

www.environment-agency.govuk

# Prioritisation of Alkylphenols for Environmental Risk Assessment



The Environment Agency is the leading public body protecting and improving the environment in England and Wales.

It's our job to make sure that air, land and water are looked after by everyone in today's society, so that tomorrow's generations inherit a cleaner, healthier world.

Our work includes tackling flooding and pollution incidents, reducing industry's impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats.

This report is the result of research commissioned and funded by the Environment Agency's Science Programme.

#### Published by:

Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, BS32 4UD Tel: 01454 624400 Fax: 01454 624409 www.environment-agency.gov.uk

ISBN: 1 84432 369 2

© Environment Agency

February 2005

All rights reserved. This document may be reproduced with prior permission of the Environment Agency.

The views expressed in this document are not necessarily those of the Environment Agency.

This report is printed on Cyclus Print, a 100% recycled stock, which is 100% post consumer waste and is totally chlorine free. Water used is treated and in most cases returned to source in better condition than removed.

Further copies of this report are available from: The Environment Agency's National Customer Contact Centre by emailing enquiries@environment-agency.gov.uk or by telephoning 08708 506506. Author(s): D Brooke, M Crookes, I Johnson, R Mitchell & C Watts

**Dissemination Status:** Publicly available

**Keywords:** Nonylphenol, octylphenol, alkylphenol, endocrine disruption, PBT, hazard, risk, prioritisation

Research Contractor: Building Research Establishment, Garston, Watford WD25 9XX Tel: +44 (0)1923 664862

WRc-NSF Ltd, Medmenham, Marlow, Buckinghamshire SL7 2HD Tel: +44 (0)1491 636 500

Environment Agency's Project Manager: S Dungey Chemicals Assessment Unit, Wallingford OX10 8BD Tel: +44(0)1491 828 557

Product Code: SCHO0205BINF-E-P

## Science at the Environment Agency

Science underpins the work of the Environment Agency, by providing an up to date understanding of the world about us, and helping us to develop monitoring tools and techniques to manage our environment as efficiently as possible.

The work of the Science Group is a key ingredient in the partnership between research, policy and operations that enables the Agency to protect and restore our environment.

The Environment Agency's Science Group focuses on five main areas of activity:

- **Setting the agenda**: To identify the strategic science needs of the Agency to inform its advisory and regulatory roles.
- **Sponsoring science**: To fund people and projects in response to the needs identified by the agenda setting.
- **Managing science**: To ensure that each project we fund is fit for purpose and that it is executed according to international scientific standards.
- **Carrying out science**: To undertake the research itself, by those best placed to do it either by in-house Agency scientists, or by contracting it out to universities, research institutes or consultancies.
- **Providing advice**: To ensure that the knowledge, tools and techniques generated by the science programme are taken up by relevant decision makers, policy makers and operational staff.

Professor Mike Depledge Head of Science

## **Executive summary**

#### Background

The United Kingdom nominated nonylphenol and 4-nonylphenol (branched) for inclusion on the second priority list of Council Regulation (EEC) 793/93 (the Existing Substances Regulation or ESR) in 1995. The comprehensive risk assessment that followed identified a large number of risks to the environment.

Other alkylphenols (particularly octylphenol) were identified as the only alternatives to nonylphenol where it is used as an intermediate for other derivatives (e.g. phenol/formaldehyde resins, phenolic oximes and plastic stabilisers). The risk reduction strategy considered that it was inappropriate to recommend discontinuation of these uses until further information on the comparative level of risks was available for the possible replacements.

This report was commissioned to review and prioritise for further assessment other alkylphenols that might be potential replacements for nonylphenol, in support of the nonylphenol risk reduction strategy.

#### Main objectives

An initial list of alkylphenols was compiled by searching relevant chemical databases and consulting the Conseil Européen des Phénols Alkylés et Derivés (CEPAD). Industry identified potential substitutes for nonylphenol from this list, and datasheets were prepared for the selected substances covering parameters such as production tonnages, use pattern, physicochemical properties, persistence (P), bioaccumulation (B) and toxicity (T). The substances were then prioritised in terms of their current availability and suitability as replacements, and their hazard – especially PBT – profile.

#### Results

A number of significant factors are apparent:

- On the basis of data provided by industry only a limited number of candidate alkylphenols are commercially important at the moment, and very few are produced or used at quantities greater than 1,000 tonnes/year in Europe.
- Only a few have appropriate physicochemical properties for consideration as potential substitutes for nonylphenol; even then changes may be needed in production and processing methods compared with nonylphenol.

- There are significant variations in the cost of these substances owing to availability of feedstock.
- There is very little information about environmental occurrence.
- In general terms the amount of hazard data (e.g. for biodegradation, bioaccumulation and toxicity) is limited, although it is apparent that longer chain length 4-alkylphenols are generally more toxic to aquatic organisms than those with short chain lengths.

#### Conclusions

A short-list of possible replacement substances has been compiled and the following recommendations are made:

- 1. A full environmental risk assessment should be performed for 4-*tert*octylphenol (CAS no. 140-66-9) and dodecylphenol (branched) (CAS nos. 121158-58-5 & 74499-35-7) as a priority.
- 2. Risk assessments should also be undertaken for the remaining candidate nonylphenol substitutes, with priority given to:
  - 4-*tert*-pentylphenol (CAS no. 80-46-6)
  - 2,4-di-*tert*-butylphenol (CAS no. 96-76-4)
  - 2,6-di-*tert*-butylphenol (CAS no. 128-39-2).
- 3. Other commercially important substances with a PBT profile of potential concern could be considered for risk assessment too, although since their supply tonnage appears to be low, these are of lower priority compared with the substances above:
  - 2,4-di-*tert*-pentylphenol (CAS no. 120-95-6)
  - 2,4-dinonylphenol (branched) (CAS no. 84852-14-2)
  - styrenated phenol (CAS no. 61788-44-1).
- 4. 4-*tert*-Heptylphenol (CAS no. 1987-50-4) should also be considered in any assessment of 4-*tert*-pentylphenol. Consideration could also be given to obtaining more information on 4-cumylphenol (CAS no. 599-64-4).
- 5. The available data are insufficient to allow even a basic assessment for most of these substances at present, and this needs to be addressed first. One way might be to encourage sponsorship through international hazard assessment initiatives, or data call-in under the ESR.

| Cont   | Page                                                 |    |
|--------|------------------------------------------------------|----|
| Exec   | utive summary                                        | iv |
| 1      | Introduction                                         | 1  |
| 1.1    | Background                                           | 1  |
| 1.2    | Data sources                                         | 2  |
| 2      | Substances considered in this review                 | 4  |
| 2.1    | Identification of alkylphenols                       | 4  |
| 2.2    | Substitution of nonylphenol by other alkylphenols    | 7  |
| 3      | Data gathering for candidate substances              | 9  |
| 3.1    | Supply volume                                        | 9  |
| 3.2    | Use data                                             | 12 |
| 3.3    | Physicochemical properties                           | 13 |
| 3.4    | Economic and other factors                           | 14 |
| 3.5    | Environmental concentrations                         | 15 |
| 3.6    | Persistence                                          | 17 |
| 3.7    | Bioaccumulation                                      | 18 |
| 3.8    | Ecotoxicity data                                     | 19 |
| 3.9    | PBT assessment                                       | 26 |
| 3.10   | Summary of fate and effect data                      | 26 |
| 4      | Analysis and discussion                              | 40 |
| 4.1    | General overview of the data                         | 40 |
| 4.2    | Hazard profiles for possible substitute alkylphenols | 40 |
| 5      | Conclusions                                          | 43 |
| 6      | Recommendations                                      | 45 |
| Refe   | rences                                               | 47 |
| Anne   | ex I Alkylphenol datasheets                          | 50 |
| Glos   | 69                                                   |    |
| List o | of abbreviations                                     | 70 |

Annex II to this report contains **confidential industry data** relating to European supply tonnage and use pattern. This annex is a separate document, and can be made available to regulatory authorities on request to the Project Manager.

#### List of tables

| Table 1.1  | Summary of the primary data sources used to obtain information on alkylphenols                                                     | 3  |
|------------|------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.1  | List of alkylphenols (APs) potentially on the market                                                                               | 4  |
| Table 2.2  | Alkylphenols that can be used to substitute nonylphenol                                                                            | 8  |
| Table 3.1  | Summary of data on the commercial relevance of alkylphenols                                                                        | 10 |
| Table 3.2  | Production and use data for alkylphenols of commercial interest                                                                    | 11 |
| Table 3.3  | Volumes of substances (excluding ethoxylates) produced from alkylphenols                                                           | 12 |
| Table 3.4  | Summary of the problems of using alkylphenols as substitutes for nonylphenol to produce ethoxylate surfactants                     | 13 |
| Table 3.5  | Summary of the problems of using alkylphenols as substitutes for nonylphenol for production of resins, plastics, stabilisers, etc. | 14 |
| Table 3.6  | Summary of surface water monitoring data for alkylphenols (as dissolved concentrations)                                            | 16 |
| Table 3.7  | Summary of data on alkylphenol (and ethoxylate) concentrations in River Elbe catchment sediments                                   | 17 |
| Table 3.8  | Comparison of the lowest reliable acute and chronic toxicity data for four data rich alkylphenols                                  | 21 |
| Table 3.9  | Summary of 96-hr NOECs of alkylphenols for mortality of juvenile <i>Daphnia magna</i>                                              | 24 |
| Table 3.10 | Summary of concentrations of alkylphenols causing mortality of <i>Crangon septemspinosa</i>                                        | 24 |
| Table 3.11 | Summary fate and hazard data on identified alkylphenols                                                                            | 27 |
| Table 4.1  | Hazard profiles for nonylphenol and potential substitute alkylphenols                                                              | 41 |

# 1 Introduction

## 1.1 Background

The United Kingdom nominated nonylphenol and 4-nonylphenol (branched) for inclusion on the second priority list of Council Regulation (EEC) 793/93<sup>1</sup> (the Existing Substances Regulation or ESR) in 1995. This was based on general concerns about aquatic toxicity and biodegradation, and during the assessment process specific concerns were also raised about the effects that nonylphenol can have on the endocrine system. The comprehensive risk assessment that followed identified a large number of risks to the environment (as well as some specific risks to workers using speciality paints) (ECB, 1999). The uses of concern included both the production of nonylphenol itself and its formulation and use in the manufacture of other products. In particular, nonylphenol is used to make ethoxylate derivatives, and the degradation of these substances represents the main source of nonylphenol in the environment. Risks were predicted for both the aquatic and terrestrial compartments, and to predators through accumulation in the food chain.

The accompanying risk reduction strategy proposed a number of policy measures to reduce emissions from those uses giving rise to the principal sources of environmental exposure (DETR, 1999). In summary, these are:

- Comprehensive phase-outs under Directive 76/769/EEC of those uses that contribute most to the regional concentration and/or for which less harmful alternatives to nonylphenol and nonylphenol ethoxylates are known to be available. These include, for example, use of ethoxylates in cleaning products and cosmetics. The ban will come into force early in 2005. It was recognised that derogations could be accepted for some specific applications.
- 2. An environmental quality standard (EQS) for the remaining uses. For all facilities that will be licensed under the Industrial Pollution Prevention and Control (IPPC) Directive 96/61/EEC, the EQS was expected to be included in the IPPC operating licence. For non-IPPC facilities, the EQS will have to be established through other regulatory means (e.g. the Water Framework Directive 2000/60/EC). It was proposed that risks associated with uses not covered by IPPC could be reduced sufficiently in the short term by voluntary agreements.

A key aspect considered in the risk reduction strategy was the replacement of nonylphenols with other compounds. Long chain (fatty) alcohol ethoxylates were identified as the main substitutes for nonylphenol ethoxylates. These are generally considered to be less environmentally harmful, and a hazard assessment is currently under way in the Organisation for Economic Cooperation and Development (OECD) Screening Initial Data Set (SIDS)

Official Journal No L 084, 05/04/1993 p. 0001–0075
 Science Report Prioritisation of Alkylphenols for Environmental Risk Assessment
 1

programme (led by industry with the UK acting as the sponsor country) (http://cs3-hq.oecd.org/scripts/hpv/).

However, other alkylphenols (particularly octylphenol) were suggested to be the only alternative to nonylphenol where it is used as an intermediate for derivatives other than ethoxylates (e.g. phenol/formaldehyde resins, phenolic oximes and plastic stabilisers). The risk reduction report concluded that discontinuation of the use of nonylphenol as a chemical intermediate in these applications could not be recommended until further information on the comparative levels of risks of the alternatives is available.

The alkylphenol group has already attracted considerable attention by other regulatory fora. For example, some have been identified by OSPAR<sup>2</sup> contracting parties as substances for priority action (OSPAR, 2000). These substances were prioritised based on an evaluation of the data on their persistence (P), bioaccumulation potential (B) and toxicity (T) against defined thresholds for these criteria. The substances are:

- 4-*tert*-octylphenol (CAS no. 140-66-9)
- 2,4,6-tris(1,1-dimethylethyl)phenol (CAS no. 732-26-3).

In addition, both nonylphenol and 4-*tert*-octylphenol have been prioritised for voluntary emission reduction action by the UK Government's Chemicals Stakeholder Forum (further details can be obtained from http://www.defra.gov.uk/environment/chemicals/csf/index.htm).

There is therefore an urgent need to identify additional alkylphenols that could be potential replacements for nonylphenol so that their environmental impact can be properly assessed. This is the purpose of this report. Candidate substances have been identified and are prioritised in terms of their current availability and suitability as replacements, and their hazard profile. The information is intended for use by the Environment Agency's Chemicals Policy function and the Department for Environment, Food & Rural Affairs to inform future assessment and monitoring priorities and wider policy on alkylphenols.

## 1.2 Data sources

An initial list of alkylphenols was compiled by searching relevant chemical databases. Further substances were identified following discussions with the Conseil Européen des Phénols Alkylés et Derivés (CEPAD).<sup>3</sup> The primary data sources used to collect information on alkylphenols are summarised in Table 1.1.

<sup>&</sup>lt;sup>2</sup> The OSPAR Commission was set up to protect the marine environment of the north-east Atlantic.

<sup>&</sup>lt;sup>3</sup> CEPAD is the European Council for Alkylphenols and Derivatives. It is a trade association representing the major (although not necessarily all) producers of alkylphenols, and is part of the European chemical industry body CEFIC. It also represents some of the users.

#### The Environment Agency would like to thank CEPAD for its very helpful co-operation in the production of this report.

An initial evaluation of these sources indicated that the quantity of data for the different substances varied considerably; most data were available for those listed in IUCLID.<sup>4</sup> Information on many of the alkylphenols identified by CEPAD (which were not in IUCLID) was generally absent or very limited.

| Subject area                     | Data sources used                                 |
|----------------------------------|---------------------------------------------------|
| Quantities used                  | Confidential IUCLID (2000); CEPAD                 |
| Uses (industrial and functional) | Confidential IUCLID (2000); CEPAD;                |
|                                  | OECD SIDS reports                                 |
| Physicochemical data             | Non-confidential IUCLID CD (2000);                |
|                                  | SASOL (2001) Safety Data Sheets; Robust           |
|                                  | Summaries submitted to USEPA (2001);              |
|                                  | Environment Agency environmental quality          |
|                                  | standard (EQS) reports; <sup>a</sup> BUA (2001);  |
|                                  | OECD SIDS reports                                 |
| Environmental fate and           | Non-confidential IUCLID CD (2000);                |
| behaviour                        | Environment Agency EQS reports <sup>a</sup> ; BUA |
|                                  | (2001); OECD SIDS reports                         |
| Environmental concentration      | European Environment Agency data;                 |
| data                             | Environment Agency EQS reports; <sup>a</sup> Data |
|                                  | supplied by CEPAD; OECD SIDS reports              |
| Aquatic toxicity data            | Non-confidential IUCLID CD (2000); US             |
|                                  | EPA Acquire database; OECD SIDS                   |
|                                  | reports; Environment Agency EQS                   |
|                                  | reports; <sup>a</sup> KEMI (2000) <sup>b</sup>    |
| Terrestrial toxicity data        | Non-confidential IUCLID CD (2000); OECD           |
|                                  | SIDS reports                                      |

#### Table 1.1 Summary of the primary data sources used to obtain information on alkylphenols

Methylphenols (cresols) and octylphenol Notes: <sup>b</sup> Butylphenols and octylphenols

If data were not available from the primary data sources only limited additional searching was carried out. Other sources of information included the in-house NCET database at WRc-NSF Ltd, Current Contents CD-ROM and relevant Internet sites operated by the Environment Agency, RIVM in the Netherlands, Environment Canada, the United States Environmental Protection Agency and the OECD. All of these proved valuable, particularly since the amount of information available for most alkylphenols is limited. Note: This search was conducted during 2002; additional data might have become available since this time, but they have not been taken into account for this report.

International Uniform ChemicaL Information Database – containing unvalidated tonnage, use pattern, property and hazard information for 2,604 EU high production volume (HPV) chemicals, submitted by industry under the ESR. A HPV substance is one that was produced or imported by at least one company at 1,000 tonnes per year or above at least once in 1990-1994.

# 2 Substances considered in this review

## 2.1 Identification of alkylphenols

A wide variety of alkylphenol structures are possible, but many are not commercially important or relevant to this review. A list of alkylphenols that appear to have been produced commercially at some time is provided in Table 2.1. This list was compiled after searching the data sources outlined in Section 1.2, with further substances added following discussions with CEPAD. Mono-substituted alkylphenols have typical alkyl chains ranging in length from 1 to 12 carbon atoms. Note that a different naming system for the substitution position (*ortho-*, *meta-* and *para-*) can also be used (these are not all listed separately as synonyms).

| Substance                   | CAS No.   | Formula                           | Common synonyms<br>(not exhaustive) |  |  |
|-----------------------------|-----------|-----------------------------------|-------------------------------------|--|--|
| C <sub>1</sub> APs          |           |                                   |                                     |  |  |
| Methylphenols               | 1319-77-3 | C <sub>7</sub> H <sub>8</sub> O   | Cresols                             |  |  |
| 2-Methylphenol              | 95-48-7   | C <sub>7</sub> H <sub>8</sub> O   | o-cresol                            |  |  |
| 3-Methylphenol              | 108-39-4  | C <sub>7</sub> H <sub>8</sub> O   | m-cresol                            |  |  |
| 4-Methylphenol              | 106-44-5  | C <sub>7</sub> H <sub>8</sub> O   | p-cresol                            |  |  |
| C <sub>2</sub> APs          |           |                                   |                                     |  |  |
| 2-Ethylphenol               | 90-00-6   | C <sub>8</sub> H <sub>10</sub> O  | 1-ethyl-2-                          |  |  |
|                             |           |                                   | hydroxybenzene                      |  |  |
| 4-Ethylphenol               | 123-07-09 | C <sub>8</sub> H <sub>10</sub> O  | 1-ethyl-4-                          |  |  |
|                             |           |                                   | hydroxybenzene                      |  |  |
| Dimethylphenols             | 1300-71-6 | C <sub>8</sub> H <sub>10</sub> O  | Xylenols                            |  |  |
| 2,6-Dimethylphenol          | 576-26-1  | C <sub>8</sub> H <sub>10</sub> O  | 2,6-xylenol                         |  |  |
| 3,5-Dimethylphenol          | 108-68-9  | C <sub>8</sub> H <sub>10</sub> O  | 3,5-xylenol                         |  |  |
| C <sub>3</sub> APs          |           |                                   |                                     |  |  |
| 2-Isopropylphenol           | 88-69-7   | C <sub>9</sub> H <sub>12</sub> O  | -                                   |  |  |
| 2,3,6-Trimethylphenol       | 2416-94-6 | C <sub>9</sub> H <sub>12</sub> O  | -                                   |  |  |
| C <sub>4</sub> APs          |           | -                                 |                                     |  |  |
| 2-tert-Butylphenol          | 88-18-6   | C <sub>10</sub> H <sub>14</sub> O | -                                   |  |  |
| 3- <i>tert</i> -Butylphenol | 585-34-2  | C <sub>10</sub> H <sub>14</sub> O | -                                   |  |  |
| 4- <i>tert</i> -Butylphenol | 98-54-4   | C <sub>10</sub> H <sub>14</sub> O | 4-(2-methyl-2-                      |  |  |
|                             |           |                                   | propyl)phenol                       |  |  |
| 2-sec-Butylphenol           | 89-72-5   | C <sub>10</sub> H <sub>14</sub> O | -                                   |  |  |
| 4-sec-Butylphenol           | 99-71-8   | C <sub>10</sub> H <sub>14</sub> O | 4-(2-butyl)phenol                   |  |  |

| Table 2.1 | List of alkylphenols (APs) potentially on the market |
|-----------|------------------------------------------------------|
|-----------|------------------------------------------------------|

Table continued overleaf

### Table 2.1 continued

| Substance                                                                       | CAS No.                          | Formula                                                                                                                                          | Common synonyms<br>(not exhaustive)                                                                 |  |  |
|---------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| C <sub>5</sub> APs                                                              |                                  |                                                                                                                                                  |                                                                                                     |  |  |
| 2-tert-Pentylphenol                                                             | 3279-27-4                        | C <sub>11</sub> H <sub>16</sub> O                                                                                                                | o- <i>tert</i> -amylphenol                                                                          |  |  |
| 4- <i>tert</i> -Pentylphenol                                                    | 80-46-6                          | C <sub>11</sub> H <sub>16</sub> O                                                                                                                | p-(1,1-dimethylpropyl)-<br>phenol,<br>p- <i>tert</i> -amylphenol,<br>4-(2-methyl-2-<br>butyl)phenol |  |  |
| 2- <i>tert</i> -Butyl-p-<br>methylphenol                                        | 2409-55-4                        | C <sub>11</sub> H <sub>16</sub> O                                                                                                                | 2-(1,1-dimethylethyl)-<br>4-methyl-phenol                                                           |  |  |
| C <sub>6</sub> APs                                                              |                                  | •                                                                                                                                                |                                                                                                     |  |  |
| 4-Hexylphenol<br>2-Cyclohexylphenol<br>2- <i>tert</i> -Butyl-4-ethyl-<br>phenol | 2446-69-7<br>119-42-6<br>96-70-8 | C <sub>12</sub> H <sub>18</sub> O<br>C <sub>12</sub> H <sub>18</sub> O<br>C <sub>12</sub> H <sub>18</sub> O<br>C <sub>12</sub> H <sub>18</sub> O |                                                                                                     |  |  |
| C <sub>7</sub> APs                                                              |                                  |                                                                                                                                                  |                                                                                                     |  |  |
| 4-Heptylphenol                                                                  | 1987-50-4                        | C <sub>13</sub> H <sub>20</sub> O                                                                                                                | _                                                                                                   |  |  |
| C <sub>8</sub> APs                                                              |                                  |                                                                                                                                                  |                                                                                                     |  |  |
| Octylphenols<br>4- <i>tert</i> -Octylphenol                                     | 27193-28-8<br>140-66-9           | C <sub>14</sub> H <sub>22</sub> O<br>C <sub>14</sub> H <sub>22</sub> O                                                                           | -<br>4-(1,1,3,3-<br>tetramethylbutyl)pheno<br>I                                                     |  |  |
| 4-Octylphenol                                                                   | 1806-26-4                        | C <sub>14</sub> H <sub>22</sub> O                                                                                                                | -                                                                                                   |  |  |
| Isooctylphenol                                                                  | 11081-15-5                       | C <sub>14</sub> H <sub>22</sub> O                                                                                                                | -                                                                                                   |  |  |
| 2,4-Di- <i>tert</i> -butylphenol                                                | 96-76-4                          | C <sub>14</sub> H <sub>22</sub> O                                                                                                                | -                                                                                                   |  |  |
| 2,6-Di- <i>tert</i> -butylphenol                                                | 128-39-2                         | C <sub>14</sub> H <sub>22</sub> O                                                                                                                | -                                                                                                   |  |  |
| C <sub>10</sub> APs                                                             |                                  |                                                                                                                                                  |                                                                                                     |  |  |
| 2,4-Di- <i>tert</i> -pentyl-<br>phenol                                          | 120-95-6                         | C <sub>16</sub> H <sub>26</sub> O                                                                                                                | 2,4-bis(1,1-<br>dimethylpropyl)-<br>phenol,                                                         |  |  |
| 2,6-Di- <i>tert</i> -butyl-4-ethyl<br>phenol                                    | 4130-42-1                        | C <sub>16</sub> H <sub>26</sub> O                                                                                                                | 2,4-di- <i>tert</i> -amylphenol<br>-                                                                |  |  |
| C <sub>12</sub> APS                                                             | 07400.00.0                       |                                                                                                                                                  | Tatuanan any dala ang l                                                                             |  |  |
| isomers                                                                         | 27193-86-8                       | C <sub>18</sub> H <sub>30</sub> O                                                                                                                | l etrapropenylphenol                                                                                |  |  |
| 4-Dodecylphenol                                                                 | 104-43-8                         | C <sub>18</sub> H <sub>30</sub> O                                                                                                                | -                                                                                                   |  |  |
| Phenol, dodecyl-<br>branched                                                    | 121158-58-5                      | C <sub>18</sub> H <sub>30</sub> O                                                                                                                | -                                                                                                   |  |  |
| Phenol, (tetrapropenyl)<br>derivatives                                          | 74499-35-7                       | C <sub>18</sub> H <sub>30</sub> O                                                                                                                |                                                                                                     |  |  |
| Isododecylphenol                                                                | 11067-80-4                       | C <sub>18</sub> H <sub>30</sub> O                                                                                                                | -                                                                                                   |  |  |

Table continued overleaf

#### Table 2.1 continued

| Substance                                           | CAS No.    | Formula                           | Common synonyms<br>(not exhaustive) |  |  |  |  |
|-----------------------------------------------------|------------|-----------------------------------|-------------------------------------|--|--|--|--|
| C <sub>12</sub> APs (continued)                     |            |                                   |                                     |  |  |  |  |
| 2,4,6-Tri- <i>tert</i> -                            | 732-26-3   | C <sub>18</sub> H <sub>30</sub> O | 2,4,6-tris(1,1-                     |  |  |  |  |
| butylphenol                                         |            |                                   | dimethylethyl)phenol                |  |  |  |  |
| 2,4,6-1 ri-sec-                                     | 5892-47-7  | $C_{18}H_{30}O$                   | -                                   |  |  |  |  |
| butylphenol                                         | 47540 75 0 |                                   |                                     |  |  |  |  |
| 4-sec-Butyl-2,6-di-tert-                            | 17540-75-9 | $C_{18}H_{30}O$                   | 2,6-di- <i>tert</i> -butyl-4-sec-   |  |  |  |  |
| Other APs                                           |            |                                   | Satylphonol                         |  |  |  |  |
| 2.4-Dinonylphenol                                   | 137-99-5   | $C_{24}H_{42}O$                   | -                                   |  |  |  |  |
| Dinonvlphenol                                       | 1323-65-5  | C24H42O                           | _                                   |  |  |  |  |
| Phenol. 2.4-dinonvl                                 | 84852-14-2 | C <sub>24</sub> H <sub>42</sub> O | _                                   |  |  |  |  |
| branched                                            |            | - 2-7 -72 -                       |                                     |  |  |  |  |
| 2,6-Di- <i>tert</i> -butyl-p-cresol                 | 128-37-0   | C <sub>24</sub> H <sub>42</sub> O | Butylated                           |  |  |  |  |
|                                                     |            |                                   | hydroxytoluene (BHT)                |  |  |  |  |
| 4-Hexyldecylphenol                                  | 2589-78-8  | C <sub>22</sub> H <sub>38</sub> O |                                     |  |  |  |  |
| 2,6-Di- <i>tert</i> -butyl-4-nonyl                  | 4306-88-1  | C <sub>23</sub> H <sub>40</sub> O | -                                   |  |  |  |  |
| phenol                                              |            |                                   |                                     |  |  |  |  |
| Bis( <i>tert</i> -butyl)dodecyl-                    | 68025-37-6 | C <sub>26</sub> H <sub>46</sub> O | -                                   |  |  |  |  |
| phenol                                              |            |                                   |                                     |  |  |  |  |
| Phenol, isopropylated                               | 90480-88-9 |                                   | -                                   |  |  |  |  |
| Phenol, isobutylated                                | 68610-06-0 |                                   | _                                   |  |  |  |  |
| Phenol, C <sub>1ള-30</sub> alkyl                    | 68784-24-7 | Unclear                           | -                                   |  |  |  |  |
| derivatives <sup>5</sup>                            |            |                                   |                                     |  |  |  |  |
| Aryl phenols (not covered in detail by this review) |            |                                   |                                     |  |  |  |  |
| 2,4,6-Tris(1-phenylethyl)                           | 18254-13-2 | C <sub>30</sub> H <sub>30</sub> O | -                                   |  |  |  |  |
| phenol                                              |            |                                   |                                     |  |  |  |  |
| Phenol, styrenated                                  | 61788-44-1 | Complex                           | -                                   |  |  |  |  |
| Cumylphenol                                         | 27576-86-9 | C <sub>15</sub> H <sub>16</sub> O | 1-methyl-1-phenylethyl              |  |  |  |  |
|                                                     |            | <b>•</b> • • • •                  | phenol                              |  |  |  |  |
| 4-Cumylphenol                                       | 599-64-4   | C <sub>15</sub> H <sub>16</sub> O | 4-alpha-cumylphenol                 |  |  |  |  |
| 2-Cumylphenol                                       | 18168-40-6 | C <sub>15</sub> H <sub>16</sub> O | 1-alpha-cumylphenol                 |  |  |  |  |
| 2,4-Di-cumenephenol                                 | Unclear    | $C_{20}H_{26}O$                   | -                                   |  |  |  |  |

A superficial data search was undertaken for all of these substances using the data sources listed in the previous section; most of the information came from secondary sources such as IUCLID (2000). The results of this are shown in Table 3.11.

<sup>&</sup>lt;sup>5</sup> High molecular weight alkylphenols are used in certain applications (e.g. C14-18 or higher alpha-olefin derived alkylphenols are used to make salicylate lubricant additives), but these do not have any real potential to replace nonylphenol and so are not considered in any detail in this report.

## 2.2 Substitution of nonylphenol by other alkylphenols

Consideration was given to the possibility of using other alkylphenols as a substitute for nonylphenol in all of its major uses. CEPAD provided the information for this section (personal communication, 2002), and the information has not been verified with other sources.

Although other alkylphenols were not identified as a *likely* substitute for nonylphenol in ethoxylate production during the risk management work, the similar chemical nature of some does not rule out the possibility. Nonylphenol (NP) can in fact be substituted by 4-*tert*-octylphenol (OP) in most ethoxylate uses. Although OP is widely used in the USA for the production of ethoxylates, its use for the production of ethoxylates in Europe is limited to specialist applications at present. The main reasons are:

- the higher price due to the limited availability of octene feedstock in Europe;
- handling difficulties: whereas NP is a liquid, OP is a solid at room temperature and therefore pumping is only possible at temperatures around 90°C.

In addition, many uses of nonylphenol ethoxylates can be substituted by the use of long chain (fatty) alcohol ethoxylates. These are significantly cheaper than octylphenol ethoxylates.

These alcohols are not a substitute for use in phenol/formaldehyde resins due to the difference in chemical structures and properties. In general, where NP is used as an intermediate for other (non-ethoxylate) products, only alkylphenols that have similar physical and chemical properties to NP can be used as substitutes (if at all). The three major types of use for NP are shown in Table 2.2, together with an indication of which alkylphenols could be used as a substitute for NP based on acceptable properties of the products for these uses.

| Uses                                                                                                       | Potential alternatives                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Nonylphenol ethoxylates                                                                                  |                                                                                                                                                                                                                                                                                                                                                                 |
| Cleaning/washing agents                                                                                    | 4- <i>tert</i> -octylphenol                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Construction materials and<br/>additives</li> </ul>                                               | 4- <i>tert</i> -octylphenol                                                                                                                                                                                                                                                                                                                                     |
| Cosmetics                                                                                                  | 4- <i>tert</i> -octylphenol                                                                                                                                                                                                                                                                                                                                     |
| Dust binding agents                                                                                        | 4- <i>tert</i> -octylphenol                                                                                                                                                                                                                                                                                                                                     |
| Flotation agents                                                                                           | 4- <i>tert</i> -octylphenol                                                                                                                                                                                                                                                                                                                                     |
| Foaming agents                                                                                             | 4- <i>tert</i> -octylphenol                                                                                                                                                                                                                                                                                                                                     |
| Intermediates                                                                                              | 4- <i>tert</i> -octylphenol                                                                                                                                                                                                                                                                                                                                     |
| Pesticides/veterinary medicines                                                                            | 4- <i>tert</i> -octylphenol, dodecylphenol                                                                                                                                                                                                                                                                                                                      |
| Surface active agents                                                                                      | 4- <i>tert</i> -octylphenol, dodecylphenol                                                                                                                                                                                                                                                                                                                      |
| Others                                                                                                     | 4- <i>tert</i> -octylphenol                                                                                                                                                                                                                                                                                                                                     |
| Uses                                                                                                       | Potential alternatives                                                                                                                                                                                                                                                                                                                                          |
| 2 Resins, plastics, stabilisers, etc.                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Production of phenol/</li> </ul>                                                                  | 4- <i>tert</i> -butylphenol, 4- <i>tert</i> -octylphenol,                                                                                                                                                                                                                                                                                                       |
| formaldehyde resins                                                                                        | 4- <i>tert</i> -pentylphenol                                                                                                                                                                                                                                                                                                                                    |
| Note: possible substitution strongly<br>depends on the final use and required<br>properties of the resins. | [4-cumylphenol ( <i>not</i> an alkylphenol)]                                                                                                                                                                                                                                                                                                                    |
| Intermediate in the production of tris-(4-nonylphenyl)phosphite (TNPP)                                     | None                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Catalyst in the curing of epoxy resins</li> </ul>                                                 | None in general, perhaps dodecylphenol                                                                                                                                                                                                                                                                                                                          |
| Intermediate in the production of other plastic stabilisers                                                | 2- <i>tert</i> -butylphenol, 2,4-di- <i>tert</i> -butylphenol, 2,6-di- <i>tert</i> -butylphenol                                                                                                                                                                                                                                                                 |
| 3 Phenolic oximes                                                                                          | The only known European production<br>site is in Ireland. The oximes are mainly<br>exported outside Europe for use in<br>copper mining. To the best of CEPAD's<br>knowledge, 4- <i>tert</i> -octylphenol cannot be<br>used for the production of phenolic<br>oximes. Dodecylphenol has been<br>investigated for the same use, but the<br>costs are much higher. |

Table 2.2Alkylphenols that can be used to substitute nonylphenol

# 3 Data gathering for candidate substances

From Table 2.2, the potential substitutes in one or more applications are 2-*tert*-butylphenol, 4-*tert*-butylphenol, 4-*tert*-pentylphenol, 4-*tert*-octylphenol, dodecylphenol, 4-cumylphenol (though this is not an alkylphenol), 2,4-di-*tert*-butylphenol and 2,6-di-*tert*-butylphenol. Information was sought from industry as to which substances on the initial list (Table 2.1) were currently being produced on a commercial basis. The results of this are shown in Table 3.1. Where there were sufficient data or where particular comment had been made by industry to merit inclusion of a substance, datasheets were compiled for these particular (16) substances to assist in later considerations. These are provided in Annex I and II to this report (Annex II contains confidential data on supply volume and use pattern, and is not included in this document). Note that 4-*tert*-butylphenol is a fourth priority list substance under the ESR, and so it is currently undergoing an in-depth risk assessment for environmental as well as human health endpoints. It is therefore not necessary to prioritise this substance for further assessment.

## 3.1 Supply volume

Data on the quantities currently used (production plus imports minus exports) in Western Europe (i.e. EU countries along with Norway and Switzerland) and the industrial and functional uses of the alkylphenols identified in Table 2.1 were initially obtained from the confidential IUCLID. However, in many cases this information (summarised in Annex II) related to 1990–1994, and more recent data were obtained where possible from industry through CEPAD. Only two companies are now producing a range of alkylphenols, which represents a major change from the situation in the mid-1990s.

Table 3.1 summarises CEPAD data (personal communication, 2002) on the relative commercial importance of 30 different alkylphenols (including one arylphenol). Sixteen substances are currently believed to be commercially relevant by CEPAD, and 10 of these are produced at volumes exceeding 1,000 tonnes/year (i.e. generally recognised as 'high production volume' or HPV substances). These are highlighted in the table in bold. Once again, this information has not been verified with other sources.<sup>6</sup>

All possible replacements for nonylphenol are currently considered to come from the 'commercially important' sub-group of alkylphenols. With the exception of 4-*tert*-pentylphenol, these are all produced at high tonnage (data

<sup>&</sup>lt;sup>6</sup> It became apparent towards the end of this project that the lubricant industry might be major users of some of the substances. For example, 4-*tert*-heptylphenol was considered to be commercially unimportant by CEPAD, yet the industry in the USA has submitted a test plan under the US HPV Chemical Challenge programme (which implies a major use in North America, which could be reflected in the EU, at least in imported products). The tonnage information might therefore not reflect the entire EU tonnage.

were not provided for 4-cumylphenol). This excludes substances such as styrenated phenol.

| Substance                                    | CAS No.                   | Comm         | ercially     | HPV? |
|----------------------------------------------|---------------------------|--------------|--------------|------|
|                                              |                           | impoi        | rtant?       |      |
|                                              |                           | Yes          | No           |      |
| 2-Isopropylphenol                            | 88-69-7                   |              | $\checkmark$ | No   |
| 2- <i>tert</i> -Butylphenol                  | 88-18-6                   | $\checkmark$ |              | Yes  |
| 4- <i>tert</i> -Butylphenol                  | 98-54-4                   | $\checkmark$ |              | Yes  |
| 2-sec-Butylphenol                            | 89-72-5                   | $\checkmark$ |              | No   |
| 4-tert-Pentylphenol                          | 80-46-6                   | $\checkmark$ |              | No   |
| 2-tert-Butyl-p-methylphenol                  | 2409-55-4                 | $\checkmark$ |              | Yes  |
| Isooctylphenol                               | 11081-15-5                |              | $\checkmark$ | No   |
| 4- <i>tert</i> -Octylphenol                  | 140-66-9                  | $\checkmark$ |              | Yes  |
| 2,4-Di-tert-butylphenol                      | 96-76-4                   | $\checkmark$ |              | Yes  |
| 2,6-Di-tert-butylphenol                      | 128-39-2                  | $\checkmark$ |              | Yes  |
| 2,6-Di- <i>tert</i> -butyl-p-cresol<br>(BHT) | 128-37-0                  | $\checkmark$ |              | Yes  |
| 2,4-Di-tert-pentylphenol                     | 120-95-6                  | $\checkmark$ |              | No   |
| 2,6-Di-tert-butyl-4-ethyl phenol             | 4130-42-1                 |              |              | No   |
| 2,4,6-Tri-tert-butylphenol                   | 732-26-3                  |              |              | No   |
| 2,4,6-Tri-sec-butylphenol                    | 5892-47-7                 |              |              | No   |
| 4-sec-Butyl-2,6-di-tert-                     | 17540-75-9                |              |              | No   |
| butylphenol                                  |                           |              |              |      |
| 4-Dodecylphenol                              | 104-43-8                  |              |              | No   |
| Isododecylphenol                             | 11067-80-4                |              |              | No   |
| Dodecyl (branched)*                          | 121158-58-5<br>74499-35-7 | $\checkmark$ |              | Yes  |
| 2,4-Dinonylphenol                            | 137-99-5                  | $\checkmark$ |              | No   |
| Dinonylphenol                                | 1323-65-5                 | $\checkmark$ |              | No   |
| p-Hexyldecylphenol                           | 2589-78-8                 |              |              | No   |
| 2,6-Di-tert-butyl-4-nonyl phenol             | 4306-88-1                 |              | $\checkmark$ | No   |
| 2,4,6-Tris(1-phenylethyl)<br>phenol          | 18254-13-2                |              | $\checkmark$ | No   |
| Bis(tert-butyl)dodecylphenol                 | 68025-37-6                |              |              | No   |
| Phenol, isobutylenated                       | 68610-06-0                |              | $\checkmark$ | No   |
| Phenol, C <sub>18-30</sub> alkyl derivatives | 68784-24-7                |              |              | No   |
| Phenol, 2,4-dinonyl<br>branched              | 84852-14-2                | $\checkmark$ |              | Yes  |
| Phenol, isopropylated                        | 90480-88-9                | $\checkmark$ |              | Yes  |
| Phenol, styrenated                           | 61788-44-1                |              |              | No   |

Table 3.1Summary of data on the commercial relevance of<br/>alkylphenols

\* This term is used in this document to describe the commercial substance: there appear to be at least two CAS numbers in commercial use.

Table 3.2 summarises data on the 1999 production quantity of some of the commercially important alkylphenols (and one arylphenol) (CEPAD, personal communication, 2002).

| Table 3.2 | Production and use data for alkylphenols of commercial |
|-----------|--------------------------------------------------------|
|           | interest                                               |

| Substance                        | Volumes in Western Europe (tonnes/year) |              |              |                   |  |
|----------------------------------|-----------------------------------------|--------------|--------------|-------------------|--|
|                                  | Produced                                | Exported     | Imported     | Total             |  |
| Nonylphenol (1997                | 73,500                                  | 3,500        | 8,500        | 78,500            |  |
| data)                            |                                         |              |              |                   |  |
|                                  |                                         |              |              |                   |  |
| Other Alkylphenols (1            | 999 data)                               |              |              |                   |  |
| 2-tert-Butylphenol               | 1,200                                   | ?            | ?            | ?                 |  |
| 4-tert-Butylphenol               | 20,000                                  | 1,000        | 1,000        | 20,000            |  |
| 2-sec-Butylphenol                | 500                                     | ?            | ?            | ?                 |  |
| 4-tert-Pentylphenol              | 300                                     | 100          | 200          | 400               |  |
| 4-tert-Octylphenol*              | 22,633                                  | 1,500        | 375          | 21,508            |  |
| 2,4-Di- <i>tert</i> -butylphenol | 13,000                                  | -            | -            | 13,000            |  |
| 2,6-Di- <i>tert</i> -butylphenol | 15,000                                  | -            | -            | 15,000            |  |
| 2,4,6-Tri- <i>tert</i> -butyl-   | 10                                      | ?            | ?            | ?                 |  |
| phenol                           |                                         |              |              |                   |  |
| Phenol, styrenated               | <100                                    | -            | -            | <100 <sup>#</sup> |  |
| 2-Isopropylphenol                | 100                                     | ?            | ?            | ?                 |  |
| Dodecylphenol,                   | Confidential                            | Confidential | Confidential | 10,000-           |  |
| branched*                        |                                         |              |              | 50,000            |  |

\* Data for 2001

# The Environment Agency is aware that there are a number of manufacturers of styrenated phenol. It is not clear how many of these are represented by CEPAD, so the tonnage could be higher than this figure.

Data were not presented for the following HPV substances (with CAS numbers):

| • | 2- <i>tert</i> -butyl-p-methylphenol | 2409-55-4 |
|---|--------------------------------------|-----------|
|---|--------------------------------------|-----------|

- 2,6-di-*tert*-butyl-p-cresol (BHT)
  - 128-37-0<sup>7</sup> 90480-88-9
- isopropylated phenol
- 2,4-dinonylphenol (branched) 84852 -14-2 (presumably related to 2,4-dinonylphenol and dinonylphenol)

or for one other alkylphenol that is considered commercially important:

• 2,4-di-*tert*-pentylphenol 120-95-6.

Note that the substance identified by OSPAR as a priority hazardous substance (2,4,6-tri-*tert*-butylphenol) is not considered commercially important.

<sup>&</sup>lt;sup>7</sup> A hazard assessment for BHT has recently been agreed by the OECD, but the results are not considered here.

## 3.2 Use data

Table 3.3 presents tonnage information for the products currently produced from the alkylphenols. Note that data have not been presented for all the substances listed in Table 3.1 (CEPAD, personal communication, 2002).

| Table 3.3 | Volumes of substances (excluding ethoxylates) produced |
|-----------|--------------------------------------------------------|
|           | from alkylphenols                                      |

| Substance                            | Volumes in Western Europe (tonnes/year) |                           |                    |                           |                      |                    |  |  |
|--------------------------------------|-----------------------------------------|---------------------------|--------------------|---------------------------|----------------------|--------------------|--|--|
|                                      | Hydrogenation++                         | Lubricant<br>additives    | Phenolic<br>oximes | Phenolic<br>resins        | Plastic<br>additives | Poly-<br>carbonate |  |  |
| Nonylphenol<br>(1997 data)           | 0                                       | 0                         | 2,500              | 22,500                    | 1,000                | 0                  |  |  |
| Other Alkylphe                       | nols (1999 data)                        |                           |                    |                           |                      |                    |  |  |
| 4- <i>tert</i> -<br>Butylphenol      | 2,500                                   | 2,500                     | 0                  | 8,000                     | 500                  | 5,000              |  |  |
| 4- <i>tert-</i><br>Pentylphenol      | 0                                       | 0                         | 0                  | 400                       | 0                    | 0                  |  |  |
| 4- <i>tert</i> -<br>Octylphenol*     | 0                                       | 0                         | 0                  | 22,458                    | 220                  | 0                  |  |  |
| 2,4-Di- <i>tert</i> -<br>butylphenol | 0                                       | 0                         | 0                  | 0                         | 13,000               | 0                  |  |  |
| 2,6-Di- <i>tert-</i><br>butylphenol  | 0                                       | 0                         | 0                  | 0                         | 15,000               | 0                  |  |  |
| Phenol,<br>styrenated                | 0                                       | 0                         | 0                  | 1,600                     | 0                    | 2000               |  |  |
| Dodecylphenol,<br>branched*          | 0                                       | Major<br>use <sup>#</sup> | 0                  | Minor<br>use <sup>#</sup> | 0                    |                    |  |  |

\* Data for 2001

++ Hydrogenation: reaction with hydrogen under pressure and with a catalyst to produce 4-*tert*-butylcyclohexan-1-ol

# actual values considered confidential

On the basis of the data presented by CEPAD it is clear that, although the total quantities of alkylphenols and nonylphenol produced are similar, their use patterns are markedly different. Whereas 59.9 per cent of nonylphenol was used in the production of nonylphenol ethoxylates (based on data in the risk assessment for 1997), only 1.4 per cent of the other alkylphenols (for example 4-*tert*-octylphenol) are used in this way. In contrast, the other alkylphenols are mainly used to produce lubricant additives (25.9 per cent of total), phenolic resins (23.8 per cent) and plastic additives (35.1 per cent).

Information from IUCLID on the shorter chain alkylphenols (methylphenols, dimethylphenols and trimethylphenols) indicates that these are primarily used as intermediates in chemical synthesis and not in the production of ethoxylate

surfactants. Methylphenols and dimethylphenols are also used in the paints, lacquers and varnishes industry.

## 3.3 Physicochemical properties

The physical behaviour of the alkylphenols influences the process used to make other products, and the nature of those products themselves. For example, short chain alkylphenols such as methylphenol, dimethylphenol and trimethylphenol would produce ethoxylates that would perform poorly as surfactants, since the alkyl chain is too short to impart sufficient hydrophobicity to the molecule. Detailed consideration of these as substances for use in nonylphenol ethoxylate substitution has not been taken any further. CEPAD indicated that the same was also true for the butylphenols. These issues are summarised in Table 3.4.

For the plastics, resins and stabiliser uses, much depends on the type and use of the end product as this will determine the physicochemical properties required from the alkylphenol. However, few substitutes are likely based on these physicochemical requirements. Long chain alcohols are not suitable as substitutes for the resins, and no suitable compounds have been identified by industry for production of tris(4-nonylphenyl)phosphite (TNPP).

| Substance                   | Physical behaviour                             | Price of feedstock     |
|-----------------------------|------------------------------------------------|------------------------|
| 2-tert-Butylphenol          | The short C <sub>4</sub> alkyl chain means the | Price is significantly |
| 4-tert-Butylphenol          | substance is unsuitable for use as a           | higher than for        |
|                             | surfactant                                     | nonylphenol            |
| 4- <i>tert</i> -Pentyl-     | There are problems with the                    | Price is significantly |
| phenol                      | availability of the feedstock; the             | higher than for        |
|                             | short C <sub>5</sub> alkyl chain means the     | nonylphenol            |
|                             | substance is unsuitable for use as a           |                        |
|                             | surfactant                                     |                        |
| 4- <i>tert</i> -Octylphenol | There are handling problems since it           | Price is significantly |
|                             | is solid at room temperature                   | higher (80–100%)       |
|                             | (nonylphenol is a viscous liquid)              | than for nonylphenol   |
| 2,4-Di- <i>tert-</i> butyl- | The ethoxylates produced have                  | Price is significantly |
| phenol                      | nearly no surface active properties            | higher than for        |
|                             | and are unsuitable for use as a                | nonylphenol            |
|                             | surfactant                                     |                        |
| 2,6-Di- <i>tert</i> -butyl- | The ethoxylates produced have                  | Price is significantly |
| phenol                      | nearly no surface active properties            | higher (200–300%)      |
|                             | and are unsuitable for use as a                | than for nonylphenol   |
|                             | surfactant                                     |                        |
| Dodecylphenol               | The C <sub>12</sub> alkyl chain means that     | Price is significantly |
|                             | resulting surfactants will have poor           | higher than for        |
|                             | performance characteristics for most           | nonylphenol            |
|                             | uses                                           |                        |

Table 3.4Summary of the problems of using alkylphenols as<br/>substitutes for nonylphenol to produce ethoxylate surfactants

## 3.4 Economic and other factors

The price differential between candidate alkylphenols and nonylphenol is an important factor to consider. It is affected by feedstock price, changes in processing requirements and final product performance (including reformulation). Phenol/formaldehyde resins in particular are normally very specific products; small changes in the production process and/or substitution of individual components may have a major impact on the properties of the end product.

Tables 3.4 and 3.5 summarise the information presented by CEPAD for some of the identified alkylphenols in relation to the main uses of nonylphenol. It is apparent that there are problems with the use of all these materials as substitutes for nonylphenol, which arise from both the performance of the resulting products and the price of the alkylphenols themselves (relative to nonylphenol). However, it should be recognised that cost issues for the production of alkylphenol substitutes for nonylphenol may change if there was a wider market for these materials as substitutes. It is also known that both 4-*tert*-octylphenol and dodecylphenol (branched) are currently used to make ethoxylates and phenol/formaldehyde resins.

| Use                                          | Possible AP<br>substitute        | Problems with use of alkylphenols<br>as substitutes |
|----------------------------------------------|----------------------------------|-----------------------------------------------------|
| Production of                                | 4-tert-Butylphenol               |                                                     |
| phenol/                                      | 4-tert-Pentylphenol              | Price is significantly higher (80–100%)             |
| formaldehyde                                 | 4-tert-Octylphenol               | than for nonylphenol; the performance               |
| resins                                       | 4-Cumylphenol (not               | of the resins in the intended end-uses              |
|                                              | an alkylphenol)                  | is not acceptable                                   |
|                                              | Dodecylphenol                    | Price is significantly higher (80–100%)             |
|                                              |                                  | than for nonylphenol                                |
| Catalyst in the<br>curing of epoxy<br>resins | None, perhaps<br>dodecylphenol   | The curing performance is poor                      |
| Intermediate in the                          | 4-tert-Butylphenol               | Price is significantly higher (200-                 |
| production of other                          |                                  | 300%) than for nonylphenol                          |
| plastic stabilisers                          | 2,4-di- <i>tert</i> -Butylphenol | Price is significantly higher (200–                 |
|                                              |                                  | 300%) than for nonylphenol                          |
|                                              | 2,6-di- <i>tert</i> -Butylphenol | Price is significantly higher (200–                 |
|                                              |                                  | 300%) than for nonylphenol                          |

Table 3.5Summary of the problems of using alkylphenols as substitutes<br/>for nonylphenol for production of resins, plastics, stabilisers, etc.

## 3.5 Environmental concentrations

### 3.5.1 Releases to the aquatic environment

Relative to other individual alkylphenols there is a greater production volume of nonylphenol and nonylphenol ethoxylates. As a result their releases to the aquatic environment are currently larger with consequent implications for environmental concentrations. For example, in England and Wales, total emissions from Part A Integrated Pollution Control (IPC) processes in 1998 were 6,065 kg for nonylphenol (6,000 kg to controlled waters and 65 kg to sewers) and 34,200 kg for nonylphenol ethoxylates (18,500 kg to controlled waters and 15,700 kg to sewers). In contrast, only 300 kg of octylphenols were released, all to controlled waters. No data were available for other alkylphenols (Environment Agency, 1999).

#### 3.5.2 Monitoring data

There are limited monitoring data for the candidate alkylphenols. Most of the available data from recent years is for nonylphenol and its ethoxylates. Table 3.6 summarises data obtained from the European Environment Agency and from CEPAD on the levels of a number of these alkylphenols (and nonylphenols) in the River Elbe in Germany.

The majority of these data are for 4-*tert*-octylphenol and indicate that European riverine and estuarine surface water concentrations in the period covered (1994–1998) were generally below 1  $\mu$ g/l. The levels of octylphenol ethoxylates measured in surface waters on the Elbe catchment were below 10 ng/l on all occasions. The levels of butylphenol and pentylphenol measured in surface water samples were generally extremely low: below 10 and 2 ng/l, respectively.

In contrast, while dissolved concentrations of nonylphenols in surface waters are generally below 1  $\mu$ g/l, elevated concentrations are found at locations receiving discharges from industrial plants or sewage treatment works (STW).

Levels of alkylphenols (other than nonylphenol) measured in effluent discharges were also generally lower than those for nonylphenol. Blackburn and Waldock (1995) measured the levels of octylphenols in discharges from 15 sewage treatment works effluents and the concentrations were generally below 1  $\mu$ g/l, although values of up to 2.3  $\mu$ g/l were measured in works discharging to the River Lea. Measured concentrations of octylphenol monoand diethoxylate were higher at between <7.3 and 22  $\mu$ g/l. In contrast, the total extractable concentrations of nonylphenol measured in sewage treatment works discharges varied from 0.2–0.9  $\mu$ g/l at plants receiving mainly domestic wastes and operating primary treatment, to 6.7  $\mu$ g/l at a plant receiving mainly domestic wastes from an industrial area.

| Alkylphenol  | Data source |                          |      |                         |      |  |  |
|--------------|-------------|--------------------------|------|-------------------------|------|--|--|
|              | Country     | Location                 | Year | Concentration (µg/I)    | Ref. |  |  |
| Butylphenols | England     | 6 Rivers <sup>a</sup>    | 1994 | <0.05                   | 1    |  |  |
|              | _           | 6 Estuaries <sup>b</sup> | 1994 | <0.05                   | 1    |  |  |
|              | Germany     | 4 Rivers <sup>c</sup>    | 1998 | <0.01 (1 value = 0.078) | 2    |  |  |
| Pentylphenol | Germany     | 4 Rivers <sup>c</sup>    | 1998 | <0.0002                 | 2    |  |  |
| Octylphenols | England     | 6 Rivers <sup>a</sup>    | 1994 | <1                      | 1    |  |  |
| -            | _           | 1 Canal <sup>e</sup>     | 1999 | <0.4                    |      |  |  |
|              |             | 6 Estuaries <sup>b</sup> | 1994 | <1                      | 1, 5 |  |  |
|              |             |                          | 1999 | <0.25                   |      |  |  |
|              | Scotland    | 4 Rivers <sup>d</sup>    | 1996 | <3                      | 3    |  |  |
|              | Denmark     | Unknown                  | 1997 | <0.2                    | 4    |  |  |
|              | Germany     | 4 Rivers <sup>c</sup>    | 1998 | <0.01                   | 2    |  |  |
| Nonylphenol  | England     | 6 Rivers <sup>a</sup>    | 1994 | <0.2–53.0               | 1    |  |  |
| -            | _           | 6 Estuaries <sup>b</sup> | 1994 | <0.08–3.1               | 1    |  |  |
|              | Scotland    | 4 Rivers <sup>d</sup>    | 1996 | <2                      | 3    |  |  |
|              | Denmark     | Unknown                  | 1997 | <0.12                   | 4    |  |  |
|              | Germany     | 4 Rivers <sup>c</sup>    | 1998 | <0.02–0.21              | 2    |  |  |

Table 3.6Summary of surface water monitoring data for alkylphenols<br/>(as dissolved concentrations)

Key:

<sup>a</sup> Rivers Aire, Arun, Great Ouse, Lea, Thames, Wye

<sup>b</sup> Blyth, Mersey, Tees, Wear and Wyre Estuaries, Poole Harbour and Southampton Water

<sup>c</sup> Rivers Elbe, Mulde, Saale and Schwarzer Elster

<sup>d</sup> Rivers Almond and Blackcart, South Quiech and Annick Water

<sup>e</sup> Manchester Ship Canal.

1, Blackburn and Waldock (1995); 2, Working Group for the Cleanliness of the Elbe (1998); 3, SEPA (1997); 4, Danish Ministry of the Environment (1997); 5, Environment Agency, UK (NCEDS, 1999)

In the UK, the Environment Agency North West region (NCEDS, 1999) carried out monitoring for 4-*tert*-octylphenol over a period of several months on the trade effluent from a production plant, the effluent from a sewage treatment plant and receiving waters on the Wyre peninsula. In all of the STW effluent samples (n=21) the 4-*tert*-octylphenol concentration was below the limit of detection (200 or 1000 ng/l). SEPA (1997) found that levels of nonylphenols discharged from seven sewage treatment works varied from < 0.4 to 12.9  $\mu$ g/l, whereas levels of 4-*tert*-octylphenol were generally < 3.3  $\mu$ g/l.

The study on the Elbe catchment also measured levels of alkylphenols (and certain ethoxylates) in sediment samples (see Table 3.7). The data indicated that the levels of nonylphenol and nonylphenol ethoxylates were an order of magnitude higher than those of butylphenol, pentylphenol and 4-*tert*-octylphenol and its ethoxylates.

| Substance                        | Concentration range (ng/g dry<br>weight) in River Elbe catchment |
|----------------------------------|------------------------------------------------------------------|
|                                  | sediments                                                        |
| Butylphenol                      | 19–93                                                            |
| Pentylphenol                     | 17–96                                                            |
| 4- <i>tert</i> -Octylphenol      | 21–116                                                           |
| Octylphenol monoethoxylate       | 30–113                                                           |
| (OP1EO)                          |                                                                  |
| Octylphenol diethoxylate (OP2EO) | 45–140                                                           |
| Nonylphenol                      | 367–1378                                                         |
| Nonylphenol monoethoxylate       | 323–1027                                                         |
| (NP1EO)                          |                                                                  |
| Nonylphenol diethoxylate (NP2EO) | 546–1797                                                         |

Table 3.7Summary of data on alkylphenol (and ethoxylate)<br/>concentrations in River Elbe catchment sediments

Concentrations of 4-*tert*-octylphenol have been reported in samples of two types of freshwater fish collected between 1992 and 1997 from several German rivers (UBA, 1999). Measured concentrations were generally above the limit of detection of 0.2  $\mu$ g/kg wet weight; the highest reported level was 5.5  $\mu$ g/kg wet weight. 4-*tert*-Octylphenol has also been reported in a marine alga (*Fucus vesiculosus*), a marine invertebrate (*Mytilus edulis*) and two types of marine fish from Germany (UBA, 1999) for samples collected between 1985 and 1996 at several locations. Measured concentrations were generally below or slightly above the limit of detection of 0.2  $\mu$ g/kg.

CEPAD has commented that the presence of low levels of butylphenol, pentylphenol and octylphenol in receiving water samples (alongside elevated levels of nonylphenol) is possibly a consequence of the presence of low levels of these substances as impurities of nonylphenol. Nonylphenol is produced using technical grade nonane which can typically contain 1–5 per cent octane, 1 per cent butane and 1 per cent pentane.

## 3.6 Persistence

There are few reliable data on the persistence of alkylphenols in the environment. Alkylphenols would not be expected to be susceptible to hydrolysis in the aquatic environment, but are susceptible to indirect photolysis by hydroxyl radicals in the atmosphere. The half-lives estimated for most alkylphenols in the atmosphere are of the order of a few hours.

Information on biodegradation has been located for only a few of the identified compounds considered in this review. Many of these originate from a secondary data source such as the non-confidential IUCLID so the validity has not been checked. However, there are many naturally produced alkylphenolic compounds and it is expected that micro-organisms would have developed enzymes capable of degrading alkylphenols. The available biodegradation data suggests that this is true: many of the alkylphenols are readily biodegradable and many of the others are inherently biodegradable. The least biodegradable appear to be those substances with single branched alkyl chains of  $C_5$  or longer or with more than one branched alkyl chain. Table 3.11 provides a summary of the available data for all identified alkylphenols.

There are a number of substances in Table 3.11 for which no experimental biodegradation data are available. For these substances, the probable biodegradation rate (in terms of whether ultimate biodegradation (mineralisation) is likely to occur over timeframes of the order of days, weeks, months or years) has been estimated using the Syracuse Research Corporation BIOWIN (v3.63) program. It is recognised that estimation methods for biodegradation are less well developed and less reliable than estimation methods commonly used for other environmentally relevant properties (such as log octanol-water partition coefficient, Kow and acute toxicity to aquatic organisms). In order to take this into account here, biodegradation predictions have also been carried out for the alkylphenols where the biodegradation behaviour has been determined experimentally (the predictions for these substances are also included in Table 3.11). This provides some check on how well the predictions compare with the actual biodegradation behaviour for this group of substances. When compared in this way, it can be seen that, although the correlation is not high, the predictions for many of the substances that are known to be readily biodegradable give an ultimate biodegradation timeframe of weeks. For many of the substances that are known to be inherently biodegradable, or of low biodegradability, the predictions indicate an ultimate biodegradation timeframe of weeks to months or longer.

## 3.7 Bioaccumulation

There are few reliable data on the potential for bioaccumulation of alkylphenols. Bioconcentration factor (BCF) values have been located for only a few of the compounds considered in this review. Many of these originate from a secondary data source such as the non-confidential IUCLID so the validity has not been checked. It is therefore not surprising that there is a wide range of values, ranging from 37 (2,6-dimethylphenol and 4-*sec*-butylphenol) to 23,200 (2,4,6-tris(1,1-dimethyl ethyl) phenol). The majority of the alkylphenols for which data are available, however, appear to display a low to moderate potential to bioaccumulate in tissues with BCFs below 1,000. Table 3.11 provides a summary of the available data for all identified alkylphenols.

For several substances, no measured BCF value is available. In these cases, an estimate of the BCF has been obtained using the following equations recommended in the EU technical guidance document (TGD) for risk assessment of industrial chemicals (TGD, 2003).

For log  $K_{ow} \le 6$ log BCF =  $0.85 \times \log K_{ow} - 0.70$ For log  $K_{ow} > 6$ log BCF =  $-0.20 \times (\log K_{ow})^2 + 2.74 \times \log K_{ow} - 4.72$ 

The BCF values estimated in this way are included in Table 3.11. The values obtained from these equations have an uncertainty attached to them. For

those alklyphenols where measured BCF values are available, the correlation with log K<sub>ow</sub> is not good, and the real BCF value tends to be overestimated when the log K<sub>ow</sub> is high. This is probably due to rapid biotransformation and excretion, which is likely to apply for the simpler compounds at least. It should also be noted that the estimation method depends on the log K<sub>ow</sub>. For some substances a measured value was not available, and for these, a log K<sub>ow</sub> was estimated from chemical structure using the Syracuse Research Corporation Log K<sub>ow</sub> (v1.60) program. These data are also reported in Table 3.11 and it should be noted that this adds a further degree of uncertainty to the estimated BCF for these substances.

## 3.8 Ecotoxicity data

## 3.8.1 General toxicity

Data incorporated in the summary datasheets (see Annex I) were obtained from the sources outlined in Section 1.2. There is considerable variability in the amount of data available. There is no information on toxicity to terrestrial organisms for any of the substances (other than nonylphenol). Mammalian toxicity has not been considered in this report, since effects on the aquatic environment appear more significant for this class of substances.

Only three alkylphenols (other than nonylphenol) appear to have valid shortterm toxicity data available for freshwater fish, invertebrates and green algae (representing an aquatic food chain, and generally considered as a minimum data set for predicting environmental toxicity). These are 4-*tert*-butylphenol, 4*tert*-octylphenol and dodecylphenol. The data are summarised in Table 3.8 along with that for nonylphenol. The data for 4-*tert*-butylphenol were taken from Waern (2000) and OECD SIDS documents (SIDS, 2000), but since they are currently being assessed in depth by Norway under the Existing Substances Regulation they are not discussed in any detail. The data for 4-*tert*-octylphenol and dodecylphenol are discussed and referenced in full in separate draft risk assessment reports (Environment Agency, 2003a and 2003b). The data for nonylphenol are taken from the published risk assessment (ECB, 1999).

Table 3.8 clearly shows that the sensitivity of a range of organisms to 4-*tert*-octylphenol is similar to that found for nonylphenol. For many species, concentrations causing particular effects are the same within a factor of three. However, there is a difference in the algal toxicity data, and there is no information about chronic toxicity to mysids. There is also some evidence that endocrine-mediated effects may occur at lower concentrations (see section 3.8.2).

While far fewer and less certain data are available for dodecylphenol, the toxicity profile is again very similar to nonylphenol (although there is still a difference in the algal toxicity data). 4-*tert*-Butylphenol shows a 10- to 100-fold reduction in sensitivity compared with nonylphenol.

Table 3.8Comparison of the lowest reliable acute and chronic toxicity data for four data rich alkylphenols (units are<br/> $\mu g/l$ ; data are considered valid unless identified as 'use with care')

| Data type                                  | 4- <i>tert</i> -Butylphenol<br>(C <sub>4</sub> ) | 4- <i>tert</i> -Octylphenol<br>(C <sub>8</sub> )                                                                                                               | Nonylphenol<br>(C <sub>9</sub> )                                                          | Dodecylphenol,<br>branched<br>(C <sub>12</sub> )               |
|--------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Log K <sub>ow</sub>                        | 3.3                                              | 4.12                                                                                                                                                           | 4.48                                                                                      | 5.5                                                            |
| Fish                                       |                                                  |                                                                                                                                                                |                                                                                           |                                                                |
| Acute                                      | 5,100                                            | 250                                                                                                                                                            | 128                                                                                       | 140                                                            |
| (freshwater)                               | (Medaka, <i>Oryzias</i>                          | (Fathead minnow                                                                                                                                                | (Fathead minnow                                                                           | (use with care, Atlantic                                       |
| 96-h LC <sub>50</sub>                      | latipes)                                         | Pimephales promelas)                                                                                                                                           | Pimephales promelas)                                                                      | salmon Salmo salar)                                            |
| Acute (saltwater)<br>96-h LC <sub>50</sub> | -                                                | 170<br>(6-d LC <sub>50</sub> Rainbow trout<br><i>Oncorhynchus mykiss</i> )<br>280–340<br>(use with care,<br>Mummichog <i>Fundulus</i><br><i>heteroclitus</i> ) | 310<br>(Sheepshead minnow<br><i>Cyprinodon variegatus</i> )                               | ≥500<br>(96-h NOEC Golden<br>orfe <i>Leucuscus idus</i> )<br>- |
| Chronic<br>(freshwater)                    | -                                                | 6.1<br>(60-day early life stage<br>NOEC <sub>growth</sub> Rainbow<br>trout <i>Oncorhynchus</i><br><i>mykiss</i> )                                              | 7.4<br>(33-day NOEC <sub>survival</sub><br>Fathead minnow<br><i>Pimephales promelas</i> ) | _                                                              |

Table continued overleaf

Table 3.8 continued

| Data type                | 4- <i>tert</i> -Butylphenol<br>(C <sub>4</sub> ) | 4- <i>tert</i> -Octylphenol<br>(C <sub>8</sub> ) | Nonylphenol<br>(C <sub>9</sub> ) | Dodecylphenol,<br>branched<br>(C <sub>12</sub> ) |
|--------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------|--------------------------------------------------|
| Invertebrates            |                                                  |                                                  |                                  |                                                  |
| Acute                    | 3,400-3,900                                      | 270                                              | 85                               | 93                                               |
| (freshwater)             |                                                  |                                                  |                                  |                                                  |
| 48-h EC <sub>50</sub>    |                                                  |                                                  |                                  |                                                  |
| Daphnia magna            |                                                  |                                                  |                                  |                                                  |
| Acute                    | -                                                | 13.3                                             | 12.7                             | -                                                |
| (freshwater)             |                                                  |                                                  | (use with care)                  |                                                  |
| 96-h EC <sub>50</sub>    |                                                  |                                                  |                                  |                                                  |
| Gammarus pulex           |                                                  |                                                  |                                  |                                                  |
| Acute (saltwater)        | -                                                | 1,100                                            | 300                              | 150                                              |
| 96-h LC <sub>50</sub>    |                                                  | (use with care)                                  | (use with care)                  | (use with care)                                  |
| Crangon                  |                                                  |                                                  |                                  |                                                  |
| septemspinosa            |                                                  |                                                  |                                  |                                                  |
| Acute (saltwater)        | -                                                | 53.4                                             | 43                               | -                                                |
| 96-h E(L)C <sub>50</sub> |                                                  |                                                  |                                  |                                                  |
| Mysidopsis bahia         |                                                  |                                                  |                                  |                                                  |
| Chronic                  | 730                                              | 62                                               | 24                               | -                                                |
| (freshwater)             |                                                  | (surviving offspring)                            |                                  |                                                  |
| 21-day NOEC              |                                                  |                                                  |                                  |                                                  |
| Daphnia magna            |                                                  |                                                  |                                  |                                                  |
| Chronic                  | -                                                | -                                                | 3.9                              | -                                                |
| (saltwater)              |                                                  |                                                  |                                  |                                                  |
| 28-day NOEC              |                                                  |                                                  |                                  |                                                  |
| Mysidopsis bahia         |                                                  |                                                  |                                  |                                                  |

Table continued overleaf

#### Table 3.8 continued

| Data type                                                                                          | 4- <i>tert</i> -Butylphenol<br>(C <sub>4</sub> ) | 4- <i>tert</i> -Octylphenol<br>(C <sub>8</sub> ) | Nonylphenol<br>(C <sub>9</sub> ) | Dodecylphenol,<br>branched<br>(C <sub>12</sub> ) |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------|--------------------------------------------------|
| Algae                                                                                              |                                                  |                                                  |                                  |                                                  |
| Acute<br>(freshwater)<br>72-h EC <sub>50 (growth</sub>                                             | 11,000                                           | 1,100<br>(use with care)                         | 323<br>(or 1300 use with care)   | >770                                             |
| <sup>rate)</sup><br>Scenedesmus<br>subspicatus                                                     |                                                  |                                                  |                                  |                                                  |
| Acute (saltwater)<br>96-h EC <sub>50</sub> cell<br>growth<br><i>Skeletonema</i><br><i>costatum</i> | -                                                | -                                                | 27                               | -                                                |
| Chronic<br>(freshwater)<br>72-h EC <sub>10 (growth</sub><br>rate)<br>Scenedesmus<br>subspicatus    | -                                                | 300<br>(use with care)                           | 25.1<br>(or 500 use with care)   | >770<br>(NOEC = 440)                             |

No other alkylphenols appear to have a basic data set available. However, in some studies a range of alkylphenols was tested with the same species, thereby allowing conclusions to be drawn regarding the effects of chain length (and octanol-water partition coefficient,  $K_{ow}$ ) on toxicity. These are discussed below.

Gerritsen *et al.* (1998) assessed the toxicity of a range of alkylphenols to young (<24-h old) *Daphnia magna*, using the no observed effect concentration (NOEC) calculated from 96-hour survival studies as the endpoint. There was a marked reduction in NOEC value with increasing alkylphenol chain length (and thus increasing  $K_{ow}$  values) (see Table 3.9).

| Table 3.9 | Summary     | of  | 96-h  | NOECs | of | alkylphenols | for | mortality | of |
|-----------|-------------|-----|-------|-------|----|--------------|-----|-----------|----|
|           | juvenile Da | aph | nia m | agna  |    |              |     |           |    |

| Substance                        | No effect concentration (mg/l) |
|----------------------------------|--------------------------------|
| 4-sec-Butylphenol                | 9.7                            |
| 4- <i>tert</i> -Butylphenol      | 8.6                            |
| 4- <i>tert</i> -Pentylphenol     | 1.8                            |
| 4- <i>tert</i> -Octylphenol      | 0.19                           |
| 4-Nonylphenol                    | 0.3                            |
| 2,4-Di- <i>tert</i> -butylphenol | 0.85                           |

McLeese *et al.* (1981) assessed the toxicity of a range of alkylphenols to the marine shrimp *Crangon septemspinosa* in 96-hour static tests (at 10°C) using mortality as the endpoint. The long chain alkylphenols were more toxic than the short chain alkylphenols (see Table 3.10). The data also suggest that there can be variability in the toxicity of different isomers, with a range of 96-hour LC<sub>50</sub> values of 1.3–5.2 mg/l for butylphenol for example. The study is not considered to be fully valid, and so the data are not necessarily comparable with other valid study results for the same species. The variation in the sequence was not given any discussion by the study authors.

| Table 3.10 | Summary of concentrations of alkylphenols causing |
|------------|---------------------------------------------------|
|            | mortality of Crangon septemspinosa                |

| Substance                    | 96-h LC₅₀ (mg/l) |
|------------------------------|------------------|
| o-sec-Butylphenol            | 1.3              |
| p- <i>sec</i> -Butylphenol   | 1.8              |
| o- <i>tert</i> -Butylphenol  | 2.4              |
| m-tert-Butylphenol           | 5.2              |
| p- <i>tert</i> -Pentylphenol | 1.7              |
| p-Hexylphenol                | 0.9              |
| p-Heptylphenol               | 0.6              |
| p- <i>tert</i> -Octylphenol  | 1.1              |
| p-Nonylphenol                | 0.3              |
| p-Dodecylphenol              | 0.15             |

Other recent comparative data have indicated that the copepod *Acartia tonsa* is more sensitive to para-substituted alkyphenols than to other alkyl substitutions (Buffagni *et al.*, 2001). The same source also suggested that test

results using a mixture of alkylphenols might have resulted in some synergistic effects on the organisms.

#### Summary

Overall, the general toxicity data indicate that aquatic organisms appear more sensitive to the longer chain alkylphenols (such as dodecylphenol, 4-*tert*-octylphenol and nonylphenol) than the shorter chain alkylphenols (such as 4-*tert*-butylphenol). This is to be expected in view of the change in partitioning behaviour as the alkyl chain length increases (for example as modelled by the n-octanol-water partitioning coefficient). However, the longer chain alkylphenols appear to exhibit similar toxicities.

The available aquatic toxicity data for the alkylphenols considered in this study are summarised in Table 3.11. For several substances, no experimental data are available for either the acute or chronic endpoints. In these cases, values have been estimated using the Scyracuse Research Corporation ECOSAR Program (v0.99b). This program predicts the toxicity for fish, *Daphnia* and algae from chemical structure using methods applicable to phenolic chemicals as a group. It should be noted that there are some uncertainties attached to these values.

#### **3.8.2 Endocrine disruption**

Alkylphenols such as nonylphenol are now known to affect the endocrine system, by acting as weak oestrogens. The key data currently required to determine whether any substance can be considered to cause endocrine mediated responses are longer-term *in vivo* assays (such as multi-generational tests) or those where exposure is targeted towards critical windows of sensitivity in the life history of the organism. The endpoints of greatest significance are those which are associated with reproduction and/or development. For non-standard protocol endpoints, including *in vivo* screening studies, the assessment of endpoint relevance is usually a subjective decision based on expert judgement. While robust *in vitro* data are useful in making judgements about the presumption of hazard they are not currently linked directly to, or are predictive of, adverse toxicological effects associated with endocrine disruption.

The most extensive data set available (other than for nonylphenol) is for 4-*tert*-octylphenol. These data are considered in detail in the draft Environment Agency risk assessment report for that substance (Environment Agency, 2003a). There are some indications that molluscs could be more sensitive than fish or other invertebrates. Comparable data for nonylphenol on endocrine-mediated effects in molluscs did not exist at the time the assessment for that substance was completed (1999). 4-*tert*-Pentylphenol can also induce oviduct formation in male fish (Gimeno *et al.*, 1996), and so it is likely that many 4-alkylphenols have the potential to act as weak oestrogens.

No other *in vivo* aquatic data have been found for any other alkylphenol. Recently the Chemicals Evaluation and Research Institute in Japan (CERI, 2001) developed a competitive binding assay for the medaka (*Oryzias latipes*) oestrogen receptor  $\alpha$  and have used the assay to measure the relative binding affinity of a number of alkylphenols. The substances tested were linear and branched chain butyl-, pentyl- and octylphenol, and a mixture of nonylphenol isomers. The linear compounds bound to the receptor in the same manner but with low binding affinity relative to that of 17 $\beta$ -oestradiol. Linear 4-octylphenol had the highest relative binding affinity (RBA) of 0.077 in the set compared with 100 for 17 $\beta$ -oestradiol. However, alkylphenols with branched chains exhibited relatively higher affinities than those of the linear compounds and branched 4-octylphenol had the highest RBA value of these. The other values for the branched substances were:

- nonylphenol: 7.5
- 4-pentylphenol: 1.1
- 4-butylphenol: 0.15.

In this study binding affinity with the medaka oestrogen receptor appears to be related to the structure of the isomer and the length of the alkyl chain; the longer chain branched substances have the highest affinity. The nonylphenol results do not appear to support this completely, but since a mixture of isomers was tested comparison with the other results (linear versus branched) is difficult. The results of this study indicate that the structure and conformation of the alkylphenol is important in determining the degree of binding to this steroid receptor, although this does not provide any indication of the relative potency or activity of the substance on binding.

## 3.9 PBT assessment

The EU TGD gives criteria for defining a persistent (P), bioaccumulative (B) and toxic (T) substance in relation to the marine environment (TGD, 2003). The alkylphenols considered in this assessment have been considered against these screening criteria and the findings are summarised in Table 3.11.

In relation to the persistence criterion, only substances that are readily biodegradable (or have a predicted ultimate biodegradation timeframe of weeks; see Section 3.6) have been assumed not to be potentially persistent (P) or very persistent (vP). It should be noted that, in general, actual biodegradation simulation tests would be necessary to determine if these substances do in fact meet the P or vP criteria.

## 3.10 Summary of fate and effect data

Table 3.11 summarises the available fate and effect data for all the alkylphenols that have been considered in this report. Individual data sheets with additional details are provided in Annexes I and II. Water solubility data are expressed at  $25^{\circ}$ C unless stated otherwise.

| Substance               | CAS No.   | Formula                          | er<br>ility            | Log K <sub>ow</sub> | Biodegradation                                                      | BCF              | Lowest aquatic<br>toxicity values (mg/l) |         | PBT? | Reference | Comment                                                              |
|-------------------------|-----------|----------------------------------|------------------------|---------------------|---------------------------------------------------------------------|------------------|------------------------------------------|---------|------|-----------|----------------------------------------------------------------------|
|                         |           |                                  | Wat<br>Solub           |                     |                                                                     |                  | Acute                                    | Chronic |      |           |                                                                      |
| Methylphenols           | 1319-77-3 | C7H8O                            | 25 g/l                 | 2.1 <sup>a</sup>    | Readily<br>biodegradable<br>(biodegrades in<br>weeks <sup>b</sup> ) | 12 <sup>c</sup>  | 7                                        | 0.12ª   | No   | IUCLID    | Log K <sub>ow</sub> ,<br>BCF and<br>chronic<br>toxicity<br>estimated |
| 2-Methylphenol          | 95-48-7   | C <sub>7</sub> H <sub>8</sub> O  | 26 g/l                 | 1.95; 2             | Readily<br>biodegradable<br>(biodegrades in<br>weeks <sup>b</sup> ) | 10 <sup>c</sup>  | 2                                        | 11      | No   | IUCLID    | BCF<br>estimated                                                     |
| 3-Methylphenol          | 108-39-4  | C <sub>7</sub> H <sub>8</sub> O  | 24 g/l                 | 1.96; 2–<br>2.15    | Readily<br>biodegradable<br>(biodegrades in<br>weeks <sup>b</sup> ) | 4,900            | 6                                        | 10      | No   | IUCLID    | The BCF<br>seems high<br>given the<br>log K <sub>ow</sub>            |
| 4-Methylphenol          | 106-44-5  | C <sub>7</sub> H <sub>8</sub> O  | 19.4 g/l<br>at<br>20°C | 1.94                | Readily<br>biodegradable<br>(biodegrades in<br>weeks <sup>b</sup> ) | 8.9 <sup>c</sup> | 7.5                                      | 1.5–2.6 | No   | IUCLID    | BCF<br>estimated                                                     |
| 2,6-Dimethyl-<br>phenol | 576-26-1  | C <sub>8</sub> H <sub>10</sub> O | 5.9 g/l                | 2.36                | Readily<br>biodegradable<br>(biodegrades in<br>weeks <sup>b</sup> ) | 37               | 11.2                                     | 0.078ª  | No   | IUCLID    | Chronic<br>toxicity<br>estimated                                     |

| Table 3.11 | Summary fate and hazard data on identified alkylphenols |
|------------|---------------------------------------------------------|
|------------|---------------------------------------------------------|

Table continued overleaf

#### Table 3.11 continued

| Substance               | CAS No.   | Formula                          | ater<br>Ibility       | Log<br>K <sub>ow</sub> | Biodegradation                                                         | BCF                | CF Lowest aquatic<br>toxicity values<br>(mg/l) |                    | PBT? | Reference                                          | Comment                                                                                                                       |  |
|-------------------------|-----------|----------------------------------|-----------------------|------------------------|------------------------------------------------------------------------|--------------------|------------------------------------------------|--------------------|------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
|                         |           |                                  | Solu                  |                        |                                                                        |                    | Acute                                          | Chronic            |      |                                                    |                                                                                                                               |  |
| Dimethylphenols         | 1300-71-6 | C <sub>8</sub> H <sub>10</sub> O | Slightly<br>soluble   | 2.6ª                   | Biodegrades in<br>weeks <sup>b</sup>                                   | 32 <sup>c</sup>    | 3.7ª                                           | 0.078 <sup>a</sup> | No   | IUCLID                                             | Solubility data –<br>descriptor only,<br>log K <sub>ow</sub> ,<br>biodegradation,<br>BCF and<br>aquatic toxicity<br>estimated |  |
| 3,5-Dimethyl-<br>phenol | 108-68-9  | C <sub>8</sub> H <sub>10</sub> O | 4.8–<br>5.3g/l        | 2.06–<br>2.55          | Readily<br>biodegradable<br>(biodegrades in<br>weeks <sup>b</sup> )    | 11–29 <sup>c</sup> | 10–35                                          | 0.078 <sup>a</sup> | No   | IUCLID                                             | BCF and<br>chronic toxicity<br>estimated                                                                                      |  |
| 2-Ethylphenol           | 90-00-6   | C <sub>8</sub> H <sub>10</sub> O | 0.01g/l<br>at<br>22°C | 2.47                   | Inherently<br>biodegradable<br>(biodegrades in<br>weeks <sup>b</sup> ) | 44                 | 3.9 <sup>a</sup>                               | 0.083 <sup>a</sup> | No   | ChemFinder,<br>TOXNET, SRC<br>PhysProp<br>Database | Biodegradation<br>information<br>very limited,<br>aquatic toxicity<br>estimated                                               |  |
| 4-Ethylphenol           | 123-07-9  | C <sub>8</sub> H <sub>10</sub> O | 4.9 g/l               | 2.58                   | Inherently<br>biodegradable<br>(biodegrades in<br>weeks <sup>b</sup> ) | 54                 | 5.7                                            | 63.5               | No   | ECOTOX, SRC<br>PhysProp<br>Database                | Biodegradation<br>information<br>very limited                                                                                 |  |

Table continued overleaf
| Substance                        | CAS No.   | Formula                           | /ater<br>ubility                                      | Log<br>K <sub>ow</sub> | Biodegradation                                                                             | BCF             | Lowest aquatic<br>toxicity values<br>(mg/l) |                    | PBT? | Reference                                                                                                                    | Comment                                                                                                  |
|----------------------------------|-----------|-----------------------------------|-------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------|-----------------|---------------------------------------------|--------------------|------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                  |           |                                   | Sol                                                   |                        |                                                                                            |                 | Acute                                       | Chronic            |      |                                                                                                                              |                                                                                                          |
| 2-Isopropyl-<br>phenol           | 88-69-7   | C <sub>9</sub> H <sub>12</sub> O  | 1.15 g/l                                              | 2.88                   | Biodegrades in<br>weeks <sup>b</sup>                                                       | 56 <sup>c</sup> | 2.9 <sup>a</sup>                            | 0.060 <sup>a</sup> | No   | SRC PhysProp<br>Database                                                                                                     | Biodegradation,<br>BCF and<br>aquatic toxicity<br>estimated                                              |
| 2,3,6-Trimethyl-<br>phenol       | 2416-94-6 | C <sub>9</sub> H <sub>12</sub> O  | 1.42;<br>1.58<br>mg/l                                 | 2.72                   | Readily<br>biodegradable<br>(biodegrades in<br>weeks–months <sup>b</sup> )                 | 41 <sup>c</sup> | 8.2                                         | 0.050 <sup>a</sup> | No   | IUCLID;<br>USEPA (2001)                                                                                                      | BCF and<br>chronic toxicity<br>estimated                                                                 |
| 2- <i>tert</i> -Butyl-<br>phenol | 88-18-6   | C <sub>10</sub> H <sub>14</sub> O | 700<br>mg/l;<br>394<br>mg/l;<br>2.3 g/l<br>at<br>20°C | 2.7–3.5                | Readily<br>biodegradable<br>(Hüls study)<br>(biodegrades in<br>weeks–months <sup>b</sup> ) | 39–<br>188°     | 2.4                                         | 0.042ª             | No   | ChemFinder;<br>SRC PhysProp<br>Database;<br>McLeese <i>et al.</i><br>(1981); BUA<br>(2001); USEPA<br>(2001); SASOL<br>(2001) | Further data<br>available in<br>German BUA<br>report (2001).<br>BCF and<br>chronic toxicity<br>estimated |

| Substance                        | CAS No.  | Formula                           | /ater<br>ubility                               | Log<br>K <sub>ow</sub> | Biodegradation                                                             | BCF                                                         | Lowest aquatic<br>toxicity values<br>(mg/l) |                    | PBT? | Reference                                                                                                         | Comment                                                                                          |
|----------------------------------|----------|-----------------------------------|------------------------------------------------|------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|--------------------|------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                  |          |                                   | Sol ×                                          |                        |                                                                            |                                                             | Acute                                       | Chronic            |      |                                                                                                                   |                                                                                                  |
| 3- <i>tert</i> -Butyl-<br>phenol | 585-34-2 | C <sub>10</sub> H <sub>14</sub> O | 2,067<br>mg/l                                  | 2.6;<br>3.3            | Biodegrades in<br>weeks–months <sup>b</sup>                                | 32 <sup>c</sup> ;<br>127 <sup>c</sup>                       | 5.2                                         | 0.042 <sup>a</sup> | No   | Chem Finder;<br>SRC PhysProp<br>Database                                                                          | Not<br>commercially<br>available,<br>biodegradation,<br>BCF and<br>chronic toxicity<br>estimated |
| 4- <i>tert</i> -Butyl-<br>phenol | 98-54-4  | C <sub>10</sub> H <sub>14</sub> O | 610 mg/l ;<br>800 mg/l<br>at 20°C;<br>500 mg/l | 3.29                   | Readily<br>biodegradable<br>(biodegrades in<br>weeks–months <sup>b</sup> ) | 120                                                         | 3.4–3.9                                     | 0.73               | No   | Non-<br>confidential<br>IUCLID; Waern<br>(2000); SIDS<br>(2000); USEPA<br>(2001); SASOL<br>(2001); KEMI<br>(2000) | A full ESR<br>assessment is<br>under way, with<br>Norway as the<br>rapporteur                    |
| 2- <i>sec</i> -Butyl-<br>phenol  | 89-72-5  | C <sub>10</sub> H <sub>14</sub> O | 1,659<br>mg/l; 319<br>mg/l                     | 2.8;<br>3.27;<br>3.46  | Biodegrades in<br>weeks <sup>b</sup>                                       | 48 <sup>°</sup> ,<br>120 <sup>°</sup> ,<br>174 <sup>°</sup> | 1.3                                         | 0.040 <sup>a</sup> | No   | ChemFinder;<br>SRC PhysProp<br>Database                                                                           | Biodegradation,<br>BCF and<br>chronic toxicity<br>estimated                                      |

| Substance                                | CAS No.   | Formula                           | /ater<br>ubility                | Log<br>K <sub>ow</sub> | Biodegradation                                                                 | BCF              | Lowest aquatic<br>toxicity values<br>(mg/l) |                    | PBT? Reference |                                                                                                    | Comment                                                                                     |
|------------------------------------------|-----------|-----------------------------------|---------------------------------|------------------------|--------------------------------------------------------------------------------|------------------|---------------------------------------------|--------------------|----------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                          |           |                                   | Sol S                           |                        |                                                                                |                  | Acute                                       | Chronic            |                |                                                                                                    |                                                                                             |
| 4- <i>sec</i> -Butyl-<br>phenol          | 99-71-8   | C <sub>10</sub> H <sub>14</sub> O | 960 mg/l                        | 2.1;<br>3.08;<br>3.46  | Biodegrades in<br>weeks <sup>b</sup>                                           | 37               | 0.74                                        | 0.040 <sup>a</sup> | No             | SRC PhysProp<br>Database;<br>McLeese <i>et al.</i><br>(1981);<br>Gerritsen <i>et al.</i><br>(1998) | Not<br>commercially<br>available,<br>biodegradation<br>and chronic<br>toxicity<br>estimated |
| 2- <i>tert</i> -Pentyl-<br>phenol        | 3279-27-4 | C <sub>11</sub> H <sub>16</sub> O | 113 mg/l <sup>a</sup>           | 3.9 <sup>a</sup>       | Biodegrades in weeks-months <sup>b</sup>                                       | 412 <sup>c</sup> | 1.4 <sup>a</sup>                            | 0.027 <sup>a</sup> | No             | SDS                                                                                                | All data estimated                                                                          |
| 4- <i>tert</i> -Pentyl-<br>phenol        | 80-46-6   | C <sub>11</sub> H <sub>16</sub> O | 168 mg/l;<br>37 mg/l at<br>20°C | 2.1;<br>4.03           | Not readily<br>biodegradable<br>(biodegrades in<br>weeks–months <sup>b</sup> ) | 12°;<br>531°     | 1.7                                         | 0.063              | No             | ChemFinder;<br>NTP; McLeese<br><i>et al.</i> (1981);<br>SASOL (2001)                               | BCF estimated                                                                               |
| 2- <i>tert</i> -Butyl-p-<br>methylphenol | 2409-55-4 | C <sub>11</sub> H <sub>16</sub> O | 101mg/l <sup>a</sup>            | 4.0 <sup>a</sup>       | Biodegrades in weeks-months <sup>b</sup>                                       | 501°             | 1.4 <sup>a</sup>                            | 0.026 <sup>a</sup> | No             | IUCLID<br>(confidential);<br>IUCLID non-<br>confidential                                           | All data<br>estimated                                                                       |

| Substance                               | CAS No.   | Formula                           | ater<br>billity         | Log<br>K <sub>ow</sub> | Biodegradation                           | BCF              | Lowest aquatic<br>toxicity values<br>(mg/l) |         | PBT? | Reference                       | Comment                                                                                                               |
|-----------------------------------------|-----------|-----------------------------------|-------------------------|------------------------|------------------------------------------|------------------|---------------------------------------------|---------|------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                         |           |                                   | Wå<br>Solu              |                        |                                          |                  | Acute                                       | Chronic |      |                                 |                                                                                                                       |
| 4-Hexylphenol                           | 2446-69-7 | C <sub>12</sub> H <sub>18</sub> O | 30<br>mg/lª             | 3.6                    | Biodegrades in<br>weeks <sup>b</sup>     | 229 <sup>c</sup> | 0.19                                        | 0.016   | No   | McLeese <i>et al.</i><br>(1981) | Not<br>commercially<br>available, water<br>solubility,<br>biodegradation,<br>BCF and<br>chronic toxicity<br>estimated |
| 2-Cyclohexyl-<br>phenol                 | 119-42-6  | C <sub>12</sub> H <sub>18</sub> O | 44<br>mg/l <sup>a</sup> | 4.3 <sup>a</sup>       | Biodegrades in<br>weeks <sup>♭</sup>     | 902 <sup>c</sup> | 0.95                                        | 0.019   | No   |                                 | Production<br>levels<br>uncertain, all<br>data estimated                                                              |
| 2- <i>tert</i> -Butyl-4-<br>ethylphenol | 96-70-8   | C <sub>12</sub> H <sub>18</sub> O | 33.1<br>mg/l            | 4.46                   | Biodegrades in weeks-months <sup>b</sup> | 1,233°           | 0.81                                        | 0.017   | No   | SRC PhysProp<br>Database        | Biodegradation,<br>BCF and<br>aquatic toxicity<br>estimated                                                           |

| Substance                        | CAS No.    | Formula                           | /ater<br>ubility                                       | Log<br>K <sub>ow</sub> | Biodegradation                                                                 | BCF    | F Lowest aquatic<br>toxicity values<br>(mg/l) |         | PBT? Reference |                              | Comment                                                                                                                                                                                                                    |
|----------------------------------|------------|-----------------------------------|--------------------------------------------------------|------------------------|--------------------------------------------------------------------------------|--------|-----------------------------------------------|---------|----------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |            |                                   | Sol S                                                  |                        |                                                                                |        | Acute                                         | Chronic |                |                              |                                                                                                                                                                                                                            |
| 4-Heptylphenol                   | 1987-50-4  | C <sub>13</sub> H <sub>20</sub> O | 9.6 mg/l <sup>a</sup>                                  | 5.0 <sup>a</sup>       | Biodegrades in<br>weeks <sup>b</sup>                                           | 3,548° | 0.6                                           | 0.010   | No             | ECOTOX                       | Not<br>commercially<br>available, water<br>solubility,<br>logK <sub>ow</sub> ,<br>biodegradation,<br>BCF and<br>chronic toxicity<br>estimated. Not<br>PBT by analogy<br>with<br>octylphenol<br>(BCF likely to<br>be lower) |
| Octylphenols                     | 27193-28-8 | C <sub>14</sub> H <sub>22</sub> O |                                                        |                        | See                                                                            | below  |                                               |         |                | Confidential<br>IUCLID       | Not of commercial                                                                                                                                                                                                          |
| 4-Octylphenol                    | 1806-26-4  | C <sub>14</sub> H <sub>22</sub> O |                                                        |                        |                                                                                | See    | e below                                       |         |                |                              | relevance                                                                                                                                                                                                                  |
| 4- <i>tert</i> -Octyl-<br>phenol | 140-66-9   | C <sub>14</sub> H <sub>22</sub> O | 12.6 mg/l<br>at<br>20.5°C;<br>17–19<br>mg/l at<br>22°C | 4.12                   | Not readily<br>biodegradable<br>(biodegrades in<br>weeks–months <sup>b</sup> ) | 634    | 0.013                                         | 0.006   | No             | Environment<br>Agency (2003a | This is the only<br>)octylphenol that<br>is commercially<br>available                                                                                                                                                      |

| Substance                            | CAS No.    | Formula                           | /ater<br>ubility                                                                                         | Log<br>K <sub>ow</sub> | Biodegradation                                                                 | BCF                   | BCF Lowest aquatic<br>toxicity values<br>(mg/l) |                    |       | Reference                                                    | Comment                                                                                                                                                       |
|--------------------------------------|------------|-----------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------|-----------------------|-------------------------------------------------|--------------------|-------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |            |                                   | Sol                                                                                                      |                        |                                                                                |                       | Acute                                           | Chronic            |       |                                                              |                                                                                                                                                               |
| Isooctylphenol                       | 11081-15-5 | C <sub>14</sub> H <sub>22</sub> O | See comments (no data available)<br>12 mg/l at 5.19 Not readily ~660 1.8 0.008 <sup>a</sup> No SDS; HSDB |                        |                                                                                |                       |                                                 |                    |       |                                                              | Production was<br>terminated in<br>1994                                                                                                                       |
| 2,4-Di- <i>tert-</i><br>butylphenol  | 96-76-4    | C <sub>14</sub> H <sub>22</sub> O | 12 mg/l at<br>20°C                                                                                       | 5.19                   | Not readily<br>biodegradable<br>(biodegrades in<br>weeks–months <sup>b</sup> ) | ~660<br>(see<br>note) | 1.8                                             | 0.008 <sup>a</sup> | No    | SDS; HSDB;<br>IUCLID (non-<br>confidential);<br>USEPA (2001) | BCF and<br>chronic toxicity<br>estimated. BCF<br>derived from<br>log K <sub>ow</sub> (5,146)<br>likely to be too<br>high by analogy<br>with next<br>substance |
| 2,6-Di- <i>tert</i> -<br>butylphenol | 128-39-2   | C <sub>14</sub> H <sub>22</sub> O | 4.11 mg/l<br>at pH 7                                                                                     | 4.92                   | Not readily<br>biodegradable<br>(biodegrades in<br>weeks–months <sup>b</sup> ) | 660                   | 0.076                                           | 0.019 <sup>a</sup> | No    | HSDB; SIDS<br>Initial<br>Assessment<br>profile               | Chronic toxicity<br>estimated                                                                                                                                 |
| 2,4-Di- <i>tert-</i><br>pentylphenol | 120-95-6   | C <sub>16</sub> H <sub>26</sub> O | 0.015 g/l<br>at 20°C;<br>0.44 mg/l                                                                       | 6.31                   | Not readily<br>biodegradable<br>(biodegrades in<br>weeks–months <sup>b</sup> ) | 40,381°               | 1–10 mg/l                                       | 0.003ª             | Maybe | SDS; SASOL<br>(2001); USEPA<br>(2001)                        | BCF and<br>chronic toxicity<br>estimated                                                                                                                      |

| Substance                                                                   | CAS No.                           | Formula                           | /ater<br>ubility      | Log<br>K <sub>ow</sub> | Biodegradation                        | n BCF Lowest aquatic<br>toxicity values<br>(mg/l) |                   | PBT?                 | Reference | Comment                       |                                                                                                                             |
|-----------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------|------------------------|---------------------------------------|---------------------------------------------------|-------------------|----------------------|-----------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                             |                                   |                                   | Sol                   |                        |                                       |                                                   | Acute             | Chronic              |           |                               |                                                                                                                             |
| 2,6-Di- <i>tert</i> -butyl-<br>4-ethylphenol                                | 4130-42-1                         | C <sub>16</sub> H <sub>26</sub> O | 2 mg/l <sup>a</sup>   | 5.52                   | Biodegrades in<br>months <sup>b</sup> | 9,817 <sup>c</sup>                                | 0.23 <sup>a</sup> | 0.007 <sup>a</sup>   | Maybe     | SRC PhysProp<br>Database      | Water solubility,<br>biodegradation,<br>BCF and<br>aquatic toxicity<br>estimated                                            |
| Dodecylphenol,<br>mixed isomers                                             | 27193-86-8                        | C <sub>18</sub> H <sub>30</sub> O |                       |                        |                                       | Se                                                | e below           |                      |           |                               | Preferred CAS<br>No. is 74499-                                                                                              |
| 4-Dodecylphenol                                                             | 104-43-8                          | C <sub>18</sub> H <sub>30</sub> O |                       |                        |                                       |                                                   |                   |                      |           |                               | 35-7 or                                                                                                                     |
| Isododecylphenol                                                            | 11067-80-4                        | C <sub>18</sub> H <sub>30</sub> O |                       |                        |                                       |                                                   |                   |                      |           |                               | 121156-56-5                                                                                                                 |
| Phenol,<br>(tetrapropenyl)<br>derivatives and<br>dodecylphenol,<br>branched | 74499-35-7<br>and 121158-<br>58-5 | C <sub>18</sub> H <sub>30</sub> O | 54 μg/l<br>at<br>20°C | 5.5                    | Not readily<br>biodegradable          | 9,440                                             | 0.093             | No data<br>available | Maybe     | Environment<br>Agency (2003b) | These CAS<br>nos. represent<br>the commercial<br>substance.<br>BCF not fully<br>reliable.<br>Chronic toxicity<br>estimated. |

| Substance                                                     | CAS No.    | Formula                           | <i>l</i> ater<br>ubility | Log<br>K <sub>ow</sub> | Biodegradation                                                           | n BCF Lowest aquatic<br>toxicity values<br>(mg/l) |                       | PBT?                  | Reference | Comment                                                                               |                                                                                   |
|---------------------------------------------------------------|------------|-----------------------------------|--------------------------|------------------------|--------------------------------------------------------------------------|---------------------------------------------------|-----------------------|-----------------------|-----------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                               |            |                                   | Sol                      |                        |                                                                          |                                                   | Acute                 | Chronic               |           |                                                                                       |                                                                                   |
| 2,4,6-Tris(1,1-<br>dimethylethyl)<br>phenol                   | 732-26-3   | C <sub>18</sub> H <sub>30</sub> O | 0.512<br>mg/l at<br>20°C | 6.06                   | Not readily<br>biodegradable<br>(biodegrades in<br>months <sup>b</sup> ) | 23,200                                            | 0.061                 | 0.003 <sup>a</sup>    | Maybe     | ChemFinder;<br>OSPAR<br>Background<br>document<br>(2002)                              | Chronic toxicity<br>estimated.<br>OSPAR priority<br>hazardous<br>substance        |
| 2,4,6-Tri- <i>sec-</i><br>butylphenol                         | 5892-47-7  | C <sub>18</sub> H <sub>30</sub> O | 0.21 mg/l <sup>a</sup>   | 6.5 <sup>ª</sup>       | Biodegrades in weeks-months <sup>b</sup>                                 | 43,651 <sup>c</sup>                               | 0.065 <sup>a</sup>    | 0.003 <sup>a</sup>    | Maybe     |                                                                                       | All data estimated                                                                |
| 4- <i>sec</i> -Butyl-2,6-<br>di- <i>tert</i> -<br>butylphenol | 17540-75-9 | C <sub>18</sub> H <sub>30</sub> O | 0.25 mg/l <sup>a</sup>   | 6.4 <sup>a</sup>       | Biodegrades in months <sup>b</sup>                                       | 42,072 <sup>c</sup>                               | 0.072 <sup>a</sup>    | 0.003 <sup>a</sup>    | Maybe     |                                                                                       | All data estimated                                                                |
| Dinonylphenol                                                 | 1323-65-5  | $C_{24}H_{42}O$                   |                          |                        | See below                                                                | (no data                                          | or estimat            | e available           | e)        |                                                                                       | Biodegradation,                                                                   |
| Phenol, 2,4-<br>dinonyl branched                              | 84852-14-2 | C <sub>24</sub> H <sub>42</sub> O |                          |                        |                                                                          |                                                   |                       |                       |           |                                                                                       | BCF and<br>aquatic toxicity                                                       |
| 2,4-Dinonyl-<br>phenol                                        | 137-99-5   | C <sub>24</sub> H <sub>42</sub> O | 2.8E-05<br>mg/l          | 10.5                   | Biodegrades in<br>weeks <sup>♭</sup>                                     | 99°                                               | 3×10 <sup>-4, a</sup> | 3×10 <sup>-5, a</sup> | Maybe     | WHO/IPCS/ILO<br>International<br>Chemical<br>Safety Cards<br>(2002); EPIWIN<br>(2002) | BCF is<br>unreliable.<br>Could be<br>persistent by<br>analogy with<br>nonylphenol |

| Substance                                    | CAS No.    | Formula                           | /ater<br>ubility                          | Log<br>K <sub>ow</sub> | Biodegradation                                                             | BCF                 | Lowest aquatic<br>toxicity values<br>(mg/l) |                         | PBT?  | Reference                                      | Comment                                                                                                                |
|----------------------------------------------|------------|-----------------------------------|-------------------------------------------|------------------------|----------------------------------------------------------------------------|---------------------|---------------------------------------------|-------------------------|-------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                              |            |                                   | Sol                                       |                        |                                                                            |                     | Acute                                       | Chronic                 |       |                                                |                                                                                                                        |
| 2,6-Di- <i>tert</i> -butyl-<br>p-cresol      | 128-37-0   | C <sub>24</sub> H <sub>42</sub> O | 0.6 mg/l                                  | 5.1                    | Readily<br>biodegradable<br>(biodegrades in<br>weeks–months <sup>b</sup> ) | 2,500               | 1.4                                         | 0.316                   | No    | IUCLID;<br>ECOTOX; SRC<br>PhysProp<br>Database | Synonym:<br>Butylated<br>hydroxytoluene<br>(BHT)                                                                       |
| p-Hexyldecyl-<br>phenol                      | 2589-78-8  | C <sub>22</sub> H <sub>38</sub> O | 3.2×10 <sup>-4</sup><br>mg/l <sup>a</sup> | 9.4 <sup>a</sup>       | Biodegrades in<br>weeks <sup>b</sup>                                       | 2,311 <sup>c</sup>  | 0.0012ª                                     | 1.4×10 <sup>-4, a</sup> | Maybe |                                                | Not<br>commercially<br>available, all<br>data estimated.<br>Could be<br>persistent by<br>analogy with<br>dodecylphenol |
| 2,6-Di- <i>tert</i> -butyl-<br>4-nonylphenol | 4306-88-1  | C <sub>23</sub> H <sub>40</sub> O | 6.7×10 <sup>-4</sup><br>mg/l <sup>a</sup> | 8.96 <sup>a</sup>      | Biodegrades in weeks-months <sup>b</sup>                                   | 5,943 <sup>c</sup>  | 0.003 <sup>a</sup>                          | 2.8×10 <sup>-4</sup>    | Maybe |                                                | All data estimated                                                                                                     |
| 2,4,6-Tris(1-<br>phenylethyl)<br>phenol++    | 18254-13-2 | C <sub>30</sub> H <sub>30</sub> O | 8.6×10 <sup>-3</sup><br>mg/l              | 7.1 <sup>a</sup>       | Biodegrades in<br>months <sup>b</sup>                                      | 44,874 <sup>c</sup> | 0.041 <sup>a</sup>                          | 0.002ª                  | Maybe |                                                | All data<br>estimated                                                                                                  |
| Bis( <i>tert</i> -butyl)-<br>dodecylphenol   | 68025-37-6 | C <sub>26</sub> H <sub>46</sub> O | 6.4×10 <sup>-6</sup><br>mg/l at<br>15°C   | 11.0 <sup>a</sup>      | Biodegrades in<br>months <sup>b</sup>                                      | 16 <sup>c</sup>     | 1.5×10 <sup>-4, a</sup>                     | 1.7×10 <sup>-5, a</sup> | Maybe |                                                | All data<br>estimated. BCF<br>is unreliable.                                                                           |

| Substance                                       | CAS No.    | Formula                           | /ater<br>ubility      | Log<br>K <sub>ow</sub> | Biodegradation                                                             | BCF Lowest aquatic F<br>toxicity values<br>(mg/l) |                  | PBT?               | Reference | Comment                                          |                                                                                        |
|-------------------------------------------------|------------|-----------------------------------|-----------------------|------------------------|----------------------------------------------------------------------------|---------------------------------------------------|------------------|--------------------|-----------|--------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                 |            |                                   | S IO                  |                        |                                                                            |                                                   | Acute            | Chronic            |           |                                                  |                                                                                        |
| Phenol,<br>isopropylated                        | 90480-88-9 | C <sub>9</sub> H <sub>12</sub> O  | ~3% vol               | 2.97 <sup>a</sup>      | Biodegrades in<br>weeks <sup>b</sup>                                       | 67 <sup>°</sup>                                   | 2.9 <sup>a</sup> | 0.060 <sup>a</sup> | No        | IUCLID                                           | Not<br>commercially<br>available now,<br>all data<br>estimated                         |
| Phenol,<br>isobutylated                         | 68610-06-0 | C <sub>10</sub> H <sub>12</sub> O | 330 mg/l <sup>a</sup> | 3.45 <sup>a</sup>      | Biodegrades in weeks <sup>b</sup>                                          | 171 <sup>c</sup>                                  | 2.0 <sup>a</sup> | 0.040 <sup>a</sup> | No        |                                                  | All data estimated                                                                     |
| Phenol, C <sub>18–30</sub><br>alkyl derivatives | 68784-24-7 | Unclear                           |                       |                        | No data or es                                                              | stimate a                                         | vailable         |                    |           |                                                  | Prediction<br>difficult as<br>structure is<br>unclear                                  |
| Phenol,<br>styrenated ++                        | 61788-44-1 | Unclear                           | 59 mg/l at<br>20°C    | >4                     | Not readily<br>biodegradable<br>(biodegrades in<br>weeks <sup>b</sup> )    | >501 <sup>c</sup>                                 | 1–10             | 0.094 <sup>a</sup> | Maybe     | IUCLID                                           | Chronic toxicity data estimated                                                        |
| Cumylphenol++                                   | 27576-86-9 | C <sub>15</sub> H <sub>16</sub> O |                       |                        | See                                                                        | below                                             |                  |                    |           |                                                  |                                                                                        |
| 4-Cumyl-<br>phenol++                            | 599-64-4   | C <sub>15</sub> H <sub>16</sub> O | 43 mg/l <sup>a</sup>  | 4.1 <sup>a</sup>       | Readily<br>biodegradable<br>(biodegrades in<br>weeks–months <sup>b</sup> ) | 610 <sup>c</sup>                                  | 1.5ª             | 0.029 <sup>a</sup> | No        | SDS; SASOL<br>Report<br>(modified Sturm<br>test) | Water solubility,<br>log K <sub>ow</sub> , BCF<br>and aquatic<br>toxicity<br>estimated |

| Substance                  | CAS No.    | Formula                           | /ater<br>ubility | Log<br>K <sub>ow</sub> | Biodegradation        | BCF Lowest aquatic<br>toxicity values<br>(mg/l) |       | PBT?    | Reference | Comment |                                                                  |
|----------------------------|------------|-----------------------------------|------------------|------------------------|-----------------------|-------------------------------------------------|-------|---------|-----------|---------|------------------------------------------------------------------|
|                            |            |                                   | Sol ×            |                        |                       |                                                 | Acute | Chronic |           |         |                                                                  |
| 2-Cumyl-<br>phenol++       | 18168-40-6 | C <sub>15</sub> H <sub>16</sub> O |                  |                        | No data av            | ailable                                         |       |         |           |         | Properties<br>expected to be<br>similar to CAS<br>599-64-4 above |
| 2,4-Di-cumene-<br>phenol++ | Unclear    | C <sub>20</sub> H <sub>26</sub> O |                  |                        | No data or estimation | ate avail                                       | able  |         |           |         |                                                                  |

++ Aryl phenols rather than alkylphenols

SDS Safety data sheet produced by SASOL (SASOL, 2001) <sup>a</sup> Values estimated using the Syracuse Research Corporation EPIWIN (V2.40) program <sup>b</sup> Timeframe for ultimate biodegradation (mineralisation) estimated using the Syracuse Research Corporation BIOWIN (V3.63) program

<sup>c</sup> BCF values estimated from log K<sub>ow</sub> using the methods outlined in the EU Technical Guidance Document

## 4 Analysis and discussion

### 4.1 General overview of the data

On the basis of data provided by industry only a limited number of alkylphenols are commercially important at the moment, and very few are produced or used at quantities greater than 1,000 tonnes/year in Europe. There may be significant variations in the cost of these substances due to the availability of feedstock. Only a few have appropriate physicochemical properties for consideration as substitutes for nonylphenol.

In general terms the amount of hazard data available (e.g. for biodegradation, bioaccumulation and toxicity) is very limited, although it is apparent that 4-alkylphenols become more toxic to aquatic organisms with increasing chain length. In addition, there is very little information about the environmental occurrence of most of these substances.

# 4.2 Hazard profiles for possible substitute alkylphenols

Eight alkylphenols were identified as possible substitutes for nonylphenol in Section 2. A number of factors were taken into account when selecting the substances: physicochemical properties, costs of feedstock, fitness of product, current commercial importance and scale of operation. 4-Cumylphenol has not been included here as this was outside the scope of this review (it is an arylphenol). For convenience, data for these substances are presented once more in this Section to provide more complete fate and hazard profiles than was possible in Table 3.11. These are shown in Table 4.1.

As described in Section 3.8, nonylphenol, 4-*tert*-octylphenol and dodecylphenol (branched) are similar in terms of the inherent hazard that they may present to the environment. All three are likely to partition similarly based on physicochemical properties and will also biodegrade slowly. They also have similar toxicity profiles (see Table 3.8). Dodecylphenol could be more bioaccumulative (although the measured BCF is not fully valid), and unlike the other two it meets the EU TGD screening criteria for consideration as a potential PBT substance.

Of the other candidates, the two mono-substituted butylphenols are readily biodegradable, and have higher water solubilities than all of the other substances (as would be expected with the shorter alkyl chain). In addition they are less hydrophobic, having lower log  $K_{ow}$  values, and consequently are less toxic (although endocrine disruption potential may need further assessment). They therefore appear to be of lesser environmental concern.

The remaining three substances are not readily biodegradable, and are therefore potentially persistent in the environment. They have moderate bioaccumulation potential (all except 2,4-di-*tert*-butylphenol which has a log K<sub>ow</sub> value below 5, with measured or predicted BCFs around 500).<sup>8</sup> All three appear to be chronically toxic to aquatic organisms, with 'no effect concentrations' in the range of 60  $\mu$ g/l or less. Their influence on the endocrine system is unclear. They are therefore potentially of similar concern to nonylphenol, and all are commercially important.

A more in-depth review of the data (with access to original study reports) would be prudent before firm conclusions are drawn for any of these potential substitutes.

<sup>&</sup>lt;sup>8</sup> Two log K<sub>ow</sub> values are given in Table 3.11 for 4-*tert*-pentylphenol – it is likely that the higher value (4.03) is more realistic, following the trend in the group (it is predicted to be 3.91 using the SRC EPIWIN suite).

 Table 4.1
 Hazard profiles for nonylphenol and potential substitute alkylphenols (est = estimated, meas = measured)

|                                                        |                  | 2- <i>tert-</i><br>Butyl-<br>phenol | 4- <i>tert-</i><br>Butyl-<br>phenol | 4- <i>tert-</i><br>Pentyl-<br>phenol | 4- <i>tert-</i><br>Octyl-<br>phenol | <u>Nonylphenol</u>       | Dodecyl-<br>phenol<br>(branched) | 2,4-Di- <i>tert-</i><br>butyl-<br>phenol | 2,6-Di- <i>tert</i> -<br>butyl-phenol |
|--------------------------------------------------------|------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------|----------------------------------|------------------------------------------|---------------------------------------|
| Physicoche                                             | mical prop       | erties                              |                                     |                                      |                                     |                          |                                  | _                                        |                                       |
| Water solub<br>(mg/l)                                  | oility           | 700 (meas)                          | 610 (meas)                          | 37                                   | 19 (meas)                           | 6 (meas)                 | 1                                | 12                                       | 4.11                                  |
| Octanol-wat<br>partition coe<br>(log K <sub>ow</sub> ) | ter<br>efficient | 2.7–3.5                             | 3.3                                 | 4.03                                 | 4.12                                | 4.48                     | 5.5                              | 5.19                                     | 4.5                                   |
| Persistence                                            | 1                |                                     |                                     |                                      |                                     |                          |                                  |                                          |                                       |
| Biodegrada                                             | tion             | Readily<br>biodegradable            | Readily biodegradable               | Not readily biodegradable            | Inherently biodegradable            | Inherently biodegradable | Not readily biodegradable        | Not readily biodegradable                | Not readily biodegradable             |
| Bioaccumul                                             | ation            |                                     |                                     |                                      |                                     |                          |                                  |                                          |                                       |
| Highest fish<br>value                                  | BCF              | 188 (est)                           | 120                                 | 531 (est)                            | 634 (est)                           | 1,280                    | 9,440 (est)                      | ~660 (est)                               | 660                                   |
| Toxicity                                               |                  |                                     |                                     |                                      |                                     |                          |                                  |                                          |                                       |
| Aquatic<br>toxicity                                    | Acute            | 2.4                                 | 3.4                                 | 1.7                                  | 0.013                               | 0.085                    | 0.093                            | 1.8                                      | 0.076                                 |
| (mg/l)                                                 | Chronic          | 0.042 (est)                         | 0.73                                | 0.063                                | 0.006                               | 0.025                    | No data<br>available             | 0.008 (est)                              | 0.019 (est)                           |

### 5 Conclusions

The purpose of this review was to identify likely substitutes for nonylphenol in some or all of its uses, and to screen available data to prioritise candidates for further risk assessment activity. A large number of substances have been screened as part of this exercise, but it is important to note that the majority have very limited amounts of information available on their properties.

The major use of nonylphenol is in the manufacture of ethoxylate derivatives. Many of the applications of these derivatives will be banned in Europe in early 2005, and substitution activities are already under way (using long chain alcohols). Although other alkylphenol ethoxylates do exist commercially, they are unlikely to be important replacements, mainly due to economic factors (e.g. feedstock price) and handling differences. In the UK, the Chemicals Stakeholder Forum has reached a number of voluntary agreements with industry to avoid the replacement of nonylphenol with octylphenol in this application.

No suitable alternatives have so far been identified for phenolic oxime or tris(4-nonylphenyl)phosphite (TNPP) manufacture. The information presented by CEPAD suggests that only a limited number of alkylphenols are available as potential replacements for nonylphenol in some of its other applications. These are:

- 2-*tert*-butylphenol
- 4-*tert*-butylphenol (this is being assessed under the EU Existing Substances Regulation, so does not need further prioritisation)
- 4-*tert*-pentylphenol
- 4-*tert*-octylphenol
- dodecylphenol (branched)
- 2,4-di-*tert*-butylphenol
- 2,6-di-*tert*-butylphenol.

The two butylphenols are of lower environmental concern than nonylphenol, but the rest may pose similar hazards. They are all produced in quantities above 1,000 tonnes/year in Europe (with the exception of 4-*tert*-pentylphenol), and so have commercial markets already established. Even though the supply volume of 4-*tert*-pentylphenol is lower, it is still considered to be commercially important by CEPAD.

The substance that has the greatest potential to act as a substitute in general terms is 4-*tert*-octylphenol. However, its hazard profile is very similar to nonylphenol, so it is likely to pose the same level of risk in similar applications, at least at the local scale. Dodecylphenol might also be a substitute for more limited uses, although again its hazard profile is similar to nonylphenol.

2-*tert*-Butylphenol (CAS no. 88-18-6) has been assessed in Germany (BUA, 2001) and care must be taken to avoid duplication of effort with that report. There may also be potential for read-across from the ESR assessment of 4-*tert*-butylphenol in due course. Coupled with an environmental hazard profile that appears to be of less concern than nonylphenol, it is therefore of lower priority than the others for now.

Actual substitution will depend on a range of factors, including suitability of the final product for the intended use, and this report does not attempt to discuss this issue in any detail. Finally, it is not the intention of this report to imply that substitution will be straightforward or indeed possible in all cases.

### 6 Recommendations

- 1. Environmental risk assessment reports should be prepared for 4-tert-octylphenol (CAS no. 140-66-9) and dodecylphenol (branched) (CAS nos. 121158-58-5 & 74499-35-7) as a priority. This is because they are high volume substances with similar hazard profiles to nonylphenol, and they are also the most likely immediate replacements for nonylphenol. The evaluation should focus on the current use pattern for the substance, but in the case of 4-tert-octylphenol should also include a hypothetical use pattern that could arise if it were to replace nonylphenol in its current applications. Note: This work is already underway, because it was clear from the first draft of this report that assessments were needed. The draft reports are referenced in this report as Environment Agency, 2003a and 2003b. They will be published later in 2005.
- 2. Consideration should be given to alerting other regulatory authorities to the apparent PBT properties of dodecylphenol. If appropriate, industry should be invited to prepare an OECD hazard assessment for this substance under the ICCA HPV Challenge Programme (an OECD assessment already exists for 4-*tert*-octylphenol).
- 3. Risk assessments should also be undertaken for the remaining candidate nonylphenol substitutes, with priority given to the higher tonnage di-alkylphenols:
  - 4-tert-pentylphenol (CAS no. 80-46-6)
  - 2,4-di-*tert*-butylphenol (CAS no. 96-76-4)
  - 2,6-di-tert-butylphenol (CAS no. 128-39-2).

The available data are insufficient to allow even a basic assessment for these substances at the moment, and this needs to be addressed first (e.g. by encouraging sponsorship through international hazard assessment initiatives,<sup>9</sup> or data call-in under the ESR).

It might also be prudent to consider 4-*tert*-heptylphenol (CAS no. 1987-50-4) as part of a group assessment with 4-*tert*-pentylphenol, at least in terms of a hazard assessment, since it bridges the gap with octylphenol. Although it was considered to be commercially unimportant by CEPAD, the lubricant industry in the USA has submitted a test plan under the US HPV Chemical Challenge programme (which implies a major use in North America, which could be reflected in the EU). The full life cycle of any substance should be considered during the risk assessment stage.

4. 4-Cumylphenol (CAS no. 599-64-4) was identified by industry as having some potential to act as a substitute for nonylphenol in some uses.

<sup>&</sup>lt;sup>9</sup> 2,4-Di-*tert*-butylphenol has been listed on the ICCA HPV Challenge website for some time, so it is likely that more data will become available in due course (although no sponsor has been identified).

Detailed consideration of this substance was outside the scope of this review, but consideration could be given to obtaining more information on this substance and reviewing its hazard profile (it does not appear to be a PBT candidate substance).

- 5. Finally, a number of other substances that were considered during the initial data screening have been highlighted as potential PBT substances yet do not appear to have any risk assessment available. Pending a more detailed analysis of the data, consideration could be given to alerting other regulatory authorities to their PBT properties. The substances are:
  - 2,4-Di-*tert*-pentylphenol (CAS no. 120-95-6)
  - 2,6-Di-*tert*-butyl-4-ethy phenol (CAS no. 4130-42-1)
  - 2,4,6-Tri-sec-butylphenol (CAS no. 5892-47-7)
  - 4-sec-Butyl-2,6-di-tert-butylphenol (CAS no. 17540-75-9)
  - 2,4-Dinonylphenol (branched) (CAS no. 84852-14-2, also 137-99-5 & 1323-65-5)
  - 4-Hexyldecylphenol (CAS no. 2589-78-8)
  - 2,6-Di-*tert*-butyl-4-nonyl phenol (CAS no. 4306-88-1)
  - 2,4,6-Tris(1-phenylethyl) phenol (CAS no. 18254-13-2)
  - Bis(tert-butyl)-dodecylphenol (CAS no. 68025-37-6)
  - Phenol, styrenated (CAS no. 61788-44-1).

Based on data from CEPAD, only 2,4-di-*tert*-pentylphenol, dinonylphenol and styrenated phenol are considered to have commercial importance – an environmental risk assessment might be useful for these. However, they are also believed to be fairly low tonnage substances, and so they are not the highest priority for assessment compared with the other substances identified in this section.

## References

Blackburn, M. A. and Waldock, M. J. (1995) Concentrations of alkylphenols in rivers and estuaries in England and Wales. *Water Research*, **29**, 1623–1629.

BUA (2001) 2-tert-Butylphenol. BUA Stoffbericht 231. February 2001.

Buffagni, M., Cova, C. A., Bracco, L. and Giacca, D. (2001) Acute ecotoxicological effects of alkylated phenols in produced water discharged at sea-model inputs to DREAM project. Poster, 11<sup>th</sup> SETAC Europe Annual Meeting, Congress Hall, Madrid, Spain, 6–10 May 2001.

CERI (2001) Development of competitive binding assay to the medaka (*Oryzias latipes*) estrogen receptor  $\alpha$ . Chemicals Evaluation and Research Institute, Japan.

CHEMFINDER <a href="http://chemfinder.cambridgesoft.com/">http://chemfinder.cambridgesoft.com/</a>

Danish Ministry of the Environment (1997) Submission of monitoring data to the COMPPS database.

Department of Environment, Transport and the Regions (DETR) (1999) Nonylphenol Risk Reduction Strategy, prepared by Risk and Policy Analysts.

ECB (1999) European Union Risk Assessment Report: 4-nonylphenol (branched) and nonylphenol. Draft, September 1999. European Chemicals Bureau, 2nd Priority List. Available from: <u>http://ecb.ei.jrc.it/existing-chemicals/</u>.

Environment Agency (1999) Endocrine-disrupting substances in the environment: The Environment Agency's strategy. Environment Agency, Bristol.

Environment Agency (2003a) Risk Assessment Report: 4-*tert*-octylphenol. Unpublished draft, July 2003.

Environment Agency (2003b) Risk Assessment Report: dodecylphenol, mixed isomers (branched). Unpublished draft, August 2003.

EPIWIN – Syracuse Research Corporation program http://www.epa.gov/oppt/p2framework/docs/epiwin.htm.

Gerritsen, A., van der Hoeven, N. and Pielaat, A. (1998) The acute toxicity of selected alkylphenols to young and adult *Daphnia magna*. *Ecotoxicology and Environmental Safety*, **39**(3), 227–232.

Gimeno, S., Gerritsen, A., Bowmer, T. and Komen, H. (1996) Feminization of male carp. *Nature*, **384**, 221–222.

HSDB (2002) http://www.nlm.nih.gov/pubs/factsheets/hsdbfs.html

IRPTC Data profile http://www.chem.unep.ch/irptc/

IUCLID (2000) International Uniform Chemical Information Database, CD ROM 2000 Edition (some data also from confidential version of database).

KEMI (2000) Risk Assessment of Alkylphenol and Alkylphenol Ethoxylate Exposure, With Focus on Octylphenol and Butylphenol. OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic. Programmes and Measures Committee (PRAM) 10–14 April 2000. PRAM 00/3/Info.2-E (L).

McLeese, D. W., Zitko, V., Sergeant, D. B., Burridge, L. and Metcalfe, C. D. (1981) Lethality and accumulation of alkylphenols in aquatic fauna. *Chemosphere*, **10**, 723–730.

NCEDS (1999) Monitoring Data for Octylphenol in Trade Effluent, Sewage Effluent and Surface Waters on the Wyre Peninsula. UK Environment Agency National Centre for Environmental Data and Surveillance.

NTP: http://ntp-server.niehs.nih.gov/

OSPAR (2000) Briefing document on the work of Dynamec and the Dynamec Mechanism for the Selection and Prioritisation of Hazardous Substances.

SASOL (2001) EC Safety Data Sheets for Alkylphenols. Revised August 2001.

SEPA (1997) Environmental concentrations of endocrine disrupting chemicals at selected sites in Scotland. SEPA Internal Report.

SIDS and SIARs (various dates) Screening Information Data Sheets and SIDS Initial Assessment Reports, various substances, OECD HPV programme.

SRC PhysProp Database http://www.syrres.com/esc/physdemo.htm

TGD (2003) Technical Guidance Document (Second Edition), Parts I-IV, EUR 20418 EN/1-4

UBA (1999) Organisches Zinnverbindungen, Alkylphenole und Bisphenol-A in marinen und limnishen Biota der Umweltprobenbank. Methodische Entwicklungen sowie aktuelles und retrospectives Monitoring. Forschungsbericht 297 63 155, UBA-FB 000020.

USEPA (2001) Robust Summary and Test Plan Data submitted by Schenectady International under the HPV Challenge Program. AR 201-13007, April 2001. http://www.hpvchallenge.com/

Waern, F. (2000) Risk Assessment of Alkylphenol and Alkylphenol Ethoxylate Exposure, with focus on Octylphenol and Butylphenol. Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden

WHO/IPCS/ILO: http://www.inchem.org/

Working Group for the Cleanliness of the Elbe (1998) Endocrine effects substances in the Elbe, its tributaries, and in the North Sea.

Yoshioka, Y., Ose, Y. and Sato, T. (1985) Testing for the toxicity of chemicals with *Tetrahymena pyriformis*. *Science of the Total Environment*, **43**, 149–157.

### Annex I Alkylphenol datasheets

**Note of caution**: The following data sheets have been prepared following a review of data from a variety of sources during 2002. In many cases it has not been possible to review the original data source, nor comment on the likely test substance composition. The sheets do not represent in-depth reviews of the data (for example as might be required for a risk assessment), and should therefore be used as a guide only. The data sheet for 4-*tert*-butylphenol does not take account of the EU draft risk assessment that has recently been circulated for comment under the Existing Substances Regulation.

A number of symbols have been used to save space. An explanation is given below:

- 1 = Carried out to standard guidelines
- 2 = Deemed to be appropriate/good quality (although not to a standard guideline)
- 3 = Limited or poor quality study
- 4 = Full study not obtained
- UP = unpublished
- IS = insufficient data to assess
- Cal = Calculated

Data sheets are not presented for 4-*tert*-octylphenol or dodecylphenol (branched), since these substances are already subject to a detailed risk assessment by the Environment Agency (2003a and 2003b), as a consequence of an earlier draft of this report. The detailed data review in those assessments supersedes the preliminary information provided by the data sheets in this annex.

| Substance: | 4-tert-Butylphenol                |
|------------|-----------------------------------|
| Formula:   | C <sub>10</sub> H <sub>14</sub> O |

CAS No.: 98-54-4 Molecular weight: 150.2

| Data type                         | Protocol                                             | Results                                                          | Ref | Quality  |
|-----------------------------------|------------------------------------------------------|------------------------------------------------------------------|-----|----------|
| Physical-chemical                 |                                                      |                                                                  |     |          |
| Melting point                     | Not known                                            | 99.3°C                                                           | С   | 4/IS     |
|                                   |                                                      | <i>c</i> . 100°C                                                 | d,e | 4/IS     |
| Boiling point                     | Not known                                            | 237°C at 1013 hPa                                                | b,c | 4/IS     |
| Density                           | Not known                                            | 0.92 g/m³ at 110°C                                               | С   | 4/IS     |
| Vapour pressure                   | Not known                                            | 1.3x10 <sup>2</sup> Pa at 70°C                                   | С   | 4/IS     |
|                                   |                                                      | 0.5 Pa at 20°C                                                   | d   | 4/IS     |
| Water solubility                  | OECD TG 105                                          | 610 mg/l at 25°C                                                 | С   | 1/4      |
|                                   | Other                                                | 800 mg/l at 20°C                                                 | d   | 4/IS     |
|                                   | Other                                                | 500 mg/l                                                         | е   | 4/IS     |
| Partition coefficient             | OECD TG 107                                          | 3.29 at 25°C                                                     | С   | 1        |
| (log K <sub>ow</sub> )            | Other (shake flask)                                  | 3.31                                                             | d   | 4/IS     |
| Environmental fate                | and pathway                                          | ·                                                                |     | <u>.</u> |
| Photodegradation                  | AOPWIN v 1.88<br>indirect photolysis, OH<br>radicals | Half-life = 3.16 hours                                           | d   | 4/IS/Cal |
| Stability in water                | OECD TG 111                                          | Stable at pH 4, 7 & 9                                            | С   | 1/4      |
| Transport and                     | Fugacity, Mackay                                     | Air: 18.9%                                                       | С   | Cal      |
| distribution                      | Level III type<br>Release: 100% to<br>water          | Water: 79.1%                                                     |     |          |
|                                   |                                                      | Sediment: 1.3%                                                   |     |          |
|                                   |                                                      | Soil: 0.7%                                                       |     |          |
| Biodegradation                    | OECD TG 301C                                         | Not readily<br>biodegradable                                     | С   | 1/4      |
|                                   | OECD TG 301A                                         | Readily<br>biodegradable, >70%<br>in 28 days                     | е   | 1/4      |
| Bioaccumulation                   | Other (Static test)                                  | BCF = 120                                                        | b,c | 4/IS     |
| Ecotoxicology                     |                                                      |                                                                  |     |          |
| Toxicity to fish                  | OECD TG 203                                          | 96-h LC50 = 5.1 mg/l<br><i>Oryzias latipes</i>                   | С   | 1/4      |
| Toxicity to aquatic invertebrates | OECD TG 202                                          | 48-h EC50 = 3.4–3.9<br>( <i>Daphnia magna</i><br>immobilisation) | b,c | 1/4      |

| Data type                  | Protocol                                     | Results                                                                                    | Ref | Quality |
|----------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------|-----|---------|
|                            |                                              | 21-d NOEC =<br>0.73 mg/l ( <i>Daphnia</i><br><i>magna</i> repro.)                          |     |         |
| Toxicity to aquatic plants | OECD TG 201                                  | 72-h EC50 = 11.0 mg/l<br>Scenedesmus<br>subspicatus                                        | b,c | 1/4     |
|                            |                                              | 72-h NOEC =<br>9.53 mg/l (growth<br>inhibition) <i>Selenastrum</i><br><i>capricornutum</i> |     |         |
| Mammalian toxicol          | ogy                                          |                                                                                            |     |         |
| Acute oral toxicity        | OECD TG 401                                  | Rat LD50 =<br>4,000 mg/kg bw                                                               | b   | 1/4     |
| Oestrogenic<br>activity    | E Screen (potency<br>of oestradiol =<br>100) | Relative potency = 0.0003                                                                  | b   | 4/IS    |
|                            | Yeast screen                                 | Relative potency = 0.2                                                                     |     |         |

#### **References:**

(a) IUCLID; (b) Waern (2000); (c) SIDS; (d) US EPA (2001); (e) SASOL (2001)

#### SUBSTANCE: 2-*tert*-Butylphenol FORMULA: C<sub>10</sub>H<sub>14</sub>O

#### CAS NO: 88-18-6 Molecular weight: 150.22

| Data type                         | Protocol                                                         | Results                                      | Ref    | Quality  |
|-----------------------------------|------------------------------------------------------------------|----------------------------------------------|--------|----------|
| Physical-chemical                 |                                                                  |                                              |        |          |
| Melting point                     | Not known                                                        | -7 to -6.8°C                                 | a, b   | 4/IS     |
| Boiling point                     | Not known                                                        | 221 to 223°C                                 | a, b   | 4/IS     |
| Density                           | Not known                                                        | 0.978 g/cm <sup>3</sup>                      | а      | 4/IS     |
| Vapour pressure                   | Not known                                                        | 0.09 mmHg (0.12 hPa)<br>at 25°C              | е      | 4/IS     |
|                                   |                                                                  | 0.05 hPa at 20°C                             | f      | 4/IS     |
| Water solubility                  | Other                                                            | 700 mg/l at 25°C                             | b      | 4/IS     |
|                                   | (experimental)                                                   | 394 mg/l at 25°C                             | е      | 4/IS     |
|                                   |                                                                  | 2,300 mg/l at 20°C                           | f      | 4/IS     |
| Partition coefficient             | Other                                                            | 3.31                                         | b, f   | 4/IS     |
| (log K <sub>ow</sub> )            | (experimental)                                                   | 3.43 to 3.52                                 | d      | 4/IS     |
| Environmental fate                | and pathway                                                      |                                              | 1      | I        |
| Photodegradation                  | AOPWIN v 1.88<br>indirect photolysis, OH<br>radicals             | Half-life = 3.16 hours                       | f      | 4/IS/Cal |
| Stability in water                | No data                                                          | No data                                      |        |          |
| Transport and                     | Fugacity, Mackay<br>Level I type                                 | Air: 27%                                     | е      | 4/IS/Cal |
| distribution                      |                                                                  | Water: 26%                                   |        |          |
|                                   |                                                                  | Sediment: 1%                                 |        |          |
|                                   |                                                                  | Soil: 46%                                    |        |          |
| Biodegradation                    | OECD TG 301A                                                     | Readily<br>biodegradable, >70%<br>in 28 days | f      | 1/4      |
| Bioaccumulation                   | TGD QSAR<br>(quantitative<br>structure–activity<br>relationship) | BCF = 39–188                                 | g      | 2/Cal    |
| Ecotoxicology                     |                                                                  |                                              |        |          |
| Toxicity to fish                  | Not known                                                        | 48-h LC50 = 3.7 mg/l<br>Leuciscus idus       | d      | 4/IS     |
|                                   | Other (predicted)                                                | 60 d NOEC =<br>0.042 mg/l                    | g      | 2/Cal    |
| Toxicity to aquatic invertebrates | Not known                                                        | 48-h EC50 = 3.4 mg/l<br>Daphnia magna        | d      | 4/IS     |
| Science Report F                  | rioritisation of Alkvlpheno                                      | <br>Is for Environmental Risk Asse           | ssment | 53       |

| Data type               | Protocol       | Results                                          | Ref | Quality |
|-------------------------|----------------|--------------------------------------------------|-----|---------|
|                         | Other (Static) | 96-h LC50 = 2.4 mg/l<br>Crangon<br>septemspinosa | С   | 3       |
| Toxicity to aquatic     | Not known      | 72-h EC50 = 3.1 mg/l                             | d   | 4/IS    |
| plants                  |                | Scenedesmus<br>subspicatus                       |     |         |
| Mammalian toxicol       | ogy            |                                                  |     |         |
| Acute oral toxicity     | OECD 401       | Rat LD50 = 200–2,000<br>mg/kg bw                 | f   | 1/4     |
|                         |                | Rat LD50 = 789 mg/kg<br>bw                       | e   | 1/4     |
| Oestrogenic<br>activity | No data        | No data                                          |     |         |

#### **References:**

(a) ChemFinder; (b) SRC PhysProp Database; (c) McLeese *et al.* (1981); (d) BUA (2001); (e) USEPA (2001); (f) SASOL (2001); (g) this report

#### SUBSTANCE: 2-sec-Butylphenol FORMULA: C<sub>10</sub>H<sub>14</sub>O

#### CAS No.: 89-72-5 Molecular weight: 150.22

| Data type                         | Protocol                                             | Results                                          | Ref  | Quality  |  |  |
|-----------------------------------|------------------------------------------------------|--------------------------------------------------|------|----------|--|--|
| Physical-chemical                 | Physical-chemical                                    |                                                  |      |          |  |  |
| Melting point                     | Not known                                            | 12 to 16°C                                       | a, b | 4/IS     |  |  |
|                                   |                                                      | 14°C                                             | е    | 4/IS     |  |  |
| Boiling point                     | Not known                                            | 227–228°C                                        | a, b | 4/IS     |  |  |
|                                   |                                                      | 224°C                                            | е    | 4/IS     |  |  |
| Density                           | Not known                                            | 0.98 g/cm <sup>3</sup>                           | а    | 4/IS     |  |  |
| Vapour pressure                   | Other (estimated)                                    | 0.05 mmHg (6.7 Pa) at 25°C                       | b    | 4/IS     |  |  |
|                                   |                                                      | 0.0173 mmHg<br>(2.31 Pa) at 25°C                 | е    | 4/IS     |  |  |
| Water solubility                  | Other (estimated)                                    | 1,659 mg/l at 25°C                               | b    | 4/IS     |  |  |
|                                   |                                                      | 319 mg/l at 25°C                                 | е    | 4/IS     |  |  |
| Partition coefficient             | Other<br>(experimental)                              | 2.8                                              | d    | 3        |  |  |
| (log K <sub>ow</sub> )            |                                                      | 3.27                                             | b    | 4/IS     |  |  |
|                                   |                                                      | 3.46                                             | е    | 4/IS     |  |  |
| Environmental fate                | and pathway                                          |                                                  |      |          |  |  |
| Photodegradation                  | AOPWIN v 1.88<br>indirect photolysis, OH<br>radicals | Half-life = 2.9 hours                            | е    | 4/IS/Cal |  |  |
| Stability in water                | No data                                              | No data                                          |      |          |  |  |
| Transport and                     | Fugacity, Mackay                                     | Air: 7.5%                                        | е    | 4/IS/Cal |  |  |
| distribution                      | Level I type                                         | Water: 34%                                       |      |          |  |  |
|                                   |                                                      | Sediment: 1.5%                                   |      |          |  |  |
|                                   |                                                      | Soil: 57%                                        |      |          |  |  |
| Biodegradation                    | Other (predicted)                                    | Biodegrades in weeks                             | f    | 2/Cal    |  |  |
| Bioaccumulation                   | TGD QSAR                                             | 48–174                                           | f    | 2/Cal    |  |  |
| Ecotoxicology                     |                                                      | -                                                |      |          |  |  |
| Toxicity to fish                  | Other (predicted)                                    | 60-d NOEC =<br>0.040 mg/l                        | f    | 2/Cal    |  |  |
| Toxicity to aquatic invertebrates | Other (Static)                                       | 96-h LC50 = 1.3 mg/l<br>Crangon<br>septemspinosa | d    | 3        |  |  |
| Toxicity to aquatic plants        | No data                                              | No data                                          |      |          |  |  |

| Data type               | Protocol  | Results                           | Ref | Quality |  |
|-------------------------|-----------|-----------------------------------|-----|---------|--|
| Mammalian toxicology    |           |                                   |     |         |  |
| Acute oral toxicity     | Not known | Rat LD50 =<br>2,700 mg/kg bw      | С   | 4/IS    |  |
|                         |           | Rat LD50 = 200-<br>2,000 mg/kg bw | е   | 1/4     |  |
| Oestrogenic<br>activity | No data   | No data                           |     |         |  |

#### **References:**

(a) ChemFinder; (b) SRC PhysProp Database; (c) NTP Chemical Repository;

(d) McLeese *et al.* (1981); (e) USEPA (2001); (f) this report

### SUBSTANCE:4-tert-PentylphenolFORMULA:C11H16O

CAS No.: 80-46-6 Molecular weight: 164.25

| Data type              | Protocol                                             | Results                                                    | Ref     | Quality  |
|------------------------|------------------------------------------------------|------------------------------------------------------------|---------|----------|
| Physical-chemical      | ·                                                    | ·                                                          |         |          |
| Melting point          | Not known                                            | 91 to 94°C                                                 | а       | 4/IS     |
|                        |                                                      | 94 to 95°C                                                 | f       | 4/IS     |
| Boiling point          | Not known                                            | 255°C                                                      | а       | 4/IS     |
|                        |                                                      | 256°C                                                      | f       | 4/IS     |
|                        |                                                      | 262.5°C                                                    | е       | 4/IS     |
| Density                | Not known                                            | 0.9624 g/cm <sup>3</sup> at 20°C                           | b       | 4/IS     |
|                        |                                                      | 0.922 g/cm <sup>3</sup> at 100°C                           | f       | 4/IS     |
| Vapour pressure        | Other                                                | 0.00783 mmHg<br>(1.04 Pa) at 25°C                          | е       | 4/IS     |
|                        |                                                      | 3.1 hPa at 100°C                                           | f       | 4/IS     |
| Water solubility       | Not known                                            | 168 mg/l at 25°C                                           | е       | 4/IS     |
|                        |                                                      | 37 mg/l at 20°C                                            | f       | 4/IS     |
| Partition coefficient  | Not known                                            | 2.1                                                        | С       | 3        |
| (log K <sub>ow</sub> ) |                                                      | 4.03                                                       | е       | 4/IS     |
| Environmental fate     | and pathway                                          |                                                            |         |          |
| Photodegradation       | AOPWIN v 1.77<br>indirect photolysis, OH<br>radicals | Half-life = 3.07 hours                                     | е       | 4/IS/Cal |
| Stability in water     | No data                                              | No data                                                    |         |          |
| Transport and          | Fugacity, Mackay                                     | Air: 2%                                                    | е       | 4/IS     |
| distribution           |                                                      | Water: 9%                                                  |         |          |
|                        | Release: 100% to water                               | Sediment: 2%                                               |         |          |
|                        |                                                      | Soil: 87%                                                  |         |          |
| Biodegradation         | OECD TG 301B                                         | Not readily<br>biodegradable, <70%<br>in 28 days           | f       | 1/4      |
| Bioaccumulation        | TGD QSAR                                             | BCF = 531                                                  | g       | 2/Cal    |
| Ecotoxicology          |                                                      |                                                            | <u></u> |          |
| Toxicity to fish       | Other (unknown)                                      | 96-h LC50 = 1–10 mg/l<br>Cyprinus carpio                   | f       | 4/IS     |
|                        | Other                                                | 30-d EC50 (oviduct<br>formation in male fish)<br>= 63 μg/l | d       | 2        |

| Data type                         | Protocol          | Results                                            | Ref | Quality |
|-----------------------------------|-------------------|----------------------------------------------------|-----|---------|
| Toxicity to aquatic invertebrates | Other (not known) | 48-h EC50 = 1–10<br>mg/l <i>Daphnia magna</i>      | f   | 4/IS    |
|                                   | Other (static)    | 96-h LC50 = 1.7 mg/l<br>Crangon<br>septemspinosa   | С   | 3       |
| Toxicity to aquatic plants        | Other (not known) | 72-h EC50 = 1–10<br>mg/l Scenedesmus<br>subspicata | f   | 4/IS    |
| Mammalian toxicol                 | ogy               |                                                    |     |         |
| Acute oral toxicity               | Not known         | Rat LD50 =<br>1,830 mg/kg bw                       | b   | 4/IS    |
| Oestrogenic<br>activity           | No data           | No data, but see fish<br>result                    |     |         |

#### **References:**

(a) ChemFinder; (b) NTP; (c) McLeese *et al.* (1981); (d) Gimeno *et al.* (1996); (e) USEPA (2001); (f) SASOL (2001); (g) this report

#### SUBSTANCE: 2-*tert*-Butyl-4-methylphenol FORMULA: C<sub>11</sub>H<sub>16</sub>O

#### CAS No.: 2409-55-4 Molecular weight: 164.27

| Data type                             | Protocol          | Results                               | Ref | Quality |  |
|---------------------------------------|-------------------|---------------------------------------|-----|---------|--|
| Physical-chemical                     | Physical-chemical |                                       |     |         |  |
| Melting point                         | Not known         | 49–52°C                               | а   | 4/UP    |  |
| Boiling point                         | Not known         | 237°C                                 | а   | 4/UP    |  |
| Density                               | Not known         | 0.924 g/cm <sup>3</sup> at 20°C       | а   | 4/UP    |  |
| Vapour pressure                       | Not known         | 75 hPa at 75°C                        | а   | 4/UP    |  |
| Water solubility                      | Other (predicted) | 101 mg/l at 25 <sup>°C</sup>          | b   | 2/Cal   |  |
| Partition coefficient (log $K_{ow}$ ) | Other (predicted) | 4.0                                   | b   | 2/Cal   |  |
| Environmental fate                    | and pathway       |                                       |     |         |  |
| Biodegradation                        | Other (predicted) | Biodegrades in weeks-months           | b   | 2/Cal   |  |
| Ecotoxicology                         |                   |                                       |     |         |  |
| Toxicity to fish                      | Other (predicted) | 60-d NOEC =<br>0.026 mg/l             | b   | 2/Cal   |  |
| Toxicity to aquatic invertebrates     | Other (predicted) | 48-h LC50 = 1.4 mg/l<br>Daphnia magna | b   | 2/Cal   |  |
| Mammalian toxicology                  |                   |                                       |     |         |  |
| Acute oral toxicity                   | Not known         | Rat LD50 = 2,390–<br>2,500 mg/kg bw   | а   | 4/IS    |  |
| Oestrogenic<br>activity               | No data           | No data                               |     |         |  |

#### **References:**

(a) IUCLID (non-confidential); (b) this report

#### SUBSTANCE: 2,6-Di-*tert*-butylphenol FORMULA: C<sub>14</sub>H<sub>22</sub>O

#### CAS No.: 128-39-2 Molecular weight: 206.33

| Data type                                    | Protocol                                             | Results                                                                         | Ref  | Quality  |
|----------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------|------|----------|
| Physical-chemical                            |                                                      | ·                                                                               | ·    |          |
| Melting point                                | Not known                                            | 36 to 37°C                                                                      | с, е | 4/IS     |
| Boiling point                                | Not known                                            | 253°C at 101.3 kPa                                                              | c, e | 4/IS     |
| Vapour pressure                              | Other (gas saturation method)                        | 0.0076 mmHg<br>(1.01 Pa) at 20°C                                                | с, е | 4/UP     |
| Water solubility                             | Generator Column<br>Method                           | 4.11 mg/l at 25°C & pH<br>7                                                     | с, е | 4/IS     |
| Partition coefficient (log K <sub>ow</sub> ) | OECD TG 117                                          | 4.5                                                                             | С    | 1/4/UP   |
| Environmental fate                           | and pathway                                          |                                                                                 |      |          |
| Photodegradation                             | AOPWIN v 1.88<br>indirect photolysis, OH<br>radicals | Half-life = 2.4 hours                                                           | е    | 4/IS/Cal |
|                                              | EPA TSCA 40<br>CFR 795-70                            | Half life = 2.6 hours for<br>a 12 hour day (5.2<br>hours for a 24 hour<br>day)  | d, e | 4/Cal    |
| Stability in water                           | Not known                                            | Unstable (no further data available)                                            | b    | 4/UP/IS  |
| Transport and                                | Fugacity, Mackay                                     | Air: 26%                                                                        | d, e | 4/Cal    |
| distribution                                 | Level I type                                         | Water: 2%                                                                       |      |          |
|                                              |                                                      | Sediment: 2%                                                                    |      |          |
|                                              |                                                      | Soil: 70%                                                                       |      |          |
| Biodegradation                               | OECD TG 301 B<br>(modified Sturm<br>Test)            | 4% and 1%<br>biodegradation after<br>28 days at 10 and<br>20 mg/l, respectively | с, е | 1/4/UP   |
|                                              | TSCA 796.3140                                        | 0% biodegradation after 56 days                                                 | е    | 1/4      |
| Bioaccumulation                              | Measured                                             | Golden orfe BCF =<br>660 (after 3 days)                                         | С    | 4/IS     |
| Ecotoxicology                                |                                                      |                                                                                 |      |          |
| Toxicity to fish                             | OECD 203 (static)                                    | 96-h LC50 =13 mg/l<br>Brachydanio rerio                                         | С    | 1/4/UP   |
|                                              | Annex V, C1<br>(static)                              | 96-h LC50 = 7.6 mg/l                                                            | е    | 1/4/UP   |
|                                              | Other (predicted)                                    | 60-d NOEC =<br>0.019 mg/l                                                       | f    | 2/Cal    |

| Data type                         | Protocol                      | Results                                               | Ref  | Quality |
|-----------------------------------|-------------------------------|-------------------------------------------------------|------|---------|
| Toxicity to aquatic invertebrates | OECD TG 202                   | 24-h EC50 = 1.7 mg/l<br>Daphnia magna                 | с, е | 1/4/UP  |
|                                   | US standards                  | 48-h NOEC=<br>0.076 mg/l                              | С    | 1/4/UP  |
| Toxicity to aquatic plants        | EPA TSCA<br>797.1050 (static) | 96-h EC50 = 0.56 mg/l<br>Selenastrun<br>capricornutum | е    | 1/4/UP  |
| Mammalian toxicol                 | ogy                           |                                                       |      |         |
| Acute oral toxicity               | Other                         | Rat LD50 > 5,000<br>mg/kg bw                          | С    | 4/UP/IS |
| Oestrogenic<br>activity           | No data                       | No data                                               |      |         |

#### **References:**

(a) IUCLID confidential; (b) IRPTC Data profile; (c) SIDS; (d) Revised SIAR;
(e) USEPA (2001); (f) this report

#### SUBSTANCE: 2,4-Di-*tert*-butylphenol FORMULA: C<sub>14</sub>H<sub>22</sub>O

#### CAS No.: 96-76-4 Molecular weight: 206.33

| Data type                                    | Protocol                                                 | Results                                            | Ref  | Quality      |  |  |  |
|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------|--------------|--|--|--|
| Physical-chemical                            |                                                          |                                                    |      |              |  |  |  |
| Melting point                                | Not known                                                | 52 to 57°C                                         | a, b | 4/UP         |  |  |  |
| Boiling point                                | Not known                                                | 265°C                                              | a, c | 4/UP         |  |  |  |
|                                              |                                                          | 264°C                                              | c, d | 4/IS         |  |  |  |
| Density                                      | Not known                                                | 0.935 g/cm <sup>3</sup> at 20°C                    | b    | 4/UP         |  |  |  |
| Vapour pressure                              | Not known                                                | 1.0 Pa at 20°C                                     | b    | 4/IS         |  |  |  |
| Water solubility                             | Not known                                                | 12 mg/l at 20°C                                    | b    | 4/UP         |  |  |  |
| Partition coefficient (log K <sub>ow</sub> ) | Other (calculated)                                       | 5.13                                               | с    | 4/UP         |  |  |  |
|                                              |                                                          | 5.33                                               | С    | 4/IS         |  |  |  |
| Environmental fate                           | and pathway                                              |                                                    |      |              |  |  |  |
| Photodegradation                             | AOPWIN v 1.88<br>indirect photolysis, OH<br>radicals     | Half-life = 2.61 hours                             | С    | 4/IS/Cal     |  |  |  |
|                                              | Other (calculated)                                       | Half-life = 0.3 days                               | b    | 4/UP/C<br>al |  |  |  |
| Stability in water                           | No data                                                  | No data                                            |      |              |  |  |  |
| Transport and                                | Fugacity, Mackay<br>Level I type                         | Air: 21.8%                                         | b    | 4/UP         |  |  |  |
| distribution                                 |                                                          | Water: 3.6%                                        |      |              |  |  |  |
|                                              |                                                          | Sediment: 36%                                      |      |              |  |  |  |
|                                              |                                                          | Soil: 35.5%                                        |      |              |  |  |  |
|                                              |                                                          | Biota:2.4%                                         |      |              |  |  |  |
| Biodegradation                               | ISO Draft 'BOD<br>test for insoluble<br>substances 1990' | 2% after 28 days<br>(aerobic, activated<br>sludge) | b    | 1/UP/4       |  |  |  |
| Bioaccumulation                              | TGD QSAR                                                 | BCF = 5,146                                        | е    | 2/Cal        |  |  |  |
| Ecotoxicology                                |                                                          |                                                    |      |              |  |  |  |
| Toxicity to fish                             | Other (Static,<br>DIN38412 part 15)                      | 48-h LC50 = 1.8 mg/l<br>Leuciscus idus             | b    | 1/UP/4       |  |  |  |
|                                              | Other (predicted)                                        | 60-d NOEC =<br>0.008 mg/l                          | е    | 2/Cal        |  |  |  |
| Mammalian toxicology                         |                                                          |                                                    |      |              |  |  |  |
| Acute oral toxicity                          | OECD TG 401                                              | Rat LD50 = 2,559–<br>4,128 mg/kg bw                | b    | 1/UP/4       |  |  |  |
|                                              | EPA CFR 163.81-1                                         | Rat LD50 =<br>1,500 mg/kg bw                       | С    | 1/4/UP       |  |  |  |

| Data type               | Protocol | Results | Ref | Quality |
|-------------------------|----------|---------|-----|---------|
| Oestrogenic<br>activity | No data  | No data |     |         |

#### **References:**

(a) ChemFinder; (b) IUCLID (non-confidential); (c) USEPA (2001); (d) SASOL (2001); (e) this report

#### Substance: 2,4-Di-*tert*-pentylphenol Formula: C<sub>16</sub>H<sub>26</sub>O

#### CAS No.: 120-95-6 Molecular weight: 234.38

| Data type                             | Protocol                                                      | Results                                                   | Ref      | Quality  |  |  |  |
|---------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|----------|----------|--|--|--|
| Physical-chemical                     |                                                               |                                                           |          |          |  |  |  |
| Melting point                         | Not known                                                     | 26°C                                                      | a, b     | 4/IS     |  |  |  |
| Boiling point                         | Not known                                                     | 311°C                                                     | b        | 4/IS     |  |  |  |
| Density                               | Not known                                                     | 0.91 g/cm <sup>3</sup> at 50°C                            | а        | 4/IS     |  |  |  |
| Vapour pressure                       | Not known                                                     | <0.01 hPa at 20°C                                         | а        | 4/IS     |  |  |  |
|                                       |                                                               | 0.011 Pa at 25°C                                          | b        | 4/IS     |  |  |  |
| Water solubility                      | Not known                                                     | 15 mg/l at 20°C                                           | а        | 4/IS     |  |  |  |
|                                       |                                                               | 0.44 mg/l at 25°C                                         | b        | 4/IS     |  |  |  |
| Partition coefficient (log $K_{ow}$ ) | Calculated                                                    | 6.31                                                      | b        | 4/IS/Cal |  |  |  |
| Environmental fate                    | and pathway                                                   |                                                           |          |          |  |  |  |
| Photodegradation                      | AOPWIN v 1.88<br>indirect photolysis, OH<br>radicals          | Half-life = 2.5 hours                                     | b        | 4/IS     |  |  |  |
| Stability in water                    | No data                                                       | No data                                                   |          |          |  |  |  |
| Transport and distribution            | Fugacity, Mackay<br>Level I type<br>Release: 100% to<br>water | Air: 0.1%<br>Water: 0.1%<br>Sediment: 2.2%<br>Soil: 97.6% | b        | 4/IS     |  |  |  |
| Biodegradation                        | Not known                                                     | Not readily<br>biodegradable                              | а        | 4/IS     |  |  |  |
| Bioaccumulation                       | TGD QSAR                                                      | BCF = 40,381                                              | С        | 2/Cal    |  |  |  |
| Ecotoxicology                         |                                                               | <u>.</u>                                                  |          |          |  |  |  |
| Toxicity to fish                      | Other (predicted)                                             | 60-d NOEC =<br>0.003 mg/l                                 | С        | 2/Cal    |  |  |  |
| Toxicity to aquatic invertebrates     | OECD TG 202                                                   | 48-h EC50 = 1–10<br>mg/l <i>Daphnia magna</i>             | а        | 4/IS     |  |  |  |
| Mammalian toxicol                     | ogy                                                           | <u>.</u>                                                  | <u> </u> |          |  |  |  |
| Acute oral toxicity                   | OECD TG 401                                                   | Rat LD50 = 200–<br>2,000 mg/l                             | а        | 4/IS     |  |  |  |
| Oestrogenic<br>activity               | No data                                                       | No data                                                   |          |          |  |  |  |

#### **References:**

(a) SASOL (2001); (b) USEPA (2001); (c) this report
### SUBSTANCE: 2,4-Dinonylphenol FORMULA: C<sub>24</sub>H<sub>42</sub>O

#### CAS No.: 137-99-5 Molecular weight: 346.59

| Data type                                    | Protocol                                             | Results                 | Ref | Quality |
|----------------------------------------------|------------------------------------------------------|-------------------------|-----|---------|
| Physical-chemical                            |                                                      |                         |     |         |
| Melting point                                | Other (estimated)                                    | 162.6°C                 | b   | Cal     |
| Boiling point                                | Not known                                            | 430°C                   | b   | Cal     |
| Vapour pressure                              | Not known                                            | 1.1e-08 mmHg            | b   | Cal     |
| Water solubility                             | Other (calculated)                                   | 2.8E-05 mg/l            | b   | Cal     |
| Partition coefficient (log K <sub>ow</sub> ) | Other (calculated)                                   | 10.5                    | b   | Cal     |
| Environmental fate                           | and pathway                                          |                         |     |         |
| Photodegradation                             | AOPWIN v 1.88<br>indirect photolysis, OH<br>radicals | Half-life = 1.8 hours   | b   | Cal     |
| Stability in water                           | No data                                              | No data                 |     |         |
| Biodegradation                               | Other (predicted)                                    | Biodegrades in weeks    | С   | 2/Cal   |
| Bioaccumulation                              | TGD QSAR                                             | BCF = 99                | С   | 2/Cal   |
| Ecotoxicology                                |                                                      |                         |     |         |
| Toxicity to fish                             | Other (predicted                                     | 96-h LC50 =             | С   | 2/Cal   |
|                                              |                                                      | 3×10 <sup>-4</sup> mg/l |     |         |
| Toxicity to aquatic                          | Other (predicted)                                    | 21-d NOEC =             | С   | 2/Cal   |
| invertebrates                                |                                                      | 3×10 <sup>-5</sup> mg/l |     |         |
| Mammalian toxicology                         |                                                      |                         |     |         |
| No data                                      |                                                      |                         |     |         |

#### **References:**

(a) HSDB (2002); (b) EPIWIN; (c) this report

#### SUBSTANCE: Styrenated phenol FORMULA: Complex

#### CAS No.: 61788-44-1 Molecular weight: Complex

| Data type                             | Protocol                | Results                                    | Ref | Quality |
|---------------------------------------|-------------------------|--------------------------------------------|-----|---------|
| Physical-chemical                     |                         |                                            |     |         |
| Melting point                         | No data                 | No data                                    |     |         |
| Boiling point                         | Not known               | 200–250°C                                  | а   | UP      |
| Density                               | Other                   | 1.08 g/cm <sup>3</sup>                     | а   | 4/UP    |
| Vapour pressure                       | No data                 | No data                                    |     |         |
| Water solubility                      | Not known               | 59 mg/l at 20°C                            | а   | 4/UP    |
| Partition coefficient (log $K_{ow}$ ) | Other<br>(experimental) | > 4 at 22°C                                | а   | 4/UP    |
| Environmental fate                    | and pathway             |                                            |     |         |
| Biodegradation                        | OECD TG 301             | Biodegradation 7% after 28 days            | а   | 4/UP    |
| Bioaccumulation                       | Other (predicted)       | BCF >501                                   | b   | 2/Cal   |
| Ecotoxicology                         |                         |                                            |     |         |
| Toxicity to fish                      | Other (static)          | 96-h LC50 = 1–10 mg/l<br>Brachydanio rerio | а   | 4/UP    |
|                                       | Other (predicted)       | 60 d NOEC =<br>0.094 mg/l                  | b   | 2/Cal   |
| Mammalian toxicology                  |                         |                                            |     |         |
| Acute oral toxicity                   | Not known               | Rat LD50 =<br>2,500 mg/kg bw               | а   | 4/UP    |
| Oestrogenic<br>activity               | No data                 | No data                                    |     |         |

#### **References:**

(a) IUCLID non-confidential; (b) this report

#### SUBSTANCE: Isopropylated phenol FORMULA: Mixture

#### CAS No.: 90480-88-9 Molecular weight: Mixture

| Data type                             | Protocol          | Results                               | Ref | Quality |
|---------------------------------------|-------------------|---------------------------------------|-----|---------|
| Physical-chemical                     | Physical-chemical |                                       |     |         |
| Melting point                         | No data           | No data                               |     |         |
| Boiling point                         | Not known         | >180°C                                | а   | 4/IS    |
| Density                               | Not known         | 1 g/cm <sup>3</sup>                   | а   | 4/IS    |
| Vapour pressure                       | No data           | No data                               |     |         |
| Water solubility                      | Not known         | Approximately 3% vol                  | а   | 4/IS    |
| Partition coefficient (log $K_{ow}$ ) | Other (predicted) | 2.9                                   | b   | 2/Cal   |
| Environmental fate and pathway        |                   |                                       |     |         |
| Biodegradation                        | Other (predicted) | Biodegrades in weeks                  | b   | 2/Cal   |
| Bioaccumulation                       | TGD QSAR          | BCF = 67                              | b   | 2/Cal   |
| Ecotoxicology                         |                   |                                       |     |         |
| Toxicity to fish                      | Other (predicted) | 60-d NOEC =<br>0.060 mg/l             | b   | 2/Cal   |
| Toxicity to aquatic invertebrates     | Other (predicted) | 48-h EC50 = 2.9 mg/l<br>Daphnia magna | b   | 2/Cal   |
| Mammalian toxicology                  |                   |                                       |     |         |
| No data                               |                   |                                       |     |         |

#### **References:**

(a) IUCLID non-confidential; (b) this report

#### SUBSTANCE: 2,6-Di-*tert*-butyl-4-methylphenol (BHT) CAS No.: 128-37-0 FORMULA: C<sub>15</sub>H<sub>24</sub>O Molecular weight: 220.35

| Data type                         | Protocol                                      | Results                                                                               | Ref | Quality |
|-----------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|-----|---------|
| Physical-chemical                 |                                               |                                                                                       |     |         |
| Melting point                     | Not known                                     | 70°C                                                                                  | а   | 4/UP    |
| Boiling point                     | Not known                                     | 265°C                                                                                 | а   | 4/UP    |
| Density                           | Not known                                     | 1.03 g/cm <sup>3</sup> at 20°C                                                        | а   | 4/UP    |
| Vapour pressure                   | Not known                                     | 0.013 hPa at 20°C                                                                     | а   | 4/UP    |
| Water solubility                  | Not known                                     | 0.6 mg/l at 25°C                                                                      | а   | 4/UP    |
| Partition coefficient             | Other                                         | 4.17 to 5.1 (measured)                                                                | а   | 4/UP    |
| (log K <sub>ow</sub> )            |                                               | 5.6–6.2 (calculated)                                                                  |     |         |
| Environmental fate                | and pathway                                   |                                                                                       |     |         |
| Photodegradation                  | Not known                                     | Exposure to light said<br>to accelerate<br>degradation (no further<br>data available) | а   | 4/UP/IS |
| Stability in water                | Not known                                     | Unstable (no further data available)                                                  | а   | 4/UP/IS |
| Biodegradation                    | OECD TG 301 D                                 | <10% after 20 days<br>(predominantly<br>domestic sewage)                              | а   | 1/4/UP  |
| Bioaccumulation                   | Guideline<br>corresponding to<br>OECD TG 305C | <i>Cyprinus carpio</i> BCF = 230–2,500 (56-d exposure to 50 μg/l)                     | а   | 1/4/IS  |
| Ecotoxicology                     |                                               |                                                                                       |     |         |
| Toxicity to fish                  | OECD TG 204                                   | 14-d LC10 interpreted<br>as 5 mg/l<br>Oncorhynchus mykiss                             | а   | 1/4/UP  |
| Toxicity to aquatic invertebrates | OECD TG 202                                   | 21-d LOEC = 1 mg/l<br>( <i>Daphnia magna</i><br>reproduction)                         | а   | 1/4/UP  |
| Mammalian toxicology              |                                               |                                                                                       |     |         |
| Acute oral toxicity               | Other                                         | Rat LD50 = 890 to<br>>10,000 mg/kg bw                                                 | а   | 4/IS    |
| Oestrogenic<br>activity           | No data                                       | No data                                                                               |     |         |

#### **References:**

(a) IUCLID non-confidential; (b) Yoshioka et al. (1985)

## Glossary of terms

| Term |
|------|
|------|

#### Description

| Biochemical oxygen demand (BOD)                              | A measure of degradation potential                                                                                                                                                                     |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bioconcentration factor (BCF)                                | A measure of chemical uptake, being the ratio between the concentration in an organism and the concentration in an environmental compartment (usually water)                                           |
| CAS number (no.)                                             | An identifying code number assigned to chemicals by the Chemical Abstract Services                                                                                                                     |
| Lowest observed<br>effect concentration                      | The lowest concentration in a toxicity test that gives rise to adverse effects (relative to a control)                                                                                                 |
| Median effective<br>concentration<br>(EC <sub>50</sub> )     | The concentration in a toxicity test at which a particular effect is observed in half of the organisms exposed for a specified time                                                                    |
| Median lethal<br>concentration/dose<br>(LC/D <sub>50</sub> ) | The concentration in a toxicity test that can be expected to cause death in half of the organisms exposed for a specified time                                                                         |
| No observed effect<br>concentration<br>(NOEC)                | The highest concentration in a toxicity test that does not give rise to adverse effects (relative to a control)                                                                                        |
| Octanol-water<br>partition coefficient<br>(K <sub>ow</sub> ) | This parameter gives an indication of the partitioning<br>behaviour of a substance between water and lipid-<br>containing materials such as cell membranes or organic<br>matter in soils and sediments |
| Readily<br>biodegradable                                     | Rapid environmental degradation to carbon dioxide and water, etc., as measured by laboratory screening tests involving micro-organisms                                                                 |

# List of abbreviations

| Acronym          | Description                                                                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AP               | Alkylphenol                                                                                                                                                                                                                                         |
| ASTM             | American Society for Testing and Materials                                                                                                                                                                                                          |
| BCF              | Bioconcentration factor                                                                                                                                                                                                                             |
| BHT              | Butylated hydroxytoluene; systematic name 2,6-di- <i>tert</i> -butyl-p-<br>cresol; CAS no. 128-37-0                                                                                                                                                 |
| BOD              | Biochemical oxygen demand                                                                                                                                                                                                                           |
| BUA              | Beratergremium für Altstoffe – the Advisory Committee on Existing<br>Chemicals of the Association of German Chemists (GDCh)                                                                                                                         |
| bw               | Body weight                                                                                                                                                                                                                                         |
| CAS              | Chemical Abstract Services                                                                                                                                                                                                                          |
| CEPAD            | Conseil Européen des Phénols Alkylés et Derivés (the European<br>Council for Alkylphenols and Derivatives): a trade association<br>representing the major European producers of alkylphenols, and<br>some of the users (http://www.cefic.be/cepad/) |
| DIN              | Deutsche Industrie Norm (German norm)                                                                                                                                                                                                               |
| ECB              | European Chemicals Bureau                                                                                                                                                                                                                           |
| EC               | European Communities                                                                                                                                                                                                                                |
| EC <sub>50</sub> | Median effective concentration                                                                                                                                                                                                                      |
| ECx              | As EC <sub>50</sub> , but for x% effect; x usually being 0, 10, or 100                                                                                                                                                                              |
| EEC              | European Economic Communities                                                                                                                                                                                                                       |
| EPA              | Environmental Protection Agency (USA)                                                                                                                                                                                                               |
| EQS              | Environmental quality standard                                                                                                                                                                                                                      |
| ESR              | Existing Substances Regulation (ESR): Council Regulation (EEC) 793/93 on the evaluation and control of the risks of existing substances                                                                                                             |
| EU               | European Union                                                                                                                                                                                                                                      |
| HPV              | High production volume (> 1,000 tonnes/year)                                                                                                                                                                                                        |
| HSDB             | Hazardous Substances Data Bank                                                                                                                                                                                                                      |
| ILO              | International Labour Organisation                                                                                                                                                                                                                   |
| IPC              | Integrated Pollution Control                                                                                                                                                                                                                        |
| IPCS             | International Programme on Chemical Safety                                                                                                                                                                                                          |
| IPPC             | Industrial Pollution Prevention and Control (EC Directive 96/61/EEC)                                                                                                                                                                                |
| IRPTC            | International Register of Potentially Toxic Chemicals                                                                                                                                                                                               |
| ISO              | International Organisation for Standardisation                                                                                                                                                                                                      |
| IUCLID           | International Uniform Chemical Information Database: contains data collected under the Existing Substances Regulation (ESR)                                                                                                                         |

| Acronym             | Description                                                                                                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| LC <sub>50</sub>    | Median lethal concentration                                                                                                         |
| LD <sub>50</sub>    | Median lethal dose                                                                                                                  |
| LOEC                | Lowest observed effect concentration                                                                                                |
| log K <sub>ow</sub> | Log of the octanol-water partition coefficient (Kow)                                                                                |
| MW                  | Molecular weight                                                                                                                    |
| NCEDS               | National Centre for Environmental Data and Surveillance,<br>Environment Agency (this has since become part of the Science<br>Group) |
| NOEC                | No observed effect concentration                                                                                                    |
| NP                  | Nonylphenol                                                                                                                         |
| NTP                 | National Toxicology Program (USA)                                                                                                   |
| OECD                | Organisation for Economic Co-operation and Development                                                                              |
| OP                  | 4- <i>tert</i> -Octylphenol                                                                                                         |
| OSPAR               | Oslo and Paris Convention for the Protection of the Marine Environment of the Northeast Atlantic                                    |
| PBT                 | Persistent, bioaccumulative and toxic                                                                                               |
| рН                  | Logarithm (to the base 10) (of the hydrogen ion concentration {H+}                                                                  |
| (Q)SAR              | (Quantitative) structure–activity relationship                                                                                      |
| RBA                 | Relative binding affinity                                                                                                           |
| SDS                 | Safety data sheet                                                                                                                   |
| SEPA                | Scottish Environment Protection Agency                                                                                              |
| SETAC               | Society for Environmental Toxicology and Chemistry                                                                                  |
| SIDS                | Screening Initial Data Set (a basic hazard assessment)                                                                              |
| STW                 | Sewage treatment works                                                                                                              |
| TG                  | Test guideline                                                                                                                      |
| TGD                 | Technical guidance document                                                                                                         |
| UBA                 | Umwelt Bundesamt – the German Federal Environmental Agency                                                                          |
| US EPA              | Environmental Protection Agency, USA                                                                                                |
| UV                  | Ultraviolet region of the electromagnetic spectrum                                                                                  |
| vPvB                | Very persistent and very bioaccumulative                                                                                            |
| WHO                 | World Health Organization                                                                                                           |

We welcome views from our users, stakeholders and the public, including comments about the content and presentation of this report. If you are happy with our service, please tell us about it. It helps us to identify good practice and rewards our staff. If you are unhappy with our service, please let us know how we can improve it.