Salmon Stocks and Fisheries in England and Wales in 2016

SALMON STOCKS AND FISHERIES IN ENGLAND AND WALES, 2016

Preliminary assessment prepared for ICES, March 2017

Acknowledgement:

This report has been compiled jointly by staff from the Cefas Salmon and Freshwater Fisheries Team at Lowestoft and fisheries personnel from the Environment Agency and Natural Resources Wales. The monitoring and assessment of salmon stocks is funded by Defra and Welsh Government. All the participating organisations would like to extend their thanks and recognition to the various operational fisheries staff who have collected and compiled the data for this report. Thanks are also due to: the National River Flow Archive at the Centre for Ecology and Hydrology for providing river flow data; to the Game and Wildlife Conservation Trust for data relating to the River Frome; to the General Secretary of ICES for permission to cite the reports of the ICES Working Group on North Atlantic Salmon; to NASCO for permission to include their summary of regulatory measures for the high seas fisheries; and to Graphic Solutions (E.A) Limited for preparation of the final report.

CONTENTS

FOR	REWORD	4
HIG	HLIGHTS FOR 2016	5
REP	ORT ON SALMON FISHERIES IN 2016	6
1.	Description of Stocks and Fisheries	6
2.	Fishery regulation measures	9
3.	Fishing effort	13
4.	Declared catches	20
5.	Catch per unit effort (CPUE)	44
6.	Exploitation rates	48
REP	PORT ON STATUS OF STOCKS IN 2016	52
7.	Stock monitoring	52
8.	Assessment of stock status	61
9.	Factors affecting stocks, fisheries and catches 9.1 Management measures 9.2 Other factors	72 72 73
10.	Existing and emerging threats to salmon populations	76
11.	References	79
ANN	NEX 1. NASCO's request for scientific advice from ICES in 2017	80
ANN	NEX 2. Net Limitation Orders applying to salmon net fisheries in England & Wales.	82
ANN	NEX 3. Byelaws applying to salmon rod fisheries in England and Wales.	83

FOREWORD

Annual reports on the status of salmon stocks and fisheries in England and Wales have been produced since 1997. These reports present a preliminary assessment for the latest year to assist ICES in providing scientific advice to NASCO and to provide early feedback to fishery managers and anglers. The list of questions posed by NASCO to ICES for consideration in 2017 is provided at Annex 1 of this report.

For much of the period, the annual reports were prepared by the Centre for Environment, Fisheries and Aquaculture Science (Cefas) and the Environment Agency. However, from 1 April 2013, the functions of the Environment Agency in Wales transferred to a new body, Natural Resources Wales (Cyfoeth Naturiol Cymru) (NRW). This body is now responsible for salmon management and regulation in Wales. All three organisations have therefore contributed to production of the annual assessment report since 2013.

Until 2013, each annual assessment report was designed to stand alone, to avoid the need to refer to previous reports for background information. However, this resulted in much of the descriptive text being very similar year-on-year. From 2014, therefore, and in the interest of streamlining procedures, the report has been split into two separate documents. A background report provides the regulatory framework and describes the various methods and approaches used in the assessment process; this report is expected to change relatively little year on year. The most recent annual assessment (this report) then provides a relatively short description of developments in the latest year together with updated tables and figures. Both reports are available on line at the same location on the Gov.UK website.

It should be noted that the data for the most recent year are provisional and will be updated and confirmed as complete catch data are obtained and records validated. The final confirmed data for the current year will be included in next year's report. The Environment Agency and Natural Resources Wales also publish separate Salmonid and Freshwater Fisheries Statistics reports. These are also available at Gov.UK: https://www.gov.uk/government/collections/salmonid-and-freshwater-fisheries-statistics.

HIGHLIGHTS FOR 2016

- The provisional declared salmon catch by nets and fixed engines in 2016 (20,312 fish; 76.9 t) was 19% higher than that in 2015 and above the average of the previous five years. These figures include a small number of fish (185) that were released alive. Most of the catch (93%) was taken in the north east coast fishery. There has been a marked decline in net catches over the past 15-20 years due to increased regulatory controls and the phasing out of mixed stock fisheries.
- The provisional declared rod catch in 2016 (11,536 fish) increased by 12% on the confirmed catch for 2015, but remains among the lowest in the available time series. The catch of 1SW salmon (grilse) declined slightly (4%) on 2015, and was the second lowest in the available time series. In contrast, the catch of MSW salmon was among the highest in the time series.
- Flows on many rivers in 2016 were below average in September and October. Unfavourable conditions for angling at this time may have contributed to the poor rod catches of grilse which return later in the season. However, low abundance of grilse is regarded as the main cause of the low catches.
- Rod catch reporting rates have fallen in the last two years, due, in part at least, to new
 on-line reporting arrangements. Raising factors have been applied where appropriate
 to take account of this in undertaking stock status assessments.
- Since 1993, rod catches include an increasing proportion of fish that have been caught and released. In 2016, it is provisionally estimated that 9,192 salmon (80% of the catch) were released, the highest percentage ever recorded. Released fish are estimated to have contributed 18 million eggs to the breeding population.
- Most of the returning stock estimates and counts (available from 8 rivers, Table 23)
 were below the values recorded in 2015 and for three rivers were at or among the
 lowest values in the available time series.
- Spawning escapement in 2016 was estimated to be above the conservation limit (CL) in 21 of the 64 principal salmon rivers in England and Wales (33%). This is a slight decrease on 2015 (23 rivers) and among the lowest in the time series. Rivers where spawning escapement was below the CL were widely distributed throughout England and Wales.
- Formal compliance assessment in 2016 indicated that only 5 rivers (8%) were classified within the top two categories i.e. had a greater than 50% probability of achieving the management objective (MO) of exceeding the CL in 4 years out of 5, on average. No rivers were classified as 'not at risk' (≥ 95% probability of meeting the MO) and 25 rivers (39%) were classified as 'at risk' having a low probability (p ≤ 5%) of achieving the MO).
- Salmon with swollen and/or bleeding vents (Red Vent Syndrome) continued to be observed in 2016. Affected fish show a degree of recovery in freshwater and appear to be able to spawn successfully.
- Densities of juvenile salmon (particularly 0+ fry) were well below average in many English and Welsh rivers in 2016. The widespread nature of these observations suggests common factors operating at a broad scale, although various factors are believed to have contributed. These include: low spawner numbers, high winter flows in the winter of 2015/16 and unusually high winter temperatures (Section 10).

REPORT ON SALMON FISHERIES IN 2016

1. DESCRIPTION OF STOCKS AND FISHERIES

There are 49 rivers in England and 31 rivers in Wales that regularly support salmon (Figure 1), although some of the stocks are very small and support minimal catches; of these, 64 rivers have been designated 'principal salmon rivers'. Conservation limits (CLs) and Management Targets (MTs) have been set for the 42 principal salmon rivers in England and 22 in Wales and are used to give annual advice on stock status and to assess the need for management and conservation measures.

Rod fishing for salmon is permitted on all rivers supporting salmon stocks, and net or fixed engine fisheries operate on a proportion of these, usually in the river estuaries. Descriptions of the different salmon fishing methods employed in England and Wales can be found in the background report.

Many of the tables and figures presented in this report summarise statistics for England and Wales at a regional level. Following a reorganisation in 2014, the Environment Agency ceased to operate on a regional basis. However, in the interests of maintaining existing time series, data are still aggregated and reported on a regional basis in this report. The full statistics, reported on a river by river basis, are provided in the catch statistics reports which are published annually by the Environment Agency and Natural Resources Wales. A list of the individual rivers falling within each region is provided in Table 1.

Table 1. The main salmon rivers in England and Wales aggregated by their earlier regional jurisdictions. The table also provides details of those rivers with Salmon Action Plans and those designated as Special Areas of Conservation (SAC) for which salmon are a qualifying species.

Country	Region (pre 2014)	Region (pre 2011 where different)	River	SAP for rive		Comments
	Name Fact	where different)	Λ1		designation	1
England	North East		Aln			
			Coquet	Yes		
			Tyne	Yes		
			Wear	Yes		
			Tees	Yes		
			Yorkshire Esk	Yes		
	Anglian					No salmon producing rivers, but has coastal fishery
	South East	Thames	Thames	Yes		
		Southern	Itchen	Yes	Yes	
			Test	Yes		
	South West		Hampshire Avon	Yes	Yes	
			Stour	Yes		
			Piddle	Yes		
			Frome	Yes		
			Axe	Yes		
			Exe	Yes		
			Teign	Yes	Yes	
			Dart	Yes	Yes	
			Avon (Devon)	Yes		
			Erme	Yes	Yes	
			Yealm	Yes	Yes	
			Plym	Yes		
			Tavy	Yes	Yes	
			Tamar	Yes		
			Lynher	Yes		
			Looe			

Table 1. continued

		Fowey	Yes		
		Camel	Yes	Yes	
		Taw	Yes	Yes	
		Torridge	Yes		
		Lyn	Yes		
	Midlands	Ouse			
		Trent	Yes		
		Severn	Yes		
	North West	Mersey			
		Ribble	Yes		
		Wyre	Yes		
		Lune	Yes		
		Kent	Yes		
		Leven	Yes		
		Crake	Yes		
		Duddon	Yes		
		Esk (Cumbria)	Yes		
		Irt	Yes		
		Ehen	Yes	Yes	
		Calder	Yes		
		Derwent	Yes	Yes	
		Ellen			
		Eden	Yes	Yes	
		Esk (Border)	Yes		
ales/	Welsh	Wye	Yes	Yes	
		Usk	Yes	Yes	
		Taff	Yes		
		Ogmore	Yes		
		Afan	Yes		
		Neath			
		Tawe	Yes		
		Loughor	Yes		
		Gwendraeth Fawr & Fac	ch		
		Tywi	Yes		
		Taf	Yes		
		E & W Cleddau	Yes		
		Nevern	Yes		
		Teifi	Yes	Yes	
		Aeron			
		Ystwyth			
		Rheidol	Yes		
		Dyfi	Yes		
		Dysynni	Yes		
		Mawddach	Yes	Yes	
		Wnion			
		Artro			
		Dwyryd	Yes		
		Glaslyn	Yes		
		Dwyfach & Dwyfawr	Yes		
		Llyfni			
		Gwyrfai		Yes	
		Seiont	Yes		
		Ogwen	Yes		
		Conwy	Yes		
		Clwyd	Yes		
		Dee	Yes	Yes	

Note: Those rivers designated as SACs have salmon identified as a qualifying species in all or part of the catchment. This confers additional protection measures specifically for salmon in these rivers and any associated on-line lakes. In some of these rivers, salmon are a primary reason for SAC designation.

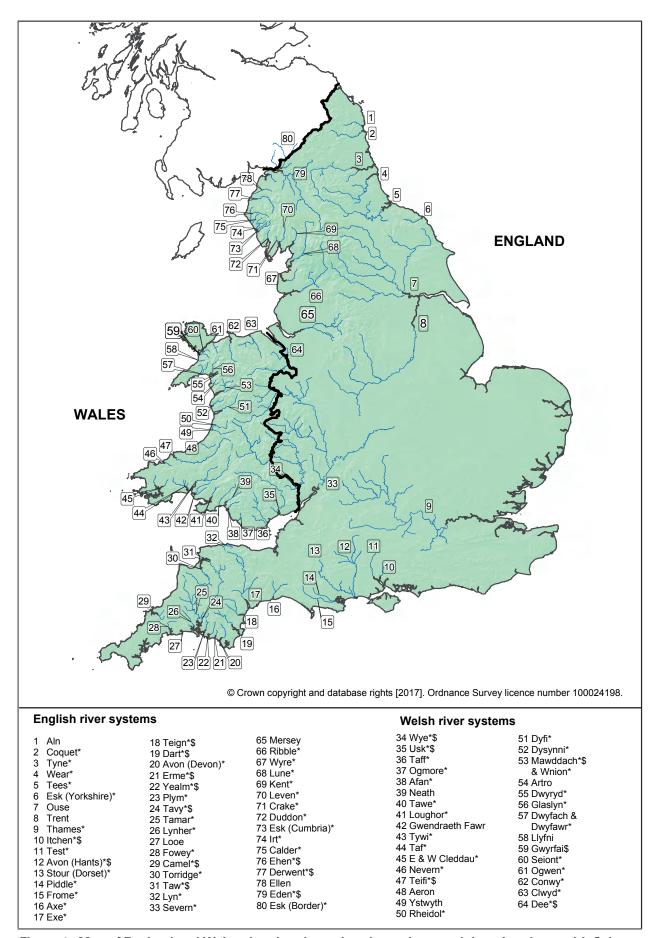


Figure 1. Map of England and Wales showing the main salmon rivers and denoting those with Salmon Action Plans (*) and those designated as Special Areas of Conservation (\$) in which salmon must be maintained or restored to favourable conservation status.

2. FISHERY REGULATION MEASURES

Salmon fisheries in England and Wales are primarily regulated by effort controls, which specify the nature of the gear that may be operated, along with where, when and how it may be used. A full description of these controls is provided in the background report; summary details of the current Net Limitation Orders (NLOs) and byelaws related to rod fisheries are provided in Annex 2 and Annex 3, respectively. The following tables summarise some of the other current controls:

- Table 2 provides details of the rod bag limits and catch limits on net and fixed engine fisheries that are currently in force.
- Table 3 summarises the progress in phasing out those net fisheries that exploit predominantly mixed-stocks where our capacity to manage individual stocks is compromised. A policy to phase out such fisheries has been in place since 1996.
- Table 4 provides details of other arrangements to reduce netting effort operating in 2016, principally by agreement to release fish alive or by compensating netsmen not to fish for the periods shown.
- Table 5 provides a summary of the effort restrictions recorded in Table 4 over the available time series, 1993 present.

In response to the widespread decline in stocks of early-running multi-sea-winter (MSW) salmon, national measures were introduced in 1999 to reduce the levels of exploitation of this stock component. Most netsmen were banned from fishing for salmon before 1 June, with a small number allowed to continue where netting is predominantly for sea trout, on the basis that any salmon caught are returned alive. The national measures also introduced mandatory catch-and-release of salmon by anglers prior to 16 June and imposed other method restrictions. Following review and consultation, the total package of national spring salmon measures was renewed for a further 10 years in December 2008. A brief evaluation of the effect of these measures is included in Section 4.

Table 2. Statutory rod bag limits in force for salmon in 2016.

EA Region /			Rod	fishery ba	ag limits	Net/FE c	atch limits
NRW	River	Salmon	Bag Lim	nits – per	Other constraints	Fishery	Measure
		day	week	season			
North East			No	bag limits	s apply		
Anglian			No	bag limits	s apply		
South East	Thames	2					
South West	Taw	2	3	10	No fish > 70 cm to be retained		
	Torridge	2	2	7	after 1 August		
	Tavy					Tavy seine nets	Seasonal catch
	Tamar		_			Tamar seine nets _	limits apply
Midlands	No bag limits					Severn fixed]
	apply					engines	Seasonal catch
						Severn lave nets	limits apply
						Severn seine nets_	
North West	Ribble			2	Additional voluntary carcass tagging scheme of 1 fish per angler per season		
	Lune			4			
	Leven			12	Limit applies to catch on whole river by all anglers; mandatory carcass tagging scheme		
	Crake			3	Limit applies to catch on whole river by all anglers; mandatory carcass tagging scheme		
	Derwent	2			No female fish to be retained after 30 Sept. Voluntary 1 fish per day and 5 fish per season limit encouraged by Derwent Owners Association		
	Eden	2			No female fish to be retained after 9 Sept. Voluntary 1 fish per day and 6 fish per season limits encouraged by River Eden and District Fisheries Association and supported by carcass tagging scheme.	Solway haaf nets	Seasonal catch limits apply. For 2014-2016, salmor catch restricted to 10 salmon per netsman. No limits on sea trout.
	Border Esk	2			No female fish to be retained after 9 Sept.		
Wales	Taf	2	5		No fish to be retained after 8 Oct.	·	
	Tywi	2	5		No fish to be retained after 8 Oct.		
	E&W Cleddau	2	5		No fish to be retained after 8 Oct.		
	Nevern	2	5				
	Teifi	2	5				
	Aeron	2	5				
	Ystwyth	2	5				
	Rheidol	2	5				

Listences issued but fishermen compensated not to fish in these years.

Licences issued but fishermen compensated not to fish in these years.

Rabbase out replaced by new NLO in 2013 permitting the use of 2 nets.

Rabbase out replaced by new NLO in 2013 permitting the use of 2 nets.

Rabbase out remains in place, but under new NLO existing licensees able to resume fishing following 10-year buy-off, subject to catch limits.

Fisheries have not operated for a number of years, now formally closed through byelaw.

Denotes fishery closed by byelaw.

[8] Fisheries have not operated for a n

Table 3. Number of licences issued each year in net fisheries subject to phase outs (zero NLOs) and closures, 1992-2016.

_	əniəs γəs	əlgnA .И		0	0	0	0	0	0	0	0	0	0	0	0	#													
	əniəs	S. Caern		0	0	0	0	0	0	0	0	0	0	0	0	#													
5	əniəs no	B. Duddi		2	—	0	0	0	0	0	0	0	0	0	#														
	əniə	B. Dart s	2015																								—	*0	
	əuiəs n	я. Ѕечег	2014																							—	_	_	
	əniə	R. Dee s	2005	13	21	9	14	14	15	14	12	10	∞	12	12	1	5	* 6	*	* M	* 0								
	rammel	R. Dee t	2005	4	4	4	4	4	4	4	4	4	4	4	4	4	4	* က	*	*									
	əuiə	в үvвТ .Я	2004	4	4	വ	Ŋ	4	വ	വ	4	4	4	4	4	2 * [b]	2 [b]	2 [b]	2 ^[b]	2 ^[b]	2 ^[b]	[g] Z	[b]	[p]	[p]	[e]	1 [e]	[e]	
	enies r	В. Lynhe	2004	2	2	2	2	2	വ	വ	വ	2	Ŋ	Ŋ	വ	[q] * [[b]	[b]	[p]	[p]	[q] [[p]	[p]	[b]	[b]	0			
	əuiəs .	R. Tamai	2004	14	14	14	14	14	14	15	14	14	14	14	14	(q) *	3 10 10	3 10 10	(a)	(a)	<u>la</u>	(Q)	ල ල	3 lb	3 lb	(S	3 [e]	3 [e]	
	lave	R. Lever	2003	9	9	9	9	9	9	9	9	9	9	9	4	4	4	က	ო	ო	2	2	2	2	[b]	7	7	2	
3	əniəs əgbi	Taw/Torr	2002	14 [b]	14 [b]	14 [b]	14 [b]	12	14	14	14	14	14	* က	က	ო	က	က	က	က	က	က	က	_ල හ	က	က	က	3	
1		A. Lune	2000	—		—	<u></u>		<u></u>	<u></u>		—	—	—		—	—	—			0								
Still oscid	g P fiinb sindr	SW Cum	1998	4	4	4	4	4	4	4	—	—	—	—	—	0	#												y-off.
	‡}ir	B. Usk d	1997	∞	∞	∞	∞	∞	∞	∞	∞	* 0				#													y full or partial buy-off
	əniəs ıwa	R. Dwyf	1997	2	2	2	2	2	2	<u></u>	—	0				#													all or pa
	əuiəs	inìylu .A	1997	0	0	0	0		0	0						#													ted by fu
	gnile t	R. Clwyd	1997	2	က	2	2	2	2	* 0						#													celera
	əniəs 1	R. Seion	1997	2	<u></u>	2	<u></u>	<u></u>	<u></u>	0						#													Phase out accelerated b
	əuiəs na	B. Ogwe	1997	2	—	2	2	2	2	2	2	—	0			#													* Phas
	se coast enies	SW Wale & sbsw	1997	17	<u></u>	16	6	0	—	0						#													Кеу:
	leteeoc	neilgnA	1996	129	93	72	92	29	26	54	54	46	46	46	45	40	39	36	32	33	30	30	26	25	24	22	20	18	d.
	U\T ⅓	NE Coas	2012																					63	26	25	49	48	reache
	thinb t	NE Coas	1993	142	124	114	66	83	81	75	72	71	70	69	* 91	16	16	16	16	16	15	14	14	14	13	13	12	11	s target
		Fishery	Phase out commenced	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	Bold text denotes target reached
			Phase	Year																									Note:

¹¹

Table 4. Buy off arrangements operating on net fisheries in 2016.

River/ Fishery	Method	Period without netting (full season in parentheses)	Brokers/ Funding agency
Fowey	seine nets (all)	complete season (2007 to present) (2 March–31 August)	Brokered by: Environment Agency / South West Water plc
Piddle and Frome (Poole Harbour)	seine net (all)	All salmon & sea trout caught to be released (2008 to present) (1 June–31 July)	Brokered by: Environment Agency and funded by the Frome and Piddle Association [8]

Notes: Fowey buy-off - fishing from 2 March to 31 May applies to sea trout only.

[a] Local arrangements apply in respect of provision of compensation.

Table 5. Summary of buy off arrangements and local agreements operating on net fisheries, 1993-2016. (X denotes compensation measure applied; O denotes fishery closed or no licences issued/available).

Year											F	isher	У										
	Itchen seine net #	Avon & Stour seine nets \$	Piddle & Frome seine net \$	Exe seine nets	Teign seine nets	Dart seine nets	Tavy seine nets	Tamar seine nets	Lynher seine nets	Fowey seine nets	Camel drift nets	Taw & Torridge seine nets	Lyn fixed engine	Severn fixed engine	Wye fixed engines	Usk Drift nets	Usk fixed engines	Tywi seine nets	Dee seine nets	Dee trammel nets	Ribble drift nets	Leven lave nets	Cumbrian coastal drift nets
1993	X											X											
1994	Χ											X											
1995	Ο											Χ											
1996	Ο																						
1997	0	Χ					Χ	X	X	Χ													
1998	Ο	Χ		Χ			Χ	X	Χ	Χ													Χ
1999	Ο	Χ		Χ			Χ	Χ	Χ	Χ													Χ
2000	Ο	Χ					Χ	Χ	Χ	X					Χ	Χ	Χ						Χ
2001	Ο	X					Χ	Χ	Χ	Χ					Χ	Ο	Χ						Χ
2002	Ο	X					X	X	Χ	X	Χ	Χ			X	Ο	Χ					Χ	Χ
2003	Ο	X					X	X	X	X	Χ		X		X	Ο	X						Χ
2004	0	Χ					Χ	Χ	Χ	Χ	X		0	Χ	Χ	0	Χ						Χ
2005	0	X					X	X	X	X	X		0		0	0	0				Χ		0
2006	0	X			Χ	Χ	X	X	X	X	X		0		0	0	0		X	X			0
2007	0	X		X			X	X	X	X	X		0		0	0	0		X	X			0
2008	0	X	X	X			X	X	X	X	X		0		0	0	0	X	X	X			0
2009	0	X	X	X			X	X	X	X	X		0	V	0	0	0	X	X	0			0
2010	0	X	X	X		~	X	X	X	X	X		0	X	0	0	0	X	0	0			0
2011	0	X	X	Χ		X	X	X	X	X	Χ		0	X	0	0	0	X	0	0			0
2012 2013	0	0	X			X	X	X	X	X			0	٨	0	0	0	^	0	0			0
2013	0	0	X			^	^	^	0	X			0		0	0	0		0	0			0
2014	0	0	X						0	X			0		0	0	0		0	0			0
2015	0	0	X						0	X			0		0	0	0		0	0			0
2010																							

Key: # Fishery operated for scientific purposes – all fish released alive in tracking investigation (no compensation agreement).
 \$ Agreement for all salmon caught to be released alive.

3. FISHING EFFORT

The regulatory measures outlined above provide overall limits on the 'allowable' fishing effort in England and Wales; this has fallen in recent years as measures have been introduced to regulate exploitation. The amount that both netsmen and anglers actually fish (the 'utilised' effort) also varies due to weather conditions, perceptions about the numbers of fish returning, and other factors. The following tables and figures summarise changes in allowable and utilised effort:

Net fisheries - Table 6 and Figure 2 illustrate the long-term decline in the numbers of licences issued for all types of nets and traps over the period since 1971. The rate of decline in the number of fishing days available, covering a more recent, shorter time period, has been greater over this time as a result of additional effort restrictions on remaining licensees (Figure 3). Table 7 provides details of the allowable and utilised effort in salmon net fisheries for the latest season. The percentage of available days that are utilised varies markedly. Figure 3 also illustrates the overall changes in allowable and utilised effort, and the percentage of available days utilised by netsmen, over the available time series.

Rod fisheries - Numbers of rod licences (annual and short-term) from 1994 are shown in Table 6 and Figure 4. No comparable data are available for earlier years because of changes in licensing arrangements. Regional summaries of the total rod days fished, over available time series, are provided in Table 8 and Figure 5. It should be noted that effort data (days fished) submitted via rod licence returns do not distinguish between times spent fishing separately for salmon and sea trout.

Overview of fishing effort in 2016

There has been a progressive decline in the number of net and fixed engine licences issued, and hence in fishing effort, over the time series. There was a small decrease in the number of licences issued in 2016 compared with 2015 (2 fewer licences issued), with total licence numbers in 2016 the lowest in the time series. For many regions, the percentage of the available days utilised by netsmen in 2016 was broadly similar to previous years (most regional averages ranged from 23% to 45%). Utilised effort increased in the South West and Wales, but fell slightly in most other regions. The utilised effort was particularly low in the Midlands Region (River Severn). This may be related to the introduction of new catch limits for the Severn net and fixed engine fishery, but it is thought that the reported effort data for this region were incomplete. As in previous years, there was marked variation between the levels of utilised effort in individual fisheries, ranging from 91% (North East coast drift net) to zero, where licences were available but no fishing for salmon took place. The overall percentage of available days utilised by netsmen declined steadily between 2000 and 2009, from a little over 34% to about 20% (Figure 3). However, percentage utilisation increased again after this date and has been around 25-30% since 2010, with some of the higher values associated with relatively good catches. This suggests that the take-up of available fishing opportunities is strongly influenced by catch rates.

The numbers of salmon rod licences issued over the shorter available time series (1994 on) show variable patterns. The number of short term (one-day and eight-day) rod licences issued has shown a modest decline over the period, from a 5-year mean of about 11,000 licences at the start of the period to a 5-year mean of approximately 8,200 recently. There has been greater variation in the number of annual licences issued; these account for the majority of the salmon caught by anglers. Annual licence numbers decreased sharply from over 26,000 in 1994 to about 15,000 in 2001. This was thought to reflect the decline in salmon stocks and the introduction

of restrictions on angling, especially those to protect early-run MSW fish, although licence sales were particularly low in 2001 due to the restrictions on access to many rivers as a result of an outbreak of the 'foot and mouth' livestock disease. Sales of annual licences increased again after this date, reflecting Environment Agency efforts to promote angling and to reduce levels of licence evasion through targeted enforcement efforts. Licence sales in the period 2009 to 2012 were in excess of 26,000, similar to levels at the start of the time period. Since this time, numbers have fallen again slightly. In 2016, about 22,000 annual licences were issued; these data are provisional.

The number of days fished by anglers closely followed the reduction in rod licence numbers over the period 1994 to 2001. However, while annual licence sales then recovered to the levels at the start of the time series, the number of days fished by anglers has not. The number of days fished has fluctuated somewhat from year to year since this time, but without any obvious trend. Provisionally, the overall number of days fished by anglers in 2016 has been estimated at about 127,600, this is 23% below the average of the previous five years. There is some variation in the pattern of fishing effort between regions (Figure 5). For Wales and a number of regions in England (North West, South West and Midlands), the number of days fished has fallen by about a half between the start and end of the time series. In contrast, fishing effort in the North East and Southern Regions has remained relatively consistent.

Table 6. Numbers of rod licences (1994-2016) and net & fixed engine licences (1971-2016).

Year	Rod lic	ences			Gear Type			Total net
	Short-term	Annual	Gill	Sweep	Hand-held	FE	Combined drift/T net #	licences
1971			437	230	294	79	75	1040
1972			308	224	315	76	75	923
1973			291	230	335	70	75	926
1974			280	240	329	69	75	918
1975			269	243	341	69	75	922
1976			275	247	355	70	75	947
1977			273	251	365	71	75	960
1978			249	244	376	70	75	939
1979			241	225	322	68	75	856
1980			233	238	339	69	75	879
1981			232	219	336	72	75	859
1982			232	221	319	72	75	844
1983			232	209	333	73	75	847
1984			226	223	354	74	75	877
1985			223	232	375	69	75	899
1986			220	221	369	64	75	874
1987			213	206	352	68	75	839
1988			210	212	284	70	75	776
1989			208	199	282	75	75	764
1990			207	204	292	70	75	773
1991			199	187	264	66	75	716
1992			203	158	267	65	75	693
1993			187	151	259	55	36	652
1994	10,637	26,641	177	158	257	53	30	645
1995	9,992	24,949	163	156	249	47	29	615
1996	12,508	22,773	151	132	232	42	29	557
1997	11,640	21,146	139	131	231	35	27	536
1998	11,364	21,161	130	129	196	35	26	490
1999	10,709	18,423	120	109	178	30	26	437
2000	10,916	19,223	110	103	158	32	25	403
2001	9,434	14,916	113	99	143	33	24	388
2002	10,039	19,368	113	94	147	32	24	386
2003	8,683	21,253	58	96	160	57	5	371
2004	10,628	22,138	57	75	157	65	5	354
2005	10,170	23,870	59	73	148	65	5	345
2006	9,460	22,146	52	57	147	65	5	321
2007	9,065	23,116	53	45	157	66	5	321
2008	9,761	24,139	55	42	130	66	5	293
2009	9,353	27,108	50	42	118	66	4	276
2010	10,024	26,135	51	41	118	66	4	276
2011	10,121	26,870	53	41	117	66	3	277
2012	9,045	26,090	51	34	115	73	3	273
2013	8,264	25,037	49	29	111	62	3	251
2014	7,691	23,914	48	34	109	65	3	256
2015	8,017	22,830	52	33	102	63	3	250
2016	8,023	21,992	49	32	105	62	2	248

Notes: Rod short-term licences are for 1 or 8 days; annual licences are valid from the date of issue to 31 March following.

Gill nets include: drift, trammel, sling and coracle nets. Sweep nets include: seine (draft and draw) and wade nets.

Hand-held nets include: haaf/heave and lave/dip nets.

Fixed engines include: T-nets, J-nets, stop (compass) nets, putcher ranks, traps, weirs and cribs (coops).

East Anglian coastal nets & Southern seine net are not included, as they are targeted primarily at sea trout and catch few salmon

Table only includes data for gear licences that are fished (i.e. excluding licences that remain available, but which cannot be fished due to compensation arrangements or other similar provisions).

Data for 2016 are provisional.

Key: # Combined drift/T net licences (issued in Northumbria (Northern area)) have been included in the gill net totals.

Table 7. Allowable and utilised effort for the principal salmon net fisheries in 2016.

EA Region	River/ Fishery [a]	Method	No. of	NLO [c]	Days	Allowable	Util	ised effort	% days	Av. day,
/ NRW			licences		available [a,f]	effort net days ^[h]	net days	net tides	utilised	lic
NE	N Coastal (N)	Drift & T	2	0	113	226				
	N Coastal (N)	Drift	8	0	66	528	686	807	91	69
	N Coastal (N) [b]	T [i]	21	0	113	2,373	833	1,177	35	40
	N Coastal (S)	Drift	0	0	0	0	0	0	0	(
	N Coastal (S) [b]	T [i]	0	0	0	0	0	0	0	(
	Y Coastal	Drift	1	0	66	66	50	71	76	50
	Y Coastal [b]	T or J [i]	27	0	113	3,051	967	1,405	32	36
	Region total		59			6,244	2,536	3,460	41	
SW	Avon & Stour	Seine	0	0	0	0	0	0	0	(
	Poole Harbour [g]	Seine	1	1	44	44	37	37	84	37
	Exe	Seine	3	3	54	162	140	141	86	47
	Teign [b]	Seine	3	3	99	297	107	107	36	36
	Dart [b]	Seine	0	0	0	0	0	0	0	(
	Camel	Drift	6	6	21	126	46	46	37	8
	Tavy	Seine [k]	1	0	65	65	15	15	23	11
	Tamar	Seine [k]	3	0	65	195	132	134	68	32
	Lynher	Seine	0	0	0	0	0	0	0	(
	Fowey [b,g]	Seine	0	1	131	131	0	0	0	C
	Taw/Torridge	Seine	3	1	53	159	59	59	37	20
	Region total		20			1,179	536	539	45	
Midlands #		Putchers [d,k]	5		76	380	14	14	4	3
TVII alariao II	Severn	Seine [k]	1	0	66	66	1	4	2	1
	Severn	Lave [k]	25	15	66	1,650	81	90	5	3
	Region total	Lavo	31	10	00	2,096	96	108	5	
NW	Ribble	Drift	4	2	66	264	85	85	32	21
1400	Lune	Haaf	12	12	66	792	479	582	60	40
	Lune	Drift	7	7	66	462	208	208	45	30
	Lune	Seine	0	0	0	0	0	0	0	(
	Kent	Lave	3	6	66	396	50	50	13	17
	Leven	Lave	2	2	44	88	35	45	40	18
	Eden & Esk	Haaf [k]	55	105	72	7,560	1358	1448	18	25
	Eden & Esk	Coops [d]	3	100	66	198	0	0	0	(
	Region total	СССРС	86		00	9,760	2,215	2,418	23	
Wales	Wye	Lave	8	[6]	66	528	262	325	50	33
vvales	Tywi ^[b]	Seine	3	[e] 3	109	327	202	279	69	75
	Tywi ^[b]	Coracles	8	8	109	872	258	257	30	32
	Taf	Coracles	o 1	1	44	44	0	0	0	32
	Taf	Wade	1	1	44	44	10	10	23	10
	E/W Cleddau				66	396	71	71	18	12
		Compass	6 1	6 1						
	Nevern [b] Teifi [b]	Seine Seine	3		109	109	22	22	20	22
	Teifi ^[b]			3	109	327	65	87 510	20	22
		Coracles	12	12	109	1,308	528	519	40	44
	Dyfi ^[b]	Seine	3	3	109	327	55	56	17	18
	Dysynni	Seine	1	1	66	66	21	37	32	21
	Mawddach	Seine	2	3	66	198	12	15	6	1-
	Conwy	Seine	3	3	66	198	50	53	25	17
	Conwy	Basket [d]	0	^	0	0	0	0	0	C
	Dee	Trammel	0	0	0	0	0	0	0	C
	Dee	Seine	0	0	0	0	0	0	0	C
	Wales total		52			4,744	1,580	1,731	33	

Key:

^[a] National spring salmon byelaws apply – all net fisheries closed until June 1.

[[]b] Sea trout fisheries - exempted from national spring salmon byelaws (all salmon caught before 1 June to be released).

NLO refers to number of nets allowed under the terms of the net limitation order for that fishery. Where the number of licences exceeds the NLO, numbers are being reduced as licensees leave the fishery. For coastal mixed stock fisheries a zero NLO means the fishery is being phased out

Denotes fishery operates under an historical certificate of priviledge.

lel No NLO, but number of licences capped.

In calculating the days available, any day, or part day, on which fishing has been allowed is included. Days available have been adjusted to take account of partial buy-off arrangements and the national measures.

Buy-off applies for all or part season (see Table 4 for details).

Allowable effort is calculated by multiplying the days available by the number of nets permitted under the NLO, except where the number of licences exceeds the NLO, in which case the higher figure is used.

Fisheries subject to phase out, but this subject to review in 2017 to see if some level of sustainable fishing by these nets might be retained.

Fishery subject to seasonal catch limit.

[#] Effort data incomplete.

Table 8. Total number of rod days fished, as reported in catch returns, 1994-2016.

Total days		Forr	ner Environme	nt Agency R	egion		NRW	E&W
	NE	Thames	Southern	SW	Midlands	NW	Wales	Total
1994	37,937	343	2,446	41,087	13,596	78,176	118,862	292,447
1995	38,724	414	2,696	35,853	14,893	65,601	85,107	243,288
1996	34,726	154	1,928	32,504	13,056	64,454	84,922	231,744
1997	40,345	181	2,332	38,809	14,886	70,222	102,930	269,705
1998	38,229	145	2,095	31,285	11,493	64,248	85,906	233,401
1999	31,676	311	2,018	25,642	7,024	50,667	70,660	187,998
2000	32,319	143	1,771	22,401	5,373	49,255	66,270	177,532
2001	27,485	111	2,117	18,573	4,084	23,320	59,163	134,853
2002	34,423	91	2,462	25,526	4,720	43,278	72,328	182,828
2003	31,030	126	2,663	23,322	5,302	37,567	72,719	172,729
2004	37,677	110	2,344	24,730	4,633	48,174	72,846	190,514
2005	37,355	86	2,096	22,427	5,221	49,698	69,786	186,669
2006	30,441	21	1,602	17,704	4,124	40,782	53,441	148,115
2007	33,292	64	1,816	19,979	3,800	40,828	64,694	164,473
2008	35,633	53	2,132	20,708	4,211	44,499	63,776	171,012
2009	37,366	46	2,046	22,828	4,819	47,509	69,144	183,758
2010	42,061	37	2,652	23,279	5,052	51,774	70,201	195,056
2011	42,982	22	2,873	24,122	5,105	53,340	68,453	196,897
2012	38,349	13	2,284	20,763	3,521	47,352	63,131	175,413
2013	38,785	17	2,709	18,497	4,211	46,163	56,634	167,016
2014	35,366	55	2,812	16,476	4,198	36,592	49,456	144,955
2015	32,892	68	3,022	18,359	4,584	30,573	52,232	141,730
2016	31,515	71	2,754	14,340	3,326	29,008	46,543	127,557
Mean (2011-15)	37,675	35	2,740	19,643	4,324	42,804	57,981	165,202
% change:								
2016 on 2015	-4	+4	-9	-22	-27	-5	-11	-10
2016 on 5-yr mean	-16	+103	+1	-27	-23	-32	-20	-23

Notes: Includes effort targeted at both salmon and sea trout.

Table does not include rod days fished in the Anglian Region, where there are not thought to be any directed rod fisheries. Not all catch returns report effort data.

Data for 2016 are provisional.

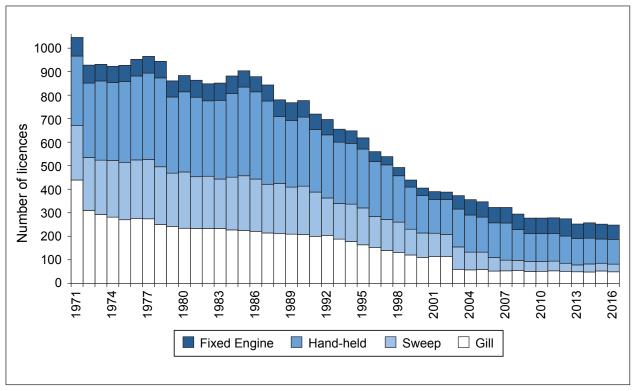


Figure 2. Numbers of salmon net & fixed engine licences issued in England and Wales, 1971-2016.

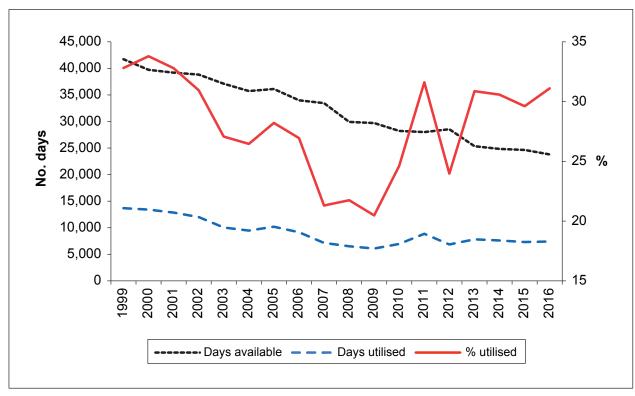


Figure 3. Numbers of fishing days available to net and fixed engine fisheries in England and Wales, and number and percentage of available days utilised, 1999 -2016.

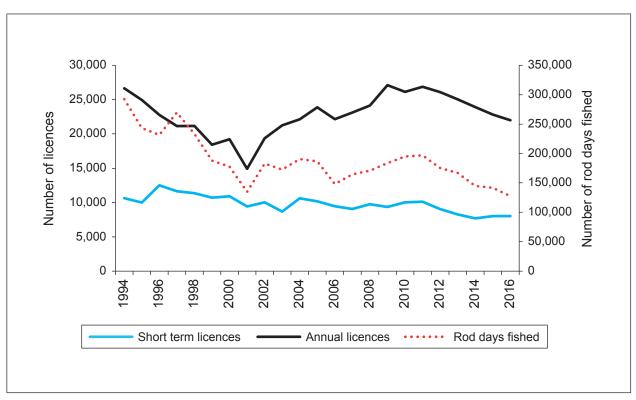


Figure 4. Numbers of annual and short-term rod licences issued, and the number of rod days fished in England and Wales, 1994-2016.

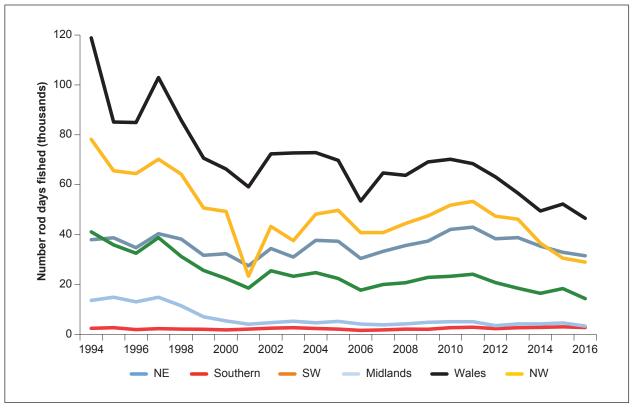


Figure 5. Numbers of rod days fished (as reported in catch returns), 1994-2016.

4. DECLARED CATCHES

The chief indicators of the state of salmon stocks are the catches taken by rod and net fisheries. It should be remembered that the data presented here for 2016 are provisional. Final confirmed data for 2016 will be reported in the Environment Agency and Natural Resources Wales annual compilation of catch statistics, which will be available later in the year (see, for example, Environment Agency, 2017).

Assessment of rod catch data in 2015 identified a decrease in the level of catch reporting, which is believed to have been associated with changes to the rod catch reporting system and the introduction of on-line data entry. Similar concerns also apply to the rod catch data for 2016. The majority of tables presented in this report present the catches for these years as they were declared; this is consistent with the annual catch statistics report which also presents declared catches. However, in order to ensure that assessments of stock status use the most complete catch information, additional correction factors to allow for the increased level of under-reporting have been applied to catches for the last two years. The methodology used in this adjustment process, as well as the catch reporting procedures for both net and rod fisheries, are described in the background report. Footnotes to the tables in this report indicate where adjusted data have been used.

Net and rod fisheries – The following tables and figures provide provisional declared catches for 2016 together with confirmed catches for earlier years:

- Table 9 provides the total declared number and weight of salmon caught by nets & fixed engines and by rods in England and Wales since 1988, and provides overall catch totals for England and Wales for both total catch and retained catch (excluding fish that have been caught and released).
- Table 10 gives a regional breakdown of the provisional 2016 rod and net catches (based on the former Environment Agency regions). These data are total catches only and include fish that have been caught and released by both nets and rods.
- Table 11 and Figure 6 provide time series of regional net and fixed engine catches from 1971 on.
- Table 12 and Figure 7 provide time series of regional rod catches from 1993 on, distinguishing fish caught and released from those caught and retained (data on catchand-release were not recorded prior to 1993).

Catches in coastal, estuary and river fisheries – ICES requests that catch data (fish caught and retained only) are grouped by coastal, estuary and river fisheries. Data for the available time series, since 1988, are presented in Table 13 and Figure 8. Details of the fisheries included in the various categories are provided in the footnotes to the table. The catch for the coastal zone mainly reflects the catch in the north east drift and fixed net fishery. Only two coastal fisheries remained in operation in 2016 and one of these, Anglian, takes very few salmon (Table 11). The catches in each of the categories have been subjected to downward pressures over recent years, in the case of the coastal and estuarine categories due to the substantial reductions in fishing effort, and, in the case of rod fisheries, due to the increasing use of catch and release.

Catch and release (C&R) – C&R data were first collected in England and Wales in 1993, and the practice has been used increasingly by salmon anglers in recent years. This is largely a result of voluntary measures, but also reflects the national measures to protect spring salmon and the introduction of mandatory C&R on some rivers (details available in Annex 3). Regional C&R rates are provided in Table 12 and Figure 7 and a summary for England and Wales as a whole is given in Table 14 and Figure 9. C&R rates for each major salmon river in England and Wales are published in the annual catch statistics.

Long-term catch trends – The annual declared net and fixed engine catch for England and Wales since 1956 is shown in Figure 10; this distinguishes the catch taken in the north east coast fishery from net catches elsewhere. Figure 11 presents the declared rod catch of salmon from 1956, including (since 1993) fish that have been caught and released. It is unclear to what extent fish may be caught and recorded more than once as a result of C&R.

Undeclared and illegal catches – The non-reported and illegal catch for England and Wales in 2016 (only fish retained) is estimated at about 10 tonnes. This represents approximately 11% of the total weight (including the unreported and illegal catch) of salmon caught and killed.

Of the total unreported and illegal catch in 2016 (about 2,500 salmon), 30% by number is estimated to have derived from under-reporting in rod fisheries, 54% from illegal catches and 16% from under-reporting in net fisheries. These estimates exclude the additional under-reporting of rod caught fish that are assumed to have been subject to catch and release. The methodology used to derive these crude estimates is provided in the background report. No other substantial sources of non-catch fishing mortality, such as reports of significant mortalities of fish in rivers / estuaries due to elevated temperatures or water quality issues, were noted in 2016.

Effect of the national spring salmon measures – The restrictions imposed as a result of the national measures, since 1999, have affected both net and rod fisheries. Table 15 and Figures 12a (nets) and 12b (rods) show the reduction in the number of fish caught before June. Table 16 and Figure 13 show the numbers of salmon released by weight category (<3.6 kg (8 lbs), 3.6–6.4 kg, and >6.4 kg (14 lbs)) and season, since 1998. This illustrates that anglers have been voluntarily releasing an increased proportion of all fish caught after June, and large salmon in particular.

Age composition of catches – The annual salmon stock assessments carried out by ICES are conducted on two separate stock components: those fish that mature after one winter at sea (i.e. one-sea-winter fish / 1SW or grilse) and those that mature after two or more years at sea (i.e. multi-sea-winter / MSW fish). The relative proportions of the different sea-age groups have shown marked variability over time (Figure 14), and the different sea-age classes tend to have different patterns of run-timing. It is therefore necessary to be able to estimate the relative proportions of 1SW and MSW fish in catches; details of the approaches used are provided in the background report.

- **Nets** The relative proportions of 1SW and MSW fish in regional net catches in 2016 are provided in Table 17 and available time series are presented in Figures 15 and 16. The longer time series for the North East Region reflects the consistent reporting arrangements that have applied in this fishery since the mid-1960s.
- Rods The estimated age composition of catches for many of the principal salmon rivers in 2016 is provided in Table 18. Of these, 16 rivers (39%) were estimated to contain 50% or more MSW salmon (including fish subsequently released), 15 rivers

(37%) had between 25% and 49% MSW salmon and 10 rivers (24%) less than 25% MSW salmon in the rod catch. Changes in the relative proportions of fish in these different categories (for the same rivers) are presented in Figure 17. There has been a notable increase in the proportion of MSW fish in rod catches in the last 5 years.

The estimated numbers of 1SW and MSW salmon (including fish released), and the percentage of MSW fish, in regional rod catches over the period since 1992 are provided in Table 19; these data have been corrected for under-reporting - a scaling factor of 1.1 has typically applied. However, larger adjustments have been made for the catches in 2015 and 2016 as noted above (see background report for details). The number and percentage of MSW salmon in regional rod catches are illustrated in Figure 18. A summary of the estimated rod catch of 1SW and MSW salmon for England and Wales as a whole, for the same period, is provided at Figure 19.

Overview of catches in 2016

The total salmon catch for 2016 (including those fish released alive by netsmen and anglers) is provisionally estimated at 127.5 t, representing 31,848 fish, and comprising 76.9 t (20,312 fish) by nets and fixed engines and 50.6 t (11,536 fish) by rods. A total of 185 fish (0.6 t) were released from nets and fixed engines. Of the rod caught fish, 9,192 were released (40.9 t), representing 80% of the catch by number. Thus, 20,127 fish (76.3 t) were retained by netsmen and 2,344 fish (9.7 t) were retained by anglers. These figures do not take account of catches of salmon which go unreported (including those taken illegally), and it is estimated that there may have been a total of 10 t of additional fish caught in 2016.

The total declared catch by nets and fixed engines in 2016 increased by 19% on the catch recorded in 2015, and was above the average of the previous five years. There has, however, been an overall marked decline in net catches over the past 15-20 years as a consequence of increased regulatory controls and the phasing out of some fisheries.

The policy to phase out salmon fisheries predominantly exploiting mixed stocks, where the capacity to manage individual river stocks is compromised, has had a major effect on catches. The largest phase out has occurred in the north east coast fishery. This was enhanced by a partial buy out in 2003, which reduced the number of drift net licences from 69 in 2002 to 16 (an immediate reduction of 77%). The ongoing phase out has resulted in the number of drift net licences continuing to fall; this currently stands at 11. The T/J nets have also been subject to a reducing NLO since 2012 with licence numbers falling from 63 in 2012 to 48 currently. Despite this, the north east coast fishery still accounts for the majority of the England and Wales net catch. In the past seven years, the fishery has accounted for between 86% and 93% of the total net catch (93% in 2016).

The provisional estimated rod catch in 2016 (including released fish) increased by 12% on 2015, but remained 25% below the average of the previous 5 years. Long-term trends in rod catch (Figure 11) indicate a progressive decline from the peak in the mid-1960's to the early 2000's. This was followed by a general improvement in the rod catch between 2004 and 2011, suggesting some degree of reversal in the declining trend, when catches, including fish caught and released, were typically above the long-term average. However, there has been a decline in catches since 2012 and the provisional rod catch for 2016 remains among the lowest in the entire time series. Low flows and poor conditions for angling may have contributed to this low catch (Section 9.2). However, as noted above, rod catch reporting rates have also been reduced since 2015 due, in part at least, to changes in the reporting procedures and this will have contributed to the apparent

reduction in declared catch in the last two years. Nonetheless, catches corrected for underreporting (Table 19, Figure 19) remain among the lowest recorded. It should also be noted that rod catch trends on individual rivers have varied from much more severe declines to substantial recoveries. The percentage of rod caught fish released by anglers has increased progressively since such data were first recorded in 1993; it is provisionally estimated that 80% of rod caught fish were released in 2016.

Rod catches of 1SW salmon show substantially greater year to year variability than those of MSW fish in numerical terms (Figure 19). Since the early 1990s, catches of 1SW salmon have ranged from a high of over 24,200 to just 5,600. Catches in the period 2004 to 2011 were generally higher than those in the early part of the time series. However, there was a sharp downturn in the 1SW rod catch from 2012 to 2014 that subsequently stabilised at low levels. The provisional corrected catch in 2016 was the second lowest in the time series, the lowest being in 2014. In contrast, rod catches of MSW salmon have demonstrated comparatively small numerical changes (range 3,100 to 10,900), and have been trending positively over the period as a whole. Catches of MSW salmon in 2016 were among the highest in the time series, and MSW salmon have comprised 50% of the total rod catch, on average, over the last five years, compared with an average of 25% in the preceding period back to 1992.

Assessment of national catch trend

The annual assessment of the status of salmon stocks in the northeast Atlantic carried out by the ICES North Atlantic Salmon Working Group, requires the best available time series of nominal catch data (i.e. fish retained) for each country. Figure 20 provides the current best estimate of the total catches of 1SW and MSW salmon in England and Wales, for the period since 1971. These data have been adjusted to take account of non-reported and illegal catches, and exclude Scottish origin fish taken in the north east coast fishery. Further details on the procedures used in deriving these estimates are provided in the background report.

The data indicate that catches of salmon in England and Wales (fish caught and killed only) have declined by approaching 90% from the early 1970s to the present time. There was a particularly marked decline in catch around 1990, which is consistent with the general perception of a decrease in the marine survival for many stocks around the North Atlantic, and consequently in the abundance of returning fish, at about this time. For much of the period, the decline has been greater in the non-maturing (i.e. potential MSW) fish than for the maturing (i.e. potential 1SW) component. However, there has been a marked increase in the proportion of MSW salmon in the catch in the last six years (Figure 20) and the overall reduction in catches between the start and end of the time series is now very similar (87%-89%) for both age groups of fish.

Table 9. Declared number and weight of salmon caught by nets & fixed engines and by rods in England & Wales, 1998-2016.

Year	Nets & Fix	ed Engines	Rods (inc. re	eleased fish)	Total o	aught	Total retained		
	No.	Wt (t)	No.	Wt (t)	No.	Wt (t)	No.	Wt (t)	
1988	77,317	271.1	32,846	123.6	110,163	394.8	110,163	394.8	
1989	68,940	239.3	14,728	56.6	83,668	295.9	83,668	295.9	
1990	71,827	277.8	14,849	60.3	86,676	338.1	86,676	338.1	
1991	37,675	144.6	13,974	55.5	51,649	200.1	51,649	200.1	
1992	33,849	130.4	10,737	40.2	44,586	170.5	44,586	170.5	
1993	56,566	202.3	14,059	51.1	70,625	253.4	69,177	248.1	
1994	66,457	241.9	24,891	94.0	91,348	335.9	88,121	323.7	
1995	67,659	245.7	16,008	61.0	83,667	306.7	80,478	294.6	
1996	32,680	125.7	17,444	71.5	50,124	197.2	46,696	183.2	
1997	31,459	107.2	13,047	48.4	44,506	155.6	41,374	141.8	
1998	25,179	84.7	17,109	59.1	42,288	143.9	36,917	122.9	
1999	34,167	124.4	12,505	49.8	46,672	174.2	41,107	150.0	
2000	50,998	182.7	17,596	67.5	68,594	250.2	60,953	218.8	
2001	43,243	153.3	14,383	56.8	57,626	210.1	51,307	184.2	
2002	38,279	133.2	15,282	60.4	53,561	193.6	45,669	161.0	
2003	17,219	69.2	11,519	48.5	28,738	117.7	22,206	89.0	
2004	16,581	59.1	27,332	104.5	43,913	163.6	30,559	111.4	
2005	16,811	60.9	21,418	85.8	38,229	146.7	26,162	96.5	
2006	13,578	50.5	19,509	72.1	33,087	122.6	22,056	79.8	
2007	10,922	37.9	19,984	71.6	30,906	109.5	19,914	67.1	
2008	8,647	30.2	23,512	83.7	32,159	113.9	19,036	63.7	
2009	7,505	29.3	15,563	62.0	23,068	91.3	13,910	54.0	
2010	22,615	72.9	25,153	89.4	47,768	162.3	32,695	108.7	
2011	26,193	101.2	23,199	98.5	49,392	199.7	34,575	135.8	
2012	8,484	31.0	18,450	81.1	26,934	112.1	14,926	58.0	
2013	18,176	67.2	14,920	62.2	33,096	129.4	22,608	84.1	
2014	11,976	45.2	10,307	43.4	22,283	88.6	14,219	54.3	
2015	17,321	60.7	10,263	42.8	27,584	103.5	19,262	68.0	
2016	20,312	76.9	11,536	50.6	31,848	127.5	22,471	85.9	
Mean (2011-2015)	16,430	61.1	15,428	65.6	31,858	126.7	21,118	80.0	

Note: Data for 2016 are provisional.

Table 10. Provisional regional declared number and weight of salmon caught by nets and rods (including released fish), 2016.

Former EA	Net cate	ch	Rod cat	ch	Total cat	:ch
Region / NRW	No.	Weight (kg)	No.	Weight (kg)	No.	Weight (kg)
North East	18,824	70,915	4,316	20,595	23,140	91,510
Anglian	0	0	0	0	0	0
Southern	0	0	361	1,342	361	1,342
South West	338	1,035	1,081	3,624	1,419	4,659
Midlands	167	816	324	1,566	491	2,382
North West	742	3,222	2,454	10,150	3,196	13,372
Wales	241	904	2,999	13,292	3,240	14,196
Unknown	0	0	1	4	1	4
E&W Total	20,312	76,892	11,536	50,573	31,848	127,465

Note: Rod catch data for 2016 were, in part, derived from a new on-line catch reporting system. Concerns have been raised about the completeness of the resulting data. Declared catches are reported in this table, however, adjusted values have been used for assessment purposes (see Table 19).

Table 11. Declared number of salmon caught by nets and fixed engines, 1971-2016. (N.B. Since 1999, catches include fish that were subsequently released.)

Year		Envir	ronment Age	ency Region			NRW	E&W
-	NE	-	Southern	SW	Midlands	NW	Wales	Total
1971	60,353		186	11,827	3,629	4,989	9,008	89,992
1972	51,681		317	13,146	4,467	3,941	9,633	83,185
1973	62,842		455	12,637	3,887	4,939	9,006	93,766
1974	52,756		346	8,709	3,152	6,282	8,883	80,128
1975	53,451		384	14,736	3,833	5,251	11,107	88,762
1976	15,701		195	11,365	3,194	5,348	7,712	43,515
1977	52,888		212	7,566	2,593	5,312	6,492	75,063
1978	51,630		163	6,653	2,327	7,321	7,426	75,520
1979	43,464		282	7,853	1,404	3,723	4,552	61,278
1980	45,780		137	9,303	3,204	3,769	6,880	69,073
1981	69,113		233	11,391	4,014	5,048	9,050	98,849
1982	50,167		94	6,341	1,738	3,944	4,481	66,765
1983	77,277		163	8,718	2,699	8,489	4,834	102,180
1984	59,295		157	8,489	3,376	7,957	3,947	83,221
1985	57,356		251	9,876	2,423	2,559	3,465	75,930
1986	63,425		461	11,548	3,300	6,682	5,031	90,447
1987	36,143		505	14,530	2,963	5,052	4,535	63,728
1988	50,849		477	11,799	3,511	5,671	5,010	77,317
1989	41,453	4	83	10,684	4,364	7,294	5,058	68,940
1990	51,530	9	43	5,892	4,397	5,579	4,377	71,827
1991	25,429	34	25	2,897	1,747	4,499	3,044	37,675
1992	20,144	11		5,521	2,117	3,123	2,927	33,843
1993	41,800	4		5,017	950	5,460	3,324	56,555
1994	46,554	3		6,437	2,321	6,143	4,995	66,453
1995	53,210	5		3,251	2,588	5,566	3,039	67,659
1996	18,581	3		5,093	1,608	4,464	2,931	32,680
1997	21,922	0		2,466	1,282	3,161	2,628	31,459
1998	18,265	3		1,759	1,074	1,778	2,300	25,179
1999	26,833	6		1,605	989	2,387	2,347	34,167
2000	43,354	0		2,171	973	3,496	1,004	50,998
2001	36,115	0		1,794	1,027	3,310	997	43,243
2002	30,980	112		1,404	1,190	3,318	1,275	38,279
2003	10,435	24		1,444	1,540	2,801	975	17,219
2004	11,017	53		1,295	769	2,477	970	16,581
2005	8,987	15		572	938	5,178	1,121	16,811
2006	7,566	15		477	864	3,170	679	13,578
2007	7,091	7		211	676	2,324	613	10,922
2007	6,241	9		587	871	2,324 981	160	8,849
2009	5,395	3		285	883	846	93	7,505
2010	19,982	1		506	238	1,665	223	22,615
2011	24,214	5		363	171	915	228	25,896
2012	7,318	2		258	210	577	106	8,429
2013	16,649	2		286	131	877	204	18,143
2014	10,800	7		291	177	479	222	11,976
2015	15,863	1		402	135	543	188	17,132
2016	18,824	0		338	167	742	241	20,312
Mean (2011–2015)	14,959	4		320	165	678	190	16,315
% change:							2.5	
2016 on 2015	+19			-16	+24	+37	+28	+19
2016 on 5-yr mean	+26			+6	+1	+9	+27	+24

Note: Data for 2016 are provisional.

Key: [a] Returns not required before 1989. It is unusual for salmonids positively identified as salmon to be caught in this sea trout fishery in any numbers; some reported fish may have been misidentified in some years. Hence, no period means are reported.

Table 12. Declared number of salmon caught by rods and the number and percentage of salmon released, 1993-2016.

Year		En	vironment Age	ency Regio	on		NRW	E&W	
	NE	Thames	Southern	SW	Midlands	NW	Wales	Total a	
Number caught									
1993	1,696	2	84	2,806	336	5,055	4,080	14,059	
1994	1,939	11	432	5,213	555	8,840	7,901	24,89	
1995	2,201	13	302	2,554	442	6,348	4,146	16,00	
1996	2,514	34	384	2,681	643	5,720	5,468	17,44	
1997	2,445	2	149	2,372	312	4,144	3,622	13,04	
1998	2,941	0	366	2,919	186	6,359	4,325	17,10	
1999	2,670	1	253	1,881	185	4,133	3,369	12,49	
2000	3,600	0	316	2,487	327	6,814	4,049	17,59	
2001	3,733	0	405	1,396	273	4,209	4,351	14,38	
2002	3,967	0	531	1,737	195	5,532	3,312	15,28	
2003	3,507	0	225	1,266	333	3,547	2,632	11,51	
2004	6,788	0	609	2,799	319	10,022	6,648	27,33	
2005	5,933	0	438	1,725	430	8,446	4,408	21,41	
2006	5,774	0	331	1,802	356	6,771	4,355	19,50	
2007	4,872	0	466	2,071	280	7,151	5,136	19,98	
2008	5,634	0	711	2,686	294	8,065	6,122	23,51	
2009	4,421	0	391	1,648	213	5,532	3,356	15,56	
2010	7,947	2	590	2,628	235	8,074	5,676	25,15	
2011	8,373	0	606	2,402	362	6,672	4,784	23,19	
2012	6,465	0	364	2,022	249	4,609	4,740	18,45	
013	6,469	0	271	1,085	332	3,539	3,224	14,92	
2014	4,269	0	336	799	211	2,530	2,162	10,30	
2015	2,936	0	451	1,592	469	2,179	2,636	10,26	
2016	4,316	0	361	1,081	324	2,454	2,999	11,53	
Number released	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			, , , ,			,	,	
993	191	1	36	262	17	668	273	1,44	
994	322	0	69	745	36	1,253	802	3,22	
1995	555	7	83	526	32	1,393	593	3,18	
1996	732	25	88	510	57	1,332	684	3,42	
1997	797	1	107	586	30	1,131	480	3,13	
1998	1,037	0	222	1,077	31	2,019	979	5,37	
999	1,348	1	137	898	65	1,795	1,203	5,44	
2000	1,888	0	247	1,152	103	2,816	1,264	7,47	
2001	1,855	0	397	635	128	1,779	1,347	6,14	
2002	2,257	0	528	920	73	2,534	1,346	7,65	
2003	2,265	0	225	746	153	1,859	1,172	6,42	
2004	3,612	0	609	1,572	174	4,672	2,487	13,21	
2005	3,426	0	438	1,130	271	4,376	2,407	11,98	
2006	3,283	0	331	1,130	210	3,450	2,285	10,95	
2007	2,545	0	466	1,406	145	3,430	2,265		
								10,92	
2008	2,831	0	711	1,825 1,080	155 110	4,360	3,153	13,03	
2009	2,533	0	391		119	3,236 4,807	1,736	9,09	
2010	4,714	2	587 604	1,795	133		2,974	15,01	
2011	5,232	0	604	1,678	222	3,904	2,766	14,40	
2012	3,995	0	358	1,454	185	2,774	3,186	11,95	
2013	4,444	0	266	870	227	2,320	2,331	10,45	
2014	3,193	0	332	657	166	1,953	1,691	7,99	
2015	2,114	0	449	1,338	340	1,708	2,164	8,11	
2016	3,334	0	359	900	251	1,902	2,445	9,19	

Table 12. continued

Number retained								
1993	1,505	1	48	2,544	319	4,387	3,807	12,611
1994	1,617	11	363	4,468	519	7,587	7,099	21,664
1995	1,646	6	219	2,028	410	4,955	3,553	12,817
1996	1,782	9	296	2,171	586	4,388	4,784	14,016
1997	1,648	1	42	1,786	282	3,013	3,142	9,915
1998	1,904	0	144	1,842	155	4,340	3,346	11,738
1999	1,322	0	116	983	120	2,338	2,166	7,046
2000	1,712	0	69	1,335	224	3,998	2,785	10,126
2001	1,878	0	8	761	145	2,430	3,004	8,240
2002	1,710	0	3	817	122	2,998	1,966	7,624
2003	1,242	0	0	520	180	1,688	1,460	5,094
2004	3,176	0	0	1,227	145	5,350	4,161	14,121
2005	2,507	0	0	595	159	4,070	2,098	9,435
2006	2,491	0	0	460	146	3,321	2,070	8,550
2007	2,327	0	0	665	135	3,313	2,619	9,062
2008	2,803	0	0	861	139	3,705	2,969	10,477
2009	1,888	0	0	568	94	2,296	1,620	6,467
2010	3,233	0	3	833	102	3,267	2,702	10,141
2011	3,141	0	2	724	140	2,768	2,018	8,793
2012	2,470	0	6	568	64	1,835	1,554	6,498
2013	2,025	0	5	215	105	1,219	893	4,462
2014	1,076	0	4	142	45	577	471	2,315
2015	822	0	2	254	129	471	472	2,150
2016	982	0	2	181	73	552	554	2,344
% of fish released								· · ·
1993	11		43	9	5	13	7	10
1994	17		16	14	6	14	10	13
1995	25		27	21	7	22	14	20
1996	29		23	19	9	23	13	20
1997	33		72	25	10	27	13	24
1998	35		61	37	17	32	23	31
1999	50		54	48	35	43	36	44
2000	52		78	46	31	41	31	42
2001	50		98	45	47	42	31	43
2002	57		99	53	37	46	41	50
2003	65		100	59	46	52	45	56
2004	53		100	56	55	47	37	48
2005	58		100	66	63	52	52	56
2006	57		100	74	59	51	52	56
2007	52		100	68	52	54	49	55
2008	50		100	68	53	54	52	55
2009	57		100	66	56	58	52	58
2010	59		99	68	57	60	52	60
2011	62		100	70	61	59	58	62
2012	62		98	72	74	60	67	65
2013	69		98	80	68	66	72	70
2014	75		99	82	79	77	78	78
2015	73 72		100	84	73	78	82	79
2016	72		99	83	72	78 78	82	80
Mean total catch – including fish	5,702		406	1,580	325	3,906	3,509	15,428
caught & released (2011-2015)	0,702		400	1,000	320	5,300	3,008	10,428
% change:	, 47		20	22	01	, 10	. 1 /	. 10
2016 on 2015	+47		-20	-32	-31	+13	+14	+12
2016 on 5-yr mean	-24		-11	-32	0	-37	-15	-25

Key: # Totals include some fish of unknown region of capture.

Notes: Rod catch data for 2015 and 2016 have, in part, been derived from a new on-line catch reporting system. Concerns have been raised about the completeness of the resulting data. Declared catches are reported in this table, however, adjusted values have been used for assessment purposes (see Table 19). Data for 2016 are provisional.

Table 13. Declared weight of salmon caught (retained fish only) and percentage of catch by weight taken in coastal, estuarine and riverine fisheries, 1988-2016.

Year	Coa	stal	Estua	rine	Rive	rine	Total
	Wt (t)	%	VVt (t)	%	Wt (t)	%	Wt (t)
1988	218.1	55	53.0	13	123.6	31	394.8
1989	159.3	54	80.0	27	56.6	19	295.9
1990	212.4	63	65.5	19	60.3	18	338.1
1991	105.9	53	38.7	19	55.6	28	200.1
1992	90.7	53	39.6	23	40.2	24	170.5
1993	158.8	64	43.4	18	45.9	18	248.1
1994	183.5	57	58.4	18	81.9	25	323.8
1995	200.3	68	45.4	15	48.9	17	294.6
1996	83.3	45	42.3	23	57.5	31	183.2
1997	80.5	57	26.7	19	34.6	24	141.8
1998	65.2	53	19.4	16	38.2	31	122.9
1999	101.0	67	23.1	15	26.0	17	150.0
2000	156.6	72	25.4	12	36.9	17	218.8
2001	128.6	70	24.2	13	31.3	17	184.2
2002	107.9	67	24.4	15	28.7	18	161.0
2003	42.0	47	26.6	30	20.4	23	89.0
2004	39.2	35	19.4	17	52.8	47	111.4
2005	32.2	33	28.3	29	36.0	37	96.5
2006	29.5	37	20.7	26	29.6	37	79.8
2007	23.9	36	13.4	20	29.8	44	67.1
2008	21.7	34	8.1	13	34.0	53	63.7
2009	20.2	37	8.6	16	25.2	47	54.0
2010	63.8	59	8.8	8	36.2	33	108.7
2011	93.1	69	6.4	5	36.3	27	135.8
2012	26.1	45	4.6	8	27.2	47	58.0
2013	61.5	73	5.6	7	17.0	20	84.1
2014	40.6	75	4.3	8	9.3	17	54.3
2015	55.2	82	4.4	6	8.0	12	67.6
2016	70.7	82	5.6	6	9.7	11	85.9
Mean (2011-15)	57.0	65	5.9	7	25.2	29	88.2

Notes: Coastal catches in 2016 from North East coast nets and Anglian coastal nets, but previously included River Parrett putcher rank (last fished 1999), River Usk drift nets (1997) & putcher rank (1999), SW Wales coastal wade (1995) & seine nets (1997), River Ogwen seine nets (2000), River Seiont/Gwyrfai seine nets (1997), River Dwyfawr seine nets (1999), N. Caernarvonshire seine nets (1996), River Clwyd sling (drift) nets (1997) and the SW Cumbria drift nets (2003). Riverine catches in 2016 from rod catches and River Eden coops; River Conwy basket trap (also operated in freshwater) was last fished in 2002.

Estuarine fisheries include all other nets and fixed engines not mentioned above.

Data for 2016 are provisional.

Table 14. Declared number, weight and percentage of salmon released by rods, and declared number and weight of salmon released by nets, 1993-2016.

Year	Salmor	released by rods	3	Salmon released b	by nets
	Number released	Weight (t)	% of declared catch	Number	Weight (t)
1993	1,448	5.26	10		
1994	3,227	12.19	13		
1995	3,189	12.11	20		
1996	3,428	13.99	20		
1997	3,132	13.77	24		
1998	5,371	20.98	31		
1999	5,447	23.87	44	118	0.4
2000	7,470	30.70	42	171	0.7
2001	6,143	25.50	43	176	0.4
2002	7,658	31.80	50	234	0.9
2003	6,425	28.20	56	107	0.5
2004	13,211	51.70	48	143	0.5
2005	11,983	49.80	56	84	0.4
2006	10,959	42.50	56	72	0.3
2007	10,922	42.00	55	70	0.3
2008	13,035	49.80	55	88	0.3
2009	9,096	37.00	58	62	0.3
2010	15,012	53.38	60	61	0.2
2011	14,406	62.40	62	411	1.5
2012	11,952	53.89	65	56	0.2
2013	10,458	45.26	70	30	0.1
2014	7,992	34.19	78	73	0.2
2015	8,113	34.74	79	209	0.8
2016	9,192	40.92	80	185	0.6

Notes: A proportion of the salmon released by nets are fish caught pre June, which, since 1999, are required to be released.

Catch limits now apply on a number of net and fixed engine fisheries necessitating salmon to be released once limits are reached.

A small proportion of the salmon released by nets have previously resulted from an agreement between the Environment Agency and netsmen fishing the estuary of the River Avon (Hants); this fishery ceased to operate in 2012.

There was no requirement for net caught salmon to be released prior to 1999.

Rod catch data for 2015 and 2016 have, in part, been derived from a new on-line catch reporting system. Concerns have been raised about the completeness of the resulting data. Declared catches are reported in this table, but somewhat under estimate the total catch. Adjusted values have been used for assessment purposes (see Table 19). Data for 2016 are provisional.

Table 15. Declared number and percentage of salmon caught by nets and rods taken before (<) and from (≥) 1 June, 1989-2016.

Year	Net o	catch (including	released fish	1)	Rod	catch (including	released fish	٦)
		Number		%		Number #		%
	< 1 June	≥ 1 June	Total	< 1 June	< 1 June	≥ 1 June	Total	< 1 June
1989	4,742	64,198	68,940	6.9	3,199	11,529	14,728	21.7
1990	7,339	64,488	71,827	10.2	2,397	12,290	14,687	16.3
1991	3,637	34,038	37,675	9.7	2,240	11,496	13,736	16.3
1992	2,497	31,352	33,849	7.4	1,012	9,725	10,737	9.4
1993	1,630	54,936	56,566	2.9	865	13,194	14,059	6.2
1994	4,824	61,633	66,457	7.3	2,609	22,282	24,891	10.5
1995	4,888	62,771	67,659	7.2	2,141	13,865	16,006	13.4
1996	2,913	29,767	32,680	8.9	2,691	14,753	17,444	15.4
1997	1,528	29,931	31,459	4.9	1,335	11,278	12,613	10.6
1998	832	24,335	25,167	3.3	712	15,275	15,987	4.5
1999	116	34,043	34,159	0.3	920	11,211	12,131	7.6
2000	19	50,979	50,998	0.04	760	16,496	17,256	4.4
2001	47	43,196	43,243	0.11	708	13,675	14,383	4.9
2002	32	38,247	38,279	0.08	815	14,250	15,065	5.4
2003	42	17,177	17,219	0.24	1,037	10,373	11,410	9.1
2004	35	16,546	16,581	0.21	1,168	25,777	26,945	4.3
2005	29	16,782	16,811	0.17	1,652	19,239	20,891	7.9
2006	17	13,561	13,578	0.13	1,618	17,891	19,509	8.3
2007	14	10,908	10,922	0.13	908	18,733	19,641	4.6
2008	17	8,630	8,647	0.20	1,068	22,444	23,512	4.5
2009 [a]	1	7,504	7,505	0.01	925	14,638	15,563	5.9
2010 [a]	1	22,614	22,615	0.00	682	23,811	24,493	2.8
2011 ^[b]	367	25,826	26,193	1.40	1,255	21,383	22,638	5.5
2012	59	8,425	8,484	0.70	1,175	17,025	18,200	6.5
2013	30	18,146	18,176	0.17	1,236	13,541	14,777	8.4
2014	47	11,417	11,464	0.41	957	9,350	10,307	9.3
2015	133	17,188	17,321	0.77	1,348	8,843	10,191	13.2
2016	104	20,208	20,312	0.51	1,151	10,380	11,531	10.0
Mean (1994-98)	2,997	41,687	44,684	6.7	1,898	15,491	17,388	10.9
Mean (1999-16)	62	21,189	21,250	0.3	1,077	16,059	17,136	6.3

Notes: National measures to protect 'spring' salmon introduced on April 15 1999 - required compulsory catch and release of all rod caught salmon prior to June 16, and closed most net fisheries prior to June 1. Those net fisheries still allowed to operate before June (mainly targeted at sea trout) are required to release all salmon alive.

Rod catch data for 2015 and 2016 have, in part, been derived from a new on-line catch reporting system. Concerns have been raised about the completeness of the resulting data. Declared catches are reported in this table, however, adjusted values have been used for assessment purposes (see Table 19). Data for 2016 are provisional.

[#] Excludes fish for which no capture date recorded.

No requirement to record net-released fish on new logbooks, so pre June catch under-estimated.

^[b] The increase in the pre-June catch from 2011 reflects the fact that salmon caught and released by T&J nets operating in the NE Region were not recorded over the period 1999-2010.

Table 16. Declared number of salmon caught by rods, and number and percentage of fish released, by weight category and season, 1998-2016.

Season	Λn	ril to June		luk	to Augus	¬+	Sontom	ber to Od	etobor	April	to Octob	oor
Wt. category (kg)		3.6–6.4	>6.4	,	3.6–6.4	>6.4		3.6–6.4	>6.4		3.6–6.4	>6.4
Number caught	\\ 3.0	3.0-0.4	/0.4		3.0-0.4	70.4		3.0-0.4			3.0-0.4	70.4
1998	523	753	111	3782	857	222	5767	2045	562	10,072	3,655	896
1999	354	864	262	1283	627	203	3667	2209	879	5,303	3,699	1,345
2000	388	771	206	2495	818	240	5813	3111	896	8,695	4,700	1,342
2001	205	971	203	1758	1041	200	4290	2536	724	6,253	4,548	1,127
2002	377	1014	300	2033	767	173	4434	2728	775	6,844	4,508	1,247
2003	282	817	241	885	839	188	2879	2400	862	4,046	4,056	1,292
2004	516	832	241	3374	1587	283	11124	6120	1212	15,014	8,539	1,736
2005	546	1454	327	2007	1198	169	8048	4941	974	10,601	7,593	1,470
2006	567	1505	269	1422	779	110	9176	3593	766	11,165	5,877	1,145
2007	565	931	161	2936	1897	233	7876	3445	707	11,377	6,273	1,101
2008	719	1,381	215	3,367	2,213	288	8,908	4,028	1,018	12,994	7,622	1,521
2009	500	849	172	2,163	1,933	221	4,955	3,096	802	7,618	5,878	1,195
2010	441	469	117	3740	1418	215	11284	4986	1099	15,465	6,873	1,431
2011	643	1,426	364	2,606	2,777	574	6,831	5,255	1,567	10,080	9,458	2,505
2012	597	1,395	512	2,504	2,750	558	4,476	3,762	1,185	7,577	7,907	2,255
2013	437	1,200	486	1,644	1,146	228	5,202	3,130	1,006	7,283	5,476	1,720
2014	388	879	214	1,296	1,096	184	2,993	2,270	647	4,677	4,245	1,045
2015	547	1,236	461	1,826	1,182	292	2,465	1,403	575	4,838	3,821	1,328
2016	591	1,154	545	1,879	1,477	562	2,453	1,649	1,060	4,923	4,280	2,167
Number released												
1998	136	113	20	643	197	40	2,076	900	253	2,855	1,210	313
1999	209	570	194	295	163	61	1,430	994	466	1,934	1,727	721
2000	221	532	148	499	229	72	2,325	1,431	502	3,045	2,192	722
2001	119	602	138	422	302	52	1,673	1,141	420	2,214	2,045	610
2002	241	659	213	488	207	57	2,084	1,473	488	2,813	2,339	758
2003	214	629	193	239	235	64	1,382	1,392	595	1,835	2,256	852
2004	283	576	143	1074	501	116	5,154	2,962	707	6,511	4,039	966
2005	464	1105	265	715	439	67	4,240	2,661	598	5,419	4,205	930
2006	499	1234	239	583	304	54	4,496	2,048	498	5,578	3,586	791
2007	436	666	142	1181	726	109	4,253	1,981	448	5,870	3,373	699
2008	507	948	170	1547	874	116	4,827	2,307	622	6,881	4,129	908
2009	378	630	148	957	743	104	2,925	1,963	549	4,260	3,336	801
2010	339	367	104	1743	604	107	6751	3141	802	8,833	4,112	1,013
2011	481	1,038	298	1,380	1,289	301	4,242	3,351	1,092	6,102	5,678	1,691
2012	449	1,046	443	1,391	1,371	334	2,960	2,502	871	4,800	4,919	1,648
2013	367	996	456	874	619	137	3,553	2,292	794	4,794	3,907	1,387
2014	345	768	204	830	649	112	2,406	1,823	553	3,581	3,240	869
2015	486	1,140	440	1,280	745	215	1,876	1,170	512	3,642	3,055	1,167
2016	485	988	488	1,355	970	391	2,007	1,410	944	3,847	3,368	1,823
Percentage (%) release						4.0						
1998	26	15	18	17	23	18	36	44	45	28	33	35
1999	59	66	74	23	26	30	39	45	53	36	47	54
2000	57	69	72	20	28	30	40	46	56	35	47	54
2001	58	62	68	24	29	26	39	45	58	35	45	54
2002	64	65 77	71	24	27	33	47	54	63	41	52	61
2003	76 55	77	80	27	28	34	48	58	69	45	56	66
2004	55	69	59	32	32	41	46	48	58	43	47	56
2005	85	76	81	36	37	40	53	54 57	61 65	51 50	55 61	63
2006	88 77	82	89	41	39	49	49	57 50	65	50	61 54	69
2007		72	88	40	38	47	54	58 57	63	52	54 54	63
2008	71 76	69 74	79	46	39	40	54 50	57	61	53 56	54 57	60 67
2009	76	74	86	44	38	47	59 60	63	68	56	57	67 71
2010	77 75	78 72	89	47 52	43	50	60	63	73	57 61	60	71
2011	75 75	73 75	82	53	46	52	62	64	70 74	61	60	68
2012	75 94	75	87	56	50	60	66	67	74 70	63	62 71	73
2013	84 90	83 97	94	53 64	54 50	60 61	68	73	79 95	66 77	71 76	81
2014	89 90	87	95 05	64	59	61 74	80 76	80	85 90	77 75	76 90	83
2015	89 92	92	95 90	70 72	63 66	74 70	76	83 ee	89 90	75 70	80 70	88
2016	82	86	90	72	66	70	82	86	89	78	79	84

Notes: 1998 Pre national byelaw.

1999 National byelaw requiring compulsory catch and release before 16 June introduced on 15 April. 2000 First full year of national catch and release byelaw.

Analysis based on representative sample of catch return data; totals differ from the declared catches (Table 10). Rod catch data for 2015 and 2016 have, in part, been derived from a new on-line catch reporting system. Concerns have been raised about the completeness of the resulting data. Declared catches are reported in this table, however, adjusted values have been used for assessment purposes (see Table 19). Data for 2016 are provisional.

Table 17. Provisional declared number and percentage of small (<3.6kg) and large (>3.6kg) salmon caught by net fisheries, 2016 (excluding released fish).

EA Region/NRW	Small s	almon (1SW)	Large sa	lmon (MSW)	Total
	(<3.6 kg)	%	(>3.6 kg)	%	
North East	9,453	54	7,940	46	17,393
South West	238	72	93	28	331
Midlands	16	10	139	90	155
North West	202	30	475	70	677
Wales	112	46	129	54	241
Total	10,021	53	8,776	47	18,797

Note: Weight split based on sub-set of catch data, so differ from totals provided in Table 10.

Table 18. Provisional declared number and percentage of 1SW (grilse) and MSW salmon caught by selected rod fisheries (including fish caught and released), 2016.

EA Region / NRW	River	No. 1SW	%	No. MSW	%
NE	Coquet	158	55	129	45
	Tyne	991	33	1995	67
	Wear	396	56	311	44
Southern	Itchen	120	61	78	39
	Test	73	46	86	54
SW	Hants Avon	32	19	134	81
	Frome	29	47	33	53
	Exe	100	81	24	19
	Teign	21	68	10	32
	Dart	22	81	5	19
	Tavy	12	60	8	40
	Tamar	108	58	78	42
	Lynher	47	76	15	24
	Fowey	75	90	8	10
	Camel	77	87	12	13
	Taw	93	40	141	60
	Torridge	28	54	24	46
	Lyn	3	50	3	50
Midlands	Severn	57	18	266	82
NW	Ribble	198	47	226	53
IVV	Lune	181	48	197	52
	Kent	97	70	41	30
	Leven	11	58	8	42
	Irt	22	88	3	12
	Ehen	97	84	18	16
	Derwent	112	58	82	42
	Eden	232	35	439	65
	Border Esk	149	41	215	59
Wales	Wye	191	20	741	80
	Usk	219	32	474	68
	Ogmore	13	68	6	32
	Tywi	110	43	146	57
	Tawe	28	61	18	39
	Taf	12	86	2	14
	E & W Cleddau	23	92	2	8
	Teifi	108	51	105	49
	Dyfi	26	46	30	54
	Mawddach	36	63	21	37
	Ogwen	24	80	6	20
	Conwy	53	58	38	42
	Dee	134	35	245	65
E&W Total		4,518	41	6,423	59

Note: Data only included for fish for which weight data provided on catch return and do not include all rivers; these data therefore differ from the total reported catch (Table 10).

Table 19. Estimated number of 1SW and MSW salmon (corrected for under-reporting) and the percentage composition of MSW salmon caught by rods (including fish caught and released), 1992-2016.

Year				Enviror	nment A	gency R	egion				NR	W	E&	W
	N	E	Soutl	hern	SV	V	Midla	ands	N\	V	Wa	les	Tot	tal
	1SW	MSW	1SW	MSW	1SW	MSW	1SW	MSW	1SW	MSW	1SW	MSW	1SW	MSW
1992	1,085	723	235	29	3,186	476	112	175	4,029	945	2,282	1,074	10,927	3,422
1993	966	729	465	82	3,216	706	145	192	5,245	999	4,788	1,197	14,825	3,905
1994	1,173	660	277	156	4,172	1,043	217	339	7,162	1,680	5,609	2,291	18,611	6,169
1995	1,270	1,082	218	65	1,914	860	71	402	5,380	1,102	2,769	1,491	11,622	5,002
1996	1,246	1,405	262	97	1,674	1,116	90	603	4,620	1,228	3,431	2,287	11,322	6,736
1997	1,325	1,084	120	30	1,932	483	54	266	3,780	667	2,382	1,021	9,593	3,551
1998	2,226	909	378	24	2,543	501	66	131	5,975	699	3,548	843	14,736	3,107
1999	1,586	1,351	206	72	1,386	683	70	132	3,589	955	2,278	1,175	9,115	4,368
2000	2,188	1,618	292	56	2,270	441	200	139	6,507	807	3,196	816	14,653	3,877
2001	2,628	1,478	344	61	1,275	261	90	210	3,936	694	3,638	1,149	11,911	3,853
2002	2,924	1,440	520	64	1,452	459	92	123	5,233	852	2,550	1,093	12,771	4,031
2003	2,353	1,505	151	74	947	446	117	249	3,121	780	1,766	1,129	8,455	4,183
2004	5,222	2,245	528	81	2,633	446	123	228	9,790	1,234	5,927	1,386	24,223	5,620
2005	5,481	2,088	306	132	1,404	494	151	322	7,804	1,487	3,588	1,261	18,734	5,784
2006	4,637	1,715	256	76	1,388	595	145	247	5,810	1,639	3,593	1,198	15,829	5,470
2007	3,798	1,431	382	84	1,615	656	171	136	6,725	1,029	4,110	1,267	16,801	4,603
2008	4,651	1,547	633	78	2,245	710	106	217	7,724	1,147	5,387	1,347	20,746	5,046
2009	3,686	1,346	157	95	1,326	477	74	157	4,686	1,346	2,323	1,163	12,252	4,584
2010	6,119	2,623	498	88	2,486	335	106	153	7,194	1,687	5,027	1,103	21,430	5,989
2011	4,422	4,788	420	183	1,882	760	105	293	4,564	2,775	3,066	2,126	14,460	10,925
2012	3,528	3,584	273	128	1,219	1,005	68	206	2,877	2,193	2,198	3,016	10,162	10,132
2013	3,978	3,138	140	158	778	416	76	289	2,790	1,103	1,828	1,719	9,590	6,822
2014	2,153	2,200	256	100	463	339	48	161	1,738	901	953	1,197	5,610	4,897
2015	2,074	1,919	326	287	1,232	933	136	502	1,323	1,641	1,414	2,171	6,505	7,453
2016	2,212	3,486	258	219	808	618	75	352	1,529	1,710	1,376	2,583	6,258	8,968
Mean (2011–2015)	3,231	3,126	283	171	1,115	691	87	290	2,658	1,722	1,892	2,046	9,265	8,046
% change:														
2016 on 2015	+7	+82	-21	-24	-34	-34	-45	-30	+16	+4	-3	+19	-4	+20
2016 on 5-year mean	-32	+12	-9	+28	-27	-10	-13	+21	-42	-1	-27	+26	-32	+11
Percentage MSW														
Year				Enviror	nment A	gency R	egion				NR	W	E&	W
	N	E	Soutl	hern	SV	V	Midla	ands	NΛ	V	Wa	les	Tot	tal
		_										_		

Year Environment Agency Region						NRW	E&W
_	NE	Southern	SW	Midlands	NW	Wales	Total
1992	40	11	13	61	19	32	24
1993	43	15	18	57	16	20	21
1994	36	36	20	61	19	29	25
1995	46	23	31	85	17	35	30
1996	53	27	40	87	21	40	37
1997	45	20	20	83	15	30	27
1998	29	6	16	66	10	19	17
1999	46	26	33	65	21	34	32
2000	43	16	16	41	11	20	21
2001	36	15	17	70	15	24	24
2002	33	11	24	57	14	30	24
2003	39	33	32	68	20	39	33
2004	30	13	14	65	11	19	19
2005	28	30	26	68	16	26	24
2006	27	23	30	63	22	25	26
2007	27	18	29	44	13	24	22
2008	25	11	24	67	13	20	20
2009	27	38	26	68	22	33	27
2010	30	15	12	59	19	18	22
2011	52	30	29	74	38	41	43
2012	50	32	45	75	43	58	50
2013	44	53	35	79	28	48	42
2014	51	28	42	77	34	56	47
2015	48	47	43	79	55	61	53
2016	61	46	43	82	53	65	59
Mean (2011–2015)	49	38	38	77	39	52	46

Note: Data for 2016 are provisional.

Rod catch data for 2015 and 2016 have, in part, been derived from a new on-line catch reporting system. Concerns have been raised about the completeness of the resulting data. Correction factors have therefore been applied to the catches reported in this table to provide the best estimate of the total catch in each former region. The methodology applied to correct for under-reporting is outlined in the background report.

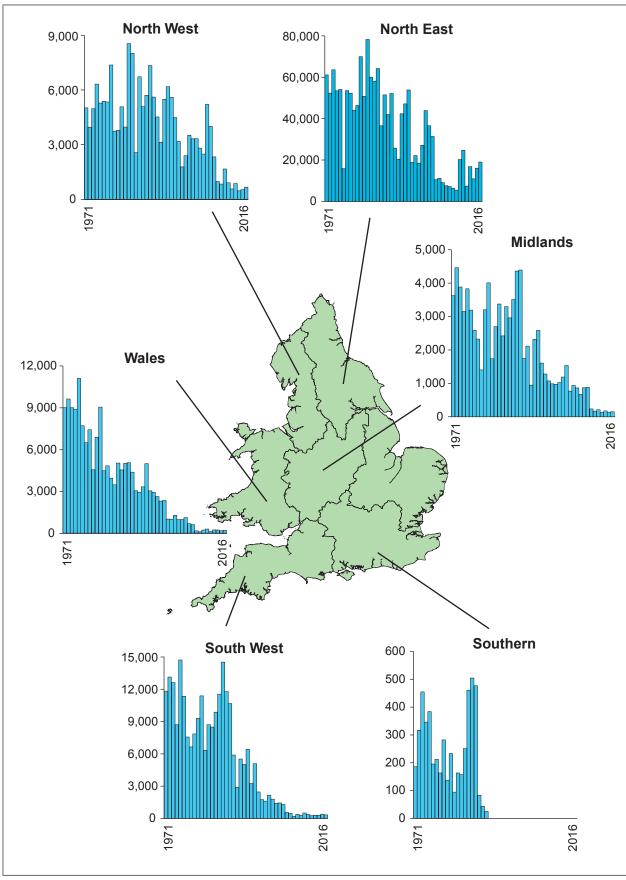


Figure 6. Declared number of salmon caught by nets and fixed engines, 1971-2016. (Note: y-axes not to same scale.)

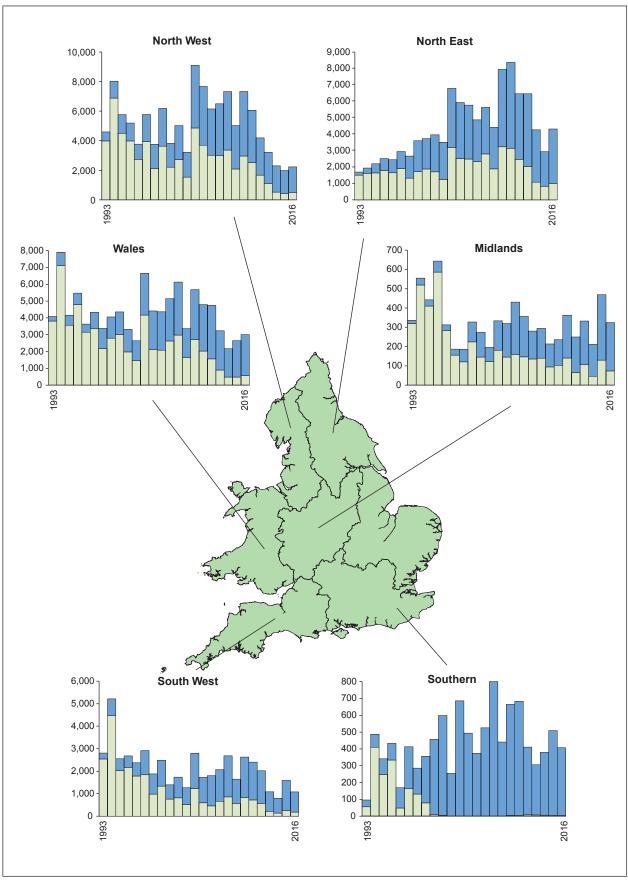


Figure 7. Declared number of salmon caught by rods and the number of salmon released, 1993-2016. The histograms display the total declared catch, with the blue shaded area denoting fish caught and released. (Note: y-axes not to same scale.)

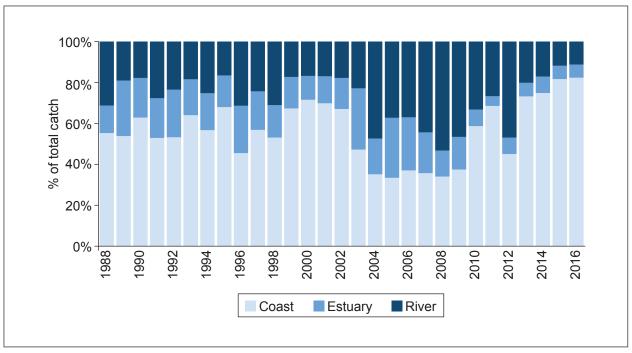


Figure 8. Percentage (by weight) of the declared total catch of salmon (caught and retained only) taken in coastal, estuarine and riverine fisheries, 1988-2016.

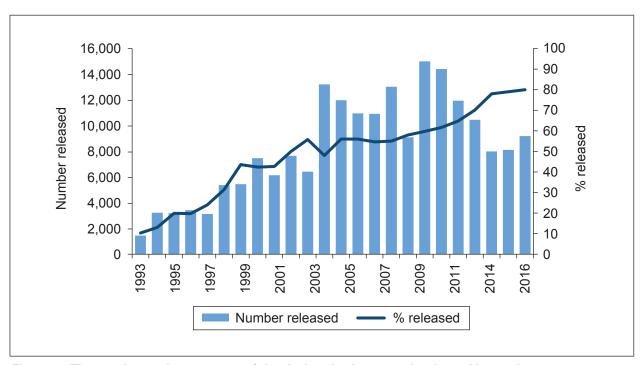


Figure 9. The number and percentage of the declared salmon catch released by anglers, 1993-2016.

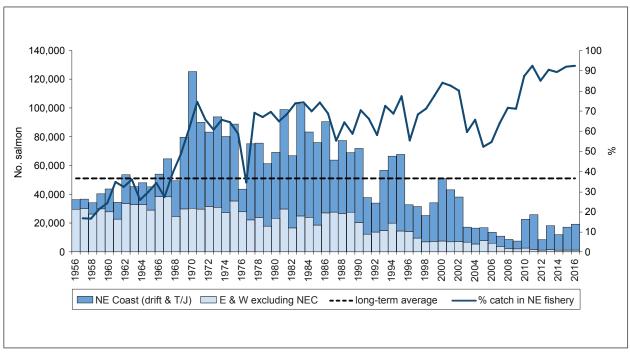


Figure 10. Declared number of salmon caught by nets and fixed engines in England & Wales and the percentage of the catch taken in the north east coast fishery, 1956-2016.

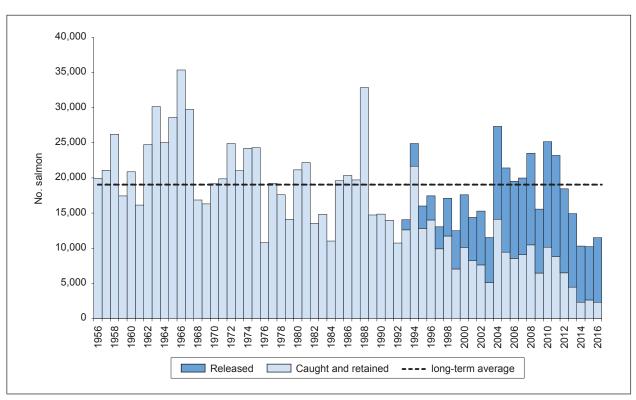


Figure 11. Declared number of salmon caught by rods in England & Wales, 1956-2016.

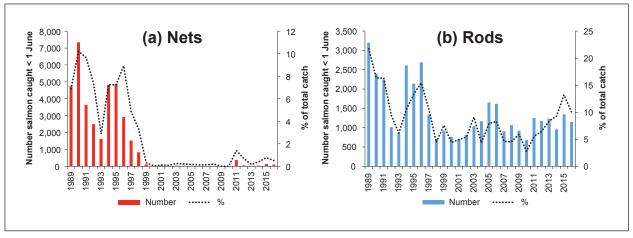


Figure 12. Declared number and percentage of salmon caught by (a) nets and (b) rods before 1 June, 1989-2016.

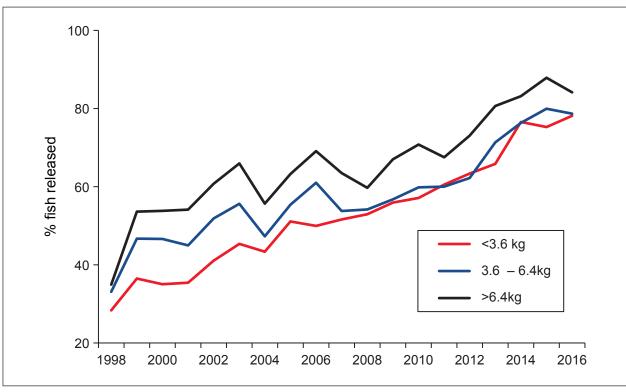


Figure 13. Percentage of rod caught fish released by anglers by weight category, 1998-2016.

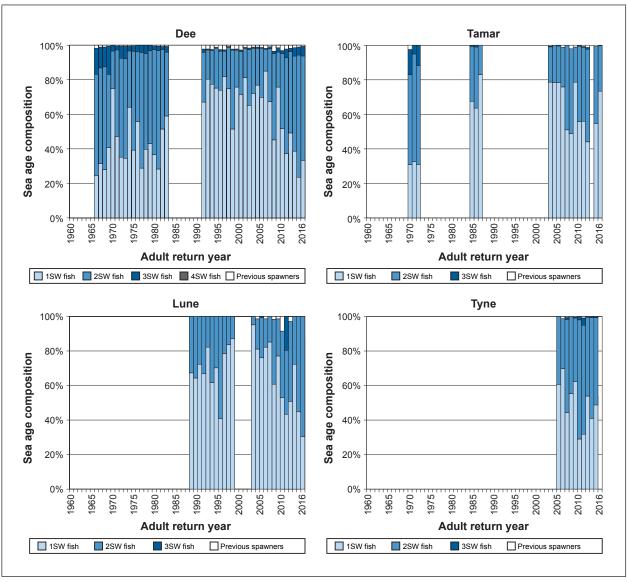


Figure 14. Variation in the proportions of 1SW and older salmon returning to the Rivers Dee, Tamar, Lune and Tyne over available time series.

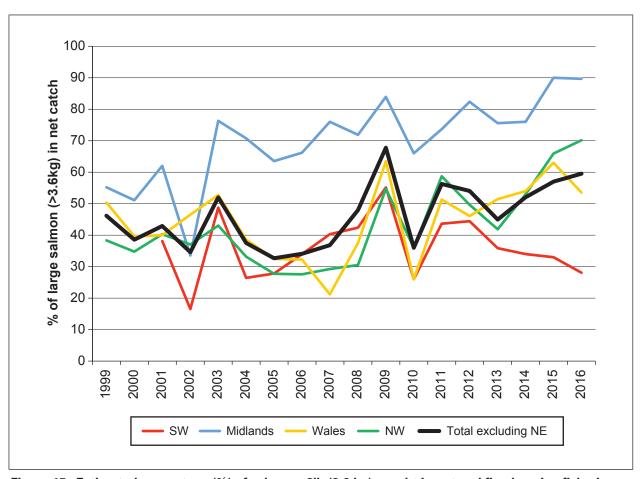


Figure 15. Estimated percentage (%) of salmon >8lb (3.6 kg) caught in net and fixed engine fisheries (excluding NE Region), 1999-2016.

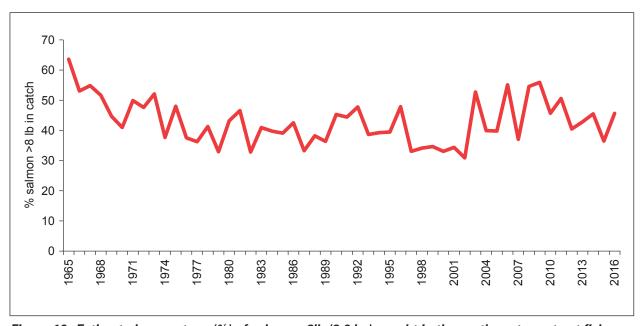


Figure 16. Estimated percentage (%) of salmon >8lb (3.6 kg) caught in the north east coast net fishery (as declared by netsmen), 1965-2016.

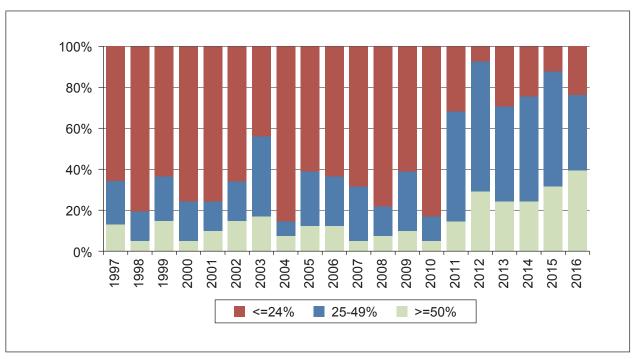


Figure 17. Estimated percentage of selected principal salmon rivers with \geq 50%, 25-49% and \leq 24% of MSW salmon in the declared rod catch, 1997-2016.

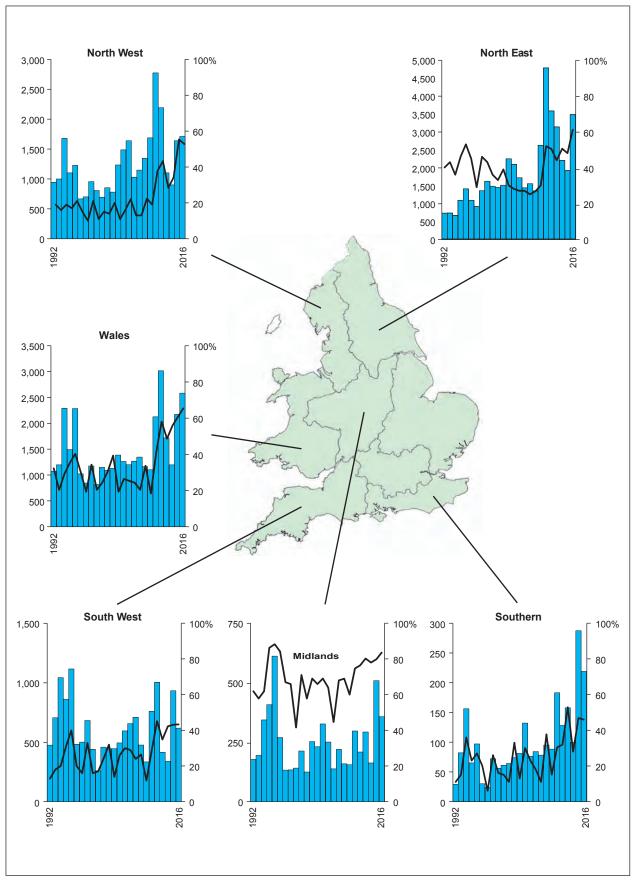


Figure 18. Estimated number (histogram) and percentage (solid line) of MSW salmon caught by rods, 1992 to 2016.

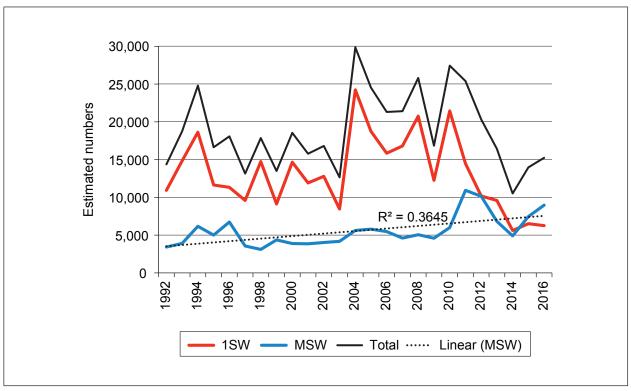


Figure 19. Estimated total number (corrected for under-reporting) of 1SW, MSW and all salmon caught by rod fisheries in England and Wales (including fish caught and released), 1992-2016.

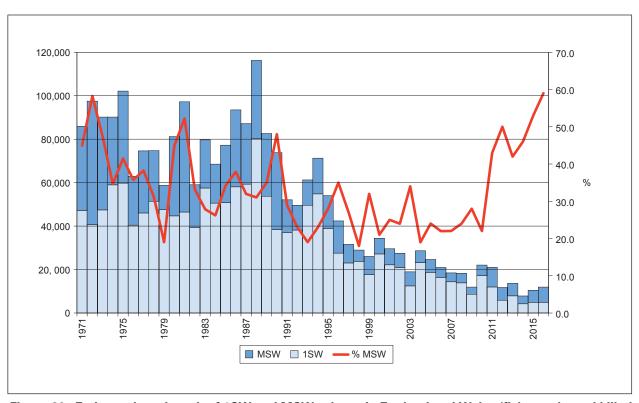


Figure 20. Estimated total catch of 1SW and MSW salmon in England and Wales (fish caught and killed only), 1971-2016, as used in the ICES PFA assessment.

5. CATCH PER UNIT EFFORT (CPUE)

Since catch levels are influenced strongly by the level of fishing effort, catch per unit effort (CPUE) data are commonly used as well as the declared catch in order to help evaluate the status of stocks. However, the relationship between CPUE and abundance can be influenced by confounding factors in both rod and net fisheries. It should also be remembered that net and rod fisheries operate sequentially (the net fisheries exploit the returning fish first), and over different time periods (fishing seasons). Rod fisheries are active over a longer period and typically extend into the early autumn after net fisheries have ceased to fish. Thus, changes in patterns of runtiming may also impact on CPUE values in the different fisheries.

- **Nets** Regional CPUE data for net fisheries for the period since 1997 are presented in Table 20. These data are based on the number of tides fished by netsmen, except in the North East Region where the number of days fished is used. In order to provide comparable time series, the data only include fishing gears that have operated in a consistent manner over the full period. Plots of the standardised CPUE Z-scores for the various regions and for net fisheries overall (expressed as a 2-year moving average) are provided in Figure 21.
- Rods Regional CPUE data for rod fisheries for the period since 1997 (expressed as the number of salmon caught per 100 days fished) are presented in Table 21. Plots of the standardised CPUE Z-scores for the various regional rod fisheries and the overall rod CPUE for England and Wales are provided in Figure 22 for the same period. Individual CPUE data for all the major salmon rivers in England and Wales are reported in the annual catch statistics reports (e.g. Environment Agency, 2017). The trends in rod CPUE for the different regions show a reasonable degree of coherence and available evidence from selected rivers where we have estimates of returning stock size, as well as CPUE, suggests rod CPUE values provide a reasonable indicator of stock abundance (Figure 23).

Overview of CPUE in 2016

The overall catch per unit effort (CPUE) for nets and fixed engines in 2016 increased on 2015, and was higher (31%) than the previous 5-year mean (2011-2015). CPUE in 2016 was below the 5-year average in Wales and for the drift nets in the NE coastal fishery, but above the 5-year mean elsewhere (Table 20). Normalised CPUE values (Z-scores) for the various former regions and an overall average (Figure 21) indicate that CPUE, and by inference abundance, peaked during the period 2000-02, then declined steadily until 2009 (which had the lowest CPUE of the time series), before increasing again between 2010 and 2011. Since that time overall CPUE has oscillated; in 2016 it was above the long-term average and among the highest values recorded in the time series. An earlier analysis of net CPUE and river flow suggests above average flows in July (when a high proportion of the net catch typically occurs) tend to result in reduced CPUE values.

Rod CPUE in 2016 increased on 2015 in most regions, with particularly large increases evident in the North East and Wales. For all regions, except the North East, rod CPUE was equal to or above the 5-year average (Table 21). In the North East Region, rod CPUE increased in 2016, but remained slightly below the 5-year average (down 3%). Normalised CPUE values (Z-scores) for rod fisheries (Figure 22) indicate a largely positive trend between 1997 and 2012, and by inference increasing abundance (Figure 23). However, overall CPUE decreased from 2013 to 2015 followed by a modest upturn in 2016. Overall CPUE in 2016 was close to the long-term average.

Table 20. Mean catch per unit of effort (CPUE) for salmon net fisheries, 1997-2016.

Year		Environme	nt Agency Reg	gion		NRW	E&W
	NE Drift nets (June-August)	NE	SW	Midlands	NW	Wales	(incl. NE Drift nets, excl. Midlands)
1997	6.48	4.40	0.70	0.23	0.63	0.07	1.23
1998	5.92	3.81	1.25	0.24	0.46	0.08	1.17
1999	8.06	4.88	0.79	0.31	0.52	0.20	1.35
2000	13.06	8.11	1.01	0.33	1.05	0.18	2.19
2001	10.34	6.83	0.71	0.33	0.71	0.16	1.77
2002	8.55	5.59	1.03	0.53	0.90	0.23	1.66
2003	7.13	4.82	1.24	0.60	0.62	0.11	1.43
2004	8.17	5.88	1.17	0.36	0.69	0.11	1.65
2005	7.23	4.13	0.60	0.60	1.28	0.09	1.35
2006	5.60	3.20	0.66	0.51	0.82	0.09	1.04
2007	7.24	4.17	0.33	0.51	0.75	0.05	1.14
2008	5.41	3.59	0.63	0.64	0.34	0.06	0.96
2009	4.76	3.08	0.53	0.64	0.51	0.04	0.89
2010	17.03	8.56	0.99	0.26	0.47	0.09	2.08
2011	19.25	9.93	0.63	0.14	0.34	0.10	2.25
2012	6.80	5.35	0.69		0.31	0.21	1.36
2013	11.06	8.22	0.54		0.39	0.08	1.89
2014	10.30	6.12	0.43		0.31	0.07	1.42
2015	12.93	7.22	0.64		0.39	0.08	1.71
2016	10.95	9.98	0.78		0.38	0.10	2.26
Mean (2011–2015)	12.07	7.37	0.59	0.14	0.35	0.11	1.73
No. fisheries	2	4	3	1	6	6	19
% change (2016 on 5-year mean)	-9	+35	+34		+9	-4	+31

Notes: Fisheries were selected on the basis that they were fished consistently during the period. Data are expressed as catch per licence-tide, except for the North East, for which data are recorded as catch per licence-day
From 2012, the fishery operating in the Severn (Midlands Region) has been limited by a catch limit (cap); the Midlands data have therefore been removed from the combined E&W total for the whole time series.

Data for 2016 are provisional.

Table 21. Mean catch per unit of effort (CPUE) for salmon rod fisheries, 1997-2016.

Year		Er	nvironment Ager	ncy Region			NRW	England &
	NE	Thames	Southern	SW	Midlands	NW	Wales	Wales
1997	5.0	0.6	3.1	5.2	1.7	5.3	2.6	4.0
1998	6.5	0.0	5.9	7.5	1.3	8.6	3.9	6.0
1999	7.4	0.3	3.1	6.3	2.1	7.4	3.5	5.5
2000	9.2	0.0	5.2	8.8	4.9	11.7	4.4	7.9
2001	11.3	0.0	11.0	6.6	5.4	15.4	5.5	8.7
2002	9.4	0.0	18.3	6.0	3.5	10.0	3.6	6.8
2003	9.7	0.0	8.8	4.7	5.2	8.3	2.9	5.7
2004	14.7	0.0	18.8	9.6	5.5	17.4	6.6	11.4
2005	12.4	0.0	12.7	6.2	6.6	13.9	4.5	9.0
2006	14.2	0.0	15.6	8.7	6.6	13.3	5.9	10.1
2007	11.7	0.0	18.0	8.7	5.7	14.2	6.0	9.6
2008	12.7	0.0	21.8	10.9	5.8	15.3	7.3	10.5
2009	9.5	0.0	13.7	5.7	3.6	9.3	3.6	6.6
2010	16.7	2.8	17.1	9.9	4.3	14.1	6.5	10.2
2011	17.5	0.0	14.5	9.4	6.5	11.4	6.0	10.9
2012	15.4	0.0	17.3	9.2	6.3	9.1	6.5	10.6
2013	16.7	0.0	10.0	5.9	7.9	7.7	5.7	8.9
2014	12.1	0.0	11.9	4.8	5.0	6.9	4.4	7.1
2015	8.7	0.0	16.6	8.8	9.0	7.0	4.8	7.1
2016	13.7	0.0	18.1	7.8	10.0	8.4	6.6	9.2
Mean (2011–2015)	14.1	0.0	14.1	7.6	7.0	8.4	5.5	8.9
% change:								
2014 on 2015	+57		+9	-11	+11	+20	+38	+30
2016 on 5-yr mean	-3		+29	+2	+44	0	+21	+3

Notes: Based only on catch returns for which effort data have been reported.

CPUE is expressed as number of salmon (including released fish) caught per 100 days fished.

Data for 2016 are provisional.

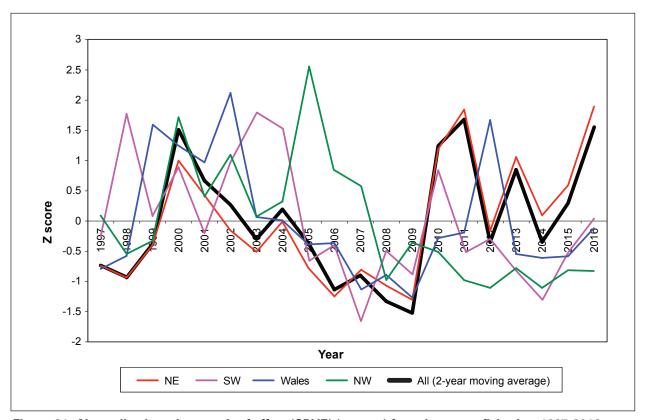


Figure 21. Normalised catch per unit of effort (CPUE) (z-score) for salmon net fisheries, 1997-2016. Note: the bold black line for all fisheries has been smoothed using a 2-year moving average.

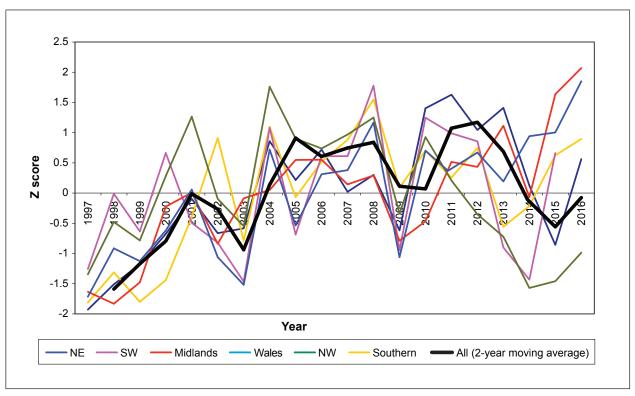


Figure 22. Normalised catch per unit of effort (CPUE) (z-score) for salmon rod fisheries, 1997-2016. Note: the bold black line for all fisheries has been smoothed using a 2-year moving average.

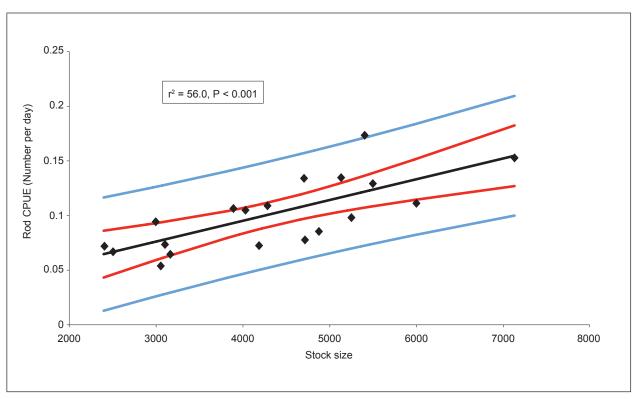


Figure 23. The relationship between mean rod CPUE and mean stock size for the Rivers Fowey, Dee and Lune, 1997-2015. Note: the red lines are 95% confidence intervals and the blue lines 95% prediction intervals.

6. EXPLOITATION RATES

Care is required in trying to draw general conclusions about current stock status from catches alone. The actual relationship between catch and stock abundance depends upon exploitation rates (i.e. the proportion of the salmon population taken in the catch - both retained fish and those released), although it is important to remember that fishing effort and catchability (the proportion of the stock taken per unit of fishing effort) can be influenced by factors such as river flow, angler activity and changes in run timing. Exploitation rates can be estimated where there is a fishery-independent measure of the salmon run, such as that obtained from fish counters and traps (Table 23 and Figure 28), and these data can then be compared against the catch (both total catch and retained fish) to estimate exploitation rates (Table 22 and Figure 24). These show varying trends, but the 'true' exploitation rates (i.e. fish retained) show a marked decline in most rivers over the available time series, due largely to the increasing use of catch-and-release.

Overview of exploitation rates in 2016

There was considerable variability in the exploitation rates in rod fisheries in 2016. In some rivers, exploitation rates were higher than those in 2015 and above the average of the previous five years, while in other rivers the opposite applied. Low flows and poor conditions for angling in many catchments are also expected to have affected exploitation rates (Section 9.2). While total exploitation rates remain quite high on some rivers, the 'true' exploitation rates (i.e. fish retained) show a marked decline over the available time series in almost all rivers. This is largely attributable to catch and release, which has increased from 10% to 80% over the past 2 to 3 decades, with mandatory catch and release now applying on some rivers. The exploitation rates for the net fisheries, where estimates have been possible, have either been reduced to zero or been greatly reduced, largely reflecting a major reduction in effort.

Assessment of national trend in exploitation

Estimates of aggregated national exploitation rates, split by sea-age class, are required for use in the ICES annual assessment of stock status to estimate numbers of returning fish. The procedures used in deriving these estimates are described in the background report. The overall trends in national exploitation rate derived from this process are provided in Figure 25. These indicate that exploitation rates have fallen from about 50% for 1SW fish and 35-40% for MSW fish at the start of the period to 15% and less than 10%, respectively, in recent years due to the measures taken to control both legal and illegal fisheries. The decline in exploitation rates occurred particularly in the 1990s, but has levelled out more recently.

Table 22. Estimated exploitation rates (%) for selected rod and net fisheries, 1988-2016.

											Roc	Rod Fisheries	es											Ne	Net Fisheries	S.	
Region/NRW	N			Southern	ern					SW						MN	>				Wales			NN	>	Wales	SO
River	Tyne (c)	0	Test		Itchen		Hampshire Avon	3 Avon	Frome ^[a]	[8	Tamar		Fowey	 	Kent	Leven	en	Lune	0	Dee lbl		Dee lbl	=	Kent Leven	en Lune	e Dee	0
Wild/Hatchery	8		M/H	_	8		8		8		8		8		>	M		>		W (1SW)		W (MSW)		W	Μ/	8	
Year	All	Ret.	M	Ret.	M	Ret.	All	Ret.	All	Ret.	AII R	Ret.	AII R	Ret. /	All Ret.	. All	Ret.	All	Ret.	M	Ret.	All	Ret.	Ret. F	Ret. Re	Ret. Ret.	et.
1988			40	40	34	34			12	12																	
1989			29	29	45	45			ω	00				.,	37 37			29	29					26		44	
1990			37	37	53	53			12	12				. 4	28 28	~~		45	45					6		36	
1991			26	26	89	89			6	6					52 52			51	51					11		31	
1992			53	53	82	82			13	13				7	43 43	-		54	54	14	14	18	18	4		29 1	15
1993			37	34	30	30			12	_					53 47	_		47	41	11	10	15	13	7		30 1	11
1994			40	31	29	54			15	14	13	12		.,	36 31			8	29	15	13	21	19	4		35 2	22
1995			32	26	17	10			10	6	00	7	16	12 2	22 18			23	17	ω	7	13	12	4		27 1	9
1996			24	18	89	52			16	13	00	7	21	14	15 12			22	17	0	7	10	00	-		24 1	17
1997			15	_	41	15			œ	9	9	4	30	16	22 18	-		24	18	œ	7	6	9	7		28 1	17
1998			27	15	33	7			6	9	10	9	25	11	37 27	_		21	12	10	7	10	2	_		12 1	15
1999			20	=======================================	4	14			16	7	7	က	13	9	24 15			23	12	13	10	10	2	2		15 2	22
2000			27	ത	82	6			14	00	7	4	22	10	26 16	9	_	19	œ	∞	2	20	13	က	10	17 1	13
2001			53	—	68	_			16	6	ო	2	16	00	10 6	,-		10	4	15	11	12	2	9		17 1	14
2002			33	0	79	0			14	9	2	_	23	10	12 6	8	_	16	9	7	4	2	0	_	2	18 1	12
2003			46	0	8	0			1	ო	2	_	15	2	9 2	4	0.1	13	9	10	7	00	2	2	-	12 1	13
2004	23	10	41	0	37	0			6	4	7	က	13	9	21 12			16	9	17	T	17	10	0		9	6
2005	29	12	31	0	21	0			12	4	2	_	23		20 11			17	7	15	00	20	7	ო		19 1	13
2006	25	10	20	0	29	0	12	0	ω	0.3	4	_	27	10	20 12	31	0	17	∞	11	9	14	2	ო	10	15	ω
2007	33	16	33	0	70	0	10	0.3	10	0	2	2	14	2	19 12	00	0	=======================================	4	12	7	17	9	0.2	6.0	7	oo
2008	39	20	28	0	28	0	б	0	D	0.2	2	_	23	7	52 31	12	1.0	16	7	13	2	26	15	0	0.3	3 0	8.0
2009	38	16	20	0	74	0		0.3	9	_	7	2	15	7 9	41 21	26	0	=======================================	4	10	4	12	7	2	2	2	0
2010	27	1	26	0	48	0	6	0.2	2	0	9	2	28	, ,	31 16	3 18	1.3	15	9	15	00	17	4	—	0.3	2	0
2011	34	13	32	0	42	0	17	0.3	_	0.2	9	2	21		n/a n/a		1.7	19	œ	16	9	20	10	n/a	0	4	0
2012	41	16	31	0	09	0	о	0	13	0	17	2	21		n/a n/a	1 26	0	16	7	18	9	20	4	n/a	0.5	ო	0
2013	27	ω	32	0	32	0	10	0	23	0	9	—	12	4	n/a n/a	19	0	1	2	6	ო	13	2	n/a	0.7	2	0
2014	22	9	23	0	32	0	6	0	14	_	4	<u></u>	18		n/a n/a	00	0	=	2	10	2	10	_	n/a	0.3	9	0
2015	19	2	25	0	38	0	29	0	45	-	ω	_	25		n/a n/a	3	0	13	4	1	ო	1	2	n/a	0.3	7	0
2016	n/a	n/a	24	0	87	0	18	0	25	_	9	_	33	9 u	n/a n/a	11	0	n/a	n/a	6	1	14	2	n/a	0.4 r	n/a	0
Mean (2011–2015)	29	10	29	0	41	0	15	0	20	0	00	2	19	9		20	0	14	Ŋ	13	4	15	4		0	2	0
% change																											
2016 on 2015			ကု		+130		-39		-45		-32	-22 +	+29 +	+21		+223				-11	-47	+32	+7	Т	+36		
2016 on 5-yr mean			-15		+110		+19		+22		-34	-51 +	+ 69+	+48		-46				-24	-65	ကု	-49	Т	+15		
Notes: It is unclear to what extent total rod exploitation rate ('All') has been affected by catch and	to what e	extent to	extent total rod exploitation rate	xploitati	ion rate ('.	All') has	been aff.	ected by	catch an	d release	and the	repeat ι	capture c	release and the repeat capture of fish; no correction factor has been applied	sorrection	factor ha	s been a	oplied.									

It is unclear to what extent total rod exploitation rate ('All') has been affected by catch and release and the repeat capture of fish; no correction factor has been applied. The entire catch from net fisheries is assumed killed.

Data for 2016 are provisional.

Data based on Game & Wildlife Conservation Trust counter at East Stoke, and supplied courtesy of GWCT.

Data derived from mark recapture experiment.

Tyne values are provisional; work is ongoing with Newcastle University to further refine RSEs. Кеу:

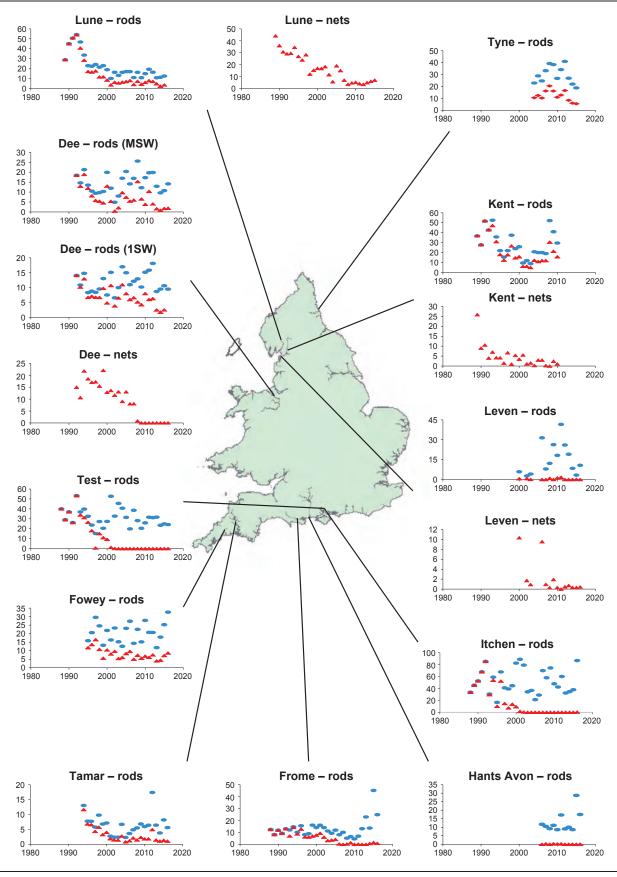


Figure 24. Estimated exploitation rates (%) for selected rod and net fisheries in England & Wales, 1988-2016. For rod fisheries, the figures display exploitation rates for all fish caught – i.e. including fish released (blue dots) and fish killed (red triangles). Note that estimates for the Dee rods have been split by sea-age class (1SW and MSW), all other estimates are combined for all ages. Data for net fisheries are for retained fish only.

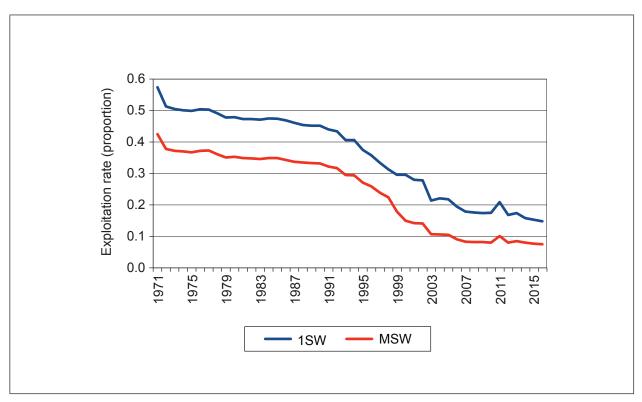


Figure 25. Estimated national exploitation rates for 1SW and MSW salmon caught in England and Wales (fish caught and killed only), including estimated non-reported catch, 1971-2016, as used in the ICES PFA assessment.

REPORT ON STATUS OF STOCKS IN 2016

7. STOCK MONITORING

The Environment Agency and Natural Resources Wales monitor both stocks and fishery performance in most rivers supporting salmon stocks in England and Wales. This includes operating counters, undertaking surveys of juvenile fish and collecting fishery statistics. These data provide the basis for assessing stock status and informing management decisions. In addition to protecting the abundance of stocks, managers need to maintain the diversity of stocks in terms of their biological characteristics. Measures of stock diversity potentially encompass a wide range of biological characteristics, but those of greatest significance for the management of stocks are the population structure within the river, the river-age of the emigrating smolts and the run-timing and sea-age composition of the returning adult stock. Such data tend to be derived from a small number of 'indicator' rivers. Further details on the various monitoring programmes are provided in the background report.

Juvenile surveys (salmon fry and parr)

A programme of juvenile salmonid monitoring is carried out to identify spatial variation in juvenile populations and temporal trends in their abundance. The habitat at all sites is assessed such that the abundance of the juvenile salmon population at any site can be compared with standard reference conditions. A classification scheme is also applied such that the proportion of sites falling into different salmon abundance classes (Classes A to F) provides a measure of the health of the juvenile salmon populations for each river. Figure 26 presents the proportion of sites in each catchment that fall into the top three categories (Classes A to C) over the period 2011 to 2016. Thus, for catchments shaded red, less than 25% of sites fall within this category, while for those shaded green more than 75% of sites are at or above average. Overall, the majority (68%) of sites surveyed over the period were in the lowest two classes (Classes E or F). The proportion of sites surveyed that fell within Classes A to C varied between regions from 6% to 30%. Work is continuing to revise and update the procedures for collecting and interpreting juvenile data.

Figure 27 presents annual estimates of the overall percentage of sites within principal salmon rivers falling within classes A to C viewed over the available time series (2005 – 2016). It should be noted that the same sites are not sampled every year and so are not strictly directly comparable. Nonetheless, these data provide the best general indication of overall changes in juvenile recruitment throughout England and Wales over the period. The data show considerable variability in the percentage of sites falling within classes A-C with a notable decline from over 50% in 2009 to below 30% in 2010. The value for 2016 is the lowest in the time series (23%) and highlights the poor juvenile recruitment that was observed throughout England and Wales last year (Section 10).

Upstream counts of adult salmon

Electronic fish counters or traps are operated on several catchments to provide estimates of the upstream run of adult salmon and sea trout. Where it is possible to separate the species, the counts are adjusted to provide estimates of the numbers of returning salmon. For some rivers (e.g. River Tyne) the time-consuming validation procedures mean data may not be available for the latest year. A number of such monitoring facilities have also ceased to operate in recent

years as a result of changes in operating procedures, counter / trap damage or due to budgetary restrictions. Available time series, including those that have been recently discontinued, are presented in Table 23 and Figure 28.

All the available returning stock estimates and counts for 2016 were below the levels recorded in 2015 and, in most cases were below the recent 5-year averages. On three rivers (Fowey, Leven and Dee) the 2016 values were at or among the lowest in the time series for these rivers, although the Leven value is known to be a minimum estimate due to some periods of counter downtime. There appear to be marked differences in the trends over time, with some rivers showing an increasing trend (e.g. Test, Itchen and Leven), while others indicate a decline, particularly in more recent years (e.g. Caldew, Lune and Dee).

Tagging investigations

Tagging studies have often been employed to monitor stocks and to evaluate the outcome of different management initiatives, although tagging effort has fallen in recent years. In 2016, around 5,700 wild salmon smolts were microtagged and released in England and Wales to assess levels of marine survival; all these fish were also adipose fin-clipped. A further 11,600 hatchery parr and smolts and 6,100 wild parr were marked with adipose fin clips; all the wild parr were also fitted with PIT tags and some of the hatchery fish were used in acoustic tracking investigations. In addition, about 500 adult salmon were tagged for the assessment of returning stocks. Details of the tagged and marked salmon released each year around the whole North Atlantic are compiled annually by ICES. Details of the fish tagged in England and Wales in 2016 are provided in Table 24.

Marine survival

Evidence from monitored rivers around the North Atlantic indicates that the survival of salmon during the marine phase of their life-cycle has declined in recent decades. Time series of marine survival estimates, measured as percentage return rates, are shown in Table 25 for the River Corrib (Ireland), River Bush (Northern Ireland) and River North Esk (Scotland) (data from ICES, 2017). Shorter time series for the Rivers Dee (Wales), Tamar and Frome (Table 25 and Figure 29) indicate similar low levels of marine survival in recent years. It was not possible to monitor adult returns on the Tamar in 2014, or to undertake any smolt tagging, so there are therefore gaps in this time series. However, this programme resumed in 2015.

For the Rivers Tamar and Frome, the return rate of 1SW fish (from the 2015 smolt cohort) was above that seen in the most recent years, but remained within the range of observed values (back to 2002). For the River Dee, however, the return rate of 1SW was the lowest in the time series. The survival estimate for 2SW salmon on the Frome in 2016 (from the 2014 smolt cohort) was among the highest recorded, while that for the Dee was relatively poor. No estimate was possible for the Tamar (no smolts tagged in 2014).

Analysis of data for the River Dee has previously indicated a clear correlation between survival rates of particular smolt cohorts and the condition of the adult salmon returning to the river derived from these cohorts. This suggests a direct link between the ability of salmon to feed and grow at sea and their subsequent survival.

Table 23. Validated counts and run estimates of salmon smolts and adults in selected monitored rivers, 1986-2016.

Particular Par	Stage:	e: Smolts	ts							Adults							
House Real Fernica Marca Fernica F	Region/NRV		SW	NE NE		Thames	Southerr			SW				NN N			Wales
Mathod Part estimated Mathod Part Mathod Mathod Part Mathod	Rive		Frome ^[d]	Tyne ^[b]	Tees	Thames ^[c]	Test	Itchen	Hants Avon	Frome ^{Idl}	Tamar ^{lel}	Fowey ^(f)	Lune	Kent	Leven	Caldew	Dee
11-967 1-10-10-10-10-10-10-10-10-10-10-10-10-10	Metho		mate	RSE1	[6] L	 -	RSE1	RSE1	RSE1	RSE1	RSE1	O	RSE1	RSE1	O	H F	RSE2
11,1967 1,11,1	1986					81											
1,1967 1,1867 1	1987					41											
11.067 1.10	1988					288	1,507	1,336		3,614							
11 1567 1 1 1 1 1 1 1 1 1	1989					91	1,730	791		3,156			4,985	1,137			
11967 11967 11968 1196	1990					63	790	367		1,917			5,520	2,216			
1,197 1,19	1991					36	538	152		861			5,322	1,736			
1,11 1,11 6,26 1,12 1,14 6,26 1,14 1,14 6,26 1,15 1,14 1,14 1,14 6,26 1,12 1,14	1992	11,967				247	488	305		871			4,066	1,816			4,643
4,712 4,71	1993	7,131				259	920	646		1,291			7,883	1,526			9,757
1,100 1,10	1994	3,381				143	618	311		1,141	6,295		6,254	2,072		1,461	5,285
1,10,20 1,10	1995	6,853			87	162	517	798		1,102	5,581	756	4,589	2,762		1,456	5,703
7229 125 25 317 222 1207 2.969 467 3.206 1,473 813 813 4 (4672 1.25 24 6 748 412 1,207 4,134 627 7,169 9.306 1,023 1,026 1,026 1,026 1,026 1,026 1,026 1,026 1,026 1,026 1,029 1,026 1,026 1,029 1,026 <td>1996</td> <td>4,712</td> <td></td> <td></td> <td>86</td> <td>122</td> <td>515</td> <td>386</td> <td></td> <td>1,499</td> <td>3,948</td> <td>699</td> <td>4,739</td> <td>3,246</td> <td></td> <td>1,202</td> <td>4,931</td>	1996	4,712			86	122	515	386		1,499	3,948	699	4,739	3,246		1,202	4,931
14672 1467	1997	7,229			125	25	317	232		1,207	2,959	467	3,205	1,473		831	5,496
4 008	1998	14,672			224	9	748	412		1,307	4,134	521	7,457	2,166		1,042	6,661
3.516 1.20	1999	4,085			141	35	777	207		827	3,552	713	4,936	1,023		696	3,664
2 (62) 6,103 2,140 6,144 6,142 717 6,118 2,882 1,63 1,64 9,14 1,144 1,149 1,144 1,149 1,1	2000	3,516			152	53	537	204		099	3,503	745	8,364	2,354	321	1,288	3,751
2,190 9,300 229 1,046 239 883 5,983 935 7,612 3,149 289 1,231 1,231 2,319 2,319 2,319 2,319 2,319 2,319 2,319 2,319 2,319 2,319 2,319 2,319 2,319 3,319 3,32 3,529 3,329 2,329 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529 3,329 1,529	2001	2,625			163	o	408	214		672	4,142	717	6,198	2,882	n/a		4,766
7,586 11,200 126 18 367 169 715 4,786 741 6,911 2,741 323 759 5,024 8,300 1,201 71 1,129 410 715 4,786 1,314 10,487 5,724 1,314 10,482 2,982 1,579 1,579 6,118 9,689 17,180 209 0 1,038 419 1,314 564 5,724 1,046 10,262 1,892 1,992 1,993 1,993 1,993 1,993 1,994 1,039 1,314 1,046 1,046 1,047 1,048 1,396 1,994 1,047 1,048 1,294 1,049 1,017 1,048 1,048 1,049 1,048 1,049 1,048 1,049 1,049 1,048 1,049 1,048 1,049 1,049 1,048 1,049 1,049 1,049 1,049 1,049 1,049 1,049 1,049 1,049 1,049 1,049 1,049 1,049	2002	2,190	9,300		239	22	1,046	239		883	5,993	935	7,612	3,149	285	1,231	7,216
5,024 8,300 20,131 571 1,129 410 715 4,720 1,391 10,982 2,982 1,579 1,579 1,579 1,579 1,574 1,446 1,024 1,679 1,6	2003	7,585	11,200		126	18	367	169		582	4,786	741	6,911	2,741	323	759	4,915
7,580 13,886 171 411 411 550 5,724 1,046 10,024 3,082 1,031 6,118 9,689 17,180 209 1,116 664 301 1,131 550 7531 2,625 180 1,242 13,400 13,420 1,136 209 1,064 301 1,136 565 3,866 7,86 1,376 1,249 1,017 13,400 13,624 9,597 1,487 500 810 7,20 1,270 865 1,071	2004	5,024	8,300	20,131	571	7	1,129	410		715	4,720	1,301	12,982	2,982		1,579	7,123
6,118 9,689 17,180 209 1,058 419 1,319 754 5,459 930 7,531 2,625 180 1,242 1,340 1,340 1,340 1,340 1,342 1,363 423 1,364 3,966 1,365 3,866 3,866 1,376 2,334 4,20 1,017 1,018 1,017 1,018	2005	7,580		13,868	171	0	1,117	411		220	5,724	1,046	10,024	3,082		1,031	5,435
13,400 13,429 10,363 423 1 429 1 487 500 810 994 7,247 988 9,577 1147 9,480 10,017 10,018 10,018 11,376 2,304 420 10,017 10,017 10,018	2006	6,118	689'6	17,180	209	0	1,058	419	1,319	754	5,459	930	7,531	2,625	180	1,242	5,663
34.98 13,654 9,597 629 9 1,487 500 810 994 7,247 938 9,577 1,147 347 1026 n/a 10,885 8,911 225 4 903 276 609 1,088 7,220 1,20 8,572 2,468 95 53 n/a 13,022 21,288 229 4 978 1,08 7,230 1,20 8,572 2,468 622 53 15,378 6,310 10,389 n/a 1,69 78 458 7,230 1,20 1,24 95 63 7,37 13,389 10,38 1,020 478 789 35 1,48 50 84 95 84 95 84 10	2007	13,400	13,429	10,363	423	_	664	301	1,135	655	3,866	796	11,376	2,304	420	1,017	5,839
10,885 8,911 225 4 903 276 609 1,058 7,270 717 8,434 995 152 539 539 1,200 1,2	2008	3,498	13,654	9,597	529	o	1,487	200	810	994	7,247	938	9,577	1,147	347	1,026	5,707
1,022 21,268 229 4 833 757 609 1,058 7,230 1,220 8,572 2,468 622 637	2009	n/a	10,885	8,911	225	4	803	276	759	602	3,727	717	8,434	995	152	539	5,006
15,378 6,310 10,851 1,950 11,9 11 15,399 11,9 11,9 11,9 11,9 11,9 11,9 11,9	2010	n/a	13,022	21,268	229	4	833	757	609	1,058	7,230	1,220	8,572	2,468	622	637	5,615
15,378 6,310 10,851 r/a 15,389 r/a 15,389 r/a 15,389 r/a 16,225 515 515 4,383 r/a 17,020 478 789 r/a 383 r/a 1,020 478 789 r/a 383 r/a 383 r/a 386 4,568 r/a 6,010 13,671 r/a 1,011 779 683 r/a 385 r/a 683 3479 r/a 17,181 829 4,554 683 3479 r/a 18,181 r/a 1,331 r/a 1,332	2011	n/a	9,787	18,334	n/a	4	@ 9 2 6	697 KI	782	1,406	4,146	675	6,592	n/a	326	236	4,831
7,387 13,369 15,999 n/a 3 1,020 478 789 lin 383 lin 2,733 886 4,568 n/a 408 245 245 n/a 2,031 lin 1,020 478 789 lin 383 lin 3,004 501 3,486 n/a 594 n/a 78 lin 1,001 779 683 lin 3,004 501 3,486 n/a 594 n/a 78 lin 1,020 1,181 829 4,554 683 3479 lin 1,04 n/a 6,912 n/a 1,4194 n/a 1,454 361 1,331 lin 1,377 4,407 336 lin 1,04 1,231 lin 1,04 1,040 lin	2012	15,378	6,310	10,851	n/a	15	949 🗓	622	762	458 ^[m]	5,225	515	4,383	n/a	209	8	4,096
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2013	7,387	13,369	15,999	n/a	ო	1,020	478	789 Inl	383 ^[m]	2,733	988	4,568	n/a	408	245	4,044
1,181 829 4,554 683 3479 10 10 10 10 10 10 10 1	2014	n/a	9,010	13,671	n/a	n/a	1,001	779	683 ^[n]	335 lml	3,004	501	3,486	n/a	594	n/a	3,530
1,454 361 1,331 18 777 4,407 336 18 19 1/4 19 1/45 1/454 361 1,331 18 1/407 336 18 18 1/45	2015	n/a	6,912	14,194	n/a	n/a	2,007	903	1,181	829	4,554	683	3479 lpl	n/a	989	n/a	3,051
8,078 14,610 7 1,191 696 839 682 3,932 652 4,502 435 188 188 Key: May Smolt run estimates from 2010 are from a new trapping location further upstream, so shouldn't be compared directly with the earlier time series. In Denotes stock originally supports stocking from hatchery programme. In Denotes stock originally support and supplied constrained and summind contraction and summind contraction.	2016	n/a	9,539		n/a	n/a	1,454	361	1,331 ^[n]	777	4,407	336	[6]	n/a	234 ld	n/a	3,330
Key: lal	Mean (2011–2015,		9,078	14,610		7	1,191	969	839	682	3,932	652	4,502		435	188	3,910
	Key to methods:		×	[8]	olt run estim	ates from 2010 ar	e from a new	rapping loca	tion further upst	ream, so shou	uldn't be com	pared directly w	ith the earlier to	me series.	! ! !!		
setimate (validated	r = auun uap. $C = adult salmo.$	+ co i co c			otos stock o	sigipally supported	d by Jarga scal	andanon, bu. Setocking fr	ne hatchory prog	man pending v	יטוא וט ומו מופו	иеметор анатуш	כמו ווופוווסמא וס	r count specia	noi.		
	DOE1 - roturning	a ctook octimato /	botobilo.		y work som	2 cm 8. Mildlifo C	a by large-scar.	o stocknig ne	on facilities of Ea	Statistic.	arioo poilaario	T0//15/ 40 /150					

count + catch below counter). RSE2 = returning stock estimate (mark/ recapture estimate).

Data for 2016 are provisional. Notes:

Data for some years revised in 2014 to take account of high summer flows and reduced counter efficiency.

Count relates to period from 1 March to end of February.

Index of run only - based on adult trap in barrage. Trap not operated after 2010; new counter now in place but provides combined salmon & sea trout count.

Bata adjusted for multiple entry (rear of 66 % in 2002). Data relate to spawning year, i.e., 12 month period from March to February. Trap no longer operative from 2014.

Bata adjusted for multiple entry (rear of 66 % in 2002). Data relate to spawning year, i.e., 12 month period from March to February. Trap no longer operative from 2014.

But to counter malfunction, estimates for 2011-12 based on relationship between rod exploitation rate and validated counter estimates (from 2006–2012).

Estimates informed by return rate of PIT tagged fish in addition to adult counter.

Estimates informed by return rate of PIT tagged fish in addition to adult counter.

Counter damaged by high flows at and of year and some degree of leakage 'reported due to some fish by-passing counter.

Counter damaged by high flows at and not repaired until August 2016.

Fault known to have affected count for 2016; value considered minimum estimate.

54

Table 24. ICES compilation of microtag, fin clip and external tag releases – 2016 season.

Marking season: 2016							
Country: UK (England and Wales)							
	Totals	Origin		Primary Tag or Mark	ĸ	Other	Total
			Microtag	Microtag External Mark Adipose Clip	Adipose Clip	internal ^[a]	
		Hatchery juvenile			11,647		11,647
		Wild juvenile	5,722		6,121		11,843
		Adult		514		2	516
		Total fish marked	5,722	514	17,768	2	24,006

Marking Agency	Age	Life Stage H/W	N H	Stock Origin	Primary Tag or Mark	Number marked	Code or Serial	Secondary Tag or Mark	Release date	Release Location
Natural Resources Wales	Various	Smolt	≥	Dee (Worthenbury)	CWT	1,200	01/42/48	Adipose	Apr-May 2016	Dee - Worthenbury
Natural Resources Wales	Various	Smolt	>	Dee (Ceiriog)	CWT	496	01/42/88	Adipose	May 2016	Dee - Ceiriog
Natural Resources Wales	Various	Adult	>	Dee	Floy tag	348	Various (blue and blue/green)	None	March-Oct 2016	Dee - Chester
Natural Resources Wales	+	Smolt	エ	Dee	Adipose clip	1,942		None	March 2016	Dee - Glan-yr-Afon
Natural Resources Wales	+	Parr	エ	Dee	Adipose clip	2,700		None	Nov-Dec 2016	Dee - Tryweryn
Natural Resources Wales	Various	Adult	>	Taff	PIT	2		None	Jan 2016	Taff - Penarth
Natural Resources Wales	1+ & 2+	Smolt	エ	Taff	Adipose clip	3,955		None	Apr-May 2016	Taff - Radyr
Natural Resources Wales	2+	Smolt	エ	Taff	Adipose clip	20		Acoustic tag	April 2016	Taff - Radyr
EA South West	Various	Smolt	>	Tamar	CWT	4,026	01/42/94	Adipose	April-May 2016	Tamar
Cefas	Various	Parr	>	Itchen	Adipose clip	82	Codes start: DC00xxxxxx	PIT tag	July 2016	Itchen
Cefas/NRW	Various	Parr	>	Dee (Ceiriog)	Adipose clip	794	Codes start: DC00xxxxxx	PIT tag	Sept 2016	Dee - Ceiriog
Cefas/GWCT	+0	Parr	>	Frome	Adipose clip	4,922	Codes start: 3DD.003B (hexadecimal) PIT tag or 989001003 (decimal)	nal) PIT tag	Aug-Sept 2016	Frome
Cefas/GWCT	+	Parr	>	Frome	Adipose clip	316	Codes start: 3DD.003B (hexadecimal) PIT tag or 989001003 (decimal)	nal) PIT tag	Aug-Sept 2016	Frome
Cefas/GWCT	2+	Parr	≥	Frome	Adipose clip	4	Codes start: 3DD.003B (hexadecimal) PIT tag or 989001003 (decimal)	nal) PIT tag	Aug-Sept 2016	Frome

Notes: [a] Includes PIT and radio/acoustic tags.

Table 25. Estimated survival of wild smolts (%) to return to homewaters (prior to coastal fisheries) for index rivers in the UK and Ireland (from ICES, 2017 and Environment Agency/Cefas/GWCT data) for 1984 to 2015 smolt years.

Smolt		Ireland		UK (N. Ireland)	UK (Sco	otland)					K (England	UK (England and Wales)				
migration	River (River Corrib	Burishoole	River Bush ^[a]	River North Esk ^[b]	th Esk ^[b]		Dee	[0]			Tamar	ıar		Frome	ne ^[d]
year	1SW	2SW	1SW	1SW	1SW	MSM	1SW	95% CL	MSW	95% CL	1SW	95% CL	MSW	95% CL	1SW	MSM
1984	26.2	2.0	7.8		6.0	4.0										
1985	18.9	6 .	7.9		13.6	5.4										
1986			8.7	31.3												
1987	16.6	0.7	12.0	35.1	10.4	3.9										
1988	14.6	0.7	10.1	36.2												
1989	6.7	0.7	3.5	25.0	9.9	4.2										
1990	2.0	9.0	9.2	34.7	0.9	3.1										
1991	7.3	1.3	9.5	27.8	7.6	3.1										
1992	7.3		7.6	29.0	10.9	6.5										
1993	10.8	0.1	9.5		14.5	6.1	6.3	3.6	2.5	2.2						
1994	9.8	1.4	9.4	27.1	10.9	3.6	د .	1.2	1.2	1.3						
1995	8.4	0.1	8.9		8.4	8.0	2.7	6 .	0.4	0.7						
1996	6.3	1.2	9.2	31.0	5.9	2.7	4.8	1.7	2.1	1.3						
1997	12.7	0.8	8.2	19.8	7.2	4.2	6.2	2.9	3.4	1.9						
1998	5.5	1.7	5.3	13.4	2.6	1.4	2.3	2.4	3.7	3.6						
1999	6.4	6.0	8.1	16.5	8.9	3.8	5.0	8.3	12.4	11.8						
2000	9.4		0.6	10.1	0.9	2.8	2.0	1.	6.0	8.0						
2001	7.2	<u></u>	7.6	12.4	4.7	2.9	4.3	5.1								
2002	0.9	0.5	6.5	11.3	2.2	2.0	2.9	1.4	0.7	6.0	3.6	2.1	1.4	6.0		1.7
2003	8.3	2.1	8.3	8.9			2.6	1.7	0.4	0.4	6.1	2.0	- 0.0	1.	4.8	6.0
2004	6.3	0.8	5.8	8.9			4.5	1.	1.0	0.5	0.9	2.3	1.5	1.0		2.9
2005			5.3	5.9	6.7	2.8	5.1	1.6	0.5	0.4	6.4	1.6	1.2	8.0		
2006	1.2	6.0	13.0	14.0	3.3	3.4	4.3	1.2	1.5	6.0	89.	1.3	5.3	2.5	5.1	2.2
2007	6.0		8.4	8.3	2.0	4.0	1.3	1.	6.0	0.7	7.6	∞ ∞	ა. შ.	2.0	2.7	1.3
2008	1.7	1.0	8.2	4.0	6.4		2.5	2.0	<u>1</u> .3	1.5	1.6	6.0	6.0	0.7	3.1	1.6
2009	0.9		8.9	5.9	0.6	8.7	4.8	2.1	1.1	1.0	8.2	2.1	1.9	6.0	7.7	2.6
2010	2.9		7.5	4.0			1.9	0.1	0.7	1.3	3.4	1.5	2.0	3.1	9.8	2.4
2011	2.4		10.8	2.7					0.3	0.5	1.1	1.6	1.9	1.2	1.5	7.8
2012	1.5	0	9.4	11.7			4.8	4.9			2.5	1.4			3.2	2.1
2013	2.2	0.3	4.5	4.6			1.9	1.7	1.4	1.3			4.7	2.6	7.5	2.1
2014	2.9	0.5	8.0	2.9					0.5	1.0					2.0	2.6
2015	5.5		7.8	6.7			0.5	1.0			4.2	2.1			5.9	
Mean (2010–14)	2.4	0.4	8.0	5.2			2.9		0.7		2.3		3.9		3.4	2.2
Maan (2005_14)	7 7	9	0	V 9	7	7 7	c		0		C /		c			,

Key: [8] Based on microtagging, corrected for tagging mortality. [8] Based on tagging with Carlin tags, not corrected for tagging mortality [8] Based on tagging with a 90% tag retention rate, not corrected for tagging mortality. [9] Data based on Game & Wildlife Conservation Trust monitoring facilities at East Stoke, and supplied courtesy of GWCT. Notes: Data for 2015 smolt migration year are provisional.

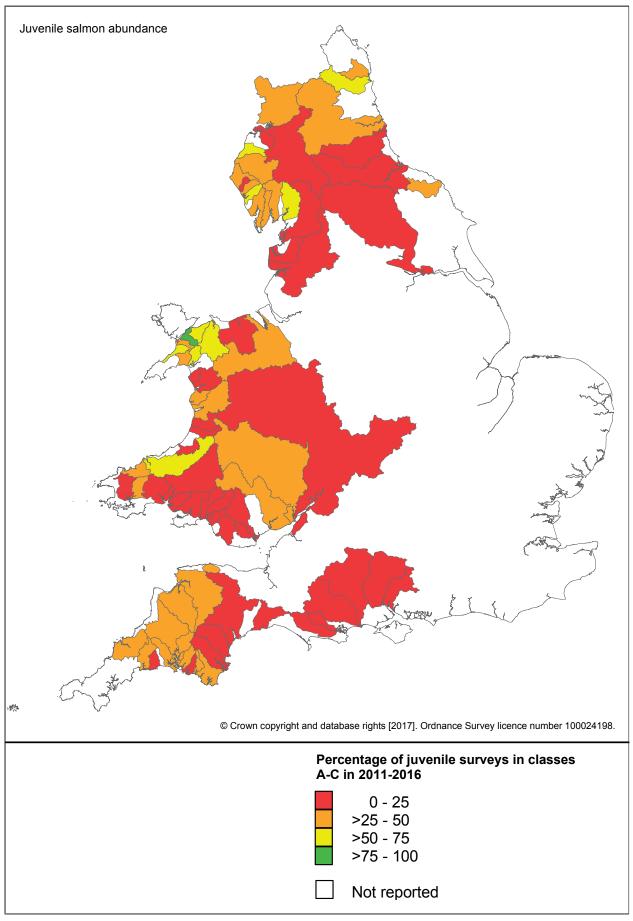


Figure 26. Juvenile salmon abundance indices for each catchment, presented as percentage of surveys in classes A-C only, 2011-2016.

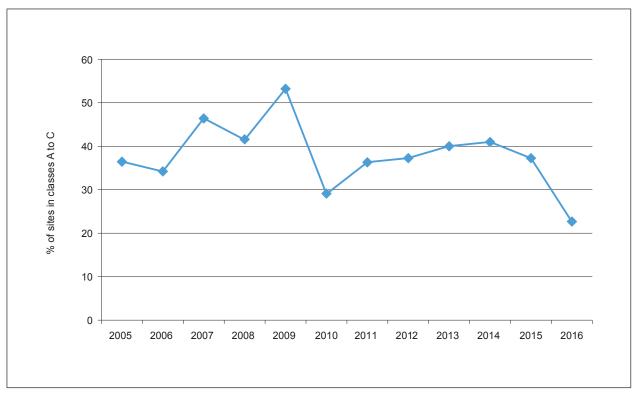


Figure 27. Overall percentage of juvenile survey sites in England and Wales in classes A to C, 2005-2016. Data include all surveys conducted in a single year from principal salmon rivers only. (Note: data updated from previous reports.)

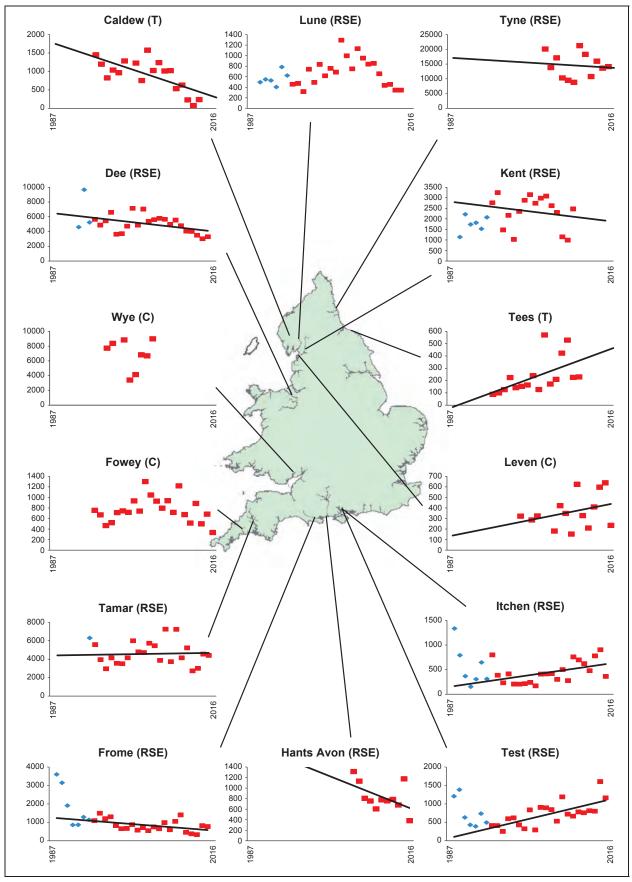


Figure 28. Counts from electronic counters (C) and monitoring traps (T), and returning stock estimates (RSE) (based on trapping and tagging, or validated counts plus catch below counter) for selected salmon stocks in England and Wales, 1988-2016. Regression lines are indicative only and based on data from 1995 on (red squares); earlier date for some rivers indicated as blue diamonds. Note that y-axes scales differ.

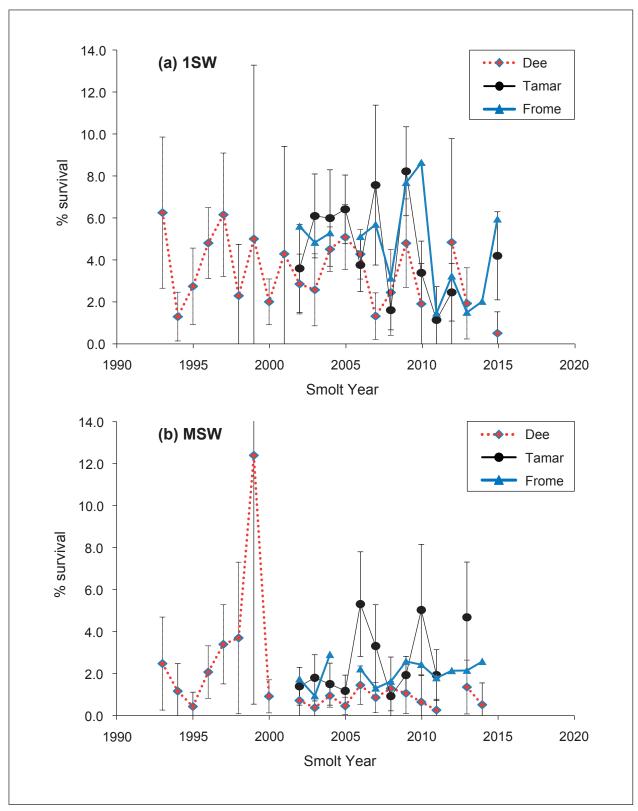


Figure 29. Estimated survival (\pm 95 CLs where available) of wild smolts (%) to return to homewaters (prior to coastal fisheries) for (a) 1SW and (b) MSW salmon for the Rivers Dee, Tamar and Frome.

8. ASSESSMENT OF STOCK STATUS

The status of individual river stocks in England and Wales is evaluated annually against stock conservation limits (CLs) and management targets (MTs) in line with the requirements of ICES and NASCO. A national assessment of the status of the salmon resource in England and Wales is also undertaken annually, using the Pre-fishery Abundance (PFA) and National Conservation Limit Models (Potter *et al.*, 2004), and reported to ICES to assist with the development of management advice for the distant water fisheries. Full details of these assessment approaches are provided in the background report.

Status of river stocks in 2016

Egg deposition estimates for 2016 have been calculated for each of the 64 main salmon rivers in England and Wales and values, expressed as the proportion of the CL attained, are provided in Table 26 and illustrated in Figure 30.

Twenty-one rivers (33%) were provisionally assessed as meeting their CL in 2016, a slight decrease on 2015 (23 rivers), and remaining among the lowest in the time series (Table 27). Twenty-two rivers (34%) were below 50% of their CL in 2016, compared with 21 rivers in 2015. There has been a downturn in levels of CL attainment in the last four years (Figure 31) following a period of relatively good CL attainment between 2004 and 2012 when levels of egg deposition were typically higher than those in the preceding decade. River-to-river variation in the proportion of the CL attained in 2016 (Figure 30) indicates that rivers where spawning escapement was below the CL were widely distributed throughout England and Wales.

In 2016, additional egg deposition resulting from fish that were caught and released is estimated at about 18 million eggs (assuming 80% survival to spawning, 50% females and an average of 5,000 eggs per female). This represents about 6% of the total estimated egg deposition in England and Wales in 2016.

Compliance with the management objective

The 'management objective' for salmon stocks in England and Wales is that they should meet or exceed their CLs in at least four years out of five, on average. Compliance with this objective takes trends in egg deposition into account, and has been calculated for all 64 principal river stocks in England and Wales for 2016 and forecast for 2021 (Table 26 and Figure 32).

As in 2015, the latest compliance assessment indicates that none of the principal rivers across England and Wales were classified as 'not at risk' in 2016 – having a high probability (p > 95%) of achieving the management objective. The same is forecast to apply in 2021. In 2016, 25 rivers (39%) were classified as 'at risk' - having a low probability (p < 5%) of achieving the management objective. Eighteen rivers (28%) are forecast to be 'at risk' in 2021. Just over half of all rivers in England and Wales in 2016 (53%) are classified as 'probably at risk' (5% < p < 50% of achieving the management objective); this rises to 61% in 2021. Only 5 rivers (8%) are classified as 'probably not at risk' (50% \leq p < 95%) in 2016, compared with 9 rivers in 2015. The compliance figures are summarised, separately, for rivers in England and Wales below:

Rivers in England

Stock status category	Probability of meeting the	201	6	202	1
	management objective	Number of rivers	%	Number of rivers	%
Not at risk	>95%	0	0	0	0
Probably not at risk	50–95%	4	10	5	12
Probably at risk	5–50%	24	57	27	64
At risk	<5%	14	33	10	24

Rivers in Wales

Stock status category	Probability of meeting the	201	6	202	1
	management objective	Number of rivers	%	Number of rivers	%
Not at risk	>95%	0	0	0	0
Probably not at risk	50–95%	1	5	2	9
Probably at risk	5–50%	10	45	12	55
At risk	<5%	11	50	8	36

For rivers in England (Figure 33a) there has been a general decrease in the proportion of rivers regarded as 'at risk' over the past 13 years, and this is predicted to continue. However, while the percentage of rivers classified as 'not at risk' was relatively stable, at about 20%, over the early part of the time series, there has a been a progressive decline in the rivers in this category in the last five years with none assessed as 'not at risk' in the last three years, and this is predicted to continue in 2021. There was a fall in the number of rivers classified as 'probably not at risk' in 2016 compared with 2015, and the majority of rivers (57%) continue to fall in the 'probably at risk' category as in the previous two years. The 2016 assessment suggests that the majority (88%) of English rivers will fall in the 'probably at risk' and 'at risk' categories in 2021.

For Wales (Figure 33b), a higher proportion of rivers have fallen in the 'at risk' category over the time series and very few rivers have been classed as 'not at risk'. In 2016, all the rivers except one are classified as either 'at risk' (50%) or 'probably at risk' (45%), the same as in 2015. The predicted trend suggests that 91% of rivers will fall in the same two categories in 2021, but with the majority classed as 'probably at risk'.

The latest assessment thus indicates that the majority of salmon stocks in England and Wales remain in a depleted state.

Assessment of pre-fishery abundance (PFA) for England and Wales

Each year, ICES makes an assessment of the status of the salmon stocks in the Northeast Atlantic (NEAC) area as a basis for advising managers and providing catch advice for the distant water fisheries. A key part of this assessment is the estimation of the pre-fishery abundance (PFA) of all NEAC stocks, which is defined as the number of fish alive in the sea on January 1 in their first sea winter. This is split between maturing (potential 1SW) and non-maturing (potential

MSW) fish. The PFA estimates for the period since 1971 provide our best interpretation of what the available catch and effort data tell us about changes in the status of the total national stock of salmon over the past four to five decades.

The estimated PFA of salmon from England and Wales has declined by over 50% from the early 1970s to the present time (Figure 34). Over much of the period, the decrease has tended to be somewhat greater for the non-maturing (i.e. potential MSW) component of the PFA than the maturing 1SW (i.e. potential grilse) component. However, there has been a marked reduction in the PFA of 1SW salmon in the last six years, and the decline in PFA between the start and the end of the time series is now greater for 1SW fish (~60%) than for MSW salmon (~50%). It should be noted that these trends mask conflicting changes in individual river stocks. Many rivers have experienced more serious declines but these are obscured by the very substantial improvements and recovery in others. The results also suggest that there was a marked decline in PFA around 1990, which is consistent with the general perception of a decrease in the marine survival for many stocks around the North Atlantic at about this time. [NB the model cannot provide an estimate of PFA of potential MSW fish for the most recent year, as this relies on an assessment of the returns to homewaters of these fish, which will not occur until the subsequent year].

The estimated numbers of salmon returning to rivers in England and Wales (prior to exploitation in homewater fisheries) are also derived from the ICES national assessment. These estimates show a similar downward trend to the PFA (Figure 35), although the decrease is less marked due to the reduction in net exploitation in distant water fisheries. Thus, numbers of returning fish are estimated to have declined by about 45% between the early 1970s and the present time. As with the PFA, the decline in returning MSW fish has tended to be greater than that of the 1SW (grilse) returns over much of the time period. However, a higher proportion of MSW fish has been observed in recent years and the percentage reduction in returning fish between the start and the end of the times series is now substantially greater for 1SW fish.

The difference between the estimated numbers of returning fish and those surviving to spawn has reduced progressively over the time series and the total spawning escapement has remained reasonably consistent over the period (Figure 35). This reflects the marked reduction in levels of exploitation in homewater net and rod fisheries, including the increasing use of catch and release. The recent upturn in MSW returns means that MSW spawner numbers are now similar to those at the start of the time period. This will be expected to have a disproportionate effect on egg deposition, given the substantially higher fecundity of these larger fish.

Table 26. Conservation Limits (CL) and the percentage of the CL attained for the principal salmon rivers in England and Wales, 2007-2016. Current compliance against the management objective and predicted compliance in 2021 are also shown.

Wendle 100m M(10f) Impart oggs	EA Region/	Accessible	CL eggs /	CL eggs	Mgmt	2016 egg			Percenta	Percentage of Conservation Limit attained (%) [a]	nservation	า Limit at	ttained (5	%) [a]			Current	Predicted
144 218 314 581 502 269 337 186 370 325 366 289 124 518 377 436 429 439 190 PeR	NRW River	wetted area (ha)	$100m^2$		Target eggs (x10°)	deposition (x10 ⁶)	2007	2008	2009	2010	2011	2012	2013	2014	2015		mpliance ^[b] 2016	compliance ^[b] in 2021
144 218 218 314 618 516 218	NE.																	
1	Coquet	144	218	3.14	5.81	5.03	266	337	185	370	325	366	228	134	93	160	PaR	PaR
## 122	Tyne [c]	542	208	11.25	22.43	39.47	245	218	214	519	518	277	436	409	434	351	PNaR	PNaR
Here Good Each (1490) 1870 187 33 56 14 14 14 21 65 69 100 84 73 99 Park Here Good Each (1490) 1870 187 33 56 14 120 105 84 173 105	Wear	232	250	5.80	11.62	13.23	211	236	181	383	460	321	526	351	196	228	PNaR	PNaR
vis. 86 2.96 2.04 1.98 96 133 44 120 105 66 100 84 70 66 70 66 70 89 72 144 104 PaR ant 138 2.46 3.40 4.23 3.65 48 107 66 60 70 88 72 11 156 124 104 98 ant 142 142 163 2.07 68 48 107 66 80 72 11 158 124 108 80 72 11 158 124 108 80 125 11 160 1	Tees	620	240	14.90	17.09	1.87	33	22	14	14	21	20	23	4	00	13	AR	AR
Part 188 246 126 460 76 66 76 76 66 75 71 147 158 64 Park entral 386 163 2,077 0.88 46 87 41 113 106 89 72 117 136 54 Park entral 386 175 648 7.38 6.42 73 44 48 31 60 43 61 77 149 91 89 13 61 77 149 91 72 117 150 89 171 161 171 160 89 171 161 171 161 171 161 172 161 172 161 172 161 172 161 172 161 172 174 175 161 174 175 161 174 181 175 174 181 175 174 181 175 174 <td>Esk-Yorks</td> <td>98</td> <td>236</td> <td>2.02</td> <td>2.44</td> <td>1.98</td> <td>96</td> <td>133</td> <td>44</td> <td>120</td> <td>105</td> <td>88</td> <td>100</td> <td>84</td> <td>73</td> <td>86</td> <td>PaR</td> <td>PaR</td>	Esk-Yorks	98	236	2.02	2.44	1.98	96	133	44	120	105	88	100	84	73	86	PaR	PaR
ants 389 1, 246 1, 40 2 2, 24 1, 67 1, 68 4, 6 10 7 11 10 10 10 7 11 10 10 8 72 11 11 10 10 10 10 10 10 10 10 10 10 10	Southern																	
antis 369 175 6.48 17.36 6.42 73 4.4 49 11 113 105 54 17 11 113 113 114 115 115 114 115 115 114 115 114 114	Test	138	246	3.40	4.23	3.55	48	107	65	09	70	89	73	72	144	104	PaR	PNaR
Handeley Harmonic Har	Itchen	69	234	1.63	2.07	0.88	45	87	41	113	105	93	72	117	135	54	PaR	PaR
antis 366 175 648 736 542 73 44 48 31 50 43 61 37 59 69 84 Park 142 117 0 213 0 239 10 19 60 8 71 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SW																	
Harry Harry Harry Lie Control Field Market Harry Lie Control F	Avon-Hants	369	175	6.48	7.36	5.42	73	44	48	31	20	43	61	37	29	84	PaR	PaR
Harmon	Stour	142	149	2.12	2.18	0.39	16	10	10	7		6	13	∞	13	18	AR	AR
88 171 150 221 187 116 161 102 179 239 93 67 62 133 126 PaR 282 253 174 1329 6.053 112 187 172 125 58 137 77 18 19 19 PaR 282 253 174 1329 6.053 18 12 241 279 70 121 179 179 18 18 18 18 18 18 18 18 18 18 18 18 18	Piddle	18	177	0.31	0.39	0.19	09	87	22	96	129	20	33	27	99	61	PaR	PaR
83 175 145 173 0.63 12 74 51 5 5 5 5 77 26 16 37 37 PaR 989 171 141 1329 0.602 186 306 192 241 341 27 0.46 18 19 18 18 20 22 253 17.14 1329 0.602 182 252 253 27.14 2.29 2.00 2.00 2.00 2.00 2.00 2.00 2.00	Frome	88	171	1.50	2.21	1.87	111	161	102	179	239	93	22	52	133	125	PaR	PaR
282 253 7.14 1329 6.02 186 305 192 221 341 279 70 48 130 84 PaR PaR 137 289 251 247 339 1.72 128 304 958 135 145 152 304 958 135 145 175 175 182 182 182 183 183 183 183 183 183 183 183 183 183	Axe	83	175	1.45	1.73	0.53	12	74	21	25	28	77	26	16	37	37	PaR	PaR
98 251 2.47 3.89 1.72 123 304 96 133 175 207 123 106 121 70 PaR even 35 20 1.51 2.47 3.89 1.72 123 304 96 133 175 207 123 100 121 7 6 180	Exe	282	253	7.14	13.29	6.02	186	305	192	221	341	279	70	48	130	84	PaR	PaR
137 218 2.98 3.99 1.51 76 107 53 96 93 143 37 18 2.3 51 AR 198 202 0.77 0.046 1.48 1.20 1.51 1.20	Teign	86	251	2.47	3.89	1.72	123	304	96	133	175	207	123	100	121	70	PaR	PaR
θe/on 35 202 0.70 0.933 0.45 148 120 57 151 127 50 69 63 63 64 PaR 120 180 0.37 0.46 0.06 15 63 47 86 66 76 13 19 16 AR 29 188 0.55 0.67 0.04 42 71 15 84 45 49 29 29 19 48 293 188 0.55 0.67 0.04 42 71 149 45 49 45 49 49 48 <td>Dart</td> <td>137</td> <td>218</td> <td>2.98</td> <td>3.99</td> <td>1.51</td> <td>9/</td> <td>107</td> <td>53</td> <td>96</td> <td>93</td> <td>143</td> <td>37</td> <td>18</td> <td>23</td> <td>21</td> <td>AR</td> <td>PaR</td>	Dart	137	218	2.98	3.99	1.51	9/	107	53	96	93	143	37	18	23	21	AR	PaR
20 180 0.37 0.46 0.06 15 63 47 87 86 66 76 13 19 16 AR 11 128 0.24 0.28 0.06 15 64 57 49 25 25 24 AR 89 201 128 0.65 0.67 0.04 42 17 16 45 44 57 48<	Avon-Devon	32	202	0.70	0.93	0.45	148	120	22	151	122	127	20	69	63	64	PaR	PaR
11 212 024 028 0.06 39 48 56 80 64 57 49 29 25 24 AR 29 188 0.55 0.67 0.04 42 71 15 68 104 64 57 49 29 25 25 24 AR 29 188 0.55 0.67 0.05 0.04 42 71 15 68 154 91 43 24 35 32 7 AR 29 233 0.68 1.156 15.00 9.77 75 186 104 102 64 45 102 64 45 111 84 PAR 42 207 0.86 1.05 1.19 180 131 149 266 104 162 150 75 271 175 PAR 56 176 0.98 1.98 1.10 316 301 170 462 241 142 158 88 18 112 PAR 574 211 5.78 5.08 1.38 0.86 234 266 206 345 199 153 261 139 235 100 PAR 58 174 211 5.78 5.08 1.10 316 301 170 462 241 142 158 88 18 112 PAR 59 1.10 5.08 1.38 0.86 5.49 9.54 3.14 65 128 58 131 58 195 109 253 138 PAR 6 137 254 257 1.72 24.1 158 158 158 134 287 199 52 109 253 138 PAR 6 143 12.85 19.21 24.37 87 120 88 88 161 113 156 39 270 190 PAR 6 223 237 10.01 14.94 10.58 259 211 198 196 163 111 111 87 106 106 AR 6 223 1.52 2.86 1.32 136 136 136 136 136 138 70 65 87 PAR	Erme	20	180	0.37	0.46	90.0	15	63	47	87	98	99	9/	13	19	16	AR	PaR
29 188 0.55 0.67 0.04 42 71 15 54 91 43 24 35 32 7 AR 8 201 1.37 1.79 0.50 89 102 68 152 84 102 64 45 130 37 AR 293 235 0.68 1.50 1.05 1.19 180 131 149 2.66 104 162 150 271 17 17 11 84 PaR 42 207 0.86 1.38 1.98 1.10 316 301 170 462 241 142 158 88 88 112 PaR 5 274 211 5.78 9.54 7.99 277 221 158 134 287 199 52 109 253 138 PaR e 198 207 4.10 5.08 1.31 65 128 58 88 131 58 12 PaR 143 12.85 19.21 24.37 87 120 88 88 13 14 142 158 139 251 109 PaR 27 359 0.97 1.72 0.40 154 305 30 227 291 166 85 103 95 77 PaR 351 202 7.10 10.75 7.37 225 276 270 240 113 113 156 23 3 3 AR 42 323 1.001 14.94 10.58 259 211 198 196 153 111 111 111 111 111 111 111 111 111	Yealm		212	0.24	0.28	90.0	39	48	26	80	64	22	49	29	25	24	AR	AR
68 201 1.37 1.79 0.50 89 102 68 152 84 102 64 45 130 37 AR 293 395 11.56 15.00 9.77 75 186 104 139 104 126 74 77 111 84 PAR 299 233 0.68 1.05 1.1.9 180 131 149 266 104 126 150 136 277 111 84 PAR 20 207 0.86 1.38 0.89 234 266 206 345 196 153 128 139 235 100 PAR 20 214 2.10 0.98 1.98 1.00 316 301 170 482 241 142 158 88 89 112 PAR 20 207 4.10 5.08 3.14 65 128 58 80 68 131 58 199 52 109 PAR 20 207 4.10 5.08 3.14 65 128 58 80 68 131 58 199 52 109 PAR 21 359 0.97 1.72 0.40 154 305 207 221 189 180 120 120 190 120 190 100 100 100 100 100 100 100 100 10	Plym	29	188	0.55	0.67	0.04	42	71	15	54	91	43	24	35	32	7	AR	AR
293 395 11.56 15.00 9.77 75 186 104 139 104 126 74 77 111 84 PaR 29 233 0.68 1.05 1.19 180 131 149 266 104 162 150 75 277 175 176 PaR 42 207 0.86 1.38 0.86 234 266 206 345 196 153 261 139 235 100 PaR 56 1.76 0.98 1.98 1.10 316 301 170 402 241 142 158 88 181 112 PaR 274 211 5.78 9.54 7.99 277 221 158 134 287 199 52 109 253 138 PaR 898 143 12.85 1921 24.37 87 120 88 88 161 113 156 99 270 19 PAR 351 202 7.10 10.75 7.37 225 276 240 240 210 189 120 124 11 104 PaR 423 237 10.01 14.94 10.58 259 211 198 196 163 111 111 87 106 106 90 109 137 PaR 68 223 1.55 2.85 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.3	Tavy	89	201	1.37	1.79	0.50	88	102	89	152	84	102	64	45	130	37	AR	PaR
29 233 0.68 1.05 1.19 180 131 149 266 104 162 150 75 277 175 PaR 42 207 0.86 1.38 0.86 234 266 206 345 196 153 261 139 235 100 PaR 56 176 0.98 1.98 1.10 316 301 170 462 241 142 188 88 88 112 PaR 198 207 4.10 5.08 3.14 65 128 58 80 68 131 58 199 PaR 274 211 5.78 0.97 1.72 0.40 154 305 90 227 291 166 85 103 95 77 199 PAR 898 143 12.85 19.21 24.37 87 120 88 88 161 11 11 87 16 29 77 190 PAR 281 143 10.01 14.94 10.58 259 211 198 196 163 110 111 87 106 106 AR 282 237 10.01 14.94 10.58 259 211 198 136 156 160 138 70 55 87 PaR	Tamar	293	395	11.56	15.00	9.77	75	186	104	139	104	126	74	77	111	84	PaR	PaR
42 207 0.86 1.38 0.86 234 266 206 345 196 153 261 139 235 100 PaR 56 176 0.98 1.98 1.10 316 301 170 462 241 142 158 88 88 112 PaR 57 221 158 134 287 199 52 109 553 138 PaR 112 PaR 58 207 4.10 5.08 3.14 65 128 58 80 68 131 58 49 91 77 PaR 54 4 4 10.55 1.32 1.32 1.32 1.32 1.33 1.4 65 128 134 287 199 52 109 52 109 523 138 PaR 148 148 15.85 1.32 1.32 1.32 1.33 1.32 1.33 1.35 1.35 1.35 1.35 1.35 1.35 1.35	Lynher	29	233	0.68	1.05	1.19	180	131	149	266	104	162	150	75	277	175	PaR	PaR
56 176 0.98 1.98 1.10 316 301 170 462 241 142 158 88 88 112 PaR 274 211 5.78 9.54 7.99 277 221 158 134 287 199 52 109 253 138 PaR e 198 207 4.10 5.08 3.14 65 128 58 88 131 58 19 52 109 77 PaR lds 1ds 27 359 0.97 1.72 0.40 154 305 90 227 291 166 85 103 95 103 95 42 AR lds 28 14 14 15 113 156 18 88 112 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fowey	42	207	0.86	1.38	0.86	234	266	206	345	196	153	261	139	235	100	PaR	PaR
274 211 5.78 9.54 7.99 277 221 158 134 287 199 52 109 553 138 PaR 198 207 4.10 5.08 3.14 65 128 58 80 68 131 58 49 91 77 PaR 104s 104s 105 3.14 65 128 58 80 68 131 58 49 91 77 PaR 104s 105 3.14 65 128 58 80 88 161 118 118 156 99 270 1001 27 359 0.97 1.72 0.40 154 305 90 227 291 166 85 103 95 42 MR 28 88 161 113 156 99 270 190 PNaR 29 31 46 31 44 37 14 16 23 3 AR 423 237 10.01 14.94 10.58 259 211 198 196 163 111 111 87 106 106 AR 68 223 1.52 2.85 1.32 337 136 148 326 275 160 138 70 55 87 PaR	Camel	99	176	0.98	1.98	1.10	316	301	170	462	241	142	158	88	88	112	PaR	PaR
Here 198 207 4.10 5.08 3.14 65 128 58 86 68 131 58 49 91 77 PaR AR AR AR AR S 27 291 166 85 103 95 42 AR AR AR AR 12.85 19.21 1.72 0.40 154 305 90 227 291 166 85 103 95 42 AR	Taw	274	211	5.78	9.54	7.99	277	221	158	134	287	199	52	109	253	138	PaR	PaR
odds 27 359 0.97 1.72 0.40 154 305 90 227 291 166 85 103 95 42 AR nds 898 143 12.85 19.21 24.37 87 120 88 88 161 113 156 99 270 190 PNaR 351 202 7.10 10.75 7.37 225 276 202 240 210 189 120 124 111 104 PaR 67 73 0.49 0.69 0.02 29 91 46 31 44 37 14 16 23 3 AR 423 237 10.01 14.94 10.58 259 211 198 196 163 11 11 87 106 106 AR 68 223 1.52 2.85 1.32 136 163 16 16 18 1	Torridge	198	207	4.10	5.08	3.14	92	128	28	80	89	131	28	49	91	77	PaR	PaR
olds 898 143 12.85 19.21 24.37 87 120 88 88 161 113 156 99 270 190 PNAR 351 202 7.10 10.75 7.37 225 276 202 240 210 189 120 124 111 104 PAR 67 73 0.49 0.69 0.02 29 91 46 31 44 37 14 16 23 3 AR 423 237 10.01 14.94 10.58 259 211 198 166 163 111 111 87 106 106 AR 68 223 1.52 2.85 1.32 337 136 148 326 275 160 138 70 55 87 PaR	Lyn	27	359	0.97	1.72	0.40	154	305	06	227	291	166	82	103	92	42	AR	PaR
351 202 7.10 10.75 7.37 225 276 202 240 210 189 120 124 111 104 PAR 67 28 23 10.01 14.94 10.58 259 211 198 196 163 111 111 87 106 106 AR 68 223 1.52 2.85 1.32 33 1.56 1.32 337 136 148 326 275 160 138 70 55 87 PAR	Midlands																	
351 202 7.10 10.75 7.37 225 276 202 240 210 189 120 124 111 104 PaR 67 73 0.49 0.59 0.02 29 91 46 31 44 37 14 16 23 3 AR 423 237 10.01 14.94 10.58 259 211 198 196 163 111 111 87 106 106 AR 68 223 1.52 2.85 1.32 337 136 148 326 275 160 138 70 55 87 PaR	Severn	868	143	12.85	19.21	24.37	87	120	88	88	161	113	156	66	270	190	PNaR	PNaR
351 202 7.10 10.75 7.37 225 276 202 240 210 189 120 124 111 104 PaR 67 73 0.49 0.59 0.02 29 91 46 31 44 37 14 16 23 3 AR 423 237 10.01 14.94 10.58 259 211 198 196 163 111 111 87 106 106 AR 68 223 1.52 2.85 1.32 337 136 148 326 275 160 138 70 55 87 PaR	NN																	
67 73 0.49 0.59 0.02 29 91 46 31 44 37 14 16 23 3 AR 423 237 10.01 14.94 10.58 259 211 198 196 163 111 111 87 106 106 AR 68 223 1.52 2.85 1.32 337 136 148 326 275 160 138 70 55 87 PaR	Ribble	351	202	7.10	10.75	7.37	225	276	202	240	210	189	120	124	11	104	PaR	AR
423 237 10.01 14.94 10.58 259 211 198 196 163 111 111 87 106 106 AR 68 223 1.52 2.85 1.32 337 136 148 326 275 160 138 70 55 87 PaR	Wyre	29	73	0.49	0.59	0.02	29	91	46	31	44	37	14	16	23	က	AR	AR
68 223 1.52 2.85 1.32 337 136 148 326 275 160 138 70 55 87 PaR	Lune	423	237	10.01	14.94	10.58	259	211	198	196	163	111	111	87	106	106	AR	AR
	Kent	89	223	1.52	2.85	1.32	337	136	148	326	275	160	138	70	22	87	PaR	PaR

Table 26. continued

table 20: collinaed																
Leven 46	182	2 0.83	1.19		114	95	42	175	109	58	119	170	186	62	PaR	PaR
Crake 16	194	4 0.32	0.44		47	28	22	104	152	119	91	45	29	13	AR	AR
Duddon (& Lickle) 26	121	1 0.31	0.76		370	783	357	427	540	343	316	177	230	336	PNaR	PNaR
Esk 20	181	1 0.37	0.85	0.67	592	249	78	64	176	112	156	147	86	180	PaR	PaR
Irt 35	198	8 0.69	1.04		170	158	81	192	192	143	164	42	44	09	AB	PaR
Ehen 41	230		1.97	1.08	303	335	216	513	371	220	279	162	75	116	PaR	PaR
Calder 13	261		0.52		46	158	79	204	174	124	91	34	22	16	AR	AR
Derwent 213	185	5 3.93	7.49		354	309	211	306	271	152	144	82	28	88	AR	AR
Eden 688	200	0 13.75	17.37	_	133	148	139	128	115	105	65	52	66	113	PaR	PaR
Esk-Border [d] 306	255	5 7.79	11.06		122	164	113	196	191	125	29	89	71	82	PaR	PaR
Wales																
Wye 1,721	224	4 38.57	49.10		40	29	35	25	20	79	79	43	92	131	PaR	PNaR
Usk 407	248	8 10.11	14.89		226	211	97	66	137	222	122	97	160	223	PNaR	PNaR
Taff & Ely 146	219	9 3.19	3.44	0.83	22	15	14	25	34	25	30	15	43	26	AR	PaR
Ogmore 61	180	0 1.10	1.35		52	74	48	110	52	47	17	36	32	27	AR	AR
Tawe 88	211	1.85	2.38	0.51	96	86	28	114	22	34	37	24	26	28	AR	AR
Tywi 500	226	6 11.30	15.60		152	146	82	178	120	78	8	41	52	82	PaR	PaR
	18	9 1.70	2.65		8	115	89	268	122	78	28	53	82	31	AR	PaR
E&W Cleddau 87	17.	9 1.55	1.81	0.38	67	88	69	61	44	22	37	35	45	24	AR	AR
Teifi 326	26	5 8.65	12.50		137	151	81	235	155	116	90	80	70	92	PaR	PaR
Rheidol 31	22.		0.85		09	124	31	37	62	46	99	35	24	30	AR	AR
	25.	9 0.48	0.59		107	88	33	91	22	09	81	88	127	72	PaR	PaR
Dyfi 179	235	5 4.21	5.63		97	123	99	93	125	70	24	16	29	48	AR	AR
Dysinni 31	21.	9 0.68	0.73		∞	13	13	1	0	30	18	9	17	26	PaR	PaR
Mawddach 57	24.	2 1.37	2.02	1.78	169	148	66	236	199	199	73	75	106	130	PaR	PaR
Dwyryd 9	201	1 0.19	0.33	60.0	155	357	72	52	116	44	99	74	83	48	AR	PaR
Glaslyn 25	191	1 0.48	0.63	0.32	96	146	106	78	122	107	193	104	147	89	PaR	PaR
Dwyfawr 33	258	8 0.86	1.00		26	53	15	79	43	27	19	30	15	38	PaR	PaR
Seiont 21	226	6 0.48	0.83	60.0	229	219	66	214	127	158	49	21	15	19	AB	AR
Ogwen 24	362	2 0.87	1.67	0.88	302	365	216	347	244	231	112	39	135	101	PaR	PaR
Conwy 63	185	5 1.17	1.89		207	212	153	331	200	164	107	9/	100	135	PaR	PaR
Clwyd 84	237	7 1.99	3.44	0.33	173	212	104	233	175	138	33	15	14	17	AR	AR
Dee 617	248	8 15.30	16.78		82	93	106	80	82	87	79	80	89	99	AB	AR
E & W Total		262.75	371.72													
Key to compliance assessments:	NaR	Not at risk	PNaR Prot	Probably not at risk	PaR	Probably at risk	ı at risk	AR	At risk							

Key to compliance assessments: NaR Not at risk PNaR Proba Key: [8] Estimates include eggs contributed by rod-released fish.

| Basis for current and predicted compliance explained in Background Report (see text for details).
| Provisional salmon counts now used on the Twne to estimate and

lel Provisional salmon counts now used on the Tyne to estimate egg deposition.

Methods 1 April 2005, Border Esk egg deposition estimates were based only on English rod catch and likely to be undersestimates.

Notes: Some entries in this table have been updated from that presented in previous reports as a result of river-specific refinements and corrections.

river-specific refinements and corrections.

On some rivers, catch returns from fishery owners (rather than declared catches) or data from counters/traps have been used to derive estimates of egg deposition where these are considered to provide the most complete record of the returning stock.

provide the most complete record of the returning stock.
For rivers where assessments are based on declared rod catch data, adjustments have been made in 2015 and 2016 to account for reduced levels of reporting (see text for details).
Data for 2016 are provisional.

Table 27. Number and percentage of salmon river stocks above their Conservation Limit (CL), between 50% and 100% of the CL, and less than 50% of the CL, 1993-2016.

Year	>	CL	50-100	0% CL	< 50°	% CL
	No.	%	No.	%	No.	%
1993	33	54	13	21	15	25
1994	42	67	13	21	8	13
1995	26	41	22	35	15	24
1996	33	52	13	21	17	27
1997	21	33	26	41	17	27
1998	31	48	22	34	11	17
1999	21	33	22	34	21	33
2000	27	42	24	38	13	20
2001 [a]	21	36	18	31	19	33
2002	28	44	19	30	17	27
2003	20	31	16	25	28	44
2004	42	66	14	22	8	13
2005	32	50	17	27	15	23
2006	38	59	14	22	12	19
2007	33	52	16	25	15	23
2008	43	67	15	23	6	9
2009	23	36	25	39	16	25
2010	38	59	17	27	9	14
2011	42	66	13	20	9	14
2012	36	56	15	23	13	20
2013	21	33	26	41	17	27
2014	14	22	21	33	29	45
2015	23	36	20	31	21	33
2016	21	33	21	33	22	34
Average % 1993-2016		47		29		25

Key: ^[a] No CL possible for 6 rivers due to impact of foot and mouth disease. Notes: Data for 2016 are provisonal.

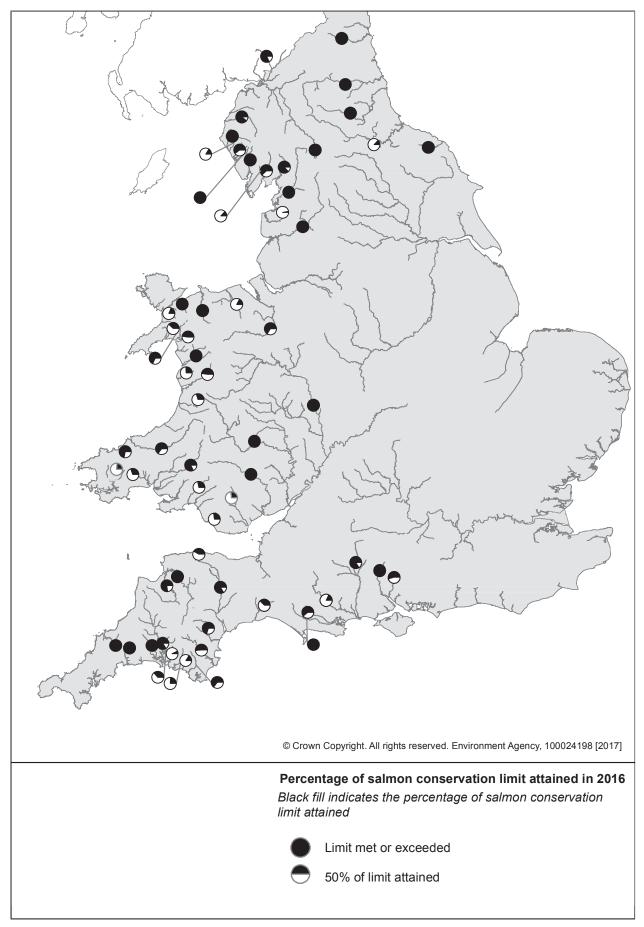


Figure 30. Pie charts for individual rivers for which Conservation Limits (CLs) have been set showing the % of the CLs attained in 2016.

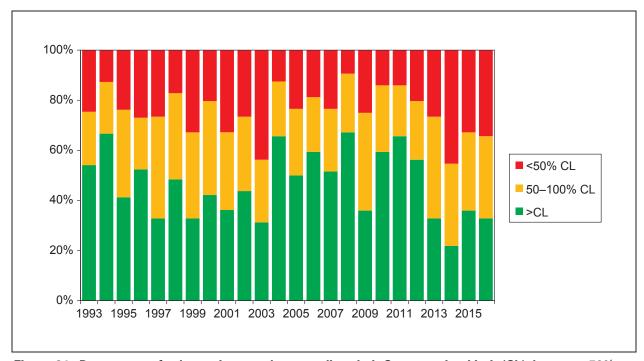


Figure 31. Percentage of salmon river stocks exceeding their Conservation Limit (CL), between 50% and 100% of the CL, and less than 50% of the CL, 1993-2016.

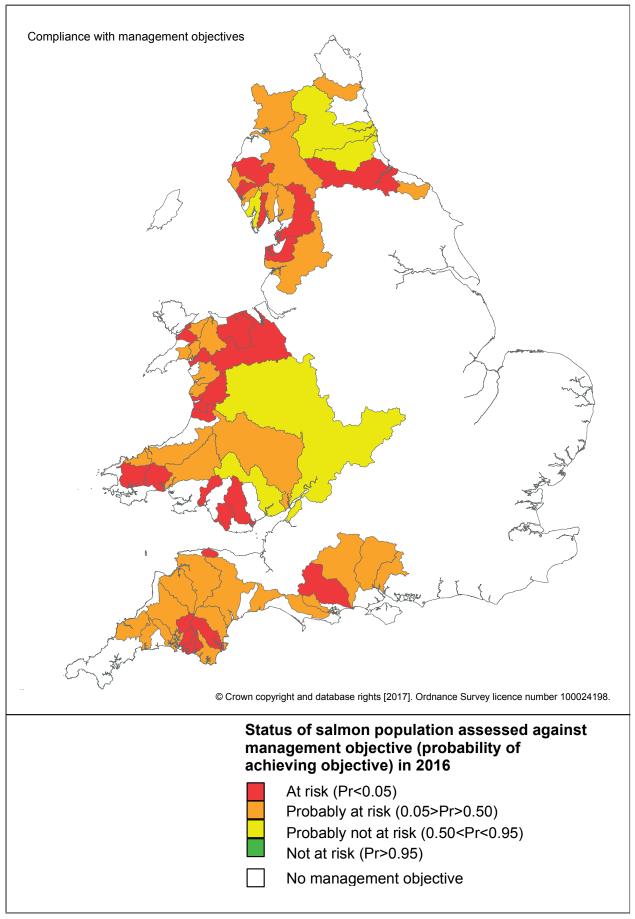


Figure 32. Status of river catchments in 2016 assessed against the management objective (i.e. that the CL is met or exceeded in at least 4 years out of 5, on average).

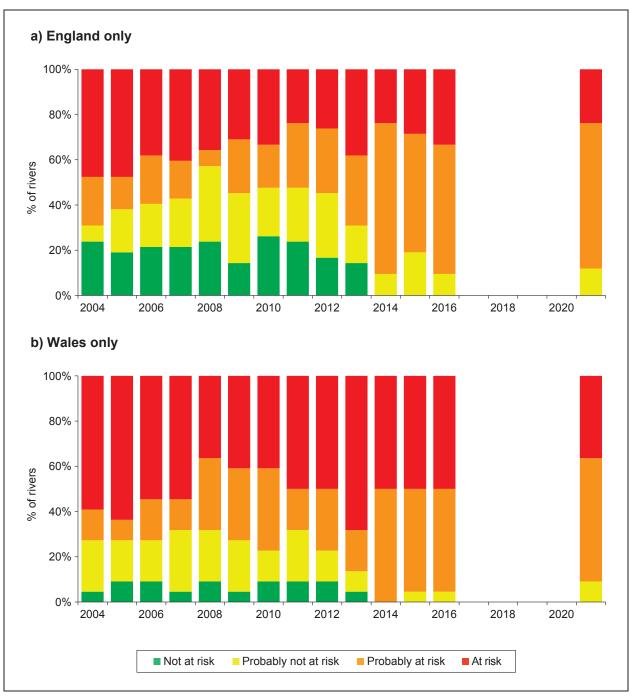


Figure 33. Percentage of principal salmon rivers in each risk category, assessed against the management objective, for 2004-2016, and as predicted for 2021 for rivers in (a) England and (b) Wales.

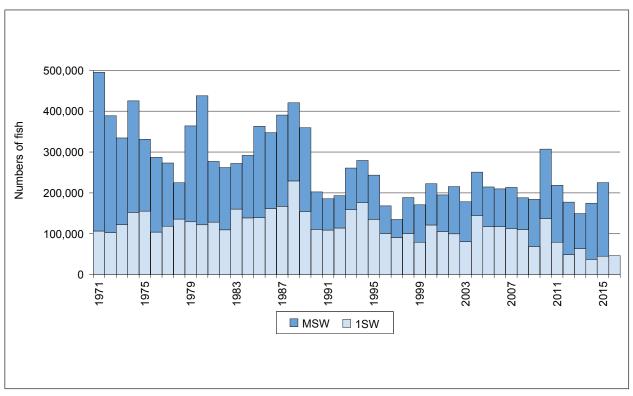


Figure 34. Estimated Pre Fishery Abundance (PFA) of salmon from UK (England & Wales), 1971-2016, as derived from the ICES-NEAC PFA model, 2016.

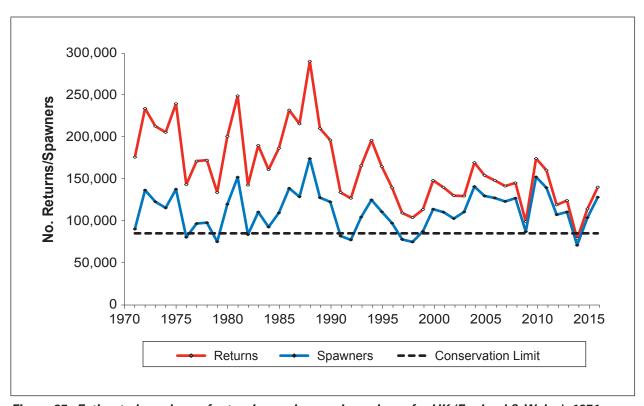


Figure 35. Estimated numbers of returning and spawning salmon for UK (England & Wales), 1971-2016, as derived from the ICES-NEAC PFA model, 2016, together with the national conservation limit (derived from the sum of river-specific CLs).

9. FACTORS AFFECTING STOCKS, FISHERIES AND CATCHES

9.1 Management measures

Viewed against historical data, current stock estimates and catches provide ongoing cause for concern and the conservation of salmon remains a priority. As a result, the Environment Agency hosted a Salmon Summit on 19 November 2015 to raise awareness about the state of England's salmon stocks and to bring together influential leaders, policy makers, delivery bodies and NGOs to discuss and agree how we can collectively protect and enhance them. The Environment Agency, Defra, its agencies and partner organisations subsequently developed a five-point approach to deliver a better future for salmon, which aims to address the pressures that they face through their life-cycle. This includes proposals for action on:

- Improving marine survival;
- Further reducing exploitation by nets and rods;
- Removing barriers to migration and enhancing habitat;
- Safeguarding sufficient flows; and
- Maximising spawning success by improving water quality.

The 5-point approach commenced in April 2016. Initially, an 18-month programme has been developed to kick-start the new approach and help coordinate the actions to be undertaken by a range of organisations over the period through to 2021.

A number of measures aimed at better management of this valuable resource have also been implemented or strengthened in England and Wales in recent years. The following provides a brief overview:

- The number of licences issued for nets and fixed engines in all parts of England and Wales has continued to decline as a result of measures taken to reduce levels of exploitation and the declining commercial viability of some fisheries. Overall, the number of net licences has decreased by 76% since 1971.
- The national spring salmon measures introduced in 1999 have reduced the proportion of the net catch taken before June from a 5-year average of 6.7% in the mid-1990's to 0.3%, on average, from 1999; these latter fish are all required to be released. These measures were renewed for another ten years in December 2008.
- Several net fisheries are being (or have been) phased out because they exploit migratory salmonids returning to more than one river (i.e. mixed stock fisheries). Arrangements have also been made to reduce netting effort in some fisheries by either compensating netsmen not to fish for a particular period (buy-offs), or through voluntary agreement to return salmon alive. Catch limits have also been imposed on some net and fixed engine fisheries.

- In Ireland, action by the Government and fisheries authorities in 2007 imposed new restrictions on their fisheries and ended legal coastal drift netting for salmon. This change is estimated to have resulted in up to 5,000 more grilse returning to homewaters, particularly to rivers in the south and west of England and Wales.
- The national spring salmon measures have also affected rod fisheries. The proportion of the rod catch taken before June fell from a mean of 10.9% over the period 1994–1998 to an average of 6.3% for the period since 1999, and these fish are required to be released.
- Non-statutory restrictions on methods and fishing areas imposed by fishery owners and angling associations include weekly and seasonal bag limits, and there are ongoing efforts to promote catch and release (C&R). As a consequence, the proportion of salmon released by anglers has increased steadily from 10% in 1993 to at or above 60% in the last seven years (80%, provisionally, in 2016, the highest in the time series). Tracking studies suggest that, if handled appropriately, the majority (~85%) of released salmon go on to spawn successfully.

9.2 Other factors

Other, non-regulatory, factors may also contribute to changes in stocks and catches, for example, the condition of returning fish, weather conditions, water quality, extreme flow events and the market prices of wild and farmed fish. Further information on these factors is provided in the background report. The following provides brief details of factors pertinent to 2016:

The effect of river flows on angler effort and catches

For rod fisheries, river flow is a key factor affecting angler effort. In 2016, river flows were typically below the long-term average in May, above the long-term average in July, but otherwise close to long-term values for much of the spring and summer. However, flows were then below average in September and, particularly, October (Figure 36). The early autumn represents an important period for most rod fisheries and relatively low flows at this time are likely to have affected runs of fish and provided conditions that were unfavourable for angling, particularly for 1SW salmon, since these only start to return to rivers in the summer months. This would likely also have had an effect on fishing effort at this time.

Monthly rod catch data for the majority of the rivers featured in Figure 36, expressed in the same format as the flow data, as a percentage of the long-term average, are presented in Figure 37. This excludes the River Cynon, which has no catch of salmon, and includes the catch for the whole River Tyne rather than just the South Tyne tributary. The long-term average for the rod data has only been extended back as far as 1999, which is when the national measures were introduced imposing compulsory catch and release in the early part of the season. Fishing patterns are likely to have been different prior to this time. The monthly rod catch data have also been restricted to the period February to October, since for most rivers fishing seasons do not extend outside this period.

Median monthly rod catches in 2016 were below the long-term average in February and March, close to the long-term average for much of the spring and early summer (April to June inclusive), but then well above average in July. This corresponded with above average flows and likely reflects favourable conditions for angling. Thereafter, monthly rod catches fell sharply and were

well below the long-term average in August to October. The particularly low catches in February and March need to be treated with caution since there is relatively little fishing at this time of year, catches are typically very small and fishing is restricted to only some rivers. The above average catches, in spring and early summer, probably reflect the improved returns of MSW salmon, many of which return earlier in the year. The low flows in September and October will have resulted in relatively poor conditions for salmon angling and for fish to migrate, and may have contributed to the below average catches at this time. However, low abundance of 1SW salmon (Figure 19) is believed to have been the main factor affecting the poor late season catches. It is also important to remember that differing proportions of 1SW and MSW fish in the runs and the timing of the return migrations will also have an impact on catch rates, in addition to river flows.

First sale price of salmon

The first sale price of salmon has potential implications for fishing effort and the economic viability of those net fisheries that target these fish. The average monthly price of wild salmon varies seasonally, reflecting both availability and the size of fish. Figure 38 provides an indication of trends in the first sale price of both wild and farmed salmon since 1978. The data (from Mawle, in prep) are provided for a single month, August. Further discussion on these price changes is provided in the background report.

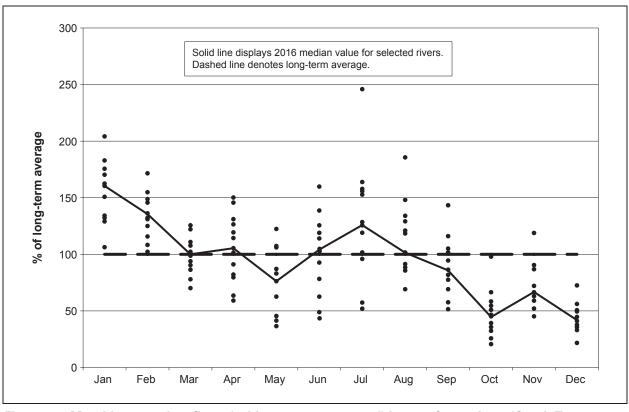


Figure 36. Monthly mean river flows (cubic metres per second) in 2016 for 12 rivers (South Tyne, Itchen, Avon, Exe, Taw, Severn, Wye, Cynon, Teifi, Dee, Lune and Eden) in England & Wales, expressed as a percentage of the long-term average on each river for the same month. (Data supplied courtesy of the National River Flow Archive at the Centre for Ecology and Hydrology.) The long-term average is calculated for the available time series, which varies from river to river, but is in the range of 25-40 years.

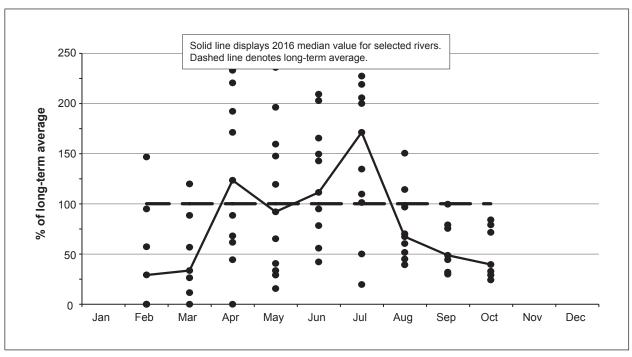


Figure 37. Monthly rod catches in 2016 for 11 rivers (Tyne, Itchen, Avon, Exe, Taw, Severn, Wye, Teifi, Dee, Lune and Eden) in England & Wales, expressed as a percentage of the long-term average on each river for the same month. The long-term average is derived from data for the period since 1999.

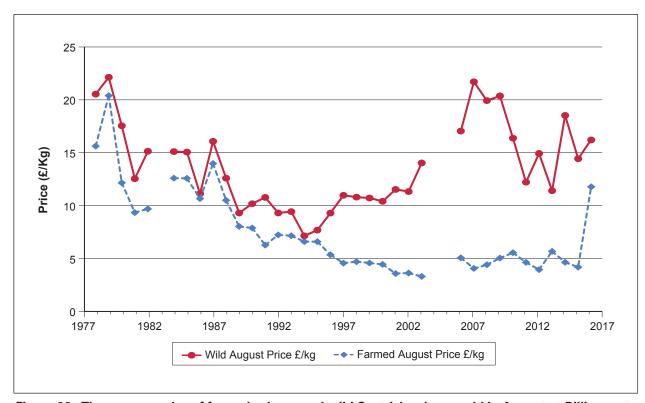


Figure 38. The average price of farmed salmon and wild Scottish salmon sold in August at Billingsgate, London, 1978 to 2016.

10. EXISTING AND EMERGING THREATS TO SALMON POPULATIONS

Further information on the various factors impacting on salmon stocks in England and Wales, and progress with actions to protect and enhance these stocks, is reported in the NASCO Implementation Plan and in the annual progress reports to NASCO. These reports are available at: http://www.nasco.int/implementation_plans_cycle2.html. Some additional information is also available in the background report. The following provides brief details on two issues:

Red Vent Syndrome and other disease issues

The occurrence of salmon returning to rivers in England and Wales with swollen and/or bleeding vents has been noted since 2004. The condition, referred to as Red Vent Syndrome (RVS), has continued to be observed since this time, and has been subject to ongoing monitoring. Monitoring programmes on salmon 'index' rivers provide the most consistent measure of the incidence of RVS. Since 2007, this consistency has been improved through the introduction of a system whereby symptoms have been classified according to their apparent severity (with samplers referring to a set of standard photographs and descriptions to assist their judgement). Available time series of RVS incidence in returning fish are presented in Table 28 for the Rivers Tyne, Tamar, Dee, Lune and Caldew (a tributary of the River Eden). However, no sampling has been possible at two of these sites in the last three years and sampling effort has been substantially reduced at another.

Fish affected by RVS show a degree of recovery in freshwater and appear to be able to spawn successfully.

In response to increased reports of fungal (*Saprolegnia*) infections in salmon (and sea trout), the Environment Agency and Natural Resources Wales continue to monitor disease problems across England and Wales. This has included ongoing assessments of fungal infections in all our major salmon rivers and assessments of environmental variables that may be driving this disease. Compared with previous years, fungal infections were less prevalent in 2016, with no serious disease problems reported. The Environment Agency is supporting a three-year study into the epidemiology of *Saprolegnia* in wild salmonids in collaboration with Cardiff University.

Poor juvenile recruitment in 2016

The densities of juvenile salmon, and 0+ salmon fry in particular, were very low in English and Welsh rivers in 2016 and well below long-term averages. Analysis of survey data from 2001 suggest that some decline in salmon fry densities has been in evidence since 2009. However, the scale of the downturn in 2016 was particularly notable and affected rivers throughout the country. Figure 39 provides time series of juvenile densities (numbers per 100m²) for selected rivers in England where the same survey sites have been consistently sampled over the period. Relatively poor densities of salmon parr and juvenile trout were also apparent in 2016, but these were not as notable as that seen in salmon fry. The same was apparent across many rivers in Wales, with systems such as the Usk, Tywi and Clwyd reporting the absence or virtual absence of young salmon at several formally productive electrofishing sites. The widespread nature of these observations suggests common factors operating at a broad scale.

In some rivers, the poor fry numbers were thought to have been influenced by lower numbers of returning adults, particularly in rivers where 1SW fish normally comprise the main component of the run. However, numbers of returning fish were at or above average in some rivers in 2015, suggesting that factors other than adult returns influenced successful recruitment.

Extreme high flow events, notably associated with Storm Desmond, occurred during the winter of 2015/16 in the north of the country. These affected many rivers, with the River Tyne, in particular, experiencing the highest flows in the time series. These flow events occurred during and after the salmon spawning period and may have caused mortality due to the wash-out of eggs and alevins from redds and/or sediment deposition in redds. However, such high flow events did not occur in the south of the country. The winter of 2015/16 was amongst the warmest on record, and elevated temperatures may have influenced early fry survival or reproductive success. Evidence from the literature suggests that impacts on adult reproduction and subsequent juvenile survival can occur at winter water temperatures above 11-12°C (Taranger and Hansen, 1993; Solomon & Lightfoot, 2008; Pankhurst & King, 2010; Fenkes et al., 2016). River temperatures are not routinely monitored and only limited data are available. However, some of these data recorded temperatures at or above 11-12°C, suggesting that unusually warm conditions in the winter of 2015/16 may have been an important factor in the observed decline in recruitment.

In conclusion, the low abundance of juvenile salmon in 2016 was probably influenced by a combination of factors including low numbers of spawners, high winter flows and high winter temperatures, with different factors having greater influence in different catchments.

Table 28. Percentage of returning salmon showing signs of Red Vent Syndrome in monitored rivers in England and Wales, 2004-2016.

River	Tyne #	Tamar	Dee	Lune	Caldew #
Region/NRW	NE	SW	N. Wales	NW	NW
Sample source	Upper river broodstock	Lower river trap	Lower river trap	Lower river trap	Sub-catchment trap
		% incid	dence of RVS in return	ing fish	
2004			0.4		
2005			3.2	0	
2006			9.2	1.4	
2007	1.4	60.2	29.9	23.1	5.3 [a]
2008	0.8	45.3	20.9	24.7	0.3 [a]
2009	3.4	41.5	28.2	21.2	10.2
2010	5.3	57.1	23.7	18.8	5.1
2011	3.8	45.6	10.9	16.3	6.4
2012	5.2	26.1	13.2	0 [a]	6.1
2013	10.1	44.5 #	20.5	41.6	0.8 [a]
2014	7.5	n/a	25.3	9.5 #	n/a
2015	10.3	35.5 #	24.4	13.6 #	n/a
2016	3.5	24.6 #	21.7	19.0 #	n/a

Note: Except where indicated (#), these estimates are based on fish sampled over a common (June-October) period and have been weighted according to monthly run totals. Three of the traps (not the Caldew) are located at or close to head-of-tide.

[a] Considered minimum values.

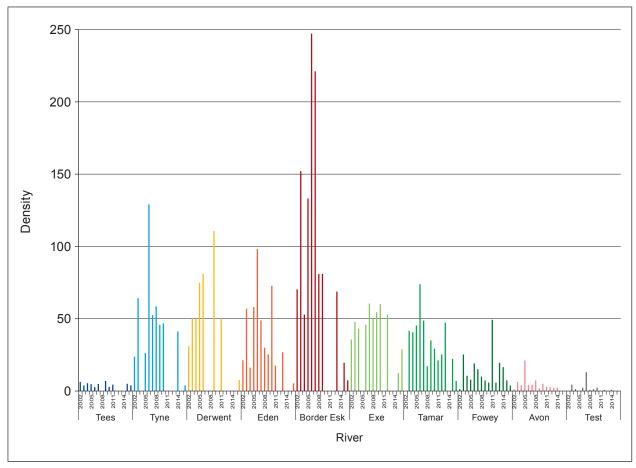


Figure 39. Juvenile densities (fish per 100m²) for selected rivers over the period 2002 to 2016. (N.B. figure only includes rivers where the same sites have been sampled consistently over the period).

11. REFERENCES

- Environment Agency, 2017. Salmonid and freshwater fisheries statistics for England and Wales, 2015, 39 pp. https://www.gov.uk/government/collections/salmonid-and-freshwater-fisheries-statistics
- Fenkes, M., Shiels, H.A., Fitzpatrick, J.L. and Nudds, R.L. 2016. The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 193, pp.11-21.
- ICES. 2017. Report of the Working Group on North Atlantic Salmon. ICES CM 2017/ACOM:20, 294pp.
- Mawle, G.W. (in prep.). The impact of negative publicity for farmed salmon on the price of wild salmon in the United Kingdom.
- Pankhurst, N.W. and King, H.R., 2010. Temperature and salmonid reproduction: implications for aquaculture. Journal of Fish Biology, 76(1), pp.69-85.
- Potter, E.C.E., Crozier, W.W., Schön, P-J., Nicholson, M.D., Prévost, E., Erkinaro, J., Gudbergsson, G., Karlsson, L., Hansen, L.P., Maclean, J.C., Ó Maoiléidigh, N. and Prusov S. 2004. Estimating and forecasting pre-fishery abundance of Atlantic salmon (*Salmo salar* L.) In the north-east Atlantic for the management of mixed stock fisheries. ICES Journal of Marine Science 61: 1359-1369.
- Solomon, D.J. and Lightfoot, G.W. 2008. The thermal biology of brown trout and Atlantic salmon. Environment Agency Science Report, 42pp.
- https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291741/scho0808bolv-e-e.pdf
- Taranger, G.L. and Hansen, T. 1993. Ovulation and egg survival following exposure of Atlantic salmon, *Salmo salar* L., broodstock to different water temperatures. Aquaculture Research, 24(2), pp.151-156.

ANNEX 1. NASCO's request for scientific advice from ICES in 2017

1. With respect to Atlantic salmon in the North Atlantic area:

- 1.1 provide an overview of salmon catches and landings by country, including unreported catches and catch and release, and production of farmed and ranched Atlantic salmon in 2016¹;
- 1.2 report on significant new or emerging threats to, or opportunities for, salmon conservation and management²;
- 1.3 provide a review of examples of successes and failures in wild salmon restoration and rehabilitation and develop a classification of activities which could be recommended under various conditions or threats to the persistence of populations³;
- 1.4 provide a summary of the available diet data for marine life stages of Atlantic salmon and identify key prey species at different life stages (e.g. herring at postsmolt stages, capelin in West Greenland waters and the Barents Sea)⁴;
- 1.5 quantify possible future impacts of climate change on salmon stock dynamics [*ToR tbc*];
- 1.6 provide a compilation of tag releases by country in 2016;
- 1.7 identify relevant data deficiencies, monitoring needs and research requirements.

2. With respect to Atlantic salmon in the North-East Atlantic Commission area:

- 2.1 describe the key events of the 2016 fisheries⁵;
- 2.2 review and report on the development of age-specific stock conservation limits including updating the time series of the number of river stocks with established CL's by jurisdiction;
- 2.3 describe the status of the stocks including updating the time series of trends in the number of river stocks meeting CL's by jurisdiction;
- 2.4 provide information on the size, distribution and timing of the blue whiting fishery in the North East Atlantic area and any official observer information relating to bycatch which may indicate possible impact of this fishery on wild salmon.

3. With respect to Atlantic salmon in the North American Commission area:

- 3.1 describe the key events of the 2016 fisheries (including the fishery at St Pierre and Miguelon)⁵;
- 3.2 update age-specific stock conservation limits based on new information as available including updating the time series of the number of river stocks with established CL's by jurisdiction
- 3.3. describe the status of the stocks including updating the time series of trends in the number of river stocks meeting CL's by jurisdiction.

4. With respect to Atlantic salmon in the West Greenland Commission area:

- 4.1 describe the key events of the 2016 fisheries⁵;
- 4.2 describe the status of the stocks⁶.

Notes:

- 1. With regard to question 1.1, for the estimates of unreported catch the information provided should, where possible, indicate the location of the unreported catch in the following categories: in-river; estuarine; and coastal. Numbers of salmon caught and released in recreational fisheries should be provided.
- 2. With regard to question 1.2, ICES is requested to include reports on any significant advances in understanding of the biology of Atlantic salmon that is pertinent to NASCO, including information on any new research into the migration and distribution of salmon at sea and the potential implications of climate change for salmon management.
- 3. With regards to question 1.3 NASCO is particularly interested in case studies highlighting successes and failures of various restoration efforts employed across the North Atlantic by all Parties/jurisdictions and the metrics used for evaluating success or failure.
- 4. In response to question 1.4, ICES is requested to comment on any significant changes in population dynamics (i.e. abundance, distribution, size structure, and energy density) of key prey species which may be associated with changes in salmon abundance, distribution, and marine ecology (e.g. the recently identified decreases in capelin energy density and the consequences on marine productivity of Atlantic salmon while also providing information related to fisheries which catch significant numbers of the identified key prey species (i.e. direct harvest or bycatch).
- 5. In the responses to questions 2.1, 3.1 and 4. 1, ICES is asked to provide details of catch, gear, effort, composition and origin of the catch and rates of exploitation. For homewater fisheries, the information provided should indicate the location of the catch in the following categories: in-river; estuarine; and coastal. Information on any other sources of fishing mortality for salmon is also requested. For 4.1 ICES should review the results of the recent phone surveys and advise on the appropriateness for incorporating resulting estimates of unreported catch into the assessment process.
- 6. In response to question 4.2, ICES is requested to provide a brief summary of the status of North American and North-East Atlantic salmon stocks. The detailed information on the status of these stocks should be provided in response to questions 2.3 and 3.3.

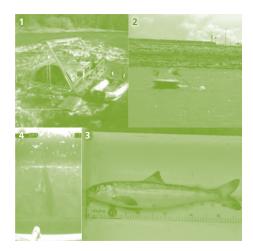
ANNEX 2. Net Limitation Orders applying to salmon net fisheries in England & Wales.

EA Region /	Area	Net Limitation Order	End	Welsh rivers in Wales	NLO licence provision	
NRW			date	'all areas' NLO	Туре	Number
Anglian	Coastal	Anglian Coast 2015	2022		Drift net & non-drift net	0
North East	Coastal	North East Coast 2012	2022		T and J nets	0
					Drift net - Northumbria and Yorkshire	0
North West	North	River Lune Estuary 2009	2019		Drift	7
		River Lune Estuary 2009	2019		Haaf	12
		River Ribble Estuary 2006	2017		Drift (hang or whammel) nets	2
		River Kent Estuary 2013	2023		Lave net	6
		River Leven Estuary 2013	2023		Lave net	2
		Solway Firth 2007	2017		Heave or Haaf net	105
Southern	Solent & S Downs	Southern Region 2008	2018		Seine	1
South West	Cornwall	River Camel 2013	2018		Draft, seine, drift or hang net	6
	South Wessex	Christchurch Harbour 2012 (Hants Avon & Stour)	2022		Draft or seine net	0
		Poole Habour 2012 (Piddle & Frome)	2017		Seine net	1
	Devon	River Dart 2015	2025		Draft or seine net	0
		Exe Estuary 2011	2021		Draft nets	3
	Cornwall	River Fowey 2007	2017		Draft or seine net	1
		River Lynher 2014	2024		Draft or seine net	0
		River Tamar 2014	2024		Draft or seine net	0
		River Tavy 2014	2024		Draft or seine net	0
		Rivers Taw and Torridge 2012	2022		Draft or seine net	1
	Devon	River Teign 2015	2020		Draft or seine net	3
Midlands		River Severn 2014	2019		Draft or seine net	0
		River Severn 2014	2019		Lave net	15
Wales	All areas	Wales 2009	2017	Nevern	Draft or seine net	1
				Taf	Coracle net	1
				Taf	Wade net	1
				Dyfi	Draft or seine net	3
				Dysynni	Draft or seine net	1
				Glaslyn & Dwyryd	Draft or seine net	0
				Mawddach	Draft or seine net	3
				Conwy	Draft or seine net	3
				Cleddau	Compass nets	6
				Teifi	Coracle net	12
				Teifi	Draft or seine net	3
				Tywi	Draft or seine net	3
				Tywi	Coracle net	8
	North	River Dee 2015	2025		Draft or seine net	0
					Trammel nets	0

Notes: Table does not include historical installation fisheries which operate under Certificates of Privilege or the private lave net fishery on the River Wye.

Some fisheries are also subject to seasonal catch limits - see Table 2 for details.

ANNEX 3. Byelaws applying to salmon rod fisheries in England and Wales.


EA Region / NRW	River	Salmon Season (inclusive dates)	*Method Restrictions	*Bag limits/Catch and Release etc.	Effective from (date); expires (date
NE	Aln	1.2 -31.10			
	Coquet	1.2 -31.10			
	Tyne	1.2 -31.10			
	Wear	1.2 -31.10			
	Tees	1.2 -31.10			
	Esk (Yorks.)	6.4 -31.10			
	Ouse (Yorks.)	6.4 -31.10			
Anglian	Region	1.3 -28.9			
Thames	Thames	1.4 -30.9		2 salmon bag limit a day	
SW	Avon (Hants.)	1.2 -31.8	Artificial fly only before 15/5		
	Piddle	1.3 -31.8	Artificial fly only before 15/5		
	Frome	1.3 -31.8	Artificial fly only before 15/5		
	Axe	15.3 -31.10	No shrimp, prawn, worm or maggot. Fly only after 31/7 below Axbridge		
	Exe	14.2 -30.9 (trial extension to 14.10)	No worm or maggot	Fly only and mandatory catch and release during trial extension period.	
	Teign	1.2 -30.9	No worm or maggot before 1/6		
	Dart	1.2 -30.9	No worm or maggot. No shrimp/prawn etc. below Staverton Bridge.		
	Avon (Devon)	15.4 -30.11	No worm or maggot		
	Plym	1.4 -15.12	No worm, maggot, shrimp or prawn after 31/8		
	Tavy	1.3 -14.10	No worm, maggot, shrimp or prawn after 31/8		
	Tamar	1.3 -14.10	No worm, maggot, shrimp or prawn after 31/8		
	Lynher	1.3 -14.10	No worm, maggot, shrimp or prawn after 31/8		
	Fowey	1.4 -15.12			
	Camel	1.4 -15.12			
	Taw	1.3 -30.9	No shrimp, prawn, worm or maggot. Fly only 1/4 to 31/5	Numbers for Taw, Torridge in brackets: 2 (2) salmon a day, 3 (2) a week and 10 (7) a season, (2 salmon limit before June 1st) & return of all salmon > 70 cm after Aug 1st.	
	Torridge	1.3 -30.9	No shrimp, prawn, worm or maggot. Fly only 1/4 to 31/5		
	Lyn	1.2 -31.10	No worm or maggot before 1/6		
	Yealm	1.4 -15.12	No worm, maggot, shrimp or prawn after 31/8		
Midlands	Severn	1.2 -7.10	No float fishing with lure or bait		

EA Region / NRW	River	Salmon Season (inclusive dates)	*Method Restrictions	*Bag limits/Catch and Release etc.	Effective from (date); expires (date
Wales	Wye	3.3 -17.10 (a)	Fly only 1.9 to 17.10. No bait all season	Mandatory C&R all season	Commenced June 2012; expires 2021
	Usk	3.3 -17.10	Fly only 3.3 - 1.6. Fly & Spin 15.9 - 17.10		
	Taff & Ely	20.3 -17.10	Fly & Spin 20.3 -15.4 & 1.10 -17.10	Mandatory C&R all season	Commenced June 2012; expires 2018
	Ogmore	20.3 -17.10	Fly & Spin 20.3 -15.4 & 1.10 -17.10		
	Afan	20.3 -17.10	Fly & Spin 20.3 -15.4 & 1.10 -17.10		
	Neath	20.3 -17.10	Fly & Spin 20.3 -15.4 & 1.10 -17.10		
	Tawe	20.3 -17.10	Fly & Spin 20.3 -15.4 & 1.10 -17.10		
	Loughor	20.3 -17.10	Fly & Spin 20.3 -15.4 & 7.10 -17.10		
	Tywi	1.4 -17.10	Fly & Spin 7.10 -17.10	Daily bag limit of 2 salmon & 4 sea trout, weekly bag limit of 5 salmon. C&R 8.10 to 17.10	
	Taf	1.4 -17.10	Fly & Spin 7.10 -17.10	Daily bag limit of 2 salmon & 4 sea trout, weekly bag limit of 5 salmon. C&R 8.10 to 17.10	
	E+W. Cleddau	1.4 -17.10	Fly & Spin 7.10 -17.10	Daily bag limit of 2 salmon & 4 sea trout, weekly bag limit of 5 salmon. C&R 8.10 to 17.10	
	Nevern	1.4 -17.10	Fly & Spin 7.10 -17.10	Daily bag limit of 2 salmon & 4 sea trout, weekly bag limit of 5 salmon	
	Teifi	1.4 -17.10	Fly & Spin 7.10 -17.10	Daily bag limit of 2 salmon & 4 sea trout, weekly bag limit of 5 salmon	
	Aeron	1.4 -17.10	Fly & Spin 7.10 -17.10	Daily bag limit of 2 salmon & 4 sea trout, weekly bag limit of 5 salmon	
	Ystwyth	1.4 -17.10	Fly & Spin 7.10 -17.10	Daily bag limit of 2 salmon & 4 sea trout, weekly bag limit of 5 salmon	
	Rheidol	1.4 -17.10	Fly & Spin 7.10 -17.10	Daily bag limit of 2 salmon & 4 sea trout, weekly bag limit of 5 salmon	
	Dyfi	20.3 -17.10 (some sections to 31.10)	Fly & Spin 20.3 -15.4 & 7.10 -31.10	Catch & Release salmon and sea trout 18.10 to 31.10	
	Dysynni	20.3 -17.10	Fly & Spin 20.3 -15.4 & 7.10 -17.10	Catch & Release salmon and sea trout 18.10 to 31.10	
	Mawddach	20.3 -17.10	Fly & Spin 20.3 -15.4 & 7.10 -17.10		
	Artro	20.3 -17.10	Fly & Spin 20.3 -15.4 & 7.10 -17.10		
	Dwyryd	20.3 -17.10 (some sections to 31.10)	Fly & Spin 20.3 -15.4 &	Catch & Release salmon and sea trout 18.10 to 31.10	
	Glaslyn	20.3 -17.10	Fly & Spin 20.3 -15.4 & 7.10 -17.10		
	Dwyfawr	20.3 -17.10	Fly & Spin 20.3 -15.4 & 7.10 -17.10		
	Llyfni	20.3 -17.10	Fly & Spin 20.3 -15.4 & 7.10 -17.10		
	Gwyrfai	20.3 -17.10	Fly & Spin 20.3 -15.4 & 7.10 -17.10		
	Seiont	20.3 -15.11	Fly & Spin 20.3 -15.4 & 7.10 -15.11	Catch & Release salmon and sea trout 18.10 to 15.11	
	Ogwen	20.3 -17.10 (some sections to 31.10)	Fly & Spin 20.3 -15.4 & 7.10 -31.10	Catch & Release salmon and sea trout 18.10 to 31.10	
	Conwy		Fly & Spin 20.3 -15.4 &	Catch & Release salmon and sea trout 18.10 to 31.10	
	Clwyd	20.3 -17.10	Fly & Spin 20.3 - 1.6, Fly only 1.10 - 17.10		
	Dee	3.3 -17.10	Fly only 3.3 - 1.6, Fly & Spin 1.10 - 17.10		

Wyre Lune Kent Leven Crake	1.2 -31.10 1.2 -31.10 1.2 -31.10 1.2 -31.10 1.2 -31.10		Byelaw (NW-28/02/07)no more than two salmon may be killed between 16.6 and 31.10 Byelaw (NW-14/02/00) no more than four salmon may be killed during the season. Byelaw (NW-08/05/13) requiring release of all salmon after capture.	
Lune Kent Leven	1.2 -31.10 1.2 -31.10 1.2 -31.10		than four salmon may be killed during the season. Byelaw (NW-08/05/13) requiring release of all salmon after capture.	26.11.2019 08.05.2013 – 07.05.2016
Kent Leven	1.2 -31.10 1.2 -31.10		than four salmon may be killed during the season. Byelaw (NW-08/05/13) requiring release of all salmon after capture.	26.11.2019 08.05.2013 – 07.05.2016
Leven	1.2 -31.10		release of all salmon after capture.	07.05.2016
			release of all salmon after capture.	07.05.2016
Crake	1.2 -31.10		D (NIM/ 00/0E/40)	
			Byelaw (NW-08/05/13) requiring release of all salmon after capture. Derogation allows anglers to take some fish (currently 11 for whole season) provided these marked with carcass tag.	08.05.2013 – 07.05.2016
Duddon	1.2 -31.10			
Esk (Cumb.)	1.2 -31.10			
lrt	1.2 -31.10			
Calder	1.2 -31.10			
Ehen	1.2 -31.10			
Derwent	1.2 -31.10			
Ellen	1.2 -31.10			
Eden	15.1 -14.10		Byelaw (NW–13.11.07) 2 salmon bag limit a day between between 16.6 and 14.10	13.11.2007 – 12.11.2017
			Byelaw (NW-13.11.07) prohibits retention of female salmon 10.9 to 14.10	13.11.2007 – 12.11.2017
Esk (Border)	1.2 -31.10		Byelaw (NW-13.11.07) 2 salmon bag limit a day between 16.6 and 31.10	13.11.2007 – 12.11.2017
			Byelaw (NW-13.11.07) prohibits retention of female salmon 10.9 to 31.10	13.11.2007 – 12.11.2017
Others	1.2 -31.10 (b)			·
	Esk Cumb.) rt Calder Chen Derwent Ellen Eden Others (a) Seasoi (b) Applies	1.2 -31.10 Cumb.) rt 1.2 -31.10 Calder 1.2 -31.10 Chen 1.2 -31.10 Cerwent 1.2 -31.10 Cerwent 1.2 -31.10 Cellen 1.2 -31.	Esk 1.2 -31.10 Cumb.) rt 1.2 -31.10 Calder 1.2 -31.10 Chen 1.2 -31.10 Cerwent 1.2 -31.10 Cerwent 1.2 -31.10 Cellen 1.2	1.2 -31.10 Cumb.) Cumb.)

* National spring salmon byelaws apply.

Natural Resources Wales – variations apply to Anglesey and the Lleyn Peninsula (check local byelaws).

Front cover images (clockwise from top left)

- 1 Rotary screw trap on the River Tyne (photo courtesy of Environment Agency)
- 2 T net at South Shields (photo courtesy of Environment Agency)
- 3 Salmon smolt from the River Frome (photo courtesy of Game and Wildlife Conservation Trust)
- 4 Salmon crossing the River Test Nursling fish counter (photo courtesy of Environment Agency)

Centre for Environment, Fisheries & Aquaculture Science Lowestoft Laboratory Pakefield Road Lowestoft Suffolk NR33 OHT www.cefas.co.uk

Tel: 01502 562244 Twitter: @cefasgovuk

Environment Agency National Customer Contact Centre PO Box 544 Rotherham S60 1BY www.Gov.uk

Tel: 03708 506 506 (Mon-Fri, 8am – 6pm) Email: enquiries@environment-agency.gov.uk

Facebook: https://www.facebook.com/environmentagency

Twitter: https://twitter.com/envagency

Cyfoeth Naturiol Cymru /Natural Resources Wales Cambria House 29 Newport Road Cardiff CF24 OTP. www.naturalresourceswales.gov.uk

Tel: Customer contact centre 0300 065 3000 Email: enquiries@naturalresourceswales.gov.uk Facebook: www.facebook.com/NatResWales

Twitter: @NatResWales

