Water quality: the good news story

March 2015

Bathing Water improvements
 Environment ${ }_{1 t}$ Agency

Sewage pollution dramatically reduced1990 - 2010

Environment Agency has targeted;

- £2.2 billion on improving bathing waters

Water Industry environmental investment 2010 - 2015 (PR09)

- The overall figures for potential environmental outcomes in England and Wales are:
() River Length: Improved or prevent deterioration = 3097 km
(Lakes area: Improved or prevent deterioration $=\mathbf{2 1}$ km ${ }^{2}$
(Transitional and Coastal Waters: Improved or prevent deterioration $=3953 \mathrm{~km}^{2}$
ϑ Number of Wetlands improved or protected $=25$
) Number of Bathing Waters improved $=52$
v Number of Shellfish Waters improved $=23$
ϑ Number of Groundwater bodies improved or maintained $=41$

Restoring the flow

- Since 2008, we have prevented damage or risk of damage associated with 127 unsustainable abstraction licences across England.
- We have returned nearly 27 million cubic meters of water per year to the environment.
θ In 2014, we changed abstraction licences on 4 iconic rivers at Mimram and Beane (Hertfordshire \& North London), and Axford and Ogbourne (West Thamest.
θ This will reduce the amount of water that can bellaren by around 9.5 million cubic metres per year by 2048 .
(c) ${ }^{\text {Environment }}$

Catchment Sensitive Farming is making small but measurable improvements to water quality

- Average 4-12\% reduction in losses in target areas
- In-river concentrations reduced by 3-7\%
- Sediment losses have increased in areas without CSF

-CSF catchments cover 46% of England's farmland, but onlkey areas are targeted
-CSF advises around 16,000 farmers covering 2.3 millinh hectares, 42% of the overall CSF area -CSF has provided over $£ 80 \mathrm{~m}$ of capital grant to (ablers, which has been match funded

Eels \& biodiversity

© Since 2009 we have installed 160 fish passages and 400 eel passes, extending access to more than 2500 km of river.
© Otters and water voles are now present in every county in England
© Increase from 90 to 96% in the area of water dependent Habitats Directive sites at favourable or unfavourable recovering condition between 2009 and 2014

\qquad

Drinking water - metaldehyde concerns, but other issues too

Reasons for Surface Water Drinking Water Protected Areas being 'at risk'

Reasons for identifying Groundwater Safeguard Zones

Drinking waters receiving more protection where there are risks

Understanding and improving catchments

ง Additional $£ 90 \mathrm{~m}$ invested to improve $15,000 \mathrm{~km}$ of rivers (at locations on map).
() Massive programme of enhanced engagement and partnership - the catchment based approach
\Rightarrow A major data sharing initiative to open up tens of thousands of records of monitoring, investigation, objective setting and action planning results held by the Environment Agency
ϑ Probably the most comprehensive economic
appraisal of water quality objective setting ever done

We have been working with partners (Natuainengland, Rivers Trust and Wildlife Trust) to predict the outcomes our project work © aiming to achieve. Our thanks go to everyone involved for their, often con?drable, efforts.

There are more than 600 projectsevering a large number of waters as you can see on the map. The projects are giverse and this exercise can only hope to shine a light on a fraction of the benefits the projects are delivering.

Catchment Restoration Fund: $£ 90 \mathrm{~m}$ for new projects to improve future quality

Removed 181 weirs / barriers	Installed 181 Eel passes	Made 147 fish passage improvements	
Implemented 1400 interventions to reduce or prevent diffuse pollution	Worked with over 3000 businesses to reduce their impact on the environment		
		Installed 167 km of fencing	
		$\begin{aligned} & \text { Planted } \\ & 168,000 \text { trees } \end{aligned}$	
Delivered interventions at 503 Natura $2 k$ sites, SSSI and Ramsar sites.	Created or restored 109 km of in channel features	Created or restored 5,641 hectares of habitat	Created or restored 293 km of bank side features
Received support from 9000 volunteers	Improved 222 recreational facilities and 61 access routes	Worked with over 1000 partners and 550 community groups	Held over 1000 community events

(t) 300 (6\%) additional waters should achieve good biology
© 500 (10\%) further waters should improve in status for at least one element

supplermeted
invesment by at least
2: for Environment
Agency led projects

Net gains in ecological quality of rivers since 2009

Key points:

- This is analysis is based on analysis of like-for-like data, where we've monitored the same parameter in the same place
- Overall we see a modest improvement; in net terms element-level results in English rivers are on a slow but gradual rise. This is not yet evidence in our overall ecological status statistics because we've expanded our evidence base into problem areas within catchments, and the one-out all-out rule masks some of the element-level improvement.
- There are threéement improvements to highlight
- Just under 350 river water bodies have improved in status for phosphate; this:due largely to phosphate stripping but work to address nutrient run-off rom agriculture is also playing a part here
Approximately 300 water bodies have improved fish status, which is also seen by the jump from 42% of all fish results meeting good ecological status when first reported in 2009 to 49% when reporting in 2013. It is likely, but unconfirmed, that the improvement is due to a combination of improved data quality and a reduction in environmental pressures.
-An independent report published in 2014 by IAN P. VAUGHAN and STEVE J . ORMEROD, Cardiff University, concludes that genuine improvements in macro-invertebrate populations have been observed since the 1990s, particularly in urban environments.

Sequence of response

- This slide compares the long term trendswe formerly reported using two of our General Quality Assessment (GQA) meajures against the latest 2014 results
- The comparison is not totally scigntific as the reporting regime is notably different but:
- This does show that buked beneath the WFD metrics we commonly use we are managing to maintain high quality environment in many locations and for the vast majority of parameters.

Impacts of new classification methods and extra monitoring on reporting of the environment

\% of English rivers:	Meeting supporting standards for physicochemistry	At good status for biological parameters	At good status for whole ecological assessment
2006-2008 (The 2009 classification, old methods)	46	34	22
2011-2013 (The 2014 classification, old methods, but more extensive biological monitoring than 2009)	50	26	22
2012-2013 (The 2014 classification using new method)	42	35	17
Environment Agency	UnCLassified		${ }^{20}$

\% of monitored elements at each status in English rivers (OBB)

The next two slides are presented to show ow each element is doing, broken down by status. Note the numbers on top denotethe number of water bodies in which the element is monitored.

This slide presents the C1 (oldhuilding block assessments). It compares the 2013 reported data (monitorino 2e10-12) with 2014 reported data (monitoring largely from 2011-12).

Key things to rote:

- While it isint advisable to look from trends with only two data points you can see most elements are showing an improvement between reporting years (eye-ball top of green sections)
- TVOre is a significant increase in the number of monitored water bodies for (1)acrophytes in C2 assessment (next slide), and overall the ESI network monitors more ecology, in more places.

\% of monitored elements at each status in English rivers (NBB)

Note:
Significant change in no. of water bodies nionitored for each element. Note that we predominantly monitor biology whe is likely to be impacted (risk based monitoring)..

Note: we did report NBB results for 201oresults but this was based on the results gathered approximately half-way throlight the new monitoring programme that we set up in 2012.

Note that our 2014 classificati户告r groundwaters is as follows:
Overall groundwater status: 41% good or better, 59% moderate or worse Groundwater chemical status: 52\% good or better, 48% moderate or worse (or 'fail')

Transitional (estuarine) WBs in England: Ecological status old vs new building blocks

\% of estaurine water bodies at good ecological status/potential in England for old and new classifications

Across Europe

() Netherlands: 4% of waters at GES/GEP, but 50% of elements measured at GES. Want to push forward review of WFD as part of Netherlands EU presidency in 2016;
© France: 42% at GES/GEP in 2013, no significant progress since 2009
ง Objective set in 2009 was 66% at GES/GEP by 2015 - mainly political, not evidenced
ϑ Has a new invertebrate classification tool that would take this down to 30%, decided not to introduce this tool until $3^{\text {rd }}$ cycle (2021)

Provided for context.

