result in an optimal “square” data set. This is an optimisation 
process with various possible outcomes.  

Within the process, we decided which abiotic variables were of primary interest for the 
assessment, and also had sufficient data coverage to be used. This optimisation 
process for abiotic variables resulted in 954 sites with data coverage (mostly multiple-
year data), with mostly multiple-measurements per site due to repeated sampling 
rounds. Overall, the combined database contains more than 17.106 records.  

Biotic data were supplied by the Environment Agency for the selected sites optimised 
for abiotic variable coverage. Biological data (macroinvertebrate abundance) were 
collected once in three years, in both spring and autumn, resulting in multiple samples 
per site (site/year combinations). To match the abiotic data to the biotic data we 
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calculated three-year moving averages in the abiotic data per variable per site. This 
links the biotic information to the abiotic characteristics of the previous three years.  

From the abiotic moving-average data set, a data set with full data representation was 
derived. Combining this data with the biological data resulted in 307 sampling sites with 
sufficient abiotic and biotic data. 

In summary, the optimised data set of biotic and abiotic data consisted of data for 76 
taxa, 307 sites, 1,042 site-year combinations and 25 abiotic parameters (including two 
summary parameters for toxic pressure of industrial chemicals and pesticides). A 
summary of variable names, abbreviations, units and type is given in Table 2.2.  

2.5 Ecological and statistical analyses 

2.5.1 Quantifying biological condition and impairment: RIVPACS 
modelling 

The EPC concept defines magnitude of local impact (the size of the EPC pie chart) by 
quantification of the deviation from expected conditions. This is done by comparing 
those taxa observed in the field with those expected to be present in an unimpaired site 
(reference conditions). In identifying reference conditions it needs be acknowledged 
that different types of surface waters are populated with characteristic faunal 
assemblages. Based on data from these best available sites, the conditions of other 
sites can be qualified as ‘deviating’ from the expectation for the water body type. Pie 
sizes produced in the catchment pressure identification are based on this quantified 
deviation2.  

The Environment Agency uses RIVPACS (the River Invertebrate Prediction and 
Classification System) to predict the taxa that would be expected at a site if it were 
unimpaired. RIVPACS models consider the presence or absence of species for a set of 
reference sites, and use data on the physical characteristics of a new site to predict the 
presence or absence of species at that site. 

2.5.1.1 RIVPACS Modelling 

The RIVPACS reference sites were chosen as being the best available sites of their 
type across the UK at the time of sampling. At each site, three-minute 
macroinvertebrate kick samples were collected in spring, summer and autumn of one 
year, and the biology data held as abundance category at the lowest taxonomic unit. A 
suite of environmental parameters were also recorded at each site in a standard 
manner. These environmental parameters represent the optimum correlates with 
biological community. These are: 
 

• Altitude (m above sea level). 
• Latitude. 
• Longitude. 
• Distance from source (km). 
• Slope (km). 
• Mean air temperature. 

                                                           
2 Note that any set of reference sites can be chosen. For example, if the most impacted sites were selected 
as reference sites, the catchment analyses would result in similar looking results, but with the size of the 
pie now indicating deviation from bad condition. 
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• Air temperature range. 
• Discharge category (1-10). 
• Stream width (cm). 
• Stream depth (cm). 
• Substrate. 
• Alkalinity (mg l-1 CaCo3). 

 
The RIVPACS model was based on these site-stressor-family data combinations for 
reference sites. By comparing the environmental parameters of a new site with the 
RIVPACS model, we are able to predict the presence and abundance of each taxon at 
non-reference sites – that is, make a prediction of the taxa assuming the site was at 
‘reference condition’. This becomes the ‘expected’ list of fauna, with each taxa having a 
probability of capture and a probability of abundance category. 

This is done by calculating the probability of membership of each of the end groups 
within the model based on the environmental parameters of a new site. To predict the 
presence and abundance of a taxa RIVPACS multiplies the probability of group 
membership with the percentage of reference sites in that group that have that 
particular taxon. For example, Site 111 has a 60 per cent chance of being in Group 1, 5 
per cent of being in Group 2,and so on. Taxon x is found in 33 per cent of Group 1 
samples, therefore RIVPACS would multiply 0.6 by 33 per cent, so there is a 20 per 
cent contribution of Group 1 to the likelihood of capture of Taxon x. This is repeated for 
each group, and the contributions summed to get the ‘expected’ likelihood of capture 
for Taxon x at Site 111. 

2.5.1.2 Use of RIVPACS to calculate pie size 

The Environment Agency used RPBATCH: RIVPACS III+ Release 3.3 to produce: (1) 
the probability of capture (Pc) of each BMWP family, and (2) the expected abundance 
of each family at each of the sites for which optimised abiotic data were available.  
 
These Pc values are summarised over species per site, by calculating the observed-
over-expected ratio (O/Esite). A high O/E indicates favourable conditions; that is, 
similarity to the reference conditions of the water type. In RIVPACS the O/E-scale runs 
from 0 to approximately 1.6. 

To calculate the radius of the EPC pie diagrams, impairment must be expressed on an 
absolute scale of 0 to 1. However, by applying the RIVPACS O/E method, O can 
theoretically exceed E because of sampling or prediction error. This could result in pie 
sizes (1-O/E) that are negative. Furthermore, this way of scaling may also result in a 
positive pie size that would imply impairment even when all species that are expected 
are actually observed. To address this issue we considered any species with Pc ≥ 0.5 
as expected to occur and counted these species as an alternative way of estimating E 
and calculating pie sizes. This alteration resolves both problems of negative pie size 
and the potential problem of implying impairment when no species were missing. 

The expected fauna produced through this process was then compared with 
abundances of the actual fauna collected; that is, the ‘observed’ fauna. By doing this 
we could quantify the magnitude of local impacts at our 1,042 site-year combinations. 
These data result in the pie sizes of the EPC diagrams. We further used the RIVPACS 
model to make lists of missing families per site; that is, species that are expected to be 
present but that were absent. The lists of taxa obtained in this way is required for the 
effect-to-cause attribution step within the whole analysis process (see below). 
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2.5.2 Identifying likely causes of impairment: GLM modelling 

2.5.2.1 Construction of GLM models 

We used Generalized Linear Models (GLM) (McCullagh and Nelder, 1989) to quantify 
the associations between macroinvertebrate family abundance  and the environmental 
variables.  

We built two sets of models. We used one set of models (GLM15) to predict family 
abundance from the same predictors as used in the RIVPACS model. The form of 
these models was: 

GLM15:  ln(Oi) = intercept + Lat + Lat^2 + Long + Long^2 + DisS + DisS^2 + DCat + 
DCat^2 + Width + Width^2 + Depth + Depth^2 + BolCob + BolCob^2 + PebGrav + 
PebGrav^2 + Sand + Sand^2 + Silt + Silt^2 + Phi + Phi^2 + Slope + Slope^2 + Alt + 
Alt^2 + MAT + MAT^2 + AATR + AATR^2  

where Oi = Observed abundance of families i, and the other parameters are the 
predictors also used in RIVPACS. 

We then constructed another set of models (GLM25) to describe family responses to 
both the gradients of the natural and the 10 other variables. These models took the 
form: 

GLM25:  ln(Oi) = intercept + Lat + Lat^2 + Long + Long^2 + DisS + DisS^2 + DCat + 
DCat^2 + Width + Width^2 + Depth + Depth^2 + BolCob + BolCob^2 + PebGrav + 
PebGrav^2 + Sand + Sand^2 + Silt + Silt^2 + Phi + Phi^2 + Slope + Slope^2 + Alt + 
Alt^2 + MAT + MAT^2 + AATR + AATR^2 + BOD + BOD^2 + CaCO3 + CaCO3^2 + pH 
+ pH^2 + TSS + TSS^2 + Cl + Cl^2 + NH4 + NH4^2 + NO3 + NO3^2 + PO4 + PO4^2 + 
ImsPAF + ImsPAF^2 + PmsPAF + PmsPAF^2 

Note that the GLM15 and GLM25 both use the RIVPACS variables. The formula 
contains linear and quadratic terms to allow for optimum-responses (like for pH). 

We added both linear and quadratic forms of the probable stress variables to the 
models by a stepwise procedure. The stepwise procedure used the Bayesian 
Information Criterion (BIC) (Schwarz, 1978) to restrict the addition of terms to those 
that had a significant contribution to the overall model (p < 0.05), based on type I 
evaluation of sums of squares. Calculations were conducted with S-Plus 2000, 
Professional Release 3 (MathSoft, Inc., Cambridge, MA, USA). Predictor variables that 
were not selected by this procedure received a regression coefficient of zero. 

We created both full (GLM15 and GLM25) and null models for each family. Null models 
were of the form GLM0 = ln(abundance) = a (constant), where a is the mean 
abundance of the family across all sites.  

GLM output consisted of regression coefficients, degrees of freedom, and deviance 
residuals for both the full (DEVfull) and null models (DEVnull). We used explained 
deviance (ED) as a measure of the explanatory capacity of each model, where ED = 
(DEVnull – DEVfull)/DEVnull.  

The objective of the GLM-modelling was to isolate the likely effects of different stressor 
variables on macrofauna abundance. As in the RIVPACS models, we needed to 
distinguish between the effects of stressor variables on macrofauna and effects 
associated with natural factors. However, direct regression of the differences between 
observed abundances and those expected from the GLM15 models (that is, [ln(Oi) – 
ln(Ei)]) on the 10 stressor variables resulted in significant convergence problems. To 
avoid this problem, we fitted GLM25 models directly to the ln(Oi) data. This approach is 
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only valid when the natural and other stressor variables are not substantially correlated, 
otherwise the values of the regression coefficients would not be independent of one 
another. The latter was tested specifically. 

2.5.2.2 Identification of likely causes of local impairment to calculate pie 
slices 

We used statistically significant associations between family abundance and stressor 
variables (from GLMs), and the magnitudes of impacts and the identities of missing 
families (from RIVPACS), to identify likely causes of biological impairment. While we 
recognise that such associations do not necessarily imply causation, we use the term 
‘cause’ in this restricted sense in the remainder of the paper. 

We linked the abundances of individual families and the stressors occurring at 
individual sites as follows: 

• Predicted abundance.  

We applied the calibrated GLM25 regression models to predict the abundance of family 
i at any site (Ei,GLM25) as a function of both the naturally occurring and stressor 
conditions occurring at a site. 

• Unexplained variance (unknown causes).  

We calculated the unexplained variance in family abundance at each site as the 
departure from a linear association between observed (Oi) and expected (Ei,GLM25) 
abundances over all families. We expressed unexplained variation as (1-r2), and 
included this value as one of the slices in the EPC pie diagrams. 

• Identity of missing families.  

The RIVPACS model output allowed us to identify those families that were expected at 
Pc ≥ 0.5 but not observed at the sampling sites. 

• Associations with different stressor variables.  

If a family was missing at a site as a possible consequence of unfavourable levels of 
some or all stressors we measured, the contribution of those stressor variables in the 
GLM25 model prediction should be negative. For example, if family i is missing at site x 
because of toxic stress by mixtures of pesticides, the value of (y1,i • msPAFP + y2,i • 
msPAFP

2) should be negative. The relative potential influence of each stressor variable 
is simply that stressor’s negative contribution divided by the sum of all negative 
stressor contributions for missing families. These proportions along with the 
unexplained variance were used to size the pie slices in the EPC graphs.  

• Aggregation over sites.  

We aggregated site-based estimates to derive insight regarding the overall regional 
importance of different stressors. We calculated regional values as simple averages of 
the percentage of variation in abundances associated with different measured factors 
observed at individual sites. These percentages were used along with per cent 
unexplained variation to construct a regional summary EPC pie graph. 

We recognise that variables used in this study are in part composite, and need not be 
purely of natural origin, or purely of an added stress variety. Although the above 
procedure attributes variance to the different variables, we acknowledge that the 
attribution need not reflect man-induced changes only. For example, the local value of 
the variable pH can be determined by both natural causes (such as humic acids) and 
man-made causes.  
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We noted that the RIVPACS model also identifies families that are not expected at a 
site, but were nonetheless observed. The attribution model can be adjusted to also 
identify the likely causes for such increases by evaluating just the positive contributions 
of individual stressor variables in the GLM25 models for unexpected families observed. 
However, because of length and complexity limitations, we do not present these 
complementary assessments in this paper. 

2.6 GIS-mapping of EPC pie diagrams 
Completion of the analyses described above yielded information on the pie sizes (from 
comparing observed assemblages to RIVPACS predictions) and slice sizes (from GLM 
and RIVPACS modelling and the cause-attribution method). These results were plotted 
as pie charts known as ‘Effect and Probable Cause’ diagrams using GIS-based maps. 
All analyses were performed by RIVM without prior knowledge of local issues at the 
site, in a double blind procedure. 
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3 Results 

3.1 Raw data: overview and stressor covariation 
Data selection is described in the previous chapter. A summary overview in Table 3.1 
presents the statistical properties of the variables (percentile values). Consideration of 
the range of values for all variables (including msPAFI, and to a lesser extent msPAFP), 
suggests that there was sufficient data for the EPC analyses to distinguish a signal for 
each of the variables where they shaped the composition of macrofauna assemblages.  

 Used for RIVPACS and GLM15
Lat Long DisS DCat Width Depth BolCobPebGrav Sand Silt Phi Slope Alt MAT AATR

5th 50,68 -3,53 4,2 1,0 2,3 13,3 0 4,0 0 0 -6,5 0,2 5 9,11 10,74
25th 52,35 -2,75 14,1 3,0 5,8 22,9 9 21,0 5 1 -5,07 0,6 10 9,48 12,06
50th 53,13 -1,67 35 5,0 12,4 35,6 31 36,0 12 9 -2,49 1,6 46 9,81 12,76
75th 53,85 -1,25 53,1 6,0 20,1 53,8 50 47,0 18 26 0,86 4,2 70 10,1 13,06
95th 54,75 0,17 112,9 8,0 34,2 204,6 72 64,9 39 80 6,516 11,1 135 10,8 13,28
99th 54,98 1,13 139,8 9,0 55,1 235,0 86 69,0 54 100 8 25 215 11,3 13,5

Used for GLM25
BOD CaCO3 pH TSS Cl NH4 NO3 PO4 ImsPAF PmsPAF Overall msPAF

5th 1,07 37,0 7,12 3,22 10,53 26 0,58 0,02 0,3% 0,00% 0,4%
25th 1,47 128,4 7,62 7,7 25,07 54 2,83 0,07 0,5% 0,05% 0,7%
50th 1,95 246,4 7,89 13,7 47,86 117 5,44 0,33 0,9% 0,3% 1,4%
75th 2,44 312,5 8,03 18,4 71,92 210 8,35 0,74 1,4% 0,5% 2,0%
95th 4,87 434,5 8,21 33,5 148,1 993 12,39 2,10 4,9% 1,6% 5,4%
99th 6,72 557,2 8,40 52,3 299,2 2145 15,41 3,40 29,3% 3,0% 29,3%

Table 3.1  Summary of variables and their statistical properties used in the 
analysis of ecological impacts and probable causes in rivers in England and 

Wales (1,042 data points). Note that the variable “alkalinity” was used 
additionally in RIVPACS as predictor. 

We determined product-moment correlations between abiotic variables based on the 
available data for 1,042 site/year combinations. The correlation analysis is necessary 
to avoid statistical flaws in the impact attribution process that can occur when two or 
more variables are highly correlated. The results are shown in Table 3.2. Variables that 
apparently covary (positively or negatively) represent sets of logical associations, such 
as the variable “Latitude” being negatively associated with the variable “Mean Annual 
Temperature”. It was decided to keep all variables in the assessment, with the 
exception of alkalinity, which was highly correlated with CaCO3-hardness (data not 
shown in Table 3.2).  

The data set remaining after preliminary data analyses consisted of 76 macrofauna 
taxa, 307 sampling sites with 1,042 site-year combinations and 25 abiotic variables.  
The final EPC analysis considers 10 variables as potential stressors to which impacts 
can be attributed. 
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Lat Long DisS DCat Width Depth BolCob PebGrav Sand Silt Phi Slope Alt MAT AATR BOD CaCO3 pH TSS Cl- NH4+ NO3- PO4- ImsPAF
Lat 1
Long -0,09 1
DisS 0,02 0,21 1
DCat 0,21 0,03 0,82 1
Width 0,23 0,11 0,72 0,83 1
Depth -0,14 0,33 0,64 0,49 0,45 1
BolCob 0,49 -0,44 -0,27 0,02 0,09 -0,46 1
PebGrav -0,04 -0,26 -0,19 -0,17 -0,18 -0,49 0,00 1
Sand -0,22 0,26 0,13 0,00 -0,06 0,18 -0,55 -0,07 1
Silt -0,32 0,45 0,32 0,10 0,07 0,67 -0,66 -0,64 0,08 1
Phi -0,41 0,50 0,33 0,07 0,02 0,66 -0,86 -0,49 0,38 0,94 1
Slope 0,07 -0,22 -0,44 -0,50 -0,36 -0,34 0,30 0,09 -0,19 -0,25 -0,30 1
Alt 0,15 -0,08 -0,39 -0,37 -0,28 -0,39 0,31 0,15 -0,09 -0,34 -0,35 0,41 1
MAT -0,93 -0,10 -0,07 -0,24 -0,26 0,09 -0,37 0,09 0,14 0,22 0,29 0,00 -0,14 1
AATR 0,06 0,83 0,29 0,10 0,13 0,24 -0,38 -0,11 0,24 0,31 0,38 -0,23 0,11 -0,22 1
BOD 0,11 0,22 0,06 0,09 0,13 0,08 -0,04 -0,10 0,11 0,04 0,06 -0,18 -0,08 -0,10 0,28 1
CaCO3 -0,21 0,39 0,07 -0,16 -0,15 0,21 -0,51 -0,08 0,30 0,38 0,47 -0,22 -0,14 0,15 0,49 0,21 1
pH -0,03 0,38 0,31 0,16 0,09 0,21 -0,32 0,01 0,14 0,22 0,28 -0,15 -0,09 -0,10 0,47 -0,05 0,48 1
TSS -0,21 0,08 0,18 0,07 0,00 0,11 -0,22 -0,06 0,03 0,23 0,23 -0,14 -0,15 0,19 0,10 0,18 0,17 0,07 1
Cl- -0,11 0,16 0,04 -0,04 -0,01 0,12 -0,19 -0,10 0,14 0,18 0,21 -0,14 -0,19 0,15 0,17 0,43 0,52 0,05 0,18 1
NH4+ 0,07 0,11 -0,03 0,00 0,03 0,01 -0,02 -0,13 0,07 0,06 0,07 -0,11 -0,12 -0,04 0,13 0,64 0,22 -0,14 0,14 0,41 1
NO3- -0,22 0,34 0,12 -0,07 -0,10 0,20 -0,47 -0,04 0,31 0,31 0,41 -0,27 -0,12 0,17 0,48 0,27 0,73 0,35 0,16 0,43 0,14 1
PO4- -0,10 0,25 0,06 -0,05 -0,03 0,06 -0,22 0,01 0,17 0,12 0,18 -0,20 -0,05 0,10 0,38 0,49 0,38 0,07 0,12 0,41 0,34 0,69 1
ImsPAF -0,30 -0,41 -0,14 -0,13 -0,12 -0,06 0,10 0,04 -0,07 -0,09 -0,10 0,11 -0,09 0,42 -0,51 -0,05 -0,05 -0,50 0,07 0,17 0,11 -0,12 -0,05 1
PmsPAF -0,08 0,50 0,39 0,31 0,34 0,53 -0,30 -0,28 0,15 0,39 0,40 -0,30 -0,32 -0,03 0,39 0,21 0,26 0,20 0,09 0,22 0,13 0,26 0,12 -0,08

Table 3.2  Degree of association (r) for the 25 selected variables (n =1,042 
site/year combinations). Values larger than (plus or minus) 0.5 are coloured 
orange, values larger than (plus or minus) 0.8 are coloured red. To obtain 

correlation coefficients: calculate r2 from the data shown. 

3.2 RIVPACS results and the derivation of pie sizes 

3.2.1 Grouping of water bodies 

Twinspan analysis performed on the biology data of the 614 reference sites alone 
produced 35 ‘end groups’ or community types in the England and Wales model (Figure 
3.1). Sites with similar species composition are grouped together at lower dissimilarity 
distances than sites with different species compositions. Using Multiple Discriminant 
Analysis, the grouping of sites was then explained by a set of environmental 
parameters. This forms the fundamental model of RIVPACS, allowing the prediction of 
taxa capture at a new site. 
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Figure 3.1  Example of a TWINSPAN presentation of RIVPACS-grouping of 
reference site 

The site grouping shows that there are various subgroups of water body types, 
characterised by specific “reference fauna assemblages”. This categorisation is needed 
to quantify ecological impacts (pie sizes), by calculating the fraction of families 
expected (for the water body type, with a probability of capture Pc higher than 0.5) but 
missing. 

3.2.2 Use of RIVPACS results in EPC analyses 

A comparison of observed to expected (O/E) families is used to generate the radius of 
the EPC diagrams. To obtain radius values between 0 and 1, the RIVPACS O/E was 
adapted, but this had no influence on the interpretation of RIVPACS-based O/E values 
as compared to adapted O/E-values. The relationship between the original RIVPACS 
output and the adapted output (scaled 0 -1) are highly correlated (r2=0.987, Figure 3.2). 
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Figure 3.2  Relationship between the O/E values as used to map pie sizes on 
maps (ranging between 0 and 1) and the original RIVPACS-output.  

 

The RIVPACS model output was then used to quantify the magnitude of local impacts 
(1-O/E, using adapted O/E) at all study sites. The radius of the pie chart represents 
magnitude of impact. .  

The distribution of RIVPACS-based impact magnitude estimates (due to all stressors) 
over sites is shown in Figure 3.3. In approximately 5 per cent of the sites there was 
almost no family loss compared to the expected family composition, whilst in half the 
sites there was approximately 30 per cent or less. Ten percent of the sites were 
characterised by a family loss greater than 90 per cent. 
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Figure 3.3  Distribution of impact magnitudes (expressed as per cent families 
lost as compared to reference conditions) over the sampling sites.  
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In addition to using RIVPACS to determine the size of the pies in the EPC diagrams, 
we also extracted the identity of species expected but missing. This intermediate result 
is necessary for source attribution and to determine the slices of each pie chart, and is 
described below. 

3.3 Predicted toxic pressure variation 
The raw chemical compound data (total measured or modelled concentrations) were 
recalculated into toxic pressures per compound, per group of compounds with similar 
Modes of Action, and for the total mixtures of industrial chemicals (msPAFI), pesticides 
(msPAFP) and all compounds (msPAFAll compounds) per site. The toxic pressure data for 
industrial chemicals and pesticides were used as summary parameters for toxic 
pressure for the EPC analyses.  

3.3.1 Variation of multi-substance toxic pressure (msPAF) 

Acute toxic pressure caused by the exposure of an assemblage to a mixture of 
compounds is defined as the fraction of species that may occur at a site and that is 
likely to be exposed at a level such that their EC50 is exceeded during short-term 
exposure. The variation in the acute toxic pressure for industrial chemicals and 
pesticides across the data set is summarised in Table 3.3 and Figure 3. Note that the 
field data are on macrofauna families rather than species. However, Species Sensitivity 
Distributions (SSDs) are based on species, not families.  This does not influence the 
EPC analysis, since the toxic pressure is a proxy variable that summarises expected 
influences of toxicant mixtures on species and families.  

The data suggest that in 95 per cent of the sites, exposure to the defined mixture of 
industrial chemicals (msPAFI) leads to less than 5 per cent of the species being 
seriously affected (exposed higher than their EC50). Similarly, concentrations at 
approximately one per cent of the sampling sites would induce serious effects in nearly 
30 per cent of the species. This variance in expected mixture risks also pertains to 
other taxonomic levels, such as family level data, since toxic pressure is the parameter 
that summarises the local environmental condition. 

The toxic pressure of pesticides (msPAFP) calculated from monthly mean surface water 
concentration of each pesticide at the outlet of each catchment appears to be lower, 
with only one per cent of the sites having greater than three per cent affected species. 
In reality, we would expect higher pesticide concentrations than those predicted by 
POPPIE upstream and in areas close to application, directly after use, and so this 
result may simply reflect the underestimation of the pesticide load as derived by 
POPPIE, with overall risk from pesticides therefore also underestimated. 

Percentiles msPAF(I) msPAF(P) msPAF (I & P)
5th 0,3% 0,00% 0,4%
25th 0,5% 0,05% 0,7%
50th 0,8% 0,2% 1,4%
75th 1,4% 0,5% 2,0%
95th 4,9% 1,6% 5,4%
99th 29,3% 3,0% 29,3%  

Table 3.3  Variation of msPAFI (industrial chemicals), msPAFP (pesticides) and 
the overall msPAF (for I and P) in the data set for England and Wales.  
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When whole mixtures are considered (msPAF(I&P)), sites strongly dominated by 
industrial chemicals (high msPAFI, for example, 99th percentile) have lower toxic 
pressure from pesticides, since the total toxic pressure does not increase. In sites with 
lower exposure to industrial chemicals (95th percentile and lower), pesticide 
contributions increase the total pressure. The highest value of msPAFAll compounds, was 
approximately 70 per cent. 

Two points must be borne in mind when considering the outputs of this assessment. If 
the EC50 is known for a large set of species, it is possible to estimate the fractions of 
taxa that could be seriously affected by toxic mixture exposure as per the current 
analyses. However, a similar analysis based on different endpoints, for example 
SSDEC40, SSDEC10 or SSDNOEC-data, would also result in curves similar to Figure 3.4, 
but shifted left as the ecotoxicity endpoint becomes more sensitive. In other words, 
higher fractions of species than shown in the EC50 graph will be exposed beyond their 
no observed effect concentration (NOEC) at the ambient concentrations in the data set. 
This implies that there may be larger variability of toxic pressures experienced by the 
species in their habitats than is suggested by the graphs of fEC50 exceedences. In 
addition, the SSD model typically uses species-level toxicity data as input parameters, 
and so the output also pertains to a potentially affected fraction of species. The 
monitoring data used in the analysis, however, are family-level data rather than 
species-level. By definition, the parameter “loss of families” is less sensitive than 
species loss. Therefore it is to be expected that that msPAF values based on species 
data overestimate the loss of families. 
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Figure 3.4  Cumulative distribution of the variation of msPAFI (industrial 
chemicals, blue upper line) and msPAFP (pesticides, red lower line) in the data 

set for England and Wales.  

3.4 Variation of stressor variables 
The variation of the other stressor variables was analysed in a similar way to the toxic 
pressure analysis and is depicted in Figure 3.5.  Data variability and the use of 
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variables in the different models (RIVPACS, GLM15 and GLM25) are shown in Table 
3.1. 

Variability of each of the parameters across the whole data set is crucial for the GLM 
analysis. In eco-epidemiological analysis, which is based on the analysis of gradients, 
all stressor variables should be independent of each other (see covariation analyses, 
Table 3.2) and would exhibit an equal distribution of observed values across the whole 
range of variability. Hypothetically, a diagonal line for all variables in Figure 3.5 would 
therefore be optimal. When these conditions are fulfilled, the data structure would imply 
that all variables have an equal chance of being identified as a stressor variable in the 
GLM- and EPC analyses. The position of the curves for the different stressors in Figure 
3.5 found for the current dataset, however, shows deviance from the optimal data 
structure. 
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Figure 3.5  Cumulative distribution of the variation of stressor variables in the 
data set for England and Wales. The identity of the variables is given in the text 
boxes, of which the upper left corner identifies the associated PDF. All values 

were scaled on a (Y) axis between 0 and 100%.  

3.5 GLM modelling and the derivation of slice sizes 

3.5.1 Comparison of GLM15 and GLM25 models 

We were able to produce GLM15 and GLM25 models for 75 of the 76 taxa assessed 
by the RIVPACS model. We could not construct a GLM model for the family 
Hirudinidae, due to convergence problems in the model fit iteration procedure. 

The GLM25 models were compared to separately derived GLM15 models (the latter 
based on the RIVPACS variables) to investigate the presence of bias in the EPC 
analyses. Bias would occur when regression coefficients of the GLM25 differ from 
those of the GLM15 models for similar descriptors. The regression coefficients for the 
15 natural predictors in both sets of models were generally correlated. This is shown in 
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Appendix 4 for all 15 sets (15 GLM coefficients) of the GLM15-to-GLM25 comparisons. 
Figure 3.6 shows one correlation in detail. In view of these findings, we are confident 
that the use of GLM25 models in the EPC analyses reflects realistic responses of 
families to the different stressors. 
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Figure 3.6  Analysis of the role of stressor coefficients in GLM15 and GLM25 
models. In ideal cases the estimated coefficients in the GLM15 and GLM25 
models should be the same (and thus correlated). The example shows the 

analysis for the variable Latitude. P < 0.01. 

The difference in the amount of variation associated with GLM15 and GLM25 models 
indicated that, on average, stressor variables influenced family abundances by about 
15 per cent above that associated with the 15 natural variables (Figure 3.7). 
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Figure 3.7 Explained deviance of GLM15 and GLM25 models. 

3.5.2 Explanatory capacity of the GLM25 models over families 

The explanatory capacity of the GLM25 models differed between families (Figure 3.8). 
Over 30 per cent of the deviance was explained in around 95 per cent of families, and 
over 75 per cent deviance in 20 per cent of the families. 
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Figure 3.8  Explanatory power of the GLM25 models.  

As an example of the explanatory power of the GLM25-formulae, Figure 3.9 shows the 
predicted and observed abundances of the set of families that occur at a selected 
sampling site. Abundances are predicted by filling out the GLM25-formula using site 
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measured data. The graph is plotted on a log-log scale. The association between 
predicted and observed abundance is high and significant. 

Relationship GLM Predicted-Observed Abundance
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Figure 3.9  Example of predicted and observed abundances of all the families at 
a selected sampling site.  

The significance of adding a variable to the model in the GLM25 analyses (linear and 
quadratic terms together) is detailed in Table 3.4.  The toxic pressure of industrial 
chemicals is a highly significant descriptor for more than 70 per cent of the families. 
The toxic pressure of pesticides is a highly significant term in more than half of the 
families, despite the fact that it represents the toxicity-normalised modelled pesticide 
concentrations of catchment annual average concentration. These values are higher 
than the product-moment correlations between family abundance and toxic pressure, 
which implies that the latter are apparently low due to multiple-confounding factors (see 
also Figure 3.3 and associated text). 
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Regression term Category Percent of species with term Significance of regression terms
p < 0.001 p = 0.01 p = 0.05

LongpDEV Natural 73% 100% 0% 0%
DCatpDEV Natural 72% 98% 0% 2%
AATRpDEV Natural 72% 96% 2% 2%
NO3pDEV Nutrient 71% 96% 4% 0%
ImsPAFpDEV Toxic pressure 71% 96% 4% 0%
SiltpDEV Natural 69% 98% 0% 2%
DisSpDEV Natural 67% 100% 0% 0%
SlopepDEV Natural 67% 98% 2% 0%
pHpDEV Water chemistry 67% 96% 4% 0%
LatpDEV Natural 65% 100% 0% 0%
AltpDEV Natural 64% 100% 0% 0%
CaCO3pDEV Natural 64% 98% 0% 2%
TSSpDEV Water chemistry 64% 100% 0% 0%
DepthpDEV Natural 63% 100% 0% 0%
BolCobpDEV Natural 63% 100% 0% 0%
NH4pDEV Nutrient 63% 98% 2% 0%
PebGravpDEV Natural 61% 98% 2% 0%
PhipDEV Natural 61% 98% 0% 2%
MATpDEV Natural 61% 98% 2% 0%
ClpDEV Water chemistry 61% 98% 2% 0%
WidthpDEV Natural 60% 98% 2% 0%
PO4pDEV Nutrient 57% 100% 0% 0%
PmsPAFpDEV Toxic pressure 56% 100% 0% 0%
SandpDEV Natural 55% 95% 5% 0%

Table 3.4 Percentages of families for which the GLM25 analysis revealed a 
significant effect of addition of a variable to the GLM25 model (and the degree of 

significance). 

3.6 EPC pie diagrams 

3.6.1 Exploration of EPC results and general strengths and 
limitations 

Effect and Probable Cause (EPC) charts were produced for national data and then 
broken down by Environment Agency Region.  EPC charts are geographically 
referenced representations of the data analysis.  The size of each individual chart on 
the map represents the magnitude of local impact.  The sizes of the pie ‘slices’ 
represent the relative importance of different stressors in causing that impact. 

 

The EPC pie diagrams produced in this study were obtained by ‘double blind’ analysis. 
In other words, RIVM undertook the data analysis with anonymised site and 
species/family data. 

In all the EPC charts presented below there is a large fraction of unexplained variance 
in the composition of macrofauna assemblages. As well as model error and natural 
variability, this can also be caused by other stressors known to affect aquatic 
ecosystems, such as alteration in stream flow, pesticides peak concentrations (rather 
than catchment-wide annual average concentrations), industrial discharges, input of 
cooling water, and other human activities. These factors were not included in our 
analyses due to lack of available data at the time the study was undertaken.  We 
anticipate that the ‘unexplained’ area can be reduced by further investigation of the use 
of additional modelled data to refine the analysis and represent other significant 
catchment pressures. 
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It is important to note that the EPC diagrams are simply another representation of the 
input data, and that conclusions on RBMP and PoM should not be drawn from these 
diagrams alone, unless the data used are fully representative of the specific 
catchments. For example, a stressor can only be identified as relevant if there is data 
for it to be included in the analysis.  There are many potential toxic stressors that have 
not been included in this analysis but are likely to be present in the catchments. 

3.6.2 Site-specific visual presentation of EPC pie diagrams 

Using the impact attribution process described earlier, we derived pie slice sizes per 
site. The results for one sampling year for England and Wales (2004) are shown in 
Figure 3.10, together with the pie sizes derived from RIVPACS modeling. 

Sites that are highly impaired by loss of families occurred across the country and in 
both urban and rural areas. The slice sizes indicate that water chemistry stressors were 
most often associated with family loss, followed by region-dependent secondary and 
lower-order (subgroups of) stressors (see also Section 3.6.3). Heavy metal impacts 
caused impairment predominantly in Southwest England, in Devon and Cornwall, but 
also at several sites in the North West. The sites identified by the method to be 
impacted by heavy metals are sites well-known for metal mining and smelting activities. 
Since the method has been operated ‘double blind’, this suggests that the method itself 
is apparently sensitive to describe stressor effects where they are to be expected 
based on expert judgement.  Further comparisons between expert judgement and 
method outputs are needed to generalise this supposition. 
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Figure  3.10    EPC pie diagram  for England and Wales, sampling year 
2004.  

 

The EPC charts are GIS-based and so can be produced at a range of scales and times 
depending on needs.  Examples of further results broken down by region are presented 
in Figure 3.11.  Note that by combining different sampling years into one map, the 
number of pies shown on the maps will increase considerably and may reduce clarity. 
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Northeast 2004
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Figure 3.11  Mapping of EPC pie diagrams (selected regions 2004).  

3.6.3 Aggregation and disaggregation of EPC information 

Using the EPC data, various aggregations and disaggregations of data can be made,  
to present differences between regions, catchments or years, depending on the 
assessment endpoint. As an example, we aggregated all EPC data for all years for 
England and Wales.  This is illustrated in Figure 3.12. 

The analysis shows that, on average, 35 per cent of the invertebrate taxa were missing 
relative to reference site expectations (Figure 3.12). 

Slightly more than 50 per cent of biological effects were attributable to unknown factors 
and model error. The remaining 50 per cent of effects were related to (in order of 
reducing importance, on average) alteration in water chemistry, nutrient status, toxicity 
of industrial compounds (mainly heavy metals) and pesticides. In comparative 
assessments, similar graphs for two areas of interest, catchments for example, can be 
of help in identifying areas that are affected more than others, and the most significant 
stressors. 

In all EPC diagrams, colours represent various subgroups of stressor variables; such 
as habitat-related stressors, water-chemistry-related stressors and so on.  Each of 
these slices can be disaggregated to the original stressor variables if additional detail is 
required. For example, the “nutrients” slice is green, but is composed of three 
variables, which could be represented diagrammatically as three subslices of varying 
shades of green to represent the relative significance of PO4

-, NH4
+ and NO3

- 
individually.   Similarly, the toxic pressure slices can be disaggregated using the 
underlying single substance toxic pressure data. The contribution of individual 
compounds to the toxic pressure slices can be different in different regions.  Such 
information is clearly useful for catchment managers when considering remediation 
measures. 

Overall, less than 2 per cent of the biological degradation for England and Wales was 
attributable to the combined toxicity of all compounds. By averaging the data across 
the whole of England and Wales, the strong relationship between the toxic compounds 
and biological degradation found in the GLM analyses is masked. The training set of 
site data contained relatively few sites where acute toxic pressures were high. The 
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averaged stressor attribution graph therefore reflects the deviation from the optimal 
data set, where sites would be evenly distributed between impacted and unimpacted as 
discussed earlier. Next to model error and natural variability, the high proportion of 
unexplained effects represents other stressors not included in these analyses, such as 
alteration in stream flow, pesticide peak discharges, other industrial discharges, input 
of cooling water, and habitat alterations which were not included in our current analysis 
because of lack of readily available data at the national scale. 

Unknown
52%

Chemistry
43%

Toxicity HM+
1.32%

Nutrients
3.66%

Toxicity Pesticides
0.29%

0%

10%

20%

30%

40% Species loss

Figure 3.12  Averaged EPC pie diagram for the dataset for England and 
Wales. Note that the graph can be biased by differences in representation of 

stressors in the dataset. 

3.6.4 Observed family loss attributed to toxic mixtures and 
predicted acute toxic pressure  

Family loss can be analysed, summarising associations between observed effects and 
any of the predictors, providing more details than the GLM significance analysis of 
Table 3.4. Theoretically, as soon as the family loss itself becomes fully explained by 
one predictor alone, the shape of the data cloud is expected to resemble a diagonal 
linear distribution as shown below in Figure 3.13. 

In this section we focus on the relevance of the model-derived parameter ‘toxic 
pressure’. The variable msPAFAll compounds (acute toxic pressure) is assumed to predict 
the degree of toxic stress. Toxic pressure is expressed as the fraction of species that 
are exposed at a concentration level that exceeds the laboratory test effect criterion, in 
this instance the acute EC50. The EC50 was chosen since it implies significant effects 
on endpoints, such as mortality, growth, and reproduction. The calculated msPAF may 
not result in actual species (and family) loss for two reasons: differences between the 
species used in laboratory toxicity data and the families occurring in the field, and the 
fact that any exceedance of an acute EC50 in a particular species is not necessarily 
related to family loss. To investigate whether the toxic pressure concept holds true we 
considered the attribution of family loss to toxic pressure. 
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We investigated the relationship between the predicted acute toxic pressure for the 
mixtures of all compounds (industrial compounds plus pesticides, Y) and the extent of 
family loss attributed to toxic mixtures from the EPC analyses (X). The latter is 
expressed as the fraction of families lost, and is calculated by multiplying pie size by 
slice size. We demonstrate that the observed family loss in the field that we attribute to 
mixture exposure (X) is described by the formula:  

Equation 3: Log(msPAFEC50) = 0.53 Log (Species lossToxic exposure ) - 0.21 (P<0.001) 

 
The relationship is shown in Figure 3.13.  
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Figure 3.13 Association between (X), the loss of families attributed to mixture 
exposures in field conditions, and (Y), the predicted msPAFAll compounds. The red 
line is the relationship summarized in Equation 3. The blue dotted line is the 
expectation when Families lossMixture exposure is fully explained by msPAFEC50. 

The graph illustrates the original data as black markers (n=1,007). For 39 site/year 
combinations there was no family loss according to the RIVPACS-model, and thus no 
attribution information. The graph also presents the pattern of values after the creation 
of bins for the X-variable, and the associated averages of the Y-values per bin 
(coloured dots). Further, large markers are used to represent bins where both the X 
and the Y variable could have an ecotoxicological meaning, that is, a predicted loss of 
<1 per cent of families  (Y=1) is meaningless when the data set contains 76 taxa. With 
75 taxa studied, the array of sites with such low impacts are characterised by the loss 
of less than a single family (these sites are presented with small markers). Thus, as a 
taxa loss of less than 1 per cent is a meaningless numerical result given the study on 
76 taxa only, the data below Y=1, and thus below X=0.01, were not used in the 
derivation of the mathematical relationship. If family loss were only attributable to toxic 
pressures at all sites we would expect the blue dotted line. The red curved line 
represents the above formula. Note that it curves slightly upwards in the upper right, as 
a consequence of the probit-probit model being non-linear on the log-log scale. In the 
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centre of the graph, the bins merge many sites into a weighted average, while in both 
tails bins (dots) may represent low numbers of data points, or even single data points. 
The latter is shown by a single black marker in the centre of the bin-marker.  

The data plotted in the graph suggest that the acute toxic pressure (msPAFEC50) almost 
fully explains the loss of taxa for sites where a high loss of taxa was observed (for 
example, losses between 10 and approximately 70 per cent, upper right). This 
compares well with the pie chart for a site located in Cornwall (Lands End), where a 
large impact (family loss) is indeed explained by a large contribution of toxic pressure, 
see Figure 3.110). Figure 3.134 suggests that smaller observed losses are predicted to 
an increasingly lesser extent by toxic pressure only, that is: at low-impact sites other 
variables appear to be of increasing importance in causing family loss.  

The observations summarised in the graph, and those of the GLM model analyses in 
Table 3.4 suggest that the acute toxic pressure relates to family loss and changes in 
family abundance in field conditions, but also that family loss at lower toxic pressures is 
increasingly caused by other stressors. Further, it shows that family losses of more 
than approximately 10 per cent do not occur at acute toxic pressures that are lower 
than 10 per cent; that is, there are no observations below the diagonal line. The 
predicted fraction of families lost due to acute toxic pressure might thus be interpreted 
as an upper bound of family loss due to mixture exposure in field conditions, in this 
data set. In other words: maximum family loss attributed to mixtures = msPAFAll 

compounds.  

3.6.5 Alternative family responses: sensitive species and 
opportunists 

The EPC method has been presented for family loss and for some of the stressors 
thought to be contributing to that process. However, the presence of certain stressors 
might also lead to an increase in opportunist families. EPC graphs could therefore be 
produced that show abundance increases at higher stressor exposures. Whilst these 
graphs have not been produced here, the product-moment correlations between 
abundances of families and the local msPAFAll compounds have been calculated resulting 
in 75 correlation coefficients (one for each taxon), using raw data for 1,042 sampling 
site-year combinations. Positive and negative significant correlations for various 
families were discovered, but non-significant associations were found for the majority of 
families (Figure 3.14). The majority of families (85 per cent) show a slight but mostly 
non-significant negative trend in abundance at increased exposures (when not 
considering confounding factors, as in the GLM analysis). Fifteen per cent of the 
families show opportunistic trends (not all significant), with large and significant 
increases in abundance in a few families (identity not shown). It can be concluded that 
the change of macrofauna communities in response to mixture exposure probably 
consists of increases in abundance for some families (opportunists), in addition to 
family loss for others (sensitives). 

Note that these product-moment correlations are simple raw-data statistics, in which no 
ecological or GLM-like statistical modeling is involved. GLM statistics and attribution 
statistics revealed a much higher relevance of toxic pressure in shaping 
macroinvertebrate assemblages than these correlations (see Table 3.4). 
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Figure 3.14 Correlations between msPAFEC50,All compounds and abundance 
of 75 families. The 75 correlation coefficients are sorted from left to right, going 
from positive association between toxic pressure and abundance (opportunists) 

to negative values (sensitives). The box identifies the non-significance range, 
given n= 1,043 observations. 
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4 Discussion 

4.1 Exploring diagnostic features of the EPC approach 
Within this report we have demonstrated that it has been possible to re-shape a large 
data set on measured and modelled stressors and the abundance of 75 
macroinvertebrate taxa for rivers in England and Wales, into diagnostic, geographically 
referenced Effect and Probable Cause (EPC) pie diagrams. These EPC diagrams 
present: 

• The magnitudes of local ecological impacts of stressor combinations on the 
local macroinvertebrate assemblages (at the family level). 

• The relative contributions of various causal factors to those impacts. 

The process has involved a series of modelling steps, each of which is well established 
in literature and practice: 

• RIVPACS, a standard analysis model that is used to quantify magnitudes of 
local ecological impacts, and commonly used by the Environment Agency for 
this purpose. 

• Toxic pressure modelling, based on Species Sensitivity Distribution (SSD) 
modelling and mixture impact assessment methodologies developed by the 
Dutch RIVM and the US EPA and RIVM, respectively, to quantify (on an 
ecological scale between 0 and 1 or 0 and 100 per cent) the fraction (or 
percentage) of species that is probably acutely affected by compound 
(mixture) exposure, and used by various regulatory agencies to derive 
environmental quality criteria and local probabilities of compound (mixture) 
impacts. 

• Generalised Linear Models, a standardised statistical analysis approach to 
describe non-linear relationships between response variables and multiple 
(possibly) causal variables. 

• An impact-to-cause attribution step, to merge information from all other 
steps. 

The data analysis steps were preceded by significant data preparation steps, to obtain 
a data set that is “a square data block”, with limited or known covariation across 
variables, representing the study area and addressing the parameters of interest to the 
maximum extent possible. 

The combination of these models to derive EPCs was developed recently, and 
published in a Special Issue on water quality assessment, of a US-based International 
Ecological Journal, Ecological Applications (De Zwart et al., 2006). This report 
describes the second application of the EPC method to analyse a (bio)monitoring data 
set.  

The results of the catchment pressure analysis for England and Wales using the EPC 
method shows that the data were sufficient to complete the process and produce 
geographically referenced EPC diagrams. It was possible to calculate local toxic 
pressures per compound and for mixtures.  
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4.1.1 Exploring technical feasibility 

Toxic pressures were calculated for more than 100 single compounds, subsequently 
for subgroups of compounds with similar Toxic Modes of Action, and finally the 
mixtures of industrial chemicals and pesticides that occurred at each of the sites. In 
addition, the latter data can be aggregated per site to generate a toxic pressure value 
for both compound groups together, or disaggregated per site based on the database 
of compound-specific toxic pressure values. It is concluded that there were no major 
technical problems in calculating toxic pressure for a large set of compounds. 

Based on the preliminary status of the current analyses, it should be noted that various 
improvements can be made in the process of deriving single-substance and multi-
substance toxic pressures per site.  

First, bioavailability assessments can be improved for various compounds. For 
example, the exposure of species to copper is not only dependent on water hardness, 
but also on organic matter content and composition. A speciation model could be used 
in this case to refine the bioavailability assessment. More sophisticated approaches are 
also available for other compounds, as model concept or as measurement techniques. 
However, applying such improved techniques in the context of diagnostic analyses 
require monitoring data on bioavailability-modifying parameters or data on measured 
dissolved concentrations. These are usually not available. 

Second, the set of available ecotoxicity data for deriving the respective SSDs is limited 
for several compounds compared to others. This implies that the analyses contain a 
larger degree of uncertainty in toxic pressure calculation for such compounds. This 
issue may ask for specific consideration in the whole analysis. In the current analysis, 
all toxic pressures are expressed as median (ms)PAF estimates (and confidence 
bounds of these estimates are not considered), while in further analyses focus may be 
on the ‘better’ SSD for example, or on developing methods to address uncertainty 
throughout the analyses. 

4.1.2 Exploring strengths and limitations of toxic pressures 

SSD have, up until recently, been used mostly for the derivation of Environmental 
Quality Standards in various countries around the globe (Posthuma et al., 2002). For 
that usage of SSD, standard operation procedures have been adopted by regulatory 
bodies requiring relatively large numbers of input data (for example: more than 10 data 
entries for multiple taxa), all being NOECs or similar no- or low-effect toxicity test 
endpoints. In the current analysis, an alternative use of SSD has been applied, that is, 
calculating the local toxic pressure of single compounds and/or mixtures based on 
measured or modelled ambient concentrations. This assessment provides novel 
insights into local toxicant stress when environmental concentrations of chemicals do 
not exceed the regulatory quality criteria but may still be contributing to mixture effects. 

When smaller- or larger scale exceedences of criteria occur, water management 
authorities can simply take measures to fulfil the requirements set by the WFD and 
reduce the magnitude and frequency of such exceedences using appropriate 
measures, for example, by stricter waste water effluent permits. This should result in a 
reduction of frequencies and magnitudes of the observed concentration exceedences, 
and eventually in improved chemical water quality.  

When the condition of Good Ecological Status would however not be reached after 
such measures, and various chemicals are still present at concentrations higher then 
the natural background or the criterion value, the water management authorities need 
to identify catchment pressures, and derive additional PoM to reach Good Ecological 
Status. Expert judgement on the causes of deviation from Good Ecological Status, 
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however, usually falls short when mixtures of toxic chemicals are present at relatively 
low concentrations. No single ecotoxicologist is able to attribute deviation from Good 
Ecological Status to individual chemicals in such conditions. The EPC method and the 
mixture toxic pressure assessment method (ms-PAF) have been designed to help 
solve that problem. According to this method, concentrations of all measured chemicals 
are recalculated into ecotoxicity-relevant units (Potentially Affected Fractions of 
species), which can be aggregated over compounds to a single summary value for 
expected ecotoxicity per site. This novel site parameter is used instead of expert 
judgement in the catchment pressure analysis, and can be seen as an approximation 
of the role of toxicants in shaping the composition of local species assemblages. This 
approximation can be final and used in a diagnostic system, like in this report, or it can 
help to focus next steps in a multi-step diagnostic system. For example, it could focus 
on the type of bioassays to be executed, or on the species groups of most interest for 
field inventories.  

In the catchment pressure analysis, EC50 data were used to construct the SSD instead 
of NOEC. There is typically an increase in the number of available EC50 ecotoxicity 
data as compared to the commonly used NOEC subset, and higher sensitivity of the 
assessments for moderate to highly contaminated systems. When using a NOEC in 
such systems, the results of toxic pressure analyses would be numerically similar (and 
all >99 per cent), due to ‘reading off’ in the asymptotic upper tail of the SSD. Standard 
procedures have been adopted on deriving SSD in the context of regulatory risk 
assessments (especially the derivation of quality criteria). For the inverse application of 
SSD in the current report, the SSD based on EC50 have not been derived using those 
criteria, since that would imply both using NOEC and other data criteria, which would 
make the possibility of deriving useful msPAF-values considerably reduced. Instead, 
SSD were derived on the basis of the compiled RIVM-experience on deriving and using 
SSD, given the available data. In case of future standardised use in environmental 
assessments, it is worthwhile to derive and adopt standard sets of SSD-parameters for 
compounds and effect levels of interest. 

Comparison of mixture toxic pressure data between pesticides and industrial 
compounds revealed large differences in magnitudes of values, associated with the 
origin of the data. Industrial toxic pressures were generally higher than those for 
pesticides. In the Ohio-study (De Zwart et al., 2006), we generally used 90th percentile 
values from the concentration data, to acknowledge the fact that species usually 
decline due to peak exposures, in addition to baseline concentrations or stress. In the 
pesticide assessments for this report, the base data were catchment yearly averages of 
model-predicted concentrations, suggesting that a different set of pesticide 
concentration input data may result in higher pesticide toxic pressures. In comparison 
to an assessment of pesticide toxic pressure in the Netherlands, the concentration data 
from the POPPIE-model are extremely low, as are the estimated acute toxic pressures 
(see De Zwart, 2006). 

Overall toxic pressures (msPAFAll compounds) were used in the EPC analyses, and various 
catchments showed a significant contribution of mixture exposure to the impact on local 
macroinvertebrate communities. The GIS maps of the EPC results showed that mixture 
exposures apparently resulted in ecological impacts, and identified specific compounds 
or compound groups suggested to be responsible.  For example, in the Southwest, 
ecological impacts are likely to be related to metal exposure. Although not shown in the 
report, catchments or regions can be further investigated by looking in the database of 
single-substance and Mode-of-Action specific toxic pressures.  

The overall toxic pressure can be disaggregated when needed. By selecting sites with 
apparent toxic impacts, it can be verified which groups of compounds are locally 
present in such a concentration that they contribute to the increase in total toxic 
pressure. In some cases this can be a single compound, in other cases it can relate to 
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a certain compound group and/or to certain area-specific activities such as pesticides 
in agricultural areas, and in some cases it relates to various compounds all of which 
contribute to the toxic pressure.  

The toxic pressure calculations, in short, recalculate compound concentrations 
(expressed in mg/L) into dimensionless units (fractions of species probably seriously 
affected) that relate to potential toxicity (that is, risk). These dimensionless units can be 
cumulated over compounds according to the principles of mixture toxicology, by 
accounting for differences in Toxic Modes of Action. Compound concentrations, 
however, can only be cumulated on the basis of total mg/L, which does not make 
sense toxicologically. 

The ecotoxicity-dimensionalised concentration data are expressed on a relative scale, 
0–1, as a fraction of species probably affected. This does not mean that the toxic 
pressure ruler can yet be considered an absolute ruler of impact (species loss). 
However, it is at least an ecotoxicity ruler that is improved over the summation of mg/L- 
or mMol/L units, and that predicts impacts in a realistic array, with an ecological 
meaning (no more than 100 per cent of species can be affected). That meaning is (a) 
the minimum and maximum values are realistic, and are zero or one hundred per cent 
of the species being likely affected, and (b) the value predicts which fraction of the 
species present in the training set (of ecotoxicity data in the RIVM e-toxBase) would 
suffer from the local mixture when reared in samples from the local water systems. This 
means that toxic pressure is an environmental characteristic that represents what the 
environment provides on a realistic toxicity scale to the local species. Further, the 
concept has been validated with data from various studies, amongst which the previous 
EPC study, on fish species in Ohio (Posthuma and De Zwart, 2006). As in the current 
study, it was shown that the fraction of local impacts (species loss) attributed to mixture 
exposure was related to the predicted species loss (quantified by msPAF based on 
laboratory ecotoxicity data, Posthuma and De Zwart (2006)).  

For the EPC analysis, it is not necessary that the msPAF scale is an absolute predictor 
of impact. In the GLM analysis and the EPC attribution process, each variable can be 
modified (for example by shifting the decimal point one or a few places), without such 
manipulations affecting the statistical association between stressor variable and 
statistical significance of impact. Hence, the relative scale of (ms)PAF is sufficient for 
the EPC analyses. 

The toxic pressure calculations that were made as intermediate results in the EPC 
analyses showed that single-substance and multi-substance Potentially Affected 
Fraction values could be determined successfully for a large set of compounds. These 
calculations were made on the basis of ecotoxicity data that were obtained from the 
RIVM e-toxBase, pertaining to acute effects on exposed test species (that is, EC50s). 
Eco-epidemiological analyses require that all stressor parameters are variable across 
the available (bio)monitoring data set. When variability in the raw data is absent or low 
in the ‘training set’, it is impossible for any statistical method to distinguish this from the 
natural variability that is also present. Although the training set for England and Wales 
contains a relatively large fraction of sampling points with relatively low toxic pressures 
(see Figure 3.3), it appeared that many taxa exhibited a strongly significant association 
between their abundance and mixture toxic pressures. 

4.1.3 Toxic pressure and the diagnostic systems of the Environment 
Agency 

Toxic pressure data for individual compounds mixtures were provided to the 
Environment Agency for optional further use. Based on the discussion of strengths and 
weaknesses above, we recommend repeating all data analysis steps again, using 
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additional data or improved data (for example using the 90th percentile measured 
pesticide data rather than yearly averaged catchment data) now that it is known that 
the whole process of generating EPCs has been executed successfully, as this will 
have a significant influence on the predicted values.  Further, the data analyses could 
also involve assessment of exceedences of NOECs, EC10s and other effect levels. 
This will result in higher estimated values for toxic pressure compared to the EC50-
based assessments but it should be noted that this does not necessarily imply a 
different outcome of the EPC analyses. Input variables can be manipulated numerically 
(such as changing SSDEC50-estimates to SSDNOEC-estimates), but as long as the 
relative order of impact scaling between sites is similar, the output of the EPCs will be 
similar. 

It can be concluded that there is no technical limitation to the use of toxic pressure data 
in any diagnostic system used by the Environment Agency or other organisation. For 
example, they could be incorporated into the Environment Agency’s River Pollution 
Diagnostic System (RPDS) as summary parameters to quantify the toxic pressure of 
single compounds or mixtures The use of toxic pressure summary data is considered a 
highly relevant approach for any diagnostic system that is based on monitoring data, 
since it implies that many toxic compounds can be part of a diagnostic system without 
a crucial loss of statistical power in any form of analysis. This is a common situation 
that would occur when adding multiple chemicals individually.   

4.1.4 Recommendations on using the toxic pressure approach 

We recommend that the toxic pressure method is applied more widely in diagnosis of 
impacts. In summary, the rationale behind this recommendation is: 

• The method re-calculates concentrations in dimensionless units that can be 
aggregated over compounds. 

• The aggregation is ecologically meaningful, since: 

o The whole process acknowledges that SSD for different compounds are 
not straight lines with equal slopes (that is, it acknowledges different 
shapes of SSD). 

o It acknowledges different Toxic Modes of Action.  

o It acknowledges different compound availabilities between water bodies. 

o It does not predict impacts higher than 100 per cent of the species. 

• The toxic pressure seems, based on logic and on the graphics of predicted-
observed species (or families) loss relationships, to be at least an appropriate 
relative estimate of real impacts (species or families loss) in field conditions. 

• The above-mentioned characteristics imply crucial strengths for eco-
epidemiological analyses that aim to identify probable causes of impacts per 
sampling site, and that should involve not only classical parameters but also a 
suite of chemicals of regulatory interest.  

We applied these recommendations in the current study, and used toxic pressure 
estimates in the diagnosis of impacts in rivers in England and Wales. 
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4.2 Exploring the diagnostic approach of EPCs 
The data analyses undertaken in this scoping study have generated EPC pie diagrams, 
and a suite of further information supporting the interpretation of the outcomes. For 
example, Table 3.4, summarising the relevance of toxic pressures in shaping 
macrofauna assemblages next to the other variables (based on GLM analyses), 
suggests that toxic pressure is strongly correlated to family abundance for a major 
proportion of taxa.  

However, it should be noted that the data presented in this report are the results of a 
trial of the approach, in order to investigate whether (a) the analyses needed can be 
made at all given the available data, and (b) whether the trial-output can withstand 
preliminary criticisms by experts.  The results do not represent a complete analysis of 
all catchment pressures. 

As already acknowledged in the first publication on the EPC approach (De Zwart et al., 
2006), the method contains a series of analyses. Each step can be conceptually 
optimised, to address all issues of scientific concern. However, matching the idealised 
EPC method to (a) the regulatory problem definition, and (b) the available data asks for 
various decisions in data handling. Usually, (bio)monitoring data sets have not been, 
and cannot be, designed to be ‘ideal’ for post-hoc analyses.  By the time of analysis, 
there may have been an evolution of thinking on the questions being posed, given 
changes in regulatory context, which are not reflected in the monitoring schemes. 
Because of these types of problems, cross-validation between the outcomes of 
different diagnostic methods would be beneficial, to compare EPC outcomes with 
independent expert judgment, with alternative eco-epidemiological analyses, or with 
leave-data-out-and-redo analyses. For example, the results of the EPC analysis of the 
Ohio data set were compared to the results of an independently developed diagnostic 
method, showing considerable similarity, but also dissimilarities (Kapo et al., in press). 
A comparison of these two methods is also made using the data set described here 
(Kapo et al., 2008). 

Since eco-epidemiological analyses are usually made in the context of informing 
management decisions, a weight-of-evidence approach can be adopted to define PoM. 
Multiple lines of evidence that suggest that impacts are caused by some identifiable 
stress factors can be very valuable for taking measures, although eco-epidemiological 
methods are unlikely to ever provide full proof of the causation of observed impacts. 
Causation interpretation problems will remain, as they are integral part of the type of 
analysis (Brandon, 1990). 

The current analyses were of an exploratory kind, and no cross-validation activities 
were undertaken. The results show that the series of modelling steps were successfully 
executed. It is beyond the scope of the current exploratory analysis to consider cross-
validation in depth. However, the results obtained so far are promising enough to 
consider further actions (see below). 

4.3 Exploring diagnosis results and river management  
In a workshop (Bristol, May 25, 2007), the EPC method and its output (as presented in 
this report) were discussed with experts from various backgrounds, ranging from 
pesticide and water quality regulators to strategic research and policy planners to 
research scientists. The objective of the workshop was to discuss the EPC- approach 
in the broader practical context of the Water Framework Directive. 
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4.3.1 General workshop conclusions 

The workshop participants concluded that the EPC approach, and other diagnostic 
approaches, do have many potentially relevant aspects for river basin management 
under the WFD. Such tools and their outputs could be part of a Framework for 
Evidence-Based Decision Making. Without such a framework, whilst such a diagnostic 
approach could deliver scientifically meaningful data, there is no clear link to the 
decision process and there is neither a trigger for problem definition (defining which 
assessment is to be made, commonly an extremely crucial step in any risk 
assessment) nor a clear way to adopt the assessment answers in practical decision 
making. 

4.3.2 Specific workshop remarks 

The workshop participants addressed an array of relevant issues. The evaluations 
focused on four major questions: (1) use: could the method be useful for practical 
decision making under the WFD; (2) technical: are there developments that would be 
required for the approach to be more useful, or to improve the approach; (3) choice and 
strategy: what would be the next steps and further programme of research and 
development, and (4) data: can we improve on data input (for any diagnostic method). 

• Use and visual presentation of results 

o The method can be extremely useful for the purposes it was designed 
for (diagnosis); in particular, it could help prioritise which environmental 
stresses need to be tackled to improve ecological status. 

o The method addresses the issue of Good Ecological Status, and is 
complementary to the testing that looks at whether water quality criteria 
are met. It is true that GES cannot be met at a site when water quality 
criteria are not met, but the opposite need not be true, that is: when the 
quality criteria for regulated parameters are met, that certainly does not 
imply reaching GES.   

o The method can be useful in planning monitoring efforts, since the 
analyses strongly suggest that any post-monitoring data analysis 
requires a combination of problem-driven choices (what to measure) next 
to statistics-driven choices (sufficient number of sampling sites given the 
number of parameters measured). 

o The method can be useful for scenario analyses, that is, to answer 
“what if” questions. This alternative use of the model has not yet been 
trialled but is of interest. 

o Output can be interpreted with expert judgement and compared with 
local knowledge so as to use multiple lines of evidence for those 
parameters for which expert judgement and EPC type diagnosis can be 
combined (verification of one method by the other), and to increase trust 
in identified stress parameters (like toxicant mixtures at low exposure 
levels) for which expert judgement falls short. Evidently, when expert 
judgements and EPC results do show cross-verification for some 
parameters, this gives more confidence that the output for non-expert 
judged stressors can be trusted. 

o The presentation of the findings for “unknown cause of family loss” is 
considered useful, especially in the face of other methods that do not 
present such information. Presenting “unknown causes” puts the 
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observed ‘signal’ from other (identified) stressors in a quantitative 
context, avoiding the risk of focusing PoM on small contributors to overall 
stress. 

o When needed, outputs can be aggregated to catchment or regionalised 
averages on impact magnitudes (family loss) and probable causes. In 
the case of presenting such averaged results (like in the example of the 
England-and-Wales overall averaged EPC, Figure 3.121), it must be 
clearly reported that despite low overall contributions of a stressor 
variable (such as msPAF) for a region, there may be a substantial or 
overarching local contribution at particular sites, for example,  metal 
stress in  Cornwall. 

o When needed, output can be disaggregated. Based on available raw 
EPC data, the presentation of results can focus on individual stressors, 
individual catchment areas or regions, time-trends (such as before and 
after analyses), and so on. Which focus and format of presenting the 
results is chosen (GIS presentation of individual EPC, data tables with 
EPC-related data, averaged data) depends on the problem formulation of 
the assessment.   

o Output can be very helpful in the phase of communicating investments 
in PoM to the public, since the output shows the issue of stressor 
significance in a clear and easy-to-understand way. 

• Technical aspects 

o EPC results are strongly influenced by the impact quantification model, 
RIVPACS. This model requires identification of reference sites, and all 
results in the EPC analyses refer to the training data set of the 
references sites. In this study it must be acknowledged that the 
RIVPACS model has been defined from data collected more than a 
decade before the investigated set of non-reference data. In particular, 
the apparent major role of pH in shaping local assemblages can be 
hypothesised to be the result of generally improving pH conditions in the 
period between choosing references and judging other sites. This may 
be solved by re-definition of reference conditions.  

o The presentation of the current suite of exploratory results is limited to 
some typical examples and to sites that have a complete representation 
of all variables; it is worthwhile extending the presentation of results to 
those numerous sites where monitoring efforts have resulted in many, 
but not all, data. It needs be investigated whether this extrapolation of 
EPC results for sites with incomplete data is technically possible and 
scientifically appropriate, and whether an outcome would simply be that 
at those sites the “unexplained loss of families” just increases. 

o The POPPIE-based predicted pesticide concentration might be replaced 
by other more realistic modelled pesticide concentrations, to obtain data 
of higher site-specific ecological relevance. For example, in the earlier 
study (De Zwart et al., 2006), 90th percentile values for industrial 
toxicants were taken to drive toxic pressure, since these data represent 
peak concentrations per site, and these concentrations are expected to 
be of high relevance in shaping biotic communities. 

o For some assessors familiar with the standardised ways of using SSD 
for deriving quality criteria, it must be emphasised that the current 
problem definition leads to SSD that are appropriately tailored to the new 
problem. Thus instead of regulatory adopted criteria being used for 
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deriving environmental quality criteria, the inverse use of SSD requires 
tailoring the SSD to the problem: at high ambient exposure, it is for 
example more logical, useful and meaningful to use EC50s rather than 
the traditionally used NOECs. 

• Choices and strategy 

o The EPC method should be compared more thoroughly than was 
possible in this trial to other diagnostic findings, ranging from expert 
judgements to alternative diagnostic systems (such as the diagnostic 
system developed based on artificial neural networks and field 
monitoring data by  Paisley et al., (2008). 

o The EPC approach should be subjected to a sensitivity analysis, to 
quantify statistical confidence intervals for the relationships found. 

o Attention should focus on developing appropriate presentation formats 
for results for different problem definitions. 

o Attention should also focus on linking magnitudes and causes of local 
impacts to a next step: the possibility to “manage” the different stressors 
taking away the cause of impact, and to predict whether recovery can 
take place (or what limitations there are for recovery). Knowing the cause 
of impacts and reducing them does not necessarily imply recovery, for 
example when families have been exterminated and there is no refugium 
from which the local site can be recolonised. 

o As a major choice-and-strategy conclusion, the strategy of research and 
development of the method should be accompanied by the design of a 
Framework for Evidence-Based Decision Making. 

• Data 

o The trial of the EPC analysis emphasised that collection and compilation 
of appropriate monitoring data is crucial. Ideally the use of data should 
be considered at the design stage of any monitoring programme to 
ensure it is fit for purpose. 

o It is clear that the exploratory data analysis focused on available data, 
but that some stressor types are missing or are poorly represented in the 
data set. 

o Further investigation as to whether data collection should encompass 
compilation of data on biotic taxa other than macroinvertebrates is 
required, and whether those other groups would be of specific interest for 
other stressors, for example, macrophyte data for nutrient inputs.  

4.4 General conclusions 
We have integrated different assessment tools to identify both the magnitude and likely 
causes of biological impairment for a (bio)monitoring data set for England and Wales, 
given the variability in taxon composition and taxon abundances that occurs naturally. 
The method combines ecological, ecotoxicological, and exposure modelling to provide 
both a measure of impact and statistical estimates of the probable effects of different 
potential stressors on local stream macroinvertebrate assemblages. In short, the 
method reshapes tabular (bio)monitoring data into easy-to-understand GIS diagrams 
on impact magnitudes (family loss) and probable causation. 
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The assessments were made as an intensive trial of two methods: (1) the method to 
introduce analysis of the data using toxic pressure as a summary parameter for toxic 
stress, and (2) the EPC method itself. Although a set of statistical analyses was 
required, a fair proportion of variance was accounted for, and the end product could be 
presented as simple Effect and Probable Cause pie-charts that facilitate both 
interpretation and communication of results and (finally) decision-making. The end 
product involves the identification of pressures in surface waters including the 
parameter ‘toxic pressure’. The analysis involved measured or modelled concentration 
data for more than 100 compounds, which is unique compared to other eco-
epidemiological assays. The calculation of such a summary parameter has recently 
become a realistic option due to the definition of the summary variable itself, the multi-
substance Potentially Affected Fraction, in combination with the availability of a suite of 
ecotoxicity data (currently > 188,000 data available in the e-toxBase (Wintersen et al., 
2004)). The trial of both methods was successful given the available data set, but 
various improvements in data analysis can be suggested. 

The regulatory driver for the development of the method was the delivery of scientific 
support for decision-making. Specifically, the EU WFD not only considers the ‘hard’ 
assessment that exceedences of environmental quality criteria should not occur for a 
chosen set of compounds, but also the complementary issue of Good Ecological 
Status. When sites are impacted, water authorities should be informed of the 
magnitudes of impacts (deviation from the ecological status needed) and probable 
causes, to formulate appropriately targeted management plans and programmes of 
measures.  

A secondary driver for the work was scientific interest in the meaning of toxic pressure 
as a summary parameter. The data analyses suggest that toxic pressure is strongly 
associated with the abundance of a majority of families, and that it also determines the 
local composition of the assemblage of families. The analyses have also shown that 
toxic pressure is a dominant predictor of family loss from local assemblages when it is 
high (acute toxic pressure exceeding 10 per cent), and that other variables become the 
more dominant causes of species loss when species loss is lower than 10 per cent. 

Constraints imposed by statistical power limited our ability to address interactions 
among variables. This implies that attribution of effects to likely causes can in some 
cases be conservative.  

Despite the latter constraint, the results of the study showed that: 

• The compilation of data for eco-epidemiological analyses is a major step that is 
of critical importance for the success of the EPC (and any other) method. This 
could be simplified if monitoring and data collection is targeted to meet the 
requirements of eco-epidemiological techniques. 

• Sufficient data was available for England and Wales to allow the EPC analysis. 
Both site-specific and national information on ecological effects and their 
probable causes is presented in the format of some selected examples; more 
comprehensive analyses and output presentations are possible. 

• The current analyses should be considered as preliminary results, to show that 
the method is operational. Further refinements in data analysis are possible, 
should more data and funding become available. 

• The results suggest that classical water chemistry parameters and habitat 
characteristics play a significant role in shaping local macrofauna assemblages, 
as compared to the set of chosen reference sites.  

• At a local scale, species loss can be attributed to a lesser or larger extent to 
mixture exposures, confirmed by a major association between mixture toxic 
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pressure and family abundance data in a majority taxa. The GLM analyses 
identified highly significant associations between family abundance data and 
acute toxic pressure for more than 50 per cent of the families. 

• The observed loss of families attributed to mixture exposure in field conditions 
significantly covaries with the acute toxic pressure, so that the local value of 
acute toxic pressure (msPAFEC50) seems to imply an upper limit estimate of 
family loss due to mixture exposure. 

• There are significant product-moment correlations between family abundance 
and toxic pressure, so that various opportunist families and more sensitive 
families can be recognised. 

• The results are a product of the available data. They do not represent all sites 
at which the Environment Agency monitors biology and do not represent all 
pressures that may impact biology at a site. Many sites were excluded from the 
analysis due to insufficient data. Further consideration should be given as to how 
the data gaps can be filled and how data collection could be targeted to ensure 
the most appropriate data are collected for use in eco-epidemiological analyses 
such as this. It needs be investigated whether EPCs can be presented for sites 
with incomplete data coverage. 

• Despite only limited data, diagnostic results have been obtained from the 
analysis, and these can be considered useful for addressing practical regulatory 
problems under the WFD. Further consideration of the outputs by local staff is 
now required to ‘ground truth’ the outputs and identify additional data sources 
that may be available.  

A major characteristic of this study is the linking of different types of models, all of 
which have been individually applied regularly in the past for many purposes. Applying 
these models in concert yielded results that matched expectations for some selected 
sites, such as metal problems being identified as influential stressors in the Lands End 
area. Since our analyses were blind to both previous assessments of impairment and 
(expert) inferences regarding the probable causes of impairment at specific sites, the 
match of our results with some other data suggests that this approach provides a 
means of assessing the likely causes of biological impairment in the freshwater 
ecosystems of England and Wales.  
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List of abbreviations 
BMWP Biological Monitoring Working Party 

Ei  Expected, calculated expectation for a species i being present, 
used in RIVPACS 

EC50  50-per cent effect concentration 

EPC-diagram Effect and Probable Cause pie diagram (De Zwart et al., 2006) 

EQC  Environmental Quality Criteria 

GES  Good Ecological Status 

GIS  Geographic Information System 

GLM  Generalized Linear Models 

GQA General Quality Assessment 

msPAF  Multi-substance PAF (Posthuma et al., 2002b, De Zwart and 
Posthuma, 2006) 

NOEC No Observed Effect Concentration 

Oi Observed, recording for a species i being present, used in 
RIVPACS 

PAF  Potentially Affected Fraction of species (Posthuma et al., 
2002a) 

PAFEC50  Potentially Affected Fraction exposed beyond their EC50 

PAFNOEC  Potentially Affected Fraction exposed beyond their NOEC 

Pc  Probability of Capture (in RIVPACS) 

PoM  Programme of Measures 

POPPIE  Prediction of Pesticide Pollution in the Environment 

RBMP  River Basin Management Plan 

RIVPACS  River Invertebrate Prediction and Classification System 

SSD  Species Sensitivity Distribution (Posthuma et al. 2002a) 

ssPAF  Single-substance PAF 

TMoA  Toxic Mode of Action (of a chemical) 

WFD  Water Framework Directive 
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Appendix 1 
List of taxa as used in the EPC analyses 

TaxonObs = Name of taxon as observed in the sampling data set 
TaxonCode = Code of taxon in the analyses 
TaxonPc = Name of taxon in the RIVPACS analyses made by Environment Agency 
 
A total of 82 taxa were scored in the samplings. Of these, 76 taxa were analysed in the 
RIVPACS analyses. There were convergence problems in the GLM analyses and the 
EPC analyses therefore pertain to 75 taxa, for which there are data in the third column. 
For the taxon “Hirudinidae” there were no significant predictors in the GLM analyses.  
 

TaxonObs TaxonCode TaxonPc 
Aeshnidae Sp1 Aeshnidae 
Calopterygidae Sp10 Calopterygidae 
Capniidae Sp11 Capniidae 
Chironomidae Sp12 Chironomini 
Chloroperlidae Sp13 Chloroperlidae 
Coenagriidae Sp14 Coenagriidae 
Cordulegasteridae Sp15 Cordulegasteridae 
Corduliidae Sp16   
Corixidae Sp17 Corixidae 
Corophiidae Sp18 Corophiidae 
Dendrocoelidae Sp19 Dendrocoelidae 
Ancylidae Sp2 Ancylidae(incl.Acroloxidae) 
Dryopidae Sp20 Dryopidae 
Dytiscidae Sp21 Dytiscidae(incl.Noteridae) 
Elmidae Sp22 Elmidae 
Ephemerellidae Sp23 Ephemerellidae 
Ephemeridae Sp24 Ephemeridae 
Erpobdellidae Sp25 Erpobdellidae 
Gammaridae Sp26 Gammaridae(incl.Crangonyctidae&Niphargidae)
Gerridae Sp27 Gerridae 
Glossiphoniidae Sp28 Glossiphoniidae 
Goeridae Sp29 Goeridae 
Aphelocheiridae Sp3 Aphelocheiridae 
Gomphidae Sp30 Gomphidae 
Gyrinidae Sp31 Gyrinidae 
Haliplidae Sp32 Haliplidae 
Heptageniidae Sp33 Heptageniidae 
Hirudinidae Sp34 Hirudinidae 
Hydrobiidae Sp35 Hydrobiidae(incl.Bithyniidae) 
Hydrometridae Sp36 Hydrometridae 
Hydrophilidae Sp37 Hydrophilidae(incl.Hydraenidae) 
Hydropsychidae Sp38 Hydropsychidae 
Hydroptilidae Sp39 Hydroptilidae 
Asellidae Sp4 Asellidae 
Hygrobiidae Sp40   
Lepidostomatidae Sp41 Lepidostomatidae 
Leptoceridae Sp42 Leptoceridae 
Leptophlebiidae Sp43 Leptophlebiidae 
Lestidae Sp44   
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Leuctridae Sp45 Leuctridae 
Libellulidae Sp46 Libellulidae 
Limnephilidae Sp47 Limnephilidae 
Lymnaeidae Sp48 Lymnaeidae 
Mesoveliidae Sp49 Mesovelidae 
Astacidae Sp5 Astacidae 
Molannidae Sp50 Molannidae 
Naucoridae Sp51 Naucoridae 
Nemouridae Sp52 Nemouridae 
Nepidae Sp53 Nepidae 
Neritidae Sp54 Neritidae 
Notonectidae Sp55 Notonectidae 
Odontoceridae Sp56 Odontoceridae 
Oligochaeta Sp57   
Perlidae Sp58 Perlidae 
Perlodidae Sp59 Perlodidae 
Baetidae Sp6 Baetidae 
Philopotamidae Sp60 Philopotamidae 
Phryganeidae Sp61 Phyrganeidae 
Physidae Sp62 Physidae 
Piscicolidae Sp63 Piscicolidae 
Planariidae Sp64 Planariidae(incl.Dugesiidae) 
Planorbidae Sp65 Planorbidae 
Platycnemididae Sp66 Platycnemididae 
Pleidae Sp67   
Polycentropodidae Sp68 Polycentropodidae 
Potamanthidae Sp69 Potamanthidae 
Beraeidae Sp7 Beraeidae 
Psychomyiidae Sp70 Psychomyiidae(incl.Ecnomidae) 
Rhyacophilidae Sp71 Rhyacophilidae(incl.Glossosomatidae) 
Scirtidae Sp72 Scirtidae(=Helodidae) 
Sericostomatidae Sp73 Sericostomatidae 
Sialidae Sp74 Sialidae 
Simuliidae Sp75 Simuliidae 
Siphlonuridae Sp76 Siphlonuridae 
Sphaeriidae_Pea_mussels Sp77 Sphaeriidae 
Taeniopterygidae Sp78 Taeniopterygidae 
Tipulidae Sp79 Tipulidae 
Brachycentridae Sp8 Brachycentridae 
Unionidae Sp80 Unionidae 
Valvatidae Sp81 Valvatidae 
Viviparidae Sp82 Viviparidae 
Caenidae Sp9 Caenidae 
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Appendix 2 
List of pesticides as used in the EPC analyses. 

Pesticide data were obtained from measurements (field samples) and POPPIE 
(pesticide fate model). Non-selected compounds did not have enough data coverage. 

 
Selected Non-selected
2 4-D Ethofumesate Paraquat Anilazine
2 4-DB Fenbuconazole Penconazole Azinphos-ethyl
Aldicarb Fenitrothion Pendimethalin Azinphos-methyl
Amidosulfuron Fenoxaprop-ethyl Phenmedipham B
Amitrole Fenpropidin Phorate Benalaxyl
Asulam Fenpropimorph Prochloraz Carbaryl
Atrazine Fentin hydroxide Prometryn Carbetamide
Azoxystrobin Flamprop-M-isopropyl Propachlor Chlorfenvinphos
Benazolin Fluazifop-P-butyl Propamocarb hydrochloride Chlorpropham
Benomyl Flusilazole Propaquizafop Conductivity
Bentazone Flutriafol Propiconazole Coumaphos
Bromoxynil Formaldehyde Simazine Deltamethrin
Bupirimate Glufosinate-ammonium Tebutam Desmedipham
Captan Glyphosate Terbuthylazine Diazinon
Carbendazim HCH-Gamma Terbutryn Dichlorprop
Carbofuran Imazaquin Thiabendazole Dichlorvos
Chloridazon Isoproturon Thifensulfuron-methyl Dithianon
Chlormequat Kresoxim methyl Thiophanate-methyl DOC
Chlormequat chloride Lenacil Thiram Endosulphan beta
Chlorothalonil Linuron Tolclofos-methyl Esfenvalerate
Chlorotoluron Maleic hydrazide Tralkoxydim Fenoprop
Chlorpyrifos Mancozeb Triadimenol Fenthion
Chlorthal-dimethyl Maneb Tri-allate Fenuron
Clopyralid MCPA Triasulfuron Fomesafen
Cyanazine MCPB Triazophos Hexachlorobenzene
Cycloxydim Mecoprop Triclopyr Ioxynil
Cymoxanil Mecoprop-P Tridemorph Malathion
Cypermethrin Mepiquat Trifluralin Mevinphos
Cyproconazole Metalaxyl Vinclozolin Omethoate
Dazomet Metaldehyde Oxamyl
Demeton-S-methyl Metamitron Parathion-ethyl
Dicamba Metazachlor Pentanochlor
Dichlobenil Methiocarb Propazine
Dichlofluanid Methyl bromide Propham
Diclofop-methyl Metoxuron Quinalphos
Diflufenican Metribuzin Trichlorfon
Dimethoate Metsulfuron-methyl Triphenyltin compounds
Disulfoton Monolinuron
Diuron Napropamide
Endosulfan Oxadixyl  
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Appendix 3 
Physico-chemical and toxicological properties of the abiotic data used in the EPC 
analyses. 

The table below summarises the data used to (a) address biological availability of 
compounds; (b) calculate toxic pressures (per compound) based on the parameters of 
the log-normal Species Sensitivity Distribution model: μ (median value of a set of EC50 
data) and σ (standard deviation of a set of EC50 data); and (c) calculate mixture toxic 
pressures, on the basis of assignment of Toxic Modes of Action. Note that the mixture 
toxic pressure calculation formulae do not require the name of the TMoA, but only the 
information that TMoAs of different compounds are similar or dissimilar. 

 
ChemName Availability Correction Slice in EPC TMoA (for msPAF) LOGKow Koc mu (of SSD-EC50) sigma (of SSD-EC50)
Cl- None C (Water chemistry)
TSS None C (Water chemistry)
pH None C (Water chemistry)
BOD None C (Water chemistry)
CaCO3-Hardness None C (Water chemistry)
NO2- None I (Indutrial chemicals) NO2 4.00 0.70
Pb Metal formulae I (Indutrial chemicals) Pb 3.20 0.71
Ni Metal formulae I (Indutrial chemicals) Ni 3.70 1.51
Cr Metal formulae I (Indutrial chemicals) Cr 3.40 0.91
Cu Metal formulae I (Indutrial chemicals) Cu 2.30 0.74
Cd Metal formulae I (Indutrial chemicals) Cd 2.20 1.02
Zn Metal formulae I (Indutrial chemicals) Zn 2.90 0.69
NH3 None I (Indutrial chemicals) NH3 3.84 0.85
NO3- None N (Nutrients)
PO4- None N (Nutrients)
NH4+ None N (Nutrients)
Formaldehyde Organics-formulae P (Pestic ides) aldehyde 0.35 1.4 4.67 0.43
Metaldehyde Organics-formulae P (Pestic ides) aldehyde 0.12 0.8 5.83 0.67
Cymoxanil Organics-formulae P (Pestic ides) aliphatic  nitrogen 0.59 2.4 4.49 1.28
Napropamide Organics-formulae P (Pestic ides) amide 3.08 745.4 4.35 0.18
Tebutam Organics-formulae P (Pestic ides) amide 3.00 620.0 4.31 0.58
Diflufenican Organics-formulae P (Pestic ides) anilide 4.90 49248.4 4.73 0.29
Oxadixyl Organics-formulae P (Pestic ides) anilide 1.40 15.6 5.42 1.15
Chlorothalonil Organics-formulae P (Pestic ides) aromatic 2.64 270.6 2.14 0.65
Flamprop-M-isopropyl Organics-formulae P (Pestic ides) arylalanine 4.24 10774.4 3.76 0.35
Dic lofop-methyl Organics-formulae P (Pestic ides) aryloxyphenoxypropionic 4.62 25845.9 2.79 0.45
Fenoxaprop-ethyl Organics-formulae P (Pestic ides) aryloxyphenoxypropionic 4.95 55257.6 3.72 1.22
Fluazifop-P-butyl Organics-formulae P (Pestic ides) aryloxyphenoxypropionic 4.50 19606.1 3.20 0.49
Propaquizafop Organics-formulae P (Pestic ides) aryloxyphenoxypropionic 4.60 24682.6 3.02 0.61
Benazolin Organics-formulae P (Pestic ides) Benazolin 1.34 13.6 5.10 0.57
Bentazone Organics-formulae P (Pestic ides) Bentazone 2.34 135.6 5.13 0.32
Thiabendazole Organics-formulae P (Pestic ides) benzimidazole 2.47 183.0 5.46 1.52
Ethofumesate Organics-formulae P (Pestic ides) benzofuranyl alkylsulfonate 2.70 310.7 4.79 1.01
Dicamba Organics-formulae P (Pestic ides) Benzoic  ac id 2.21 100.6 4.92 0.56
Asulam Organics-formulae P (Pestic ides) carbamate -0.27 0.3 6.09 1.47
Benomyl Organics-formulae P (Pestic ides) carbamate 2.12 81.7 3.03 0.50
Carbendazim Organics-formulae P (Pestic ides) carbamate 1.43 16.7 2.53 0.35
Carbofuran Organics-formulae P (Pestic ides) carbamate 1.63 26.4 2.90 0.66
Methiocarb Organics-formulae P (Pestic ides) carbamate 2.92 515.7 2.59 0.49
Propamocarb hydrochloride Organics-formulae P (Pestic ides) carbamate -2.60 0.0 5.54 0.08
Thiophanate-methyl Organics-formulae P (Pestic ides) carbamate 1.40 15.6 4.20 0.64
Phenmedipham Organics-formulae P (Pestic ides) carbanilate 3.47 1829.7 3.42 0.24
Metazachlor Organics-formulae P (Pestic ides) chloroacetanilide 2.38 148.7 1.76 1.18
Propachlor Organics-formulae P (Pestic ides) chloroacetanilide 2.80 391.2 3.06 1.18
Atrazine Organics-formulae P (Pestic ides) chlorotriazine 2.61 252.6 3.35 0.59
Cyanazine Organics-formulae P (Pestic ides) chlorotriazine 1.80 39.1 4.27 0.07
Simazine Organics-formulae P (Pestic ides) chlorotriazine 2.18 93.8 4.22 0.59
Terbuthylazine Organics-formulae P (Pestic ides) chlorotriazine 3.04 679.8 3.57 0.33
Cyproconazole Organics-formulae P (Pestic ides) conazole 2.90 492.5 4.54 0.94
Fenbuconazole Organics-formulae P (Pestic ides) conazole 3.23 1052.9 3.02 0.27
Flusilazole Organics-formulae P (Pestic ides) conazole 3.70 3107.4 3.47 0.37
Flutriafol Organics-formulae P (Pestic ides) conazole 2.29 120.9 4.56 0.42
Penconazole Organics-formulae P (Pestic ides) conazole 3.72 3253.8 3.60 0.25
Prochloraz Organics-formulae P (Pestic ides) conazole 4.10 7805.3 1.60 1.00
Propiconazole Organics-formulae P (Pestic ides) conazole 3.72 3253.8 3.43 1.18
Triadimenol Organics-formulae P (Pestic ides) conazole 2.90 492.5 4.76 1.39
Cycloxydim Organics-formulae P (Pestic ides) cyc lohexene oxime 1.36 14.2 5.10 0.36
Tralkoxydim Organics-formulae P (Pestic ides) cyc lohexene oxime 4.46 17881.0 4.44 0.75
Dazomet Organics-formulae P (Pestic ides) Dazomet 1.40 15.6 4.65 0.84
Captan Organics-formulae P (Pestic ides) dicarboximide 2.35 138.8 2.13 0.44
Vinc lozolin Organics-formulae P (Pestic ides) dicarboximide 3.10 780.5 4.11 1.18
Dichlofluanid Organics-formulae P (Pestic ides) Dichlofluanid 3.70 3107.4 2.71 1.10
Pendimethalin Organics-formulae P (Pestic ides) dinitroaniline 5.18 93840.8 2.62 0.96
Trifluralin Organics-formulae P (Pestic ides) dinitroaniline 5.34 135641.2 2.50 0.96
Mancozeb Organics-formulae P (Pestic ides) dithiocarbamate 0.00 0.6 2.51 0.86
Maneb Organics-formulae P (Pestic ides) dithiocarbamate 0.62 2.6 2.78 0.61
Thiram Organics-formulae P (Pestic ides) dithiocarbamate 1.70 31.1 2.73 0.62
Fenpropidin Organics-formulae P (Pestic ides) Fenpropidin 2.59 241.2 2.00 1.30
Imazaquin Organics-formulae P (Pestic ides) imidazolinone 1.86 44.9 6.00 0.77
Methyl bromide Organics-formulae P (Pestic ides) Methyl bromide 1.19 9.6 3.39 1.31
Prometryn Organics-formulae P (Pestic ides) methylthiotriazine 2.99 605.9 3.28 1.17  
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Terbutryn Organics-formulae P (Pesticides) methylthiotriazine 3.74 3407.2 2.74 0.59
Fenpropimorph Organics-formulae P (Pesticides) morpholine 4.06 7118.6 3.98 0.84
Tridemorph Organics-formulae P (Pesticides) morpholine 6.38 1487276.4 -0.23 0.13
Fentin hydroxide Organics-formulae P (Pesticides) Multisite inhibitor 3.43 1668.8 1.30 0.53
Endosulfan Organics-formulae P (Pesticides) Neurotoxicant: Cyclodiene-type 3.83 4191.7 0.85 1.11
HCH-Gamma Organics-formulae P (Pesticides) Neurotoxicant: Cyclodiene-type 3.72 3253.8 2.12 1.11
Bromoxynil Organics-formulae P (Pesticides) nitrile 2.99 605.9 3.98 0.16
Dichlobenil Organics-formulae P (Pesticides) nitrile 2.74 340.7 4.26 0.44
Glufosinate-ammonium Organics-formulae P (Pesticides) organophosphate -4.81 0.0 5.51 1.25
Glyphosate Organics-formulae P (Pesticides) organophosphate -1.70 0.0 4.73 0.54
Tolclofos-methyl Organics-formulae P (Pesticides) organophosphate 4.56 22510.8 3.48 0.39
Chlorpyrifos Organics-formulae P (Pesticides) organothiophosphate 5.27 115449.4 1.78 1.43
Demeton-S-methyl Organics-formulae P (Pesticides) organothiophosphate -0.75 0.1 2.11 1.25
Dimethoate Organics-formulae P (Pesticides) organothiophosphate 0.78 3.7 3.25 1.25
Disulfoton Organics-formulae P (Pesticides) organothiophosphate 4.02 6492.2 3.07 0.78
Fenitrothion Organics-formulae P (Pesticides) organothiophosphate 3.30 1237.1 2.22 1.25
Phorate Organics-formulae P (Pesticides) organothiophosphate 3.35 1388.0 1.67 1.52
Triazophos Organics-formulae P (Pesticides) organothiophosphate 3.34 1356.4 2.38 1.25
Aldicarb Organics-formulae P (Pesticides) oxime carbamate 1.13 8.4 1.98 1.44
2 4-D Organics-formulae P (Pesticides) phenoxyacid 2.81 400.3 4.78 0.77
2 4-DB Organics-formulae P (Pesticides) phenoxyacid 3.53 2100.8 3.17 0.77
MCPA Organics-formulae P (Pesticides) phenoxyacid 3.25 1102.5 3.19 0.77
MCPB Organics-formulae P (Pesticides) phenoxyacid 3.50 1960.6 4.12 0.65
Mecoprop Organics-formulae P (Pesticides) phenoxyacid 3.13 836.4 3.67 0.77
Mecoprop-P Organics-formulae P (Pesticides) phenoxyacid 2.94 540.0 5.26 0.12
Chlorotoluron Organics-formulae P (Pesticides) phenylurea 2.41 159.4 4.18 0.48
Diuron Organics-formulae P (Pesticides) phenylurea 2.68 296.8 3.10 0.48
Isoproturon Organics-formulae P (Pesticides) phenylurea 2.44 170.8 4.45 0.71
Linuron Organics-formulae P (Pesticides) phenylurea 3.20 982.6 2.83 0.48
Metoxuron Organics-formulae P (Pesticides) phenylurea 1.68 29.7 4.75 0.64
Monolinuron Organics-formulae P (Pesticides) phenylurea 2.30 123.7 3.70 0.48
Chlorthal-dimethyl Organics-formulae P (Pesticides) phthalic acid 4.28 11813.9 4.70 0.89
Clopyralid Organics-formulae P (Pesticides) picolinic acid 1.06 7.1 5.04 0.90
Maleic hydrazide Organics-formulae P (Pesticides) plant growth regulators -0.84 0.1 5.20 0.88
Cypermethrin Organics-formulae P (Pesticides) pyrethroid 6.60 2468264.5 0.14 1.40
Chloridazon Organics-formulae P (Pesticides) pyridazinone 1.14 8.6 3.85 1.06
Triclopyr Organics-formulae P (Pesticides) pyridine 2.74 340.7 3.81 0.66
Bupirimate Organics-formulae P (Pesticides) pyrimidine 2.70 310.7 3.35 0.36
Chlormequat Organics-formulae P (Pesticides) quaternary ammonium -3.80 0.0 5.08 0.89
Chlormequat chloride Organics-formulae P (Pesticides) quaternary ammonium -3.80 0.0 5.37 0.71
Mepiquat Organics-formulae P (Pesticides) quaternary ammonium -2.82 0.0 4.71 1.63
Paraquat Organics-formulae P (Pesticides) quaternary ammonium -4.22 0.0 4.44 0.82
Azoxystrobin Organics-formulae P (Pesticides) strobin 2.50 196.1 3.64 1.73
Kresoxim methyl Organics-formulae P (Pesticides) strobin 3.40 1557.4 3.44 1.78
Amidosulfuron Organics-formulae P (Pesticides) sulfonylurea 1.63 26.4 4.04 1.90
Metsulfuron-methyl Organics-formulae P (Pesticides) sulfonylurea 2.20 98.3 4.36 2.47
Thifensulfuron-methyl Organics-formulae P (Pesticides) sulfonylurea 1.56 22.5 6.20 0.88
Triasulfuron Organics-formulae P (Pesticides) sulfonylurea 1.10 7.8 4.19 2.14
Tri-allate Organics-formulae P (Pesticides) thiocarbamate 4.29 12089.0 3.10 0.39
Metamitron Organics-formulae P (Pesticides) triazinone 0.83 4.2 4.67 0.88
Metribuzin Organics-formulae P (Pesticides) triazinone 1.70 31.1 4.89 0.01
Amitrole Organics-formulae P (Pesticides) triazole -0.86 0.1 5.31 0.58
Lenacil Organics-formulae P (Pesticides) uracil 2.31 126.6 3.67 1.56
Metalaxyl Organics-formulae P (Pesticides) xylylalanine 1.59 24.1 5.08 0.84
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Appendix 4 
Challenging similarity of GLM15 and GLM25 models. 

Bias may be introduced in EPC analyses when GLM15 and GLM25 would exhibit 
strongly different regression coefficients between models, for the same variable, only 
when those variables explain a large proportion of species abundance. The Table 
below is a summary-table of correlation coefficients between regression coefficients for 
GLM15 and GLM25 models, for the appropriate sets of species. Highlighted cells 
identify when regression coefficients are correlated (yellow for r ≥ 0.5, orange for ≥ 0.75 
and red for ≥ 0.9). For some predictors, the GLM15 and GLM25 coefficients are 
correlated to a more limited extent, and for these the importance as an explanatory 
variable in GLM should be determined 
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Lat25 0.8
I(Lat^2)25 0.8
Long25 0.5
I(Long^2)25 0.7
DisS25 0.8
I(DisS^2)25 0.5
DCat25 0.3
I(DCat^2)25 0.1
Width25 0.8
I(Width^2)25 0.6
Depth25 0.8
I(Depth^2)25 0.6
BolCob25 0.5
I(BolCob^2)25 0.6
PebGrav25 0.2
I(PebGrav^2)25 0.0
Sand25 0.6
I(Sand^2)25 0.5
Silt25 0.6
I(Silt^2)25 0.3
Phi25 0.6
I(Phi^2)25 0.4
Slope25 0.6
I(Slope^2)25 0.8
Alt25 0.6
I(Alt^2)25 0.7
MAT25 0.9
I(MAT^2)25 0.9
AATR25 0.6
I(AATR^2)25 0.6



 

 

We are The Environment Agency. It's our job to look after 
your environment and make it a better place – for you, and 
for future generations.  

Your environment is the air you breathe, the water you drink 
and the ground you walk on. Working with business, 
Government and society as a whole, we are making your 
environment cleaner and healthier. 

The Environment Agency. Out there, making your 
environment a better place. 
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