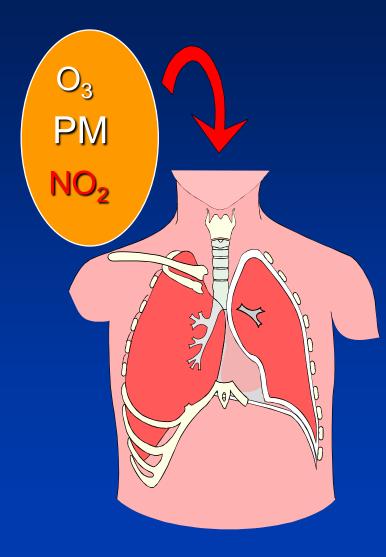
NO<sub>2</sub> – evidence of direct health effects from toxicological studies?

> Frank J Kelly King's College London, UK


### Nitrogen dioxide

#### Free radical – very reactive





#### 'Oxidant' or free radical theory of air pollution



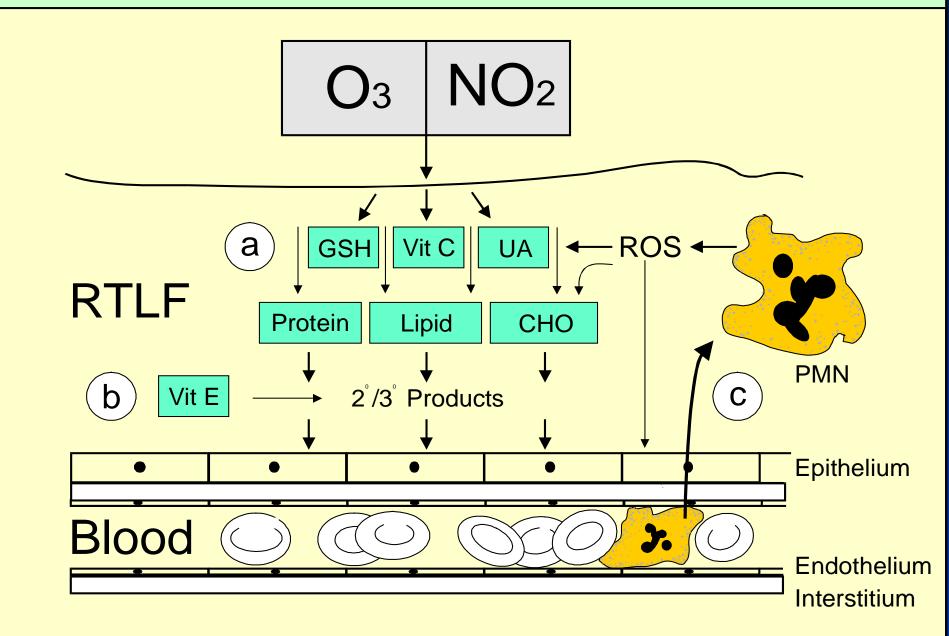
Powerful oxidant

Surface components drive oxidative reactions

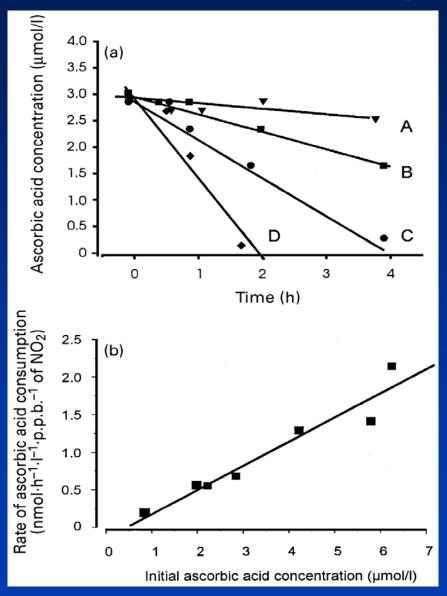
> Free radical





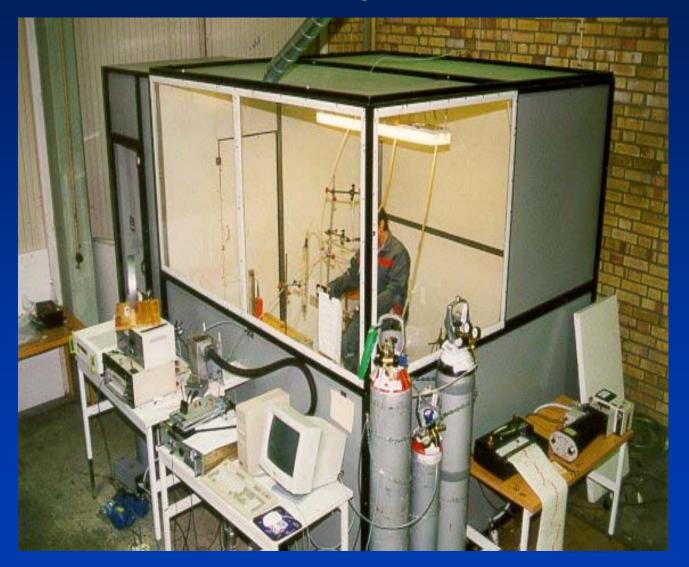

#### What do free radicals do?

- deplete antioxidants
- cause damaging oxidation reactions (oxidise proteins, lipids and DNA)


#### Why is this important?

- Altered redox status triggers inflammation
- Oxidation of proteins will alter their function
- Oxidation of lipids will damage cell membranes – disrupt integrity/tissue injury

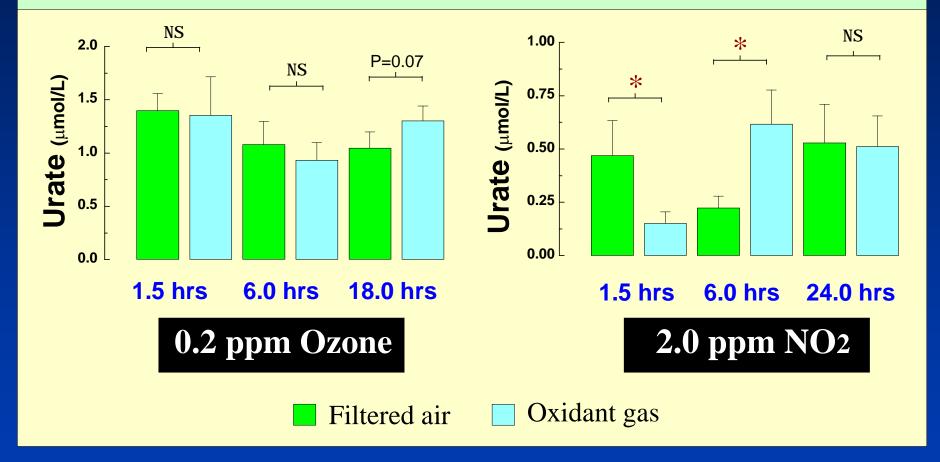
#### Oxidant Gas Interactions at the Surface of the Lung



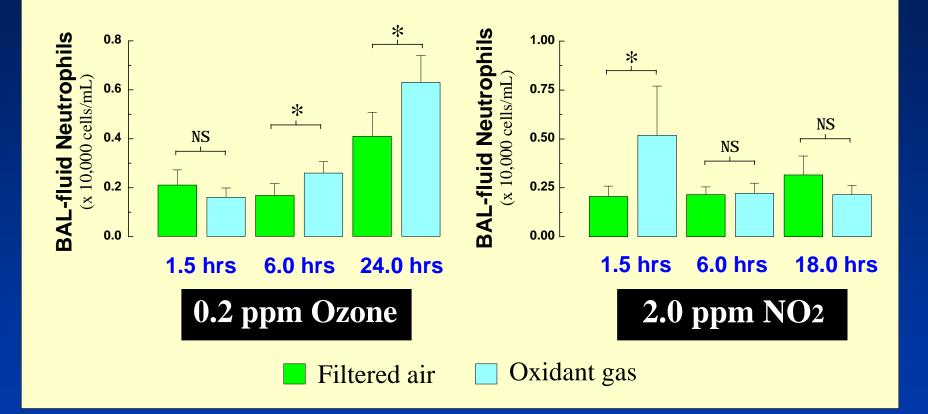

#### **BAL fluid AA consumption by NO2**



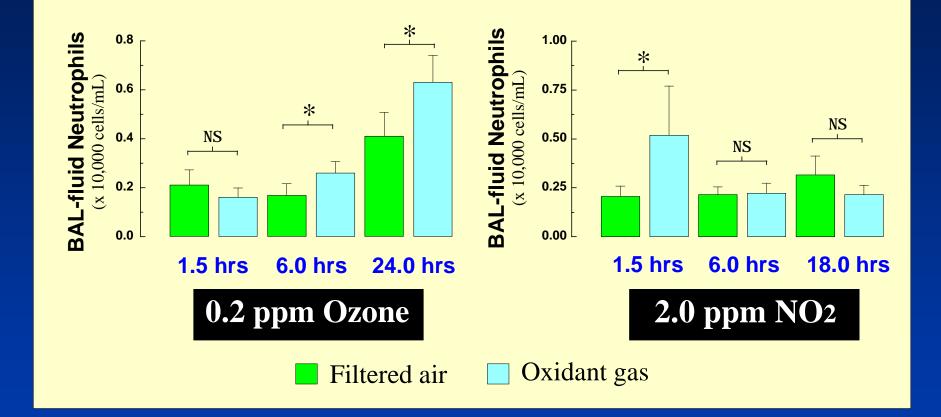
Kelly & Tetley, Biochemical Journal (1997) 325, 95-99


#### Human exposure facility at Umea University, Sweden



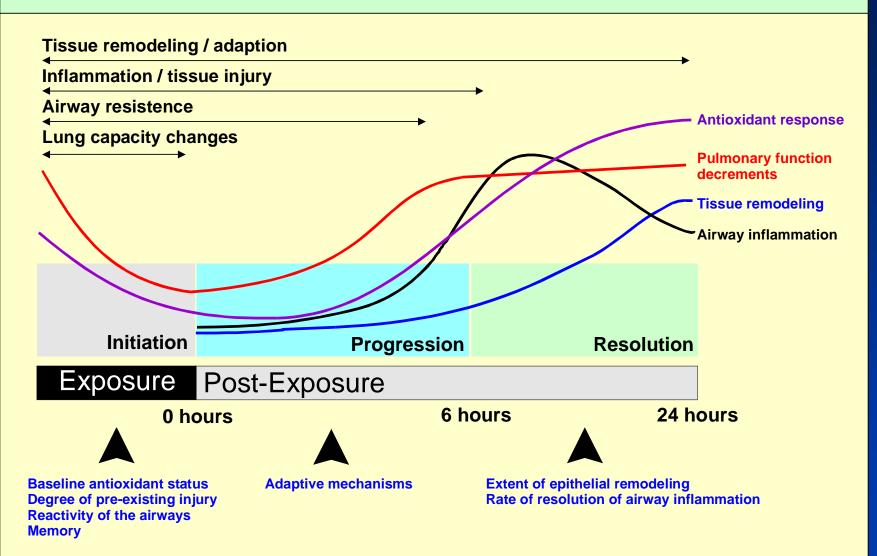

#### **Bronchoscopy with bronchoalveolar lavage**




#### **RTLF Urate Responses to O<sub>3</sub> and NO<sub>2</sub>**



#### **RTLF Neutrophil Responses to O<sub>3</sub> and NO<sub>2</sub>**




#### **RTLF Neutrophil Responses to O<sub>3</sub> and NO<sub>2</sub>**



No evidence of neutrophil activation (MPO) at any time point

#### Acute Responses of the Airways to Oxidant Gases



### NO<sub>2</sub> and health effects

Evidence from ...

In vitro studies

Animal toxicology

Controlled human exposures

### NO<sub>2</sub> and health effects

#### Evidence from ...

- Animal toxicology
  - Pulmonary metabolism
  - Pulmonary structure
  - Pulmonary function
  - Airway inflammation/responsiveness
  - Host defences

# NO<sub>2</sub> animal toxicology - pulmonary metabolism -

| <ul> <li>Lung oedema</li> <li>Lipid changes</li> <li>↑antioxidant metabolism</li> <li>↑lung enzymes</li> </ul> | >3160 µg/m <sup>3</sup><br>(acute & subchronic)                                              | Rats |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------|
| <ul> <li>↑ lipid peroxidation</li> </ul>                                                                       | 752 μg/m <sup>3</sup><br>(18 mo; TBARS)<br>75 μg/m <sup>3</sup><br>(9 mo; ethane exhalation) | Rats |

 Lipid & antioxidant metabolism show response pattern dependent on conc. & exposure duration

# NO<sub>2</sub> animal toxicology - pulmonary structure -

| Cell changes (type I alveolar epithelial to<br>type II; ciliated epithelial to non-ciliated) in<br>tracheobronchial & alveolar regions | 640 µg/m³<br>(?)                              | Rats             |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|
| Cytoplasm changes & hypertrophy in<br>replaced cells                                                                                   | 940 µg/m <sup>3</sup><br>(10 d)               | Rats             |
| Human-type emphysema                                                                                                                   | 15000-37000<br>µg/m <sup>3</sup><br>(chronic) | Rats/<br>rabbits |

Both conc. & time of exposure important, but pattern is complex

# NO<sub>2</sub> animal toxicology - pulmonary function -

| <ul> <li>↑ Breathing frequency</li> <li>↓ distensibility and gas</li> <li>exchange</li> </ul> | 1880-9400 µg/m <sup>3</sup><br>(acute?/sub-chronic): | Rats    |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------|---------|
| ↓ Thoracic clearance                                                                          | 18000 µg/m <sup>3</sup><br>(chronic)                 | Ferrets |

# NO<sub>2</sub> animal toxicology airway inflammation/responsiveness

| <ul> <li>↑ epithelial damage,</li> <li>baseline smooth muscle</li> <li>tone &amp; airway</li> <li>neutrophilia; ↓ mucin</li> <li>expression</li> </ul> | 3760 µg/m <sup>3</sup><br>(24 h)<br>aerosolised OVA on<br>d13 & 14 | BALB/c<br>mice<br>sensitised<br>to OVA |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|
| ↓ TNF-α; ↑ IL-10, IL-6 &<br>suppressor of cytokine<br>signalling-3 mRNA                                                                                | 18800 µg/m <sup>3</sup><br>(1,3,20 d)                              | Rats                                   |

 In vitro, depleted antioxidants defences, cell injury & inflammation confirm reactivity of NO<sub>2</sub>

### NO<sub>2</sub> animal toxicology - host defence -

| 940 µg/m <sup>3</sup> - 6 mo<br>3760 µg/m <sup>3</sup> - 3 h | Mice |
|--------------------------------------------------------------|------|
|                                                              |      |

Effects due more to concentration than duration or total dose

• Peak exposures and patterns of exposures important

### Animal toxicology - summary -

- Exposure to above ambient concentrations: effects on lung metabolism, structure, function, inflammation & increased susceptibility to infection
- Very high concentrations: emphysema-like changes

### NO<sub>2</sub> animal toxicology - extrapolation to humans -

Inherent differences between mammalian species

Is NO<sub>2</sub> an inhalant toxicant at ambient concentrations in humans? Exactly what exposures would lead to these effects in humans? Would some effects seen in animals occur in humans at all?

### NO<sub>2</sub> and health effects

Evidence from ...

In vitro studies

Animal toxicology

Controlled human exposures

### NO<sub>2</sub> and health effects

Evidence from ...

- Controlled human exposures
  - Pulmonary function
  - Airway responsiveness in asthmatics
  - Airway inflammation
  - Host defence

# NO<sub>2</sub> controlled human studies - pulmonary function -

| <u>Healthy subjects</u> | >1800 µg/m³                           | Generally          |
|-------------------------|---------------------------------------|--------------------|
|                         | 9400 µg/m³ but not at 7000 µg/m³      | ↑ SR <sub>aw</sub> |
|                         | 2820 – 6580 µg/m³ (20')               | ↓Mucociliary Cl    |
| Asthmatics              | 230 & 188 µg/m³ (?)                   | ns trends          |
|                         | <u>560 µg/m³ (30-110' + exercise)</u> | Lowest level       |
|                         | 1880-7520 μg/m³ (?)                   | No response        |
| <u>COPD</u>             | 560 μg/m <sup>3</sup> (4h)            | Functional effects |
|                         | Similar to above (1h + exercise)      | No response        |
|                         | 3000 μg/m³ (?)                        | ↑ SR <sub>aw</sub> |

#### NO<sub>2</sub> controlled human studies - airway responsiveness in asthmatics -

| 560 μg/m <sup>3</sup>                                    | Cold                                                                         |
|----------------------------------------------------------|------------------------------------------------------------------------------|
| 488 μg/m <sup>3</sup>                                    | Histamine                                                                    |
| <u>meta-analysis</u>                                     | Increase in airway                                                           |
| ≥ 200 µg/m <sup>3</sup>                                  | responsiveness to a range of                                                 |
| ≥ 1900 µg/m <sup>3</sup> (normals)                       | constrictor stimuli                                                          |
| 800 μg/m <sup>3</sup>                                    | House-dust mite allergen                                                     |
| 500 μg/m <sup>3</sup>                                    | Pollen allergen                                                              |
| ≥ 300 µg/m <sup>3</sup> ('road tunnel NO <sub>2</sub> ') | Greater early response; ↓<br>function and ↑ symptoms during<br>late response |

*Mechanistic studies:*  $\uparrow$  *neutrophils in BW & BAL;*  $\uparrow$ *ECP in BW, blood & sputum;*  $\uparrow$ *eosinophil granule product in BW* 

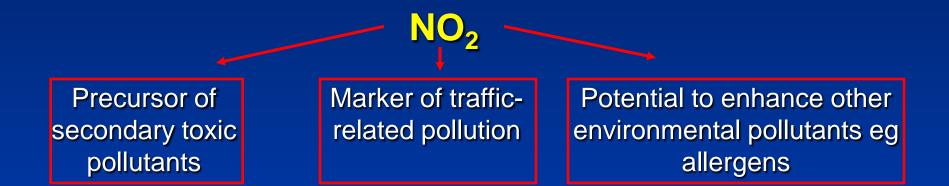
# NO<sub>2</sub> controlled human studies - airway inflammation -

| <u>Single dose</u>                                 |                                                                                                                                                                                             |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Healthy subjects<br>1128-7520 µg/m <sup>3</sup>    | $ \uparrow neutrophils, IL-8, antiprotease,  \alpha_2-macroglobulin  \downarrow/\uparrow mast cells & lymphocytes  \downarrow alveolar macrophages & \alpha_1- protease inhibitor activity$ |
| Repeated dose                                      |                                                                                                                                                                                             |
| Healthy subjects<br>3600 µg/m <sup>3</sup> 4h/d x4 | <ul> <li>↑ neutrophils</li> <li>↓ antioxidants</li> <li>Upregulation in expression of IL-5,</li> <li>IL-10, IL-13 &amp; ICAM-1</li> </ul>                                                   |

# NO<sub>2</sub> controlled human studies - host defence -

| Healthy subjects                                                  |                                                    |
|-------------------------------------------------------------------|----------------------------------------------------|
| 1880-5600 µg/m <sup>3</sup> 2h/d x3<br>Attenuated influenza virus | ns trend for increased infectivity                 |
| Healthy subjects                                                  |                                                    |
| 1128 µg/m <sup>3</sup> 3h<br>Attenuated influenza virus           | ↓ inactivation of virus by alveolar<br>macrophages |

# NO<sub>2</sub> controlled human studies - interaction with other pollutants -


| <u>Healthy subjects</u><br>1130 µg/m³ + O <sub>3</sub>                                                                                                        | ↑ responsiveness to methacholine                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Asthmatics</u><br>720 μg/m <sup>3</sup> + 7000 μg/m <sup>3</sup> SO <sub>2</sub><br>752 μg/m <sup>3</sup> + 428 μg/m <sup>3</sup> O <sub>3</sub>           | ↑ airway response to allergen                                                                                                                                                             |
| <u>Healthy subjects</u><br>1000 μg/m <sup>3</sup> + 100 μg/m <sup>3</sup> PM <sub>10</sub><br>2700 μg/m <sup>3</sup> + 300 μg/m <sup>3</sup> PM <sub>10</sub> | ↑ oxidative stress; neutrophil, mast<br>cell & lymphocyte infiltration; ↑<br>adhesion molecule expression;<br>activation of bronchial epithelium →<br>multitude of inflammatory cytokines |
| <u>Elderly +/- COPD</u><br>752 μg/m³ + μg/m³ PM <sub>2.5</sub>                                                                                                | No significant response attributable to separate or combined effects                                                                                                                      |

# NO<sub>2</sub> controlled human studies - summary -

- In healthy subjects, changes in pulmonary function, ↑ airway responsiveness, mild inflammation & ↓ host defences at concentrations (>1800 µg/m<sup>3</sup> +/co-pollutant) in excess to those outdoors
- Asthmatics more susceptible to acute effects
- In mild asthmatics, lowest concentration to change pulmonary function: 500 µg/m<sup>3</sup> and to enhance effect of allergens: 200 µg/m<sup>3</sup>

#### - NO<sub>2</sub> guidelines -

#### What are the values protecting us from?



Guideline that limits resulting health effects

Reductions in NO<sub>2</sub> <u>PLUS</u> secondary traffic related pollution +/or secondary pollutants

# NO<sub>2</sub> - a surrogate for traffic or a pollutant in its own right?

#### **Questions to be addressed:**

- Does NO<sub>2</sub> at concentrations achieved outdoors have any detectable toxicity on the human lung ?
- Which aspects or components of combustion mixtures are responsible for the adverse health effects observed in epidemiological studies ?
- Is NO<sub>2</sub> able to synergise with other pollutants eg PM (ie role as an effect modifier) ?

More efficient protection against health effects of complex gas-particle mixtures ?

#### - NO<sub>2</sub> annual guideline -

- Set to protect the public from health effects of NO<sub>2</sub> itself
- Still no robust basis for setting a value for NO<sub>2</sub> through any direct toxic effect
  - Increased concern over health effects from recent epidemiological studies
  - Possible contribution from unmeasured components (eg organic carbon, nitrous acid vapour)
- Takes into account a potential direct toxic effect of chronic NO<sub>2</sub> exposure at low levels