Weekly rainfall and river flow summary

Weekly bulletin: Wednesday 31 December 2014 to Tuesday 06 January 2015

Summary

Rain affected all areas of England during the past week, with the highest rainfall totals affecting northwest and south-west England. As a result river flows have increased at the majority of our indicator sites and latest daily mean flows are normal or higher for the time of year at all but two of our indicator sites.

- Rainfall totals for the past week range from 12 mm in east England to 33 mm in the north-west (Table 1 and Figure 1).
- Cumulative rainfall totals for January to date range from 13% of the long term average in north-east England to 23% in the north-west (Table 1).
- River flows increased at the majority of our indicator sites compared to the previous week. The latest daily mean river flows are normal or higher for the time of year at nearly all of our indicator sites. (Figure 2).

Outlook

Wintry showers may affect parts of the north on Thursday, but elsewhere will be drier. Outbreaks of rain may affect many areas on Friday. The rain may be locally heavy, with a chance of snow falling on higher ground. The low pressure will continue to affect all parts on Saturday and Sunday, bringing unsettled conditions. Monday and Tuesday are expected to remain unsettled with blustery showers being more frequent in the north and west.

Author: E\&B Hydrology Team

Geographic regions	Latest Week: 31 Dec '14 06 Jan '15	Latest month to date: Jan '15		Last month: Dec '14		Last 3 months: Oct '14-Dec '14		Last 6 months: Jul '14-Dec '14		Last 12 months: Jan '14-Dec '14	
	Total (mm)	$\begin{aligned} & \hline \text { Total } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	\% LTA	$\begin{aligned} & \hline \text { Total } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	\% LTA	$\begin{aligned} & \hline \text { Total } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	\% LTA	$\begin{aligned} & \hline \text { Total } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	\% LTA	$\begin{aligned} & \hline \text { Total } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	\% LTA
north-west	33	26	23	150	125	425	117	658	100	1301	112
north-east	14	10	13	75	93	260	111	446	101	936	114
central	14	13	19	63	88	236	120	392	105	881	123
east	12	9	18	50	91	210	128	379	119	736	123
south-east	18	16	22	54	71	289	132	447	115	990	136
south-west	27	26	22	75	64	354	111	536	100	1263	125
England	18	16	20	73	87	285	119	462	106	989	122

Table 1: Latest rainfall summary information (Source: Met Office © Crown Copyright) ${ }^{1}$

[^0]

Figure 1: Weekly precipitation across England and Wales for the past eleven weeks. UKPP radar data (Source: Met Office © Crown Copyright, 2015). Note: Radar beam blockages may give anomalous totals in some areas. Crown copyright. All rights reserved. Environment Agency, 100026380, 2015.

River Flow

- 'Naturalised’ flows are provided for the Thames at Kingston and the Lee at Feildes Weir.

Figure 2: Latest daily mean river flow expressed as a percentile ${ }^{2}$ and classed relative to an analysis of historic daily mean flows for the same time of year (Source: Environment Agency). Crown copyright. All rights reserved. Environment Agency, 100026380, 2015.

[^1]
[^0]: ${ }^{1}$ Notes:

 - LTA = long term average rainfall for 1961-1990
 - Data for the current month are calculated using MORECS (Met Office Rainfall and Evaporation Calculation System); data for past months are provisional values from the National Climate Information Centre (NCIC).
 - The data is rounded to the nearest millimetre or percent (except when values are less than 1).
 - Recorded amounts of rainfall are likely to be underestimated during snow events.

[^1]: ${ }^{2}$ Flow percentiles describe the percentage of time that a particular flow has been equalled or exceeded compared to the historic flow record for that site for the time of year. For example, a flow percentile of 5 indicates that the current flow has only been equalled or exceeded approximately 5% of the time within the historic record for that time of year - i.e. a very high flow. A flow percentile of 95 indicates that the current flow has been equalled or exceeded approximately 95% of the time - i.e. a low flow. Flow percentiles presented relate to an analysis for the time of year and not a whole year

