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Abstract

We analyze the effect of technological change on inequality using a novel framework
that integrates an economy’s skill distribution with its occupational and industrial
structure. Individuals become a manager or a worker based on their managerial vs.
worker skills, and workers further sort into a continuum of tasks (occupations) ranked
by skill content. Our theory dictates that faster technological progress for middle-skill
tasks raises the employment shares and relative wages of lower- and higher-skill occu-
pations (horizontal polarization), but also raises those of managers over workers as a
whole (vertical polarization). Both dimensions of polarization are faster within sectors
that depend more on middle-skill tasks and less on managers. This endogenously leads
to faster TFP growth among such sectors, whose employment and value-added shares
shrink if sectoral goods are complementarity to each other (structural change). In
the limiting growth path, middle-skill occupations vanish but all sectors coexist. We
present several novel facts that support our model, followed by a quantitative analysis
that shows that task-specific technological progress—which was fastest for occupations
embodying routine-manual tasks but not interpersonal skills—is important for under-
standing changes in the sectoral, occupational, and organizational structure of the
U.S. economy since 1980. In contrast, skill-biased and/or sector-specific technological
change played only a minor role.
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1 Introduction

We develop a novel framework that integrates an economy’s distribution of individual

skills with its occupation and industrial structure. This enables us to analyze how

changes in wage and employment shares across occupations and across industrial sec-

tors are interrelated and reinforce each other, providing a comprehensive view on the

economic forces that shape the sectoral, occupational, and organizational structure of

an economy.

In our model, individuals are heterogeneous in two-dimensional skills, managerial

talent and worker human capital, based on which they become a manager or a worker.

Workers then select themselves into a continuum of tasks (or occupations) based on

their human capital.1 Managers organize the workers’ tasks, in addition to their own,

to produce sector-level output. Sectors differ only in how intensively different tasks

are used in production. Individual skills are sector-neutral, so they only care about

their occupation and are indifferent about which sector they work in. The equilibrium

assignment is fully characterized, which is a theoretical contribution given the new,

multi-layered aspect of our model.

We also prove that if different tasks are complementary for production, faster tech-

nological progress for middle-skill tasks relative to the others leads to: (i) higher em-

ployment shares and wages for low- and high-skill occupations relative to middle-skill

occupations, i.e. job and wage polarization; (ii) a higher employment share and wages

for managers relative to all workers as a whole, which we call vertical polarization to

distinguish from the horizontal polarization across workers; (iii) faster horizontal and

vertical polarization within those sectors that depend more on middle-skill tasks and

less on managers; and (iv) faster endogenous total factor productivity (TFP) growth

of such sectors, shrinking their employment and value-added shares if sectoral goods

are complementary (i.e., structural change).

The last prediction merits further discussion. First, because sector-level TFP is en-

dogenously determined by equilibrium occupational choices, task-specific technological

progress—which is sector-neutral—has differential impact across sectors, causing struc-

tural change. Second, as the employment share of sectors that rely less on middle-skill

workers and more on managers rise, the overall degree of (both horizontal and verti-

cal) polarization in aggregate is reinforced. Third, if all structural change is driven

by task-specific technological progress, in the asymptotic balanced growth path (BGP)

only occupations with slow technological progress remain and all others vanish, but all

sectors exist. This is in contrast to many theories of structural change that rely on

1Technically, a task is the technology used by a certain occupation. Throughout the paper, we will use
task and occupation interchangeably.
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sector-specific forces: In those models, the shift of production factors from one sector

to another continues as long as those forces exist, so that shrinking sectors vanish in

the limit. In our model, task-specific technological progress is sector-neutral and only

affects sectors indirectly through how they combine tasks. Once the employment shares

of the occupations with faster progress become negligible, structural change ceases even

as productivity continues to grow differentially across occupations.

Predictions (i) through (iv) are salient features observed in the U.S. since 1980:

(i) job and wage polarization are well-documented in the literature, e.g., Autor and

Dorn (2013), which we refer to as horizontal polarization; (ii) using the same data, we

highlight that vertical polarization is also pronounced; and (iii) we verify that manu-

facturing is more reliant on middle-skill workers and less on managers than services,

and provide suggestive evidence that both dimensions of polarization are indeed faster

within manufacturing than in services.2 Finally, (iv) it has long been understood that

the faster growth of manufacturing TFP is an important driver of structural change

from manufacturing to services. Consequently, our model shows that all these empiri-

cal facts have a common cause: faster technological progress for middle-skill tasks than

the rest.

Our theoretical model is based on one managerial task and a continuum of worker

tasks. To quantify the model, we discretize workers into 10 broadly defined occupation

categories in the data. Our quantitative analysis confirms that task-specific technologi-

cal progress alone—without any exogenous change to sector-specific TFP growth—can

account for almost all of the observed growth in sector-level TFP’s. More broadly,

task-specific technological progress, especially for middle-skill tasks, is important for

understanding the changes in the sectoral, occupational, and organizational structure

in the United States over the last 35 years.

The natural next question is what can explain such differential productivity im-

provements across tasks. To explain what we call horizontal polarization, Autor and

Dorn (2013), Goos et al. (2014) and others hypothesized that “routinization”—i.e.,

faster technological advancement for tasks that are more routine in nature (which

tend to be middle-skill tasks in the data)—reduced the demand for middle-skill oc-

cupations. They test this empirically by constructing a “routinization index” (RTI)

for each occupation, which is constructed by aggregating various information avail-

able from the Dictionary of Occupation Titles (DOT) or O*NET, the successor of

DOT. But when we consider detailed characteristics of occupations, we find that the

2In addition, we provide evidence from establishment-level data that corroborates faster vertical polar-
ization in manufacturing: manufacturing establishments shrank faster when measured by employment and
grew faster by value-added than those in services, which is predicted by our model. Since the model assumes
one manager per establishment, we need to assume that the number of managers per establishment was
stable over time (we do not have data on this).

3



task-specific technological progress we quantify is much more strongly correlated with

disaggregated measures—specifically the routine-manual index and the inverse of the

manual-interpersonal index—than with RTI, which is by now commonly used in the

polarization literature. In other words, technological progress in the last three or four

decades heavily favored those manual tasks that are repetitive in nature and require

few interpersonal skills.

Related Literature Our model is a first attempt to provide a framework that

links the occupational structure of an economy to sectoral aggregates. In particular,

we can use micro-estimates of occupational employment and wages, which have been

studied extensively in labor economics, to study how occupational choices aggregate

up to macro-level sectoral shifts.

This is of particular empirical relevance for the U.S. and other advanced economies.

The 1980s marks a starting point of rising labor market inequality, of which polariza-

tion is a significant feature. This coincided with the rise of low-skill service jobs (Autor

and Dorn, 2013) and also a clear rise in manufacturing productivity (Herrendorf et al.,

2014). Our main finding in this regard is that task-specific productivity growth and

micro-level elasticities in the labor market can be of first-order importance for under-

standing economic growth at the sector and even aggregate level.

Costinot and Vogel (2010) present a task-based model in which workers with a

continuum of skills sort into a continuum of tasks. They present several comparative

statics including a few that lead to polarization. We extend their analysis by including

a manager and considering multiple sectors. Moreover, while their analysis was purely

theoretical, we quantify our model to the data and empirically verify its mechanisms.

Other models such as Acemoglu and Autor (2011) are variants of Costinot and Vogel

(2010), but none relate polarization to structural change across macroeconomic sectors,

nor treat managers as an occupation that is qualitatively different from workers.

Goos et al. (2014) construct an empirical task-based model which they use to decom-

pose employment polarization in Europe to within- and between-industry components,

but they do not consider macro-level implications. Based on an extensive analysis of

occupations in the IPUMS International, Dürnecker and Herrendorf (2017) argue that

most of the structural change across sectors can be accounted for by shifts at the oc-

cupation level. However, their conclusion is based on labeling some occupations in the

data as manufacturing jobs and others as services. In contrast, we rank occupations

based only on their mean wage, preventing any misclassification bias. Neither of these

papers allow skill or wage heterogeneity.

The manager-level technology in our model is an extension of the span-of-control

model of Lucas (1978), in which managers hire workers to produce output. However,

4



unlike all existing variants of the span-of-control model, in our managers organize tasks

instead of workers. That is, instead of deciding how many workers to hire, they decide

on the quantities of each task to use in production, and for each task, how much skill to

hire (rather than how many homogeneous workers). Moreover, rather than assuming

a Cobb-Douglas technology between managerial talent and workers, we assume a CES

technology between managerial talent and tasks.3

Our model is closely related to the rapidly growing literature in international trade

that use assignment models to explain inequality between occupations and/or indus-

tries (Burstein et al., 2015; Lee, 2015). The majority of such models follow in the

tradition of Roy: all workers have as many types of skills as there are available indus-

try/occupation combinations, and select themselves into the job in which they have a

comparative advantage. To make the model tractable, they typically employ a Fréchet

distribution which collapses the model into an empirically testable set of equations for

each industry and/or occupation pair. The manager-worker division in our model is

also due to Roy-selection, but the horizontal sorting of workers into tasks is qualita-

tively different. Having only two skill dimensions facilitates mapping them to individual

characteristics in the data; Moreover the endogenous skill formation of workers’ human

capital can be easily explored using traditional labor and macroeconomic tools.

Since Ngai and Pissarides (2007), most production-driven models of structural

change rely on exogenously evolving sectoral productivities. Closer to our model is

Acemoglu and Guerrieri (2008), in which the capital-intensive sector (in the sense of

having a larger capital share in a Cobb-Douglas technology) vanishes in the limiting

balanced growth path. While sectors in their model differ in how intensively they use

capital and labor, in our model they differ in how intensively they use different tasks.

By contrasting different types of labor, rather than capital and labor, we can connect

structural change—which happens across sectors—to labor market inequality across

occupations. As we briefly alluded to earlier, unlike any other existing explanation of

structural change, our model implies that it is certain occupations, not broadly-defined

sectors, that may vanish in the limit.

While we are the first to build a model in which individuals with different skills sort

themselves into different occupations, which in turn are used as production inputs in

multiple sectors, there have been recent attempts such as Buera and Kaboski (2012)

and Buera et al. (2015), in which multiple sectors use different combinations of het-

erogeneous skills as production inputs. Similarly, Bárány and Siegel (2017) argue that

3While Lucas’ original model is based on a generic HD1 technology, his empirical analysis and virtually all
papers that followed assume a Cobb-Douglas technology. Starting from there, we incorporate (i) non-unitary
elasticity between managers and workers, (ii) heterogeneity in worker productivity as well as in managerial
productivity, (iii) multiple worker tasks (or occupations), and (iv) multiple sectors.
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polarization can be explained by structural change, but they assume that skills are

occupations-specific and that occupations are sector-specific, so task-specific change

cannot be separated out independently.

An important distinction from these papers is that we separate worker human

capital from the task or occupation in which it is used. Consequetly, we are able to

model our driving force (i.e., routinization) as specific to a task or occupation, not to

workers’ human capital levels. This way, not only can we address broader dimensions

of wage inequality and use micro-labor estimates to discipline our model,4 but also

represent sectoral TFPs endogenously by aggregating over equilibrium occupational

choices, rather than relying on exogenously evolving worker-skill specific productivities.

The rest of the paper is organized as follows. In section 2, we summarize the most

relevant empirical facts: horizontal and vertical polarization in the overall economy,

the faster speed of polarization within manufacturing than in services, and structural

change. In section 3, we present the model and solve for its equilibrium. In section 4 we

perform comparative statics demonstrating that faster technological progress for the

middle-skill worker tasks leads to horizontal and vertical polarization, and ultimately

to structural change. Section 5 characterizes the limiting behavior of the dynamic

economy. Section 7 calibrates an expanded version of the theoretical model to data

from 1980 to 2010, and quantifies the importance of task-specific technological progress.

Section 9 concludes.

2 Facts

In this section we summarize known facts related to long-run trends in structural

change and polarization, and present novel evidence on how the two may be related.

We also provide a new way of looking at managerial occupations by considering them

as qualtitatively different from all other occupations, while also relating them to es-

tablishments.

Structural change Figure 1 shows the (real) value-added output and employment

share trends of three broadly defined sectors: agriculture, manufacturing and services,

from 1970 to 2013. Following convention, e.g. Herrendorf et al. (2014), “manufac-

turing” is the aggregation of the manufacturing, mining and construction sectors and

“services” the sum of all service and government sectors. The data are from the Na-

tional Accounts published by the Bureau of Economic Analysis (BEA). In particular,

4Autor et al. (2006); Acemoglu and Autor (2011) show that residual wage inequality controlling for
education groups is much larger than between-group inequality.
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Fig. 1: Structural Change, 1970-2013.
From the BEA NIPA accounts. “Manufacturing” combines manufacturing, mining and construction, and
services subsumes service and government. Employment is based on full-time equivalent number of persons
in production in NIPA Table 6.

employment is based on National Income and Product (NIPA) Table 6 (persons in-

volved in production), counted in terms of full-time equivalent workers.5

Two facts are well documented in the literature. First, starting from even before

1970, agriculture was already a negligible share of the U.S. economy. While it shrank

from about 4% of GDP to 2% in the 1990s, its share has stayed at this level both in

terms of output and employment. Thus for the remainder of this paper, we will drop

the agricultural sector and only consider the manufacturing and service sectors, broadly

defined. Accordingly, all moments will be computed as if the aggregate economy con-

sists only of these two sectors (e.g. aggregate employment is the sum of manufacturing

and service employment, the manufacturing and service shares sum up to unity, etc).

Second, structural change—the shifting of GDP and employment from manufactur-

ing to services—exhibits a smooth trend starting from at least the 1970s. Moreover,

GDP and employment shares are almost identical both in terms of levels and trends.

This implies a close to constant input share of labor across the two sectors, which we

will assume in our theoretical model.

Job and Wage Polarization Most of the rest of our empirical analysis is based

on the decennial U.S. Censuses 1980–2010, for which we closely follow Autor and Dorn

(2013). We restrict our sample to 16–65 year-old non-farm employment. Figure 2 plots

employment and wage changes by occupation from 1980 to 2010, extending Figure 1 in

5Computing employment shares from the decennial censuses result in more or less the same trend.
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Fig. 2: Job and Wage Polarization, 30 years.

Autor and Dorn (2013) who considered changes up to 2005.6 Occupations are sorted

into employment share percentiles by skill along the x-axis, where skill is proxied by

the mean (log) hourly wage of each occupation. We follow the occ1990dd occupation

coding convention in Dorn (2009), which harmonizes the occ1990 convention in Meyer

and Osborne (2005). This results in 322 occupation categories for which employment

is positive for all 4 censuses. Employment is defined as the product of weeks worked

times usual weekly hours.7

The data is presented in two ways. First, we follow Autor and Dorn (2013) and

smooth changes across neighboring occupations. Each dot represents one percent of

employment in 1980, and its height the percentage point change from 1980 to 2010.

The changes are smoothed using a locally weighted smoothing regression. Second, we

group

J obs and wages have polarized, figure 2 Source: U.S. Census and ACS 2010, repli-

cates and extends Autor and Dorn (2013). Occupations are ranked by their 1980 mean

wage.

R outinizable jobs correlate with structural change, figure 3. Source: U.S. Census

and ACS 2010. Left panel replicated from Autor and Dorn (2013), right panel shows

change in manufacturing employment by occupation cell.

6Despite the Great Recession happening between 2005 and 2010, the long-run patterns are virtually the
same.

7See Appendix A for more details.
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Fig. 3: Routinization and Structural Change, 30 years.
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Fig. 4: Manufacturing employment shares across skill percentiles.

M anufacturing has relatively higher share of intermediate occupations, of which low-

to-middle skill jobs have been relatively shrinking, figure 4. The right panel compares

employment polarization by manufacturing and services, separately. Source: U.S.

Census and ACS 2010.

B oth employment share and relative wages for managers are increasing: figure 5.

See appendix for definition of managers in the census.

M oreover, this occurs faster in the manufacturing sector: figure 6.

A verage size of establishments have been rising, but shrinking in the manufacturing

sector: figure 7. Source: BDS 1980-2013.
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Fig. 5: Managers vs Workers
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Fig. 6: Managers by Sector

10



1
0

1
5

2
0

2
5

3
0

3
5

1980 1990 2000 2010
Year

Manufacturing Services Total

(a) Average No. of Workers

1
2

3
4

1980 1990 2000 2010
Year

Manufacturing Services Total

(b) Average Value-added Output

Fig. 7: Establishment Size by Sector

8
0

8
5

9
0

9
5

1
0
0

1980 1990 2000 2010
Census Year

Workers Self−Employed SE Mgr, broad SE Mgr, narrow

SE Top Mgr Top Mgr Mgr, narrow Mgr, broad

P
e
rc

e
n
t 
(%

)

Fig. 8: Managers in the Data

M anager definition. Middle-management has been growing (relative to top manage-

ment): figure 8

3 Model

There are a continuum of individuals each endowed with two types of skill, (h, z).

Human capital, h, is used to produced tasks. Management, z, is a special skill for

organizing tasks. WLOG we assume that the mass of individuals is 1, with associated

distribution function µ.

There are 2 sectors i ∈ {m, s}.8 In each sector, goods are produced in teams. A

8In our application, the two sectors stand in for ”manufacturing” and ”services,” respectively. However,
I analytical model can be extended to incorporate any countably finite number N of sectors; we use the
subscripts m and s to avoid confusing them with the subscripts for tasks.
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single manager uses her own skill and physical capital to organize three types of tasks

j ∈ {0, 1, 2} (e.g., low-, medium-, high-skill occupations; or manual, routine, abstract

tasks). Each task requires both physical and human capital, and how much of each is

allocated to each task is decided by the manager. Aggregating over the goods produced

by all managers within a sector yields total sectoral output.

Within a sector, a better manager can produce more goods with the same amount

of tasks, but task intensities may differ across sectors. Specifically, we assume that

yi(z) =

[
η

1
ω
i xz(z)

ω−1
ω + (1− ηi)

1
ω xh(z)

ω−1
ω

] ω
ω−1

, (1a)

xz(z) = Mzk
αz1−α, xh(z) =

 2∑
j=0

ν
1
σ
ij τij(z)

σ−1
σ

 σ
σ−1

(1b)

τij(z) = Mj

∫
hij(z)

tj(k, h)dµ, (1c)

t0(k, h) = kαh̄1−α, t1(k, h) = kαh1−α t2(k, h) = kα(h− χ)1−α, (1d)

with
∑

j νij = 1. The tj(·)’s are the amounts of task output produced by an individual

with human capital h and physical capital k, the latter of which is allocated by the

manager. Integrating over individual task outputs over the set of workers hired by

a manager of skill z for task j in sector i, hij(z), yields a task aggregate τij(z). The

substitutability between tasks is captured by the elasticity parameter σ, and ω captures

the elasticity between all workers and managers.

For task (or occupation) 0, a worker’s own human capital is irrelevant for produc-

tion: all workers’ effective skill input becomes h̄. This is to capture manual jobs that

do not depend on skills. For task 2, some of your skills become useless and effective

skill input becomes h − χ. This is to capture analytic jobs, for which lower levels of

skill are redundant. We will refer to the managerial task as “task z,” which is vertically

differentiated from tasks j ∈ {0, 1, 2}, which are horizontally differentiated. The Mj ’s,

j ∈ {0, 1, 2, z}, capture task-specific TFP’s, which are sector-neutral.

Several points are in order. As is the case with most models of sorting workers

into tasks, the worker side of our model can be viewed as a special case of Costinot

and Vogel (2010). However, we model managers and have more than one sector. In

contrast to Acemoglu and Autor (2011), we have a continuum of skills rather than

tasks, and a discrete number of tasks rather than skills. While the implications are

comparable, our formulation is more suitable for exploring employment shares across

tasks (which are discrete in the data). The model is also comparable to Goos et al.

(2014), who show (empirically) that relative price changes in task-specific capital,

representing routinization, can drive employment polarization. However, they do not
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model skill and hence cannot explain wage polarization; nor do they consider macro-

level implications.

Now let Hij denote the set of individuals working in sector i ∈ {m, s} on task

j ∈ {0, 1, 2}. Also define

Hi ≡ ∪j∈{0,1,2}Hij : set of workers in sector i, (2a)

Hj ≡ ∪i∈{m,s}Hij : set of workers in task j, (2b)

H ≡ ∪i∈{m,s}Hi = ∪j∈{0,1,2}Hj : set of all workers, (2c)

Z ≡ Zm ∪ Zs : set of managers in sector i. (2d)

Output in each sector is then

Yi = Ai

∫
Zi
yi(z)dµ, (3)

where Ai, i ∈ {m, s} is an exogenous, sector-level productivity parameter. Final goods

are produced by combining output from both sectors according to a CES aggregator:

Y = G(Ym, Ys) =

[
γ

1
ε
mY

ε−1
ε

m + γ
1
ε
s Y

ε−1
ε

s

] ε
ε−1

. (4)

where γm + γs = 1 and we will assume ε < 1.9

3.1 Planner’s Problem

We assume complete markets for solve a static planner’s problem. A planner allocates

aggregate capital K and all individuals into sectors i ∈ {m, s} and tasks j ∈ {0, 1, 2, z}.
The objective is to maximize current output (4) subject to (1)-(3) and

K = Km +Ks ≡


∫
Zm

 ∑
j∈{0,1,2,z}

kmj(z)

+

∫
Zs

 ∑
j∈{0,1,2,z}

ksj(z)

 dµ

Hij ≡
∫
Hij

hdµ =

∫
Zi
hij(z)dµ, j ∈ {0, 1, 2},

where Ki is the amount of capital allocated to sector i, Hij the total amount of human

capital allocated to task j in sector i, and (kij(z), hij(z)) is the amounts of physical

and human capital allocated to task j in sector i under a manager with skill z, where

j ∈ {0, 1, 2, z} for k and j ∈ {0, 1, 2} for h.

For existence of a solution, we assume that

9The estimated ε between the manufacturing and service sector (broadly defined) is close to zero, as we
show in section 7.2.
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Assumption 1 The population means of both skills are finite, that is,∫
zdµ <∞,

∫
hdµ <∞.

and

Assumption 2 There exists a strictly positive mass of individuals who do not lose all

of their h-skill by working in task 2, i.e. µ(h > χ) > 0.

The following assumption is needed for uniqueness:

Assumption 3 The measure µ(z, h) is discontinuous at a finite number of points and

has a connected support on (h, z) ∈ [0, hu) × [0, zu), where xu ≤ ∞ is the upperbound

of skill x ∈ {h, z}; i.e. µ(h, z) > 0 on (0, 0) ≤ (h, z) < (hu, zu) ≤ ∞.

Along with assumption 2, this implies χ < hu. Before showing existence and uniqueness

of the solution, we first characterize the solution in the following order:

1. Characterize optimal physical capital allocations across tasks within a sector.

2. Characterize optimal human capital (h) allocations across tasks within a sector.

3. Characterize optimal labor (manager-worker) allocations within a sector.

4. Solve for optimal capital and labor allocations across sectors.

Capital allocation within sectors Thanks to the HD1 assumptions, we can

write sectoral technologies as

Yi = Ai

[
η

1
ω
i X

ω−1
ω

iz + (1− ηi)
1
ωX

ω−1
ω

ih

] ω
ω−1

, (6a)

Xiz = MzK
α
izZ

1−α
i , Xih =

∑
j

ν
1
σ
ijT

σ−1
σ

ij

 σ
σ−1

, (6b)

where Zi ≡
∫
Zi zdµ, Xih is a sectoral task aggregate and

Ti0 = M0K
α
i0

[
h̄µ(Hi0)

]1−α
, Ti1 = M1K

α
i1H

1−α
i1 , (7a)

Ti2 = M2K
α
i2 [Hi2 − χµ(Hi2)]1−α . (7b)

Given sectoral capital Ki, the planner equalizes marginal product across tasks:

MPKi0 = MPKi1 = MPKi2

⇒ MPTi0 · αTi0
Ki0

=
MPTi1 · αTi1

Ki1
=
MPTi2 · αTi2

Ki2

⇒ MPTi1 · Ti1
MPTi0 · Ti0

=
Ki1

Ki0
≡ πi1 =

(
νi1
νi0

) 1
σ

·
(
Ti1
Ti0

)σ−1
σ

(8a)
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MPTi2 · Ti2
MPTi1 · Ti1

=
Ki2

Ki1
≡ πi2 =

(
νi2
νi1

) 1
σ

·
(
Ti2
Ti1

)σ−1
σ

, (8b)

where MPTij is the marginal product of Tij w.r.t. Xi, and πij is the capital input ratio

in tasks j ∈ {1, 2} and j − 1. Due to the Cobb-Douglas assumption, πij divided by

task output ratios is the marginal rate of technological substitution (MRTS) between

tasks j and j − 1; furthermore, πij divided by either factor input ratios in tasks j and

j − 1 measures the MRTS of that factor between tasks j and j − 1. (For capital, this

is equal to 1.) Given (8) we can write

Xih = ν
1

σ−1

i0 (1 + πi1 + πi1πi2)︸ ︷︷ ︸
≡Πih

σ
σ−1Ti0. (9)

Of course, MPK must also be equalized across the managerial task and the rest:

MPKiz = MPKi0

⇒ MPXiz · αXiz

Kiz
=
MPXih ·MPTi0 · αTi0

Ki0

⇒ MPXiz ·Xiz

MPXih ·MPTi0 · Ti0
=
Kiz

Ki0
≡ πiz =

(
ηi

1− ηi

) 1
ω

·
(
Xiz

Xih

)ω−1
ω

·Πih,

(10)

which then allows us to write, using (9),

Yi = Ai(1− ηi)
1

ω−1 [1 + πiz/Πih]
ω
ω−1 Xih

= Ai(1− ηi)
1

ω−1 [1 + πiz/Πih]
ω
ω−1 ν

1
σ−1

i0 Π
σ
σ−1

ih Ti0 (11)

Sorting skills across worker tasks within sectors Given the sectoral pro-

duction function (6), we can now decide how to allocate worker skills h to worker tasks

j ∈ {0, 1, 2}. Since skill doesn’t matter in task 0 and some becomes irrelevant in task

2, there is positive sorting of workers into tasks; i.e. there will be thresholds (ĥ1, ĥ2)

s.t. all workers with h ≤ ĥ1 work in task 0 and those with h > ĥ2 work in task 2. Note

that these thresholds must be equal across sectors, hence are not subscripted by i.

For each threshold, it must be that the marginal product of the threshold worker

is equalized in either task:

MPTi0 ·
(1− α)Ti0
h̄µ(Hi0)

· h̄ = MPTi1 ·
(1− α)Ti1

Hi1
· ĥ1,

MPTi1 ·
(1− α)Ti1

Hi1
· ĥ2 = MPTi2 ·

(1− α)Ti2
Hi2 − χµ(Hi2)

· (ĥ2 − χ)

using assumption 3, so

ĥ1 =
h̄1Li1
πi1Li0

, 1− χ

ĥ2

=
(h̄2 − χ)Li2
πi2h̄1Li1

, (12)

where Lij ≡ µ(Hij) and h̄j ≡ Hij/Lij ; that is, we are assuming

15



Assumption 4 The means of skills in tasks j ∈ {0, 1, 2, z}, that is, (h̄j , z̄), are equal

across sectors i ∈ {m, s}.

This is an assumption needed because we assume discrete tasks; it can be thought of

as the limit of vanishing supermodularity within segments of a continuum of tasks.

Assumption 1 also guarantees that all objects are finite and well-defined. Using (12)

we can reformulate (8) as

πi1 =
νi1
νi0
·

M1

M0

(
ĥ1

h̄

)1−α
σ−1

, πi2 =
νi2
νi1
·

[
M2

M1

(
1− χ

ĥ2

)1−α
]σ−1

. (13)

Sorting managers and workers within a sector Now we know how to allocate

Ki,Hi within a sector, but we still need to know how to divide individuals into managers

and workers; that is, determine Zi ∪Hi given a mass of individuals within a sector.

Since individuals are heterogeneous in 2 dimensions, the key is to get a cutoff rule

z̃j(h) s.t. for every h, individuals with z above z̃j(h) become managers and below

become workers. Since the h-skill is used differently across tasks, we need to get 3 such

rules for each sector; however the rule must be identical across sectors.

For h ≤ ĥ1, this rule is simple. For these workers, h does not matter, so z̃0(h) = ẑ,

i.e., is constant. The constant is chosen so that the marginal product of the threshold

manager is equalized in either task:

MPXiz ·
(1− α)Xiz

Zi
· z̃0(h) = MPXih ·MPTi0 ·

(1− α)Ti0
h̄µ(Hi0)

· h̄

⇒ z̃0(h) = ẑ =
Zi

πizLi0
=

z̄Liz
πizLi0

, (14)

where Liz = µ(Zi) and z̄ = Zi/Liz (which is equal across sectors by assumption 4).

Then from (10) we can write

πiz =
ηiν

1−ω
σ−1

i0

1− ηi
·

[
Mz

M0

(
ẑ

h̄

)1−α
]ω−1

·Π
σ−ω
σ−1

ih . (15)

For h ∈ (ĥ1, ĥ2], the rule is linear:

MPXiz ·
(1− α)Xiz

Zi
· z̃1(h) = MPXih ·MPTi1 ·

(1− α)Ti1
Hi1

· h

⇒ z̃1(h)

h
= φ1 =

πi1Zi
πizHi1

=
πi1z̄Liz
πizh̄1Li1

.

and finally for h > ĥ2, the rule is affine:

MPXiz ·
(1− α)Xiz

Zi
· z̃2(h) = MPXih ·MPTi2 ·

(1− α)Ti2
Hi2 − χµ(Hi2)

· (h− χ)
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⇒ z̃2(h)

h− χ
= φ2 =

πi1πi2Zi
πiz (Hi2 − χLi2)

=
πi1πi2z̄Liz

πiz(h̄2 − χ)Li2
.

Observe that

φ1 = ẑ/ĥ1, φ2 = φ1/h̃2 = ẑ/ĥ1h̃2, (16)

so (ĥ1, ĥ2, ẑ) completely determine the φj ’s, and all objects are well defined given

assumption 2, since all tasks are essential.

Sectoral production function and allocation across sectors Equations

(12)-(15) completely describe the task thresholds. What is important here is that all

these thresholds are determined independently of the amount of physical capital. To

see this more clearly, rewrite (11) to obtain

Yi = Aiψi · [1 + πiz/Πih]
ω
ω−1 Π

σ
σ−1

ih M0K
α
i0L

1−α
i0

ψi ≡ (1− ηi)
1

ω−1 ν
1

σ−1

i0 h̄1−α

and furthermore since

Ki = Ki0 (Πih + πiz)︸ ︷︷ ︸
ΠKi

(17)

Li = Li0

[
1 + (ĥ1/h̄1)πi1 +

1− χ/ĥ2

(h̄2 − χ)/ĥ1

· πi1πi2 + (ẑ/z̄)πiz

]
︸ ︷︷ ︸

ΠLi

, (18)

we obtain

Yi = M0 ·Aiψi ·Π
ω−σ

(ω−1)(σ−1)

ih Π
ω
ω−1
−α

Ki
Πα−1
Li︸ ︷︷ ︸

Φi: TFP

Kα
i L

1−α
i . (19)

Note that sectoral TFP, Φi, can be decomposed into 3 parts: M0, that is common across

both sectors, Aiψi, which is sector-specific but exogenous, and the parts determine by

(Πih,ΠKi ,ΠLi), which is sector-specific and endogenously determined by (ĥ1, ĥ2, ẑ).

Furthermore, since the thresholds depend only on the relative masses of individuals

across tasks within a sector, they do not depend on the employment size of the sector

(nor capital). Hence even as Ki or Li changes, these thresholds do not as long as the

distribution of skills remains constant.

Sectors only differ in how intensely they use each task, i.e., the mass of individuals

allocated to each task. As usual, these masses are determined so that the MPK and

MPL are equalized across sectors:

κ ≡ Ks

Km
=

Ls
Lm

=

(
γs
γm

) 1
ε
(
Ys
Ym

) ε−1
ε

=
γs
γm
·
(

Φs

Φm

)ε−1

(20)
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where κ is capital input ratios between sectors m and s. Hence relative employment

between sectors is completely determined by the relative endogenous TFP ratio between

the two sectors. Since the Φi’s are just functions of (ĥ1, ĥ2, ẑ) as seen in (19), so is κ

and hence sectoral employment Li since

Lm = 1/(1 + κ), Ls = κ/(1 + κ). (21)

3.2 Equilibrium Existence and Uniqueness

As a final step, the planner needs to ensure that the within-sector allocations are con-

sistent with the between sector allocations. That is, the total mass of individuals in

occupation j ∈ {0, 1, 2, z} must be consistent with (20). Formally, we define renormal-

izations of (Πih,ΠLi):

Π̃ih ≡ νi0Mσ−1
0 h̄(σ−1)(1−α) ·Πih

Π̃Li ≡ (1− ηi)νi0Mσ−1
0 h̄(σ−1)(1−α)ΠLi =

∑
j=0,1,2,z

Vij ,

where the weights Vij are

Vi0 ≡ (1− ηi)νi0Mσ−1
0 · h̄

α+σ(1−α)

h̄
, (22a)

Vi1 ≡ (1− ηi)νi1Mσ−1
1 · ĥ

α+σ(1−α)
1

h̄1
, (22b)

Vi2 ≡ (1− ηi)νi2Mσ−1
2 ·

(
ĥ1h̃2

)α+σ(1−α)

h̄2 − χ
, (22c)

Viz ≡ ηiΠ̃
σ−ω
σ−1

ih Mω−1
z · ẑ

α+ω(1−α)

z̄
. (22d)

Note that the only differences in the Vij ’s across sectors i comes from the task intensity

parameters νij , ηi (since Πih is also a function only of the νij ’s in equilibrium). The

total amount of labor in each task j can be expressed as

Lj =
∑

i∈{m,s}

Vij

Π̃Li

· Li, where Lm = 1/(1 + κ), Ls = κ/(1 + κ) (23)

for j ∈ {0, 1, 2, z}. This system of equations that solves the planner’s problem are

also the equilibrium market clearing conditions; the LHS is the labor supply and RHS

demand for each task j. Since h̄jLj = Hj , z̄Lz = Z,
∑

j Lj = 1 and κ = κ(ĥ1, ĥ2, ẑ) is

a function of (ĥ1, ĥ2, ẑ) from (20), the solution to (ĥ1, ĥ2, ẑ) is found from the system

of three equations

log ẑ =

(1− ω) logMz + logZ − log

[∑
i
ηiΠ̃

σ−ω
σ−1
ih

Π̃Li
· Li

]
α+ ω(1− α)

(24a)
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log ĥ1 =

(1− σ) logM1 + logH1 − log

[∑
i

(1−ηi)νi1
Π̃Li

· Li
]

α+ σ(1− α)
(24b)

log h̃2 =

(1− σ) logM2 + log(H2 − χL2)− log

[∑
i

(1−ηi)νi2
Π̃Li

· Li
]

α+ σ(1− α)
− log ĥ1, (24c)

where

Z(ĥ1, ĥ2, ẑ) =

[∫ ĥ1
∫
ẑ

+

∫ ĥ2

ĥ1

∫
ẑh/ĥ1

+

∫
ĥ2

∫
ẑ(h−χ)/ĥ1h̃2

]
zdF (z|h)dG(h) (25a)

H1(ĥ1, ĥ2, ẑ) =

∫ ĥ2

ĥ1

hF
(
ẑh/ĥ1|h

)
dG(h) (25b)

H2(ĥ1, ĥ2, ẑ) =

∫
ĥ2

hF
(
ẑ(h− χ)/ĥ1h̃2|h

)
dG(h), (25c)

and G(h) is the marginal distribution of h, and F (z|h) the distribution of z conditional

on h, so that

µ(h̃, z̃) =

∫ h̃ ∫ z̃

dF (z|h)dG(h).

The mass L2(ĥ1, ĥ2, ẑ) can be expressed likewise. Given the characterization of the

solution, we can establish:

Theorem 1 Under Assumptions 1-4,

1. The solution to the planner’s problem exists.

2. For any µi ≤ µ that satisfies Assumptions 1-3, the solution to the within-sector

problem is unique.

3. The two-sector equilibrium in which, for each occupation j ∈ {0, 1, 2, z}, the

distribution function is split by a constant fraction κj ∈ (0, 1) across sectors

according to

µm(z, h) = (1− κ0)µ(z, h) and µs(z, h) = κ0µ(z, h) for(z, h) ∈ H0,

µm(z, h) = (1− κ1)µ(z, h) and µs(z, h) = κ1µ(z, h) for(z, h) ∈ H1,

µm(z, h) = (1− κ2)µ(z, h) and µs(z, h) = κ2µ(z, h) for(z, h) ∈ H2,

µm(z, h) = (1− κz)µ(z, h) and µs(z, h) = κzµ(z, h) for(z, h) ∈ Z,

is unique. Furthermore, given such an equilibrium, any arbitrary split of the

distribution function that satisfies Assumption 4 and preserves the mass of indi-

viduals allocated to each sector-occupation cell is also an equilibrium.

Proof: See Appendix B. �
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Fig. 9: Equilibrium

The resulting equilibrium skill allocation is depicted in Figure 10.10 The thresholds

determine the tasks, and employment is split across sectors while preserving the means

for each task. The different masses of sectoral employment across tasks are due to the

task intensity parameters νij , ηi.

3.3 Equilibrium wages and prices

Since there are no frictions, the planner’s allocation coincides with a competitive equi-

librium. Hence, the solution (ĥ1, ĥ2, ẑ) gives all the information needed to derive equi-

librium prices. The price of the final good can be normalized to 1:

P = 1 =
[
γmp

1−ε
m + γsp

1−ε
s

] 1
1−ε , pi = [Yi/γiY ]−

1
ε . (26)

Sectoral output prices can be obtained by applying the sectoral output in (17)-(19) in

(26). The interest rate R is given either by the dynamic law of motion for aggregate

capital, or fixed in a small open economy. So w0 is

w0 =
1− α
α
· Ki0

Li0
· R
h̄

where the capital-labor ratio can be found from (17)-(18).

Given w0, indifference across tasks for threshold workers imply

w0h̄ = w1ĥ1, w1ĥ2 = w2(ĥ2 − χ) (27a)

⇒ w0/w1 = ĥ1/h̄, w1/w2 = 1− χ/ĥ2. (27b)

and likewise, the threshold manager implies a “managerial efficiency wage”

wz ẑ = w0h̄ ⇒ w0/wz = ẑ/h̄. (27c)

Hence, relative wages for task j are simply the inverse of the thresholds.

10For illustrative purposes, the figure assumes that µ(z, h) is uniform.
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4 Comparative Statics

The sectoral technology representation (19) implies that this model has similar impli-

cations as Ngai and Pissarides (2007): the sector with the larger TFP shrinks. The

major difference is that these TFP’s are endogenous.

What is more interesting is the implications of growth in task-specific TFP’s—

this is equivalent to the price of task-specific capital falling in Goos et al. (2014)—or

changes in the distribution for skill. In particular, we are interested in the effect of

routinization, which we model as an increase in the task 1’s TFP, M1. This is illustrated

in a series of comparative statics, which is possible since the equilibrium is unique and

skill distribution continuous (under assumption 3). To simplify notation, define the

elasticities of the thresholds w.r.t. M1:

∆h1 ≡
d log ĥ1

d logM1
, ∆h2 ≡ χ̃ ·

d log ĥ2

d logM1
, ∆z ≡

d log ẑ

d logM1
, where χ̃ ≡ χ

ĥ2 − χ
> 0.

Similarly define ∆x as the elasticity of any variable x with respect to M1. Given

(∆h1 ,∆h2 ,∆z) we know what happens to all the other variables of interest since

∆φ1 = ∆z −∆h1 , ∆φ2 = ∆φ1 −∆h2 ,

∆W1 = −∆h1 , ∆W2 = −∆h2 , ∆Wz = −∆z.

where (φ1, φ2) are defined in (16) and Wj ’s are the wage ratios

W1 = w1/w0, W2 = w2/w1, Wz = wz/w0.

We proceed as follows:

1. approximate the change in thresholds (ĥ1, ĥ2, ẑ) within a sector, taking the dis-

tribution of skill in sector i, µi, as given;

2. given the comparative statics in the thresholds, approximate the change in em-

ployment shares across tasks within a sector, taking µi as given;

3. approximate the differences in polarization across sectors holding Li constant;

4. approximate the change in employment shares across sectors.

4.1 Wage and Job Polarization

To approximate the change in thresholds, we will first focus on the within sector

allocation of skill implied by (12) and (14):

ĥ1 · πi1(ĥ1) = Hi1(ĥ1, ĥ2, ẑ)
/
Li0(ẑ, ĥ1) (28a)(

1− χh/ĥ2

)
· πi2(ĥ2) =

[
Hi2(ĥ1, ĥ2, ẑ)− χLi2(ĥ1, ĥ2, ẑ)

]/
Hi1(ĥ1, ĥ2, ẑ) (28b)
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ẑ · πiz(ĥ1, ĥ2, ẑ) = Zi(ĥ1, ĥ2, ẑ)
/
Li0(ẑ, ĥ1) (28c)

where (πij , πiz) are defined in (13) and (15). The masses and skill aggregates are

defined over a sector-specific distribution µi, which is taken as given.

For the approximation, we will assume that ∆Lij → 0 for j ∈ {0, 1, 2, z}. This

implies that the density function is sufficiently small everywhere, which we assume

to ignore the indirect effects of M1 on (Lij , Hij , Zi) that arise from changes in the

thresholds. This can be thought of a limiting case of either when skills are discrete

(Goos et al., 2014),11 or when there are both a continuum of tasks and skills which are

matched assortatively (Costinot and Vogel, 2010). Within the context of our model, it

can be understood as approximating the equilibrium response using only the response

of labor demand (the LHS’s), while keeping labor supply (the RHS’s) fixed. We can

then show that

Proposition 1 (Routinization and Polarization) Suppose there is an increase in

M1, and that ∆Lij → 0 for j ∈ {0, 1, 2, z}. Then

1. ∆h1 ≈ −∆h2 > 0 iff σ < 1, and

2. ∆φ1 < {∆h1 ,∆z ≈ ∆φ2} < 0 if ω < σ < 1.

This implies that capital and labor flow out of task 1 (job polarization), relative wages

decline in task 1 (wage polarization), and both the employment share and wages of

managers increase (vertical polarization).

Proof: Under the assumption (or, holding labor supply fixed), the comparative static

is identical across sectors. System (28) becomes

∆h1 + ∆πi1 ≈ 0, ∆h2 + ∆πi2 ≈ 0, ∆z + ∆πiz ≈ 0,

where

∆πi1 = (σ − 1) [(1− α)∆h1 + 1] , ∆πi2 = (σ − 1) [(1− α)∆h2 − 1] ,

∆πiz = (ω − 1)(1− α)∆z +
σ − ω
σ − 1

· πi1(1 + πi2)∆πi1 + πi1πi2∆πi2

Πih
(29)

Hence we obtain that

∆h1 ≈ −∆h2 ≈
1− σ

α+ σ(1− α)
> 0, ∆W1 < 0, ∆W2 > 0 ⇔ σ < 1.

Furthermore if ω < σ < 1,

∆z ≈
σ − ω

(σ − 1) [α+ ω(1− α)]
· πi1

Πih
·∆h1 < 0, (30)

11In fact, they assume that wages are fixed and labor is inelastically supplied.
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∆φ1 < 0, ∆φ2 ≈ ∆z < 0, and ∆Wz > 0.

�

The change in thresholds makes it easier to analyze what happens to employment shares

by task. If σ < 1, and holding management employment shares constant, employment

and payroll in task 1 shrinks while they increase in tasks 0 and 2. Hence, similarly as in

Goos et al. (2014), we get employment polarization only when tasks are complementary,

i.e. σ < 1; we also get wage polarization even with endogenous choice of tasks. At the

same time, capital flows out to the other tasks as well.

Furthermore if ω < σ, we also find that the mass and wage of managers increase

relative to all workers. But while it is clear that the thresholds move in a direction that

continues to shrink Li1, it is unclear what happens to Li0 and Li2, since both tasks 0

and 2 gain employment from task 1 but lose employment to managers.

So let us think about the (supply side) changes in Lij , j ∈ {0, 1, 2, z}, arising from

the change in thresholds within a sector i, still taking the sectoral distribution µi as

given. To sign the ∆Li0 ,∆Li2 , we need additional parametric restrictions for sufficiency:

Lemma 1 Suppose the skill distribution in sector i is uniform and that ω < σ < 1. A

sufficient condition for employment in tasks 0 and 2 to rise is

σ − ω < (1− σ) [α+ ω(1− α)] .

So if

σ − (1− σ)α

1 + (1− σ)(1− α)
< ω < σ,

all employment shares except task 1’s increase. This also implies that the average skill

of task 1 workers rises.

Proof: Using the approximations from Proposition 1 and (28), we can approximate

∆Li0 −∆Li1 ≈ ∆h̄1
, ∆Li0 −∆Li2 ≈ ∆h̄2−χ, ∆Li0 −∆Li1 ≈ ∆z̄.

Since {∆z,∆h2} <0, we know that {∆z̄,∆h̄2−χ} <0, that is, the average skill of man-

agers, and workers in task 2, become diluted. We cannot sign ∆h̄1
; however, under the

uniform distribution assumption

∆Li0 = ∆z + ∆h1 ≈
[
1− σ − ω

(1− σ) [α+ ω(1− α)]
· πi1

Πih

]
∆h1
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Fig. 10: Comparative Static, Within-Sector

using (30). Since πi1/Πih is a fraction bounded above by 1, the condition in the lemma

guarantees that ∆Li0 > 0, so

∆Li1 < 0 < ∆Li0 < {∆Li2 ,∆Liz} ,

although we can still not order the last two. �

This is intuitive. If tasks were substitutes, task 1 would crowd out all other tasks,

including managers. As task 1 becomes the dominant occupation, wages also increase.

However, when tasks are complements, workers need to flow to the other tasks, and for

this to happen relative wages must decline in task 1. Moreover, if management is more

complementary with tasks than tasks are among themselves, more individuals must

become managers—and in equilibrium, manager wages must increase. The within-

sector comparative static is depicted in figure 10.

4.2 Structural change

Previous models of structural change either rely on a special non-homogeneous form

of demand (rise in income shifting demand for service products) or relative technol-

ogy differences across sectors (rise in manufacturing productivity relative to services,

combined with complementarity between the two types of goods, shifting production

to services). Our model is also technology driven, but transformation arises from a

skill neutral increase in task productivities, or routinization. Most importantly, in con-

trast to recent papers arguing that sectoral productivity differences can explain the
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skill premia or polarization (?Buera et al., 2015), we argue exactly the opposite—that

routinization can explain sectoral productivity differences and structural change.

To begin this analysis, note that from (29),

∆Πih ≡
d log Πih

d logM1
=
d log Π̃ih

d logM1
≈ (1− σ) [α+ ω(1− α)]

σ − ω
·∆z, (31)

and using Proposition 1, the ∆Vij ’s can be approximated from (22) as

∆Vi0 = 0, ∆Vi1 ≈ −∆h̄1
< 0 by Lemma 1, (32a)

∆Vi2 ≈ −∆h̄2−χ > 0, ∆Viz ≈ ∆z̄ > 0. (32b)

So the ∆Vij ’s are sector-neutral and can be ordered as

∆V1 < {0 = ∆V0} < {∆V2 ,∆Vz}.

Also note that

∆ΠLi
≡ d log ΠLi

d logM1
=
d log Π̃Li

d logM1
=

∑
j=0,1,2,z Vij∆Vj

Π̃Li

=
∑

j=0,1,2,z

Lij
Li
·∆Vj . (33)

Decomposing Polarization The change in the total amount of labor in each

task, expressed in (23), can be decomposed similarly as in Goos et al. (2014):12

∆Lj =
∑

i∈{m,s}

Lij
Lj
·
[
∆Vj −∆ΠLi

+ ∆Li

]
=

∑
i∈{m,s}

Lij
Lj
·
[

∆Vj −
∑

j′=0,1,2,z

Lij′

Li
·∆Vj′︸ ︷︷ ︸

Bij

+∆Li

]
by (33), j ∈ {0, 1, 2, z}.

(34)

A change in the Vij ’s occurs even holding Li’s constant, shifting the termBij . This leads

to “within-sector polarization,” as we saw in the previous subsection. In particular,

from (32), the ∆Vj ’s are sector-neutral and common across sectors. So any difference

in how the share of task j employment evolves across sectors depends on the weighted

average of the ∆Vj ’s by the employment shares of all tasks within a sector, Lij/Li.

Holding Li’s constant, we know from Lemma 1 that task 1 is shrinking and other

tasks growing within-sectors. Now we can compare the ∆ΠLi
’s across sectors, which is

the weighted average of within-sector employment shifts as seen in (33). Thus

12However, our decomposition differs from theirs. Their thought experiment is to separate the effects from
keeping industry output fixed and when it is allowed to vary. Ours is to separate the effect from keeping
sectoral employment fixed and when allowing it to vary.
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Lemma 2 The weighted average of within-sector employment share changes, ∆ΠLi
, is

smaller in the sector with a larger within-sector employment share in task 1, and larger

in the sector with larger shares in all other tasks. That is,

Ls1/Ls < Lm1/Lm ⇒ ∆ΠLs
> ∆ΠLm

. (35)

This implies that, holding sectoral employment shares constant, manufacturing polar-

izes more compared to services.13

The term ∆Li in (34) captures structural change. To compute ∆Li , plug in the

expressions for the endogenous TFP’s from (19) in (20):

κ =

(
γs
γm

)[(
1− ηs
1− ηm

) 1
ω−1

(
νs0
νm0

) 1
σ−1

·
(

Πsh

Πmh

) ω−σ
(ω−1)(σ−1)

×
(

ΠKs

ΠKm

) ω
ω−1
−α( ΠLs

ΠLm

)α−1
]ε−1

. (36)

Since the elasticities of Πih are sector-neutral (both change at the negative rate of ẑ),

we obtain

∆κ ≈ (1− ε)
[(
α− ω

ω − 1

)(
∆ΠKs

−∆ΠKm

)
+ (1− α)

(
∆ΠLs

−∆ΠLm

)]
. (37)

So if (∆ΠKi
,∆ΠLi

) are larger in services, employment shifts to services; that is, rou-

tinization (a rise in M1) leads to structural change. We have already seen that ∆ΠLi

is smaller in the manufacturing when (35) holds. Now from (31),

∆ΠKi
≈ ∆z

ΠKi

·
[
πiz + Πih ·

(1− σ)[α+ ω(1− α)]

σ − ω

]
< 0,

so under the assumption in Lemma 1, ∆ΠK2
> ∆ΠK1

if

πsz
Πsh

>
πmz
Πmh

⇔ ηs
1− ηs

· (νs0Πsh)
1−ω
σ−1 >

ηm
1− ηm

· (νm0Πmh)
1−ω
σ−1 ,

which holds when the manager share of capital is larger in services, or η1 << η2. Hence,

both because of shifts in labor and capital, structural change occurs toward services.

To understand why capital reallocation matters for structural change, note that we

can write change in sectoral employment shares as

∆Lm = −Ls ·∆κ < 0, ∆Ls = Lm ·∆κ > 0, (38)

13Of course, the assumption in the lemma is a condition on employment shares, which are endogenous.
However, the condition holds throughout our observation period in the data, so our analysis is valid. Al-
ternatively, we could assume νm1 >> νs1 and ηm << ηs. The astute reader would have already noticed
that what the task-specific TFP’s effectively do is shift the relative employment shares over time as if the
parameters νij , ηi were changing.
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or plugging in ∆κ from (37),

∆Li ≈ (1− ε)

[
(1− α)

(
∆ΠLi

−
∑
i′

Li′∆ΠLi′︸ ︷︷ ︸
CLi

)

+

(
α+

ω

1− ω

)(
∆ΠKi

−
∑
i′

Ki′∆ΠKi′︸ ︷︷ ︸
CKi

)]
.

This makes clear that structural change in our model is due to a reallocation of both

labor and capital, in contrast to Goos et al. (2014). The reason that capital matters

in our model is because labor in our model is in skill units, which is different from

employment shares. However, given sectoral capital Ki within a sector, physical capital

does not affect employment shares as it is simply allocated to equalize its MRTS with

the MRTS of skills across tasks; only when we let factors move across sectors does its

effect appear in the model. Also note that the term CLi can be written as

CLi =
∑
j

Lij
Li
·∆Vj −

∑
i′

Li ·

∑
j′

Li′j′

Li′
∆Vj′

 ,

which is the “between-sector” counterpart to the within-sector component Bij : that is,

CLi captures the average change in employment in sector i compared to the weighted

average across sectors. The contribution from capital, CKi , is additional.

Of course, from (34), structural change also contributes to polarization. To see this,

rewrite (34) using (38) as

∆Lj = ∆Vj −
∑

i∈{m,s}

Lij
Lj

∆ΠLi
+

[
Lsj
Lj

Lm −
Lmj
Lj

Ls

]
∆κ (39)

⇒ Lj
(
∆Lj −∆Vj

)
= −

∑
i∈{m,s}

Lij∆ΠLi
+

[
Lsj
Ls
− Lmj
Lm

]
LmLs∆κ.

Thus,

Lemma 3 Suppose lemma 2 holds. Then structural change also contributes to polar-

ization.

Proof: The term in the square brackets in (39) is negative for j = 1, and positive for

all other tasks, under lemma 2. �

This is intuitive. Manufacturing has a larger within-sector employment share in task

1 (that is, if it is more routine-intense), employing more for that task. So in addition

to task 1 shrinking in both sectors, if sector 1 also shrinks (structural change), there

is even more polarization.
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(d) BGP m1

Fig. 11: Comparative Statics, Across-Sectors

Lemmas 2 and 3 are depicted in the first 3 subplots in figure 11. In figure (a),

manufacturing is depicted as having a higher share in task 1, and services in task z.

As we move from (a) to (b), sectoral employment shares are held fixed, and task 1

shrinks in both sectors. The change in employment shares is larger in manufacturing

due to lemma 2. This leads to structural change in (c), according to lemma 3. Because

manufacturing has a higher share in task 1, shrinking its size contributes to polarization.

4.3 Polarization or Structural Change?

One may argue that it is not task productivities that lead to structural change, but

advances in sector-specific productivities that lead to polarization. While it is most

likely in reality that both forces are in play, in the context of our model, as long as

technologies are either task- or sector-specific (that is, there are no task- and sector-

specific technologies), sector-specific productivity shifts does not lead to polarization

within sectors.

To see this, consider an exogenous change in the manufacturing sector’s exogenous

productivity, Am. As in Ngai and Pissarides (2007), a rise in Am changes κ at a

rate of 1 − ε, that is, manufacturing shrinks. But it is easily seen that none of the

thresholds change, and hence neither do the Φi’s (the endogenous sectoral TFP’s). So

polarization can only arise by the reallocation of labor across sectors that use different

mixes of tasks. To be precise, from (34),

d logLj
d logAm

= (1− ε) · d logLj
d log κ

= (1− ε)
[
Lsj
Lj

Lm −
Lmj
Lj

Ls

]
< 0. (40)

Note that d logLj/d log κ is equal to the term in square brackets in (39), and negative

under assumption (35). Hence, polarization only occurs because manufacturing shrinks.

The reason is that In our micro-founded model, tasks are aggregated up into sectoral

output, not the other way around.
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Equation (40) also puts a bound on how much sectoral shifts alone can account

for job polarization. For example, in the data, manufacturing employment fell from

approximately 33% to 19% from 1980 to 2010. If this were solely due to a change in

Am, this means that (denoting empirical values with hats):

d log κ̂

d logAm
≈ 14/67 + 14/33 ≈ 0.63

which means that

dL̂j
d logAm

≈ 0.63
[
L̂sjL̂m − L̂mjL̂s

]
= 0.63

[
L̂sj

L̂j
0.33− L̂mj

L̂j
0.67

]
.

In Section 7, we measure the employment share of routine, manufacturing jobs and

routine, service jobs (as a share of total employment; that is, Lm1 and Ls1) in 1980

were 26% and 33%, respectively (refer to Table 1). So

dL̂j
d logAm

= 0.63 [0.33 · 0.33− 0.26 · 0.67] = −0.04,

that is, a change in Am alone would imply an approximately 4 percentage point drop in

routine jobs from 1980 to 2010. As shown in Table 1, the actual drop was 13 percentage

points.

5 Dynamics

The above result implies that on a dynamic path in which M1 grows at a constant rate,

polarization happens faster than structural change. This implies that in the limit, task

1 vanishes, structural change ceases, but both sectors still employ non-trivial amounts

of labor, unlike previous models of structural change.

Such a dynamic version of the model is a straightforward extension of the neoclassi-

cal growth model. Assume that aggregate labor L grows at rate n, and a representative

household with CRRA preferences∫ ∞
0

exp(−ρt) · c(t)
1−θ − 1

1− θ
dt

where ct = Ct/Lt, and a law of motion for aggregate capital

K̇t = Yt − δKt − Ct,

and for simplicity let us assume that Ṁ1/M1 = m1 and M0 = M2 = Mz, Ṁ0/M0 = m.

Then from (20), we can also write the aggregate production function as

Yt = Yst ·

[
γ

1
ε
m

(
Ymt
Yst

) ε−1
ε

+ γ
1
ε
s

] ε
ε−1

= Φst · LstKα
t L

1−α
t ·

(
γ

1
ε
s L
−1
st

) ε
ε−1
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= Φst · (Lst/γs)
1

1−ε ·Kα
t L

1−α
t

where Φst, Lst, the endogenous sectoral TFP and employment share of services at time

t, are functions of (ẑt, ĥ1t, ĥ2t).

Now define

Φ1−α
t ≡ Φst · (Lst/γs)

1
1−ε

the endogenous aggregate (Harrod-neutral) TFP and its growth rate gt ≡ Φ̇t/Φt. As

in the RCK model, define the normalized consumption and capital per efficiency unit

of labor

ĉt ≡ Ct/ΦtLt k̂t ≡ Kt/ΦtLt,

so output per efficiency unit of labor is

ŷt ≡ Yt/ΦtLt = f(k̂t) ≡ k̂αt .

The dynamic equilibrium is characterized by

˙̂ct =
1

θ
·
[
f ′(k̂t)− (n+ δ + ρ+ gtθ)

]
· ĉt

˙̂
kt = f(k̂t)− (n+ δ + gt)k̂t − ĉt

gt ≡
Φ̇t

Φt
= g

(
ĥ1t, ĥ2t, ẑt

)
.

So instead of having sectoral shares as in Acemoglu and Guerrieri (2008), we have

endogenously evolving TFP which pins down the sectoral shares at every instant. Using

(19) and (37), the endogenous growth rate gt becomes

(1− α)gt = m+
∑
i

Lit ·

[
ω − σ

(ω − 1)(σ − 1)
· Π̇ih

Πih
+

(
ω

ω − 1
− α

)
· Π̇Ki

ΠKi

+ (α− 1) · Π̇Li

ΠLi

]
.

On a BGP, gt must be constant. Hence it must be that (ĥ1, ĥ2, ẑ) no longer evolve:

Clearly this happens when ĥ1 = ĥ2, or from (12)-(13),

ĥ2 − χ =
(h̄2 − χ)Li2

Li0
·

νi0
νi2
·

(
ĥ2 − χ
h̄

)(1−α)(1−σ)


⇒ νi0Li2
νi2Li0

=
(ĥ2 − χ)σ+α(1−σ)

h̄2 − χ
,

assuming h̄ = 1. Then ẑ is determined by (14), sectoral-task employment masses are

determined by (ΠKi ,ΠLi) according to (36), and on a BGP

g∗ =
m

1− α
.

The long-run dynamics is depicted in figure 11(d), where both polarization and struc-

tural change continue until task 1 vanishes.
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6 Quantitative Analysis

The goal of our quantitative analysis is to quantify how much of the observed changes

in employment and wage shares from 1980 to 2010 can be explained by task-level

productivity growth, and relate such productivity growth to empiricaly measurable

sources. Whenever possible, we fix parameters to their empirical counterparts, and

separately estimate the aggregate technology (4) from time series data on sectoral price

and output ratios. Then we choose most model parameters to fit the 1980 data exactly,

inlcuding a parametric skill distribution of (h, z). The rest of the model parameters,

which includes the elasticity parameters (σ, ω), are calibrated to empirical time trends

from 1980 to 2010.

7 Quantitative Analysis

The goal of our quantitative analysis is to quantify how much of the observed changes

in employment and wage shares from 1980 to 2010 can be explained by task-level

productivity growth, and relate such productivity growth to empiricaly measurable

sources. Whenever possible, we fix parameters to their empirical counterparts, and

separately estimate the aggregate technology (4) from time series data on sectoral price

and output ratios. Then we choose most model parameters to fit the 1980 data exactly,

inlcuding a parametric skill distribution of (h, z). The rest of the model parameters,

which includes the elasticity parameters (σ, ω), are calibrated to empirical time trends

from 1980 to 2010.

7.1 Occupations and Skills

In the quantitative analysis, we assume that there are 10, rather than 3, (horizontally

differentiated) worker task/occupations. (There is still only one management task.)

Recall that in task 0, workers can only utilize h̄ regardless of their own level of human

capital, and in task 1 they simply use all of their human capital. Each of the additional

worker tasks is characterized by a skill-loss parameter {χj}9j=2.14

We assume each of these 11 occupations (10 worker + 1 manager occupation) in

the model broadly correspond to the 11 one-digit occupation categories in the cen-

sus, discussed in Section 2 and summarized in Table 1. The 10 worker occupation

groups can further be broadly grouped into low/medium/high skill tasks, or man-

ual/routine/abstract jobs, according to the mean wages of each occupation group and

routinization indices.

14The characterization of the equilibrium is exactly the same as before.
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Ranked by mean wage SOC Employment Shares Total Wage Shares
(except management) Code 1980 2010 Manufacturing 1980 2010 Manufacturing

Low Skill Services 400 10.44 13.92 0.59 0.23 6.75 7.60 0.52 0.16

Middle Skill 59.09 46.48 25.86 12.93 53.43 35.90 24.76 10.02
Administrative Support 300 16.57 14.13 3.47 1.53 12.90 9.60 2.90 1.15
Machine Operators 700 9.81 3.75 8.79 3.02 8.21 2.39 7.37 1.91
Transportation 800 8.73 6.64 3.80 2.28 7.73 4.15 3.37 1.46
Sales 240 7.87 9.37 0.79 0.62 7.40 8.45 1.06 0.85
Technicians 200 3.23 3.86 1.00 0.57 3.35 4.33 1.13 0.66
Mechanics & Construction 500 7.91 6.02 4.44 3.19 8.40 4.88 4.91 2.61
Miners & Precision Workers 600 4.97 2.71 3.58 1.73 5.43 2.10 4.03 1.38

High Skill 19.22 26.16 3.87 3.64 24.20 33.98 6.07 5.51
Professionals 40 11.02 16.51 1.73 1.45 13.36 20.78 2.59 2.12
Management Support 20 8.20 9.65 2.14 2.20 10.84 13.20 3.48 3.39

Management 1 11.26 13.44 2.47 2.59 15.62 22.52 4.22 5.81

Table 1: Occupation Groups used for Calibration
Source: US Decennial Census (1%), 1980-2010.

In Table 1, the left panel shows the SOC of each occupation with a short job

description, and the middle and right panels their employment and total wage shares

in 1980 and 2010, respectively. For the employment and wage share panels, the first

two columns shows the size of each occupation in 1980 and 2010 as a fraction of total

employment/wages. The next two columns show the size of each occupation within

manufacturing as a fraction of total employment/wages.

These were already depicted graphically in Section 2, and will be the bulk of our

target moments in the calibration. The only other target moment is the growth rate

of aggregate output.

Parametric Skill Distribution For the quantitative analysis, we assume a para-

metric skill distribution that is type IV bivariate Pareto (Arnold, 2014). Specifically,

the c.d.f. we assume is

µ(h, z) = 1−
[
1 + h1/γh + z1/γz

]−a
.

We normalize γz = 1, since we cannot separately identify both skills from the skill-

specific TFP’s. This is consistent with an establishment size distribution that is Pareto,

and a wage distribution that is hump-shaped with a thin tail, as depicted in Figure 12.

7.2 Aggregate Production Function

The aggregate production function is estimated outside of the model. For the esti-

mation, we only look at the manufacturing and service sectors, where manufacturing

includes mining and construction, and government is included in services. We estimate
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Fig. 12: Calibrated Skill Distribution
We use a type IV bivariate Pareto distribution to model the distribution over worker and manager skills
(h, z). The figure depicts the marginal distributions each skill, and also their mean values below the x-axis.
The implied Pearson correlation coefficient between the two skills is low, at 0.002.

the parameters (γm, ε) from the system of equations

log

(
pmYm
PY

)
= log γm + (1− ε) log pm − log

[
γmp

1−ε
m + γsp

1−ε
s

]
+ u1

log(Y ) = c+
ε

ε− 1
log

[
γ

1
ε
mY

ε−1
ε

m + γ
1
ε
s Y

ε−1
ε

s

]
+ u2

where γs ≡ 1−γm, using non-linear SUR (seemingly unrelated regression), on all years

of real and nominal sectoral output observed in the BEA accounts.

Real production by sector is computed by a cyclical expansion procedure as in

(Herrendorf et al., 2014) using production value-added to merge lower level industries

(as opposed to consumption value-added, as in their analysis).15 The price indices are

implied from nominal versus real sectoral quantities. We try different base years as

well: 1947, 1980, and 2005, corresponding to columns (1)-(3) in Table 2. This is to

check the robustness of the choice of base years: 1947 is the first year the required data

is available, 1980 is the first year in our model, and 2005 is chosen as a year close to

present but before the crisis.

As shown there, the values are in a similar range as in Herrendorf et al. (2014),

although ε is not significant with 2005 as a base year. For the calibration, we will use

take the values of (γm, ε) in column (1) values as a benchmark.

The capital income share α is computed as 1-(labor income/total income), and

fixed at 0.360. Since we do not model investment, for the calibration we also need the

level of total capital stock (for manufacturing and services) for each decade, which we

15The constant c is included since it is not levels, but relative changes that identify ε.
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(1) (2) (3)

γm 0.371
∗∗

0.346
∗∗

0.258
∗∗

(0.003) (0.005) (0.004)

ε 0.003
∗∗

0.002
∗∗

0.003
(0.000) (0.000) (0.004)

AIC -550.175 -551.264 -550.866
RMSE1 0.106 0.106 0.106
RMSE2 0.039 0.039 0.039

Standard errors in parentheses
†
p < 0.10,

∗
p < 0.05,

∗∗
p < 0.01

Table 2: Aggregate Production Function
The manufacturing share parameter γm and elasticity parameter between manufacturing and services, ε, are
estimated off the time series of output and price ratios from 1947 to 2013, which are available from the BEA
accounts. The service share parameter γs is assumed to equal 1 − γm. For details of the estimation, we
closely follow Herrendorf et al. (2014).

take from the Fixed Assets Table and directly plugged into the model. Since we do

not model population growth, in practice we we normalize output per worker in 1980,

y1980 to unity, and plug in Kt = kt/y1980 for t ∈ {1980, 1990, 2000, 2010}, where kt is

capital per worker in year t.

7.3 Calibration

Given the aggregate production function, we simulate two equilibria: one each for 1980

and 2010. Except for capital per worker, which we take exogenously from the data,

any change between 1980 to 2010 is only due to exogenous task-TFP growth.

Most of the parameters are calibrated so that our our model equilibrium fits the 1980

data moments in Table 1 exactly. We then calibrate the elasticity parameters (σ, ω)

and the 11 constant TFP growth rates {mj}9j=z,0 to fit the time trends in aggregate

output and employment shares from 1980 to 2010.

All model parameters are summarized in Table 3, except for the skill loss parame-

ters χj , task intensity parameters (ηi, νij), and task-TFP growth rates mj , which are

tabulated in Table 4.

Below, we explain in detail how these parameters are recovered.

Calibrating the distribution For any guess of (γh, a, {χj}9j=2), we can find

(ẑ, {ĥj}9j=1) that exactly match observed employment shares by occupation in 1980, by

integrating over the guessed skill distribution. Given the thresholds, we then compute
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Parameter Value Target

Fixed
from
data

K1980 2.895
Computed from BEA/NIPA dataK2010 4.235

α 0.361

γ 0.371
Estimated in section 7.2

ε 0.003

Mj ≡M 0.985 Output per worker, normalization
Am 1.112 Manufacturing employment share
As 1.000 Normalization
νij (18)

Table 4
Witin-sector employment shares by occupation

Fit to ηi(2) Within-sector manager share

1980 χj (8) Table 4
Relative wages by occupationa 10.087

γh 0.216

γz 1.000 Normalizations;
h̄ 1.000 Not separately identified from Mj

Fit to
2010

σ 0.704
Witin-sector employment shares by occupation

ω 0.341

mj Table 4
Output per worker growth and

employment shares by occupation

Table 3: Parameters
All parameters valued 1 are normalizations.

the model-implied relative wages using (27),

w1h̄1

w0h̄
=
h̄1

ĥ1

,
w2(h̄2 − χ2)

w1h̄1
=

h̄2 − χ2

h̄1(1− χ2/ĥ2)
,

wz z̄

w0h̄
=
z̄

ẑ
,

and similarly for j ∈ {3, . . . 9}. The LHS is the ratio of mean wages by occupation,

which we observe from the data. The RHS is a function only of the thresholds, which

themselves are functions of (γh, a, χj). Hence, we iterate over (γh, a, , {χj}9j=2) so that

the model-implied ratios match observed mean wage ratios exactly.

For the rest of the calibration, we fix these three parameters that govern the skill

distribution. By construction, we already know the thresholds (ẑ, {ĥj}9j=1) that fit 1980

employment shares by occupation exactly. And since the skill distribution is fixed by

the data, we can similarly compute the thresholds that fit 2010 employment shares

by occupation. Denote these two sets of thresholds as x1980 and x2010, respectively.

Note that these thresholds are determined solely by the exogenously assumed skill

distribution and the data, independently of our model equilibria.
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Ranked by mean wage
χj

Emp Wgts (νij , ηi) mj RTI
(except management) Manu. Serv.

Low Skill Services - 0.016 0.136 -0.731 -0.211

Middle Skill 0.816 0.524
Administrative Support - 0.088 0.173 2.930 2.445
Machine Operators 0.001 0.256 0.015 9.122 0.602
Transportation 0.002 0.119 0.081 4.348 -0.576
Sales 0.003 0.026 0.123 0.012 0.483
Technicians 0.005 0.034 0.040 -1.144 -0.269
Mechanics & Construction 0.006 0.159 0.065 2.315 -0.630
Miners & Precision Workers 0.007 0.134 0.027 6.328 0.639

High Skill 0.168 0.340
Professionals 0.009 0.070 0.195 -2.248 -0.725
Management Support 0.010 0.098 0.146 -0.489 -0.655

Management - 0.076 0.130 -0.017 -1.103

Table 4: Calibrated Employment Weights and Growth Rates

Normalizations Before we simulate the model equilibrium and calibrated the re-

maining parameters, some normalizations are in order. We have already normalized

γz = 1. For notational convenience, we will denote the 1980 levels of the TFP’s by

(M,Ai) and denote their 2010 levels by multiplying them by their respective growth

rates. For example, the manager-task TFP in 2010 is M(1 +mz)
30.

1. We normalize h̄ = 1 since it is not separately identified from M0. This can be

seen in (13).

2. We also normalize Mj ≡ M for all j ∈ {0, 1, . . . , z} for 1980, since it is not

separately identified from (ηi, νij) in a static equilibrium. This is implied by the

production technology we assume in (6)-(7).

The rest of the parameters are calibrated so that simulated moments from the

model’s 1980 and 2010 equilibria match the data.

Calibrated within the model There are 35 parameters that remain to be cal-

ibrated: the elasticity parameters (σ, ω), TFP parameters (M,Am), task intensities

(ηi, {νij}9j=1) for i ∈ {m, s}, and the task-TFP growth rates {mj}9j=z,0.16

Given the aggregate production function, skill distribution, normalizations and

thresholds (x1980, we can recover the remaining parameters as follows.

(A) Guess (σ, ω).

16There are only 9 intensity parameters to calibrate per sector, since we assume
∑9
j=0 νij = 1.
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(B) Given the guess, first fit 1980 moments:

(a) Guess (M,Am).

(b) Plug in the threshold values x1980, and the empirical values of (Liz, Li0, . . . , Li9)—

the employment shares of each occupation in sector i ∈ {m, s}—from Table

1, into (12) and (14). Then we recover all the νij ’s from (12)-(13), and

the ηi’s from (14)-(15) in closed form (since all Mj ’s are assumed to be

equal). This ensures that the 1980 equilibrium exactly fits within-sector

employment shares by occupation (20 parameters, 20 moments).

(c) Repeat from (a) until we exactly fit the manufacturing employment share

in 1980, and output per worker of 1.17 Since (19)-(20) are monotone in

(M,Am), the solution is unique (2 parameters, 2 moments).

(C) Given the parameters recovered from the 1980 equilibrium, plug in threshold

values x2010 into (24). Then find {mj}9j=z,0 so that the 2010 equilibrium exactly

fits employment shares by occupation (but not necessarily by sector), and also

output per worker, in 2010 (11 parameters, 11 moments).

(D) Repeat from (1) to minimize the distance between the within-sector employment

shares by occupation implied by the 2010 model equilibrium and the data (2

parameters, 11 moments).

Note that since all other moments are fit exactly, in essence we are only calibrating the

two parameters (σ, ω) in (A) to match the 11 moments in (D).18

The resulting parameters are tabulated in Tables 3-4. The last column of Table 4

shows the empirical RTI indices constructed from Autor and Dorn (2013), which are

also visualized in Figure 19.

7.4 Model Fit

Figure 13 plots the model implied trends in employment shares across tasks, in ag-

gregate and by sector, against the data. When computing the simulated paths for

1990 and 2000, we plug in the empirical values of Kt = kt/y1980 and the level of task-

TFP’s implied by the calibrated growth rates, and compute the respective equilbria

allocations.

As we explained above, the aggregate trend can be solved in closed form using the

same number of parameter and moments, so it is not surprising that we obtain a more or

17The latter must be matched since the value of K1980 we plug in from the data was normalized by 1980’s
output.

18When targeting 2010 employment shares and output per capita, we in fact target the linear trend from
1980 to 2010 rather than their exact values. However, since most trends are in fact linear, using the exact
values barely change any of our results.
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Fig. 13: Data vs. Model, Employment Shares by Task

less exactly fit as seen in Figure 13(a). On the other hand, while we target the starting

points for all the shares (services employment share, and within-sector employment

shares by task), these 11 trends were calibrated using only the 2 elasticity parameters

(σ, ω). Nonetheless, the calibrated model more or less exactly replicates structural

change by occupation, as seen in Figure 13(b) and also within-sector polarization, as

seen in Figures 13(c)-(d).

The fit is not as satisfactory for relative wages, plotted in figure 14. Here we plot

the mean relative wages in aggregate and by sector. Here, the only targeted moments

were the 1980 average wage ratios in Figure 14(a); all other moments were not. Manual

and abstract wages are relative to routine jobs, and manager wages are relative to all

workers.

Recall that in the model, efficiency wages (wz, w1, . . . , w9) are equal since we assume
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Fig. 14: Data vs. Model, Relative Wages by Task

that individuals are indifferent across sectors, and we constrained our attention to

equilibria in which mean skill levels within occupations were equal across sectors.

Hence, within relative wages are equal across sectors for any given occupation; the only

reason they differ in Figures 14(b)-(c) is because we aggregate sub-occupation groups

3 broader categories; and for managers since they are compared against all workers.

Compared to the data, all model-implied relative wages are too low in manufacturing,

and too high in services. Hence to some degree, our model is missing something that

causes relative wages to be lower in services.

Some explanation is in order. Due to the multiple layers of complementary between

occupations and sectors ([ω, σ, ε] < 1), the calibrated growth rates mj are smaller for

those occupations that are growing, as shown in Table 4. Then for all occupations in

the middle (j = 1, . . . , 9), whether their relative wages grow or shrink depends on the

magnitude of negative selection (that comes from having more or less low-skill workers
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from the left-side of the h-skill distribution) and positive selection (that comes from

having more or less high-skill workers from the right-side of the h-skill distribution),

since whether the employment share grows or shrinks, it will either absorb or lose

employment from both sides of the distribution. This was proven in Proposition 1 and

in Figure 10, can be seen from ĥ1 increasing and ĥ2 decreasing following a rise in the

TFP among routine jobs.

For manual jobs, average skill is assumed to be constant at h̄, and it is only those

workers with the lowest h skill that work in this job. It turns out that routine jobs as

a whole display enough negative selection so that the wages of manual workers relative

to routine workers rise, although only slightly. This is in fact consistent with the data

in aggregate and in the services sector, although in the manufacturing sector, manual

wages slightly dropped.

We also proved in Proposition 1 that as long as ω < σ, which it is (Table 3),

managers’ relative wages would rise relative to workers as long as their task-TFP grew

slower than workers’. However, the quantitative magnitude of this rise is small. This

is because as the employment share of managers grow, there is a negative selection

along z-skills. In Figure 10, this can be seen from ẑ decreasing to increase the mass of

managers.

According to our model assumptions, all workers with the highest h-skill work in the

highest-skill worker occupation (“professionals” in the data). Since their task-specific

TFP grew relatively less, the average skill of workers in this occupation becomes lower,

since employment growth leads to negative selection. Consequently, both because of

lower TFP growth and negative selection, relative wages decline for abstract jobs, in

contrast to the data.

Overall, the model targeted only to aggregate moments delivers a good fit by task

even within and across sectors in terms of employment shares, but not in terms of

relative wages. In what follows, we focus only on employment shares and investigate

how much each of these trends is explained by task-specific TFP’s, and its implications

for other outcomes such as sectoral TFP’s.

8 Results

8.1 Counterfactuals

In this subsection, we analyze the role of task-specific TFP’s on structural change, ,

we conduct two counterfactuals:

(1) First, we set all task-specific TFP growth to be equal, that is, we set mj = m,

and instead let both (Am, As) change at rates (am, as). We jointly recalibrate
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Fig. 15: Benchmark vs. Counterfactuals, TFP
1980 levels are normalized to 0, so the slope of the lines are the growth rates.

(m, am, as) to match the empirical growth rate of TFP (i.e., the Solow residuals)

in aggregate, and also in manufacturing and services, from 1980 to 2010. This

yields the model’s predictions in the absence of any exogenous, task-specific TFP

growth.

(2) Second, we allow both exogenous task- and sector-specific TFP growth, and re-

calibrate ({mj}9j=z,0, am, as) to match the change in employment shares and the

empirical growth rates of TFP in aggregate, manufacturing and services, from

1980 to 2010. This gives the model the best chance to explain the data.

For both counterfactuals, we keep all other parameters at their benchmark values in

Table 3-4, and only recalibrate the growth rates.

We focus on sectoral TFP’s since in our model, structural change only results from

the differential TFP growth across sectors—expressed in closed form in (19)—whether

it is exogenous (caused by am and/or as) or endogenous (as in Section 4.2). The

recalibrated parameters for the counterfactual scenarios are summarized in Appendix

Table 6.

TFP and output growth In Figure 15, we compare the path of log sectoral

TFP in the data, in our benchmark calibration, and two counterfactual scenarios. All

scenarios match aggregate TFP and GDP growth from 1980-2010 in the calibration as

shown in Appendix Figure 22, so we do not discuss them here.19

In our benchmark, we over shoot the growth rate of manufacturing TFP by about

19Denote aggregate TFP as Zt. Since Yt = ZtK
α
t (labor is normalized to one), and we plug in the empirical

values of Kt for all calibrations, matching aggregate TFP and GDP are the same things.
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half a percentage point, while undershooting the services TFP growth rate by about

half a percentage point. However, note that when we look at the growth rates of

sectoral output, in Figure 16, this gap almost disappears. This is because while the

model assumes that the sectoral capital input shares are equal to labor input shares,

as shown in (20) earlier, in the data they are not. In fact, counterfactuals (1) and (2)

in Figure 16 show that when sectoral TFP growth is matched exactly, manufacturing

output grows more slowly, and services output more quickly, compared to the data.

This implies that capital input ratio between manufacturing and services grew slower

than the labor input ratio, although the differences are small.20

Structural Change and Polarization Since structural change is solely deter-

mined by output ratios (Section 4.2, equation (20)), the fact that sectoral output

growth nearly tracks the data implies that the the benchmark model more or less fully

explains structural change (in terms of employment), as shown in Figure 17(c). Both

counterfactuals (1) and (2) undershoot the full extent of structural change, since sec-

toral output growth is too low and high in manufacturing and services, respectively.

Moreover, when we look at structural change within occupation categories, the bench-

mark model outperforms both counterfactuals (1) and (2), especially among managers.

Lastly, we investigate whether exogenous growth in sectoral TFP’s can explain

polarization, as we also discussed in Section 4.3. In Figure 18, we see that sectoral

forces alone can account for about 15-20 percent of horizontal and vertical polarization.

20If sectoral production functions remain Cobb-Douglas, this means that capital intensity is higher in
manufacturing, as analyzed in Acemoglu and Guerrieri (2008).
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Fig. 17: Benchmark vs. Counterfactuals, Structural Change

However, remember that this would not cause any changes in within sector employment

shares by occupation.

In sum, task-specific TFP growth can more or less fully account for sectoral output

growth, and consequently for the observed levle of structural change from 1980 to

2010. Due to the vertical and horizontal polarization induced by changes in task-specific

TFP’s, employment shifts to the sector that uses the routine task less and management

more intensively. Conversely, sector-specific productivities can only account for 15-

20 percent of polarization, and furthermore we have shown, both analytically and

quantitatively, that it does not cause any polarization within sectors, that contrary to

the data.
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8.2 What are Task-Specific Productivities?

Despite having skill selection, horizontally and vertically differentiated jobs, and mul-

tiple sectors, Figure 19(a) shows that the bulk of the changes in occupational employ-

ment shares are still directly accounted for by task-specific TFP’s, with a (negative)

correlation of 0.97. This is also confirmed from a simple regression analysis shown in

Appendix Table 7. This leads us to conclude that in order to understand changes in

the employment structure, it is important to identify what these task-specific TFP’s

are.

How much of the variation in the TFP growth rates can be explained by routiniza-

tion? As a first pass, we correlate the TFP growth rates with the RTI measure used in

Autor and Dorn (2013), which itself is constructed from Autor et al. (2003) using the

DOT, and the RTI measure from Acemoglu and Autor (2011), which was constructed

from O*NET. While the TFP growth rates are positively correlated with both indices,

and more strongly with the latter, it is visually clear that there is much left to be

explained. More precisely, both the correlation and R2’s are still quite low, as can be

seen in Appendix Table 7.

What about college? Skill-biased technological change (SBTC) has been a usual

suspect for changes in the employment structure since since Katz and Murphy (1992),

e.g. Krusell et al. (2000); Buera et al. (2015). In the SBTC literature, “skill” is usually a

stand-in for whether or not an individual went to college, or obtained a college degree.

However, as is evident from Figure 20(a), neither the fraction of college graduates

within each occupation in 1980, nor the change in the fraction of graduates from 1980

to 2010, have much of a relationship with the task-specific TFP’s calibrated from our
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model. Since the TFP’s more or less entirely explain the employment shifts observed in

the data, this means college can not explain occupational employment shifts. Moreover,

as is clearer in Appendix Table 7, the correlation between employment shifts and college

measures are negative, that is, those occupations with more college graduates, or in

which the college graduate share grew the fastest, in fact shrank. This is the opposite

of most of propositions made in the SBTC literature.

What we do find, however, is that the TFP growth rates correlate strongly with

disaggregated components of the RTI index in O*NET, in particular the routine-

manual and interpersonal skills indices. Appendix Table 7 shows that the R2 for both

are also high. This means that those occupations with a higher share of routine-manual

tasks have shrunk, while those with higher share of interpersonal tasks have grown.
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While we conclude that productivity growth has been high in routine-manual tasks

and low among interpersonal tasks, and that this can explain a significant part of shifts

in occupational employment, polarization, and consequently structural change, it is

evident from the regressions that this is not the end of the story. The unexplained part

of task-specific TFP growth may also come from endogenous changes in the distribution

of skill, and in an open economy setting from off-shoring, both of which we have

abstracted from.21

8.3 Long-Run Growth Path

Lastly, we show the long-run dynamics of the model from Section 5, extended to the

10 horizontally-differentiated tasks we have analyzed thus far. Assuming a CRRA

coefficient of θ = 2, and that the economy starts in 1980, we target an asymptotic

interest rate of 2%, implying an approximately equal discount rate ρ. The depreciation

rate is set to δ = 0.065, as computed from the NIPA accounts. As can be seen,

both routine and manufacturing continue to decline, but the speed of the decline in

manufacturing slows down as routine jobs continue to disappear. Likewise, managerial

employment continues to rise, albeit at a slower pace. Finally, note that the first

150 years displays structural change and near balanced growth, consistently with the

Kuznets and Kaldor facts.

21In an open economy setting, cheaper foreign labor would be observationally equivalent to higher pro-
ductivity.
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9 Conclusion

We presented a new model which encompasses job polarization, structural change, and

a modified span of control technology. We showed analytically and the quantitatively

that the model can be a useful tool for analyzing macroeconomic dynamics.
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Appendices

A Census Employment/Wages/Occupations

Occupation Group occ1990dd

Managers 4– 19
Management Support 22– 37
Professionals 43–199
Technicians 203–235
Sales 243–283
Administrative Support 303–389
Low Skill Services 405–472
Mechanics and Construction Workers 503–599
Miners and Precision Workers 614–699
Machine Operators 703–799
Transportation Workers 803–899

Table 5: Census Occupation Groups
322 non-farm occupations according occ1990dd (Dorn, 2009), itself harmonized from occ1990 (Meyer and
Osborne, 2005), are grouped into 11 occupation groups in order of their occ1990dd code. Except for man-
agement support, technicians and sales, all occupation groups correspond to their 1-digit census occupation
group. Groups are presented in their (contiguous), ascending order of their codes, excluding agricultural
occupations 473–498 which are dropped. In the main text, occupation groups are presented in ascending
order of skill (mean hourly wage).

We use the 5% census samples from IPUMS USA. We drop military, unpaid family

workers, and individuals who were in correctional or mental facilities. We also drop

workers who work either in an agricultural occupation or industry.

For each individual, (annual) employment is defined as the product of weeks

worked times usual weekly hours, weighted by census sampling weights. Missing

usual weekly hours are imputed by hours worked last week when possible. Missing

observations are imputed from workers in the same year-occupation-education cell

with 328 occupations×6 hierarchical education categories: less than high school, some

high school, high school, some college, college, and more than college.

Hourly wages are computed as annual labor income divided by annual employment

at the individual level. Hence while employment shares include the self-employed,

hourly wages do not include self-employment income.22 We correct for top-coded

22While we have only considered labor income in the paper, we have conducted robustness checks by
including business income as well. Hourly business income is defined similarly as hourly wages. We also
separately corrected for top-coding (the top-codes for labor and business income differ) and bottom-coded
in a similar fashion.

48



incomes by multiplying them by 1.5, and hourly wages are set to not exceed this

value divided by 50 weeks × 35 hours (full-time, full-year work). Low incomes are

bottom-coded to first percentile of each year’s wage distribution.

For the line graphs in Figures 2–4, we ranked occupations by their hourly wages

defined as above, and smoothed across skill percentiles using a bandwidth of 0.75 for

employment and 0.4 for wages; these are the same values used in Autor and Dorn

(2013). For the bar graphs in Figures 2–4 and 19–20, we grouped the 322 occupations

vaguely up to their 1-digit census occupation codes, resulting with the following 11

categories summarized in Table 5 and used for our quantitative analysis. In the figures

and in Tables 1–6, these groups are then ranked by the mean wage of the entire group.

In particular in Figures 2–4 and 19(a), the horizontal length of a bar is set to equal

the corresponding group’s 1980 employment share, which does not necessarily coincide

with the 3-digit occupations used to generate the smooth graphs by percentile.

B Proofs

B.1 Proof of Theorem 1

We first show that for fixed [qh(j), qz] ∈ (0, 1), the within-sector equilibrium is unique.

For an arbitrary guess of ẑ(j), Assumptions ??-3 imply existence of a solution to the

differential equation (??) by Picard-Lindelöf’s existence theorem. Similarly, a solution

to (??) exists by Brouwer’s fixed point theorem once we apply a minimum value for

ẑ ≥ z > 0 such that the denominator does not converge to zero.

To show that the solution is unique, we first prove the following Lemma:

Lemma 4 Suppose [qih(j), qiz] are fixed and that [ĥ(j), ẑ] and [ĥ1(j), ẑ1] are both an

equilibrium for one sector. For any connected subset J 1 ⊆ J , ĥ and ĥ1 can never

coincide more than once on J 1.

Proof: We proceed by contradiction as in Lemmas 3-6 in Costinot and Vogel (2010).

Suppose (i) ĥ(ja) = ĥ1(ja) and ĥ(jb) = ĥ1(jb) such that both (ja, jb) ∈ J 1. Without

loss of generality, we assume that ja < jb are two adjacent crossing points. Then, since

[ĥ, ĥ1] are Lipschitz continuous and strictly monotone in j, it must be the case that

1. (ii) ĥ1′(ja) ≥ ĥ′(ja) and ĥ1′(jb) ≤ ĥ′(jb); and (iii) ĥ1(j) > ĥ(j) for all j ∈ (ja, jb);

or

2. (ii) ĥ1′(ja) ≤ ĥ′(ja) and ĥ1′(jb) ≥ ĥ′(jb); and (iii) ĥ1(j) < ĥ(j) for all j ∈ (ja, jb).

Consider case 1. Condition (ii) implies

ĥ1′(jb)
/
ĥ1′(ja) ≤ ĥ′(jb)

/
ĥ′(ja)
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and using (??)-(??) and (??), and applying ĥ1(j) = ĥ(j) for j ∈ {ja, jb} we obtain

0 < [α+ σ(1− α)] ·

[∫ jb

ja

∂ log b(ĥ1(j′), j′)

∂j′
dj′ −

∫ jb

ja

∂ log b(ĥ(j′), j′)

∂j′
dj′

]
(41)

≤ log
[
F (ẑ1(jb)|ĥ(jb))/F (ẑ(jb)|ĥ(jb))

]
− log

[
F (ẑ1(ja)|ĥ(ja))/F (ẑ(ja)|ĥ(ja))

]
where the first inequality follows since (??), the log-supermodularity of b, implies

∂ log b(h1, j)
/
∂j > ∂ log b(h, j)

/
∂j ∀h1 > h, (42)

and applying (iii). Next, since (??) and Assumption ??.?? implies that ẑ′(j) =

z̃′(h)ĥ′(j) > 0, Assumption ??.?? implies that the strict inequality in (41) holds only

if

ẑ1(jb)/ẑ(jb) > ẑ1(ja)/ẑ(ja) ⇔ log
[
z̃1(hb)/z̃

1(ha)
]
> log [z̃(hb)/z̃(ha)]

where we have written hx ≡ ĥ(jx) for x ∈ {a, b}. Plugging in for z̃(·) using (??) we

obtain

⇔
∫ hb

ha

∂ log b(h′, ĵ1(h′))

∂h′
dh′ >

∫ hb

ha

∂ log b(h′, ĵ(h′))

∂h′
dh′

and since ĵ(h) is the inverse of ĥ(j), (iii) implies that ĵ1(h) < ĵ(h) for all h ∈ (ha, hb).

But (??), the log-supermodularity of b, implies

∂ log b(h, j1)
/
∂h < ∂ log b(h, j)

/
∂h, ∀j1 < j. (43)

a contradiction. Case 2 is symmetric. �

Lemma 4 implies, in particular, that any within-sector equilibria must have identical

ĥ(j), since ĥ(0) = 0 and ĥ(J) = hM in all equilibria. Moreover, the lemma also implies

that ĥ(j) is determined independently of ẑ, which is uniquely determined by ĥ(j) given

(??). Hence, the within-sector equilibrium is unique, and furthermore, the solution to

qz in (??) is also unique given qh(0).

Existence of the between sector equilibrium is straightforward, since the LHS of (??)

increases smoothly from 0 to ∞ as qh(0) varies from 0 to 1, while the RHS is always

positive and strictly bounded regardless of the value of qh(0). To show uniqueness then,

it suffices to show that the RHS cannot cross LHS more than once. We will consider

the log derivatives of the RHS of (??) term by term.

Let ∆x denote the log-derivative of x w.r.t. qh(0). Since Assumption ??.?? implies

that

∆Bj(j) =

∫ j

0

∂2 log b(ĥ(j′), j′)

∂h∂j′
· d̂
′h(j′)

dj′
· dj′ < ε (44)
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for all ε > 0, we obtain from (??) that

∆πih = (1− α)(σ − 1) ·∆Bj(j) ≈ 0

so ∆Πih ≈ 0. Likewise, Assumption ??.?? also implies that

∆Bh(h) =

∫ h

0

∂2 log b(h′, ĵ(h′))

∂h′∂j
· dĵ(h

′)

dh′
· dh′ < ε (45)

for all ε > 0. This implies that ĥ(j) is not affected by the choice of qh(0), and it

is independent of the determination of ẑ by Lemma 4. Intuitively, Assumption ??.??

makes the model behave as if there were no log-supermodularity. Then since we assume

a constant returns technology, all worker allocations approach constant multiples of H0

and does not depend on its particular value. Since ∆Πih ≈ 0, ∆ΠKi
only depends on

∆ẑ since from (15) and (17),

∆πiz = (1− α)(ω − 1)∆ẑ ⇒ ∆ΠKi
ΠKi = πiz · (1− α)(ω − 1)∆ẑ,

Similarly, ∆ΠLi
only depends on ∆ẑ as well, since from (??) and (45) we obtain

∆z̃(h) = ∆ẑ + ∆Bh(h) ≈ ∆ẑ. (46)

so using Leibniz’ rule,

∆Z · Z = −∆ẑ ·
∫ [

z̃(h)2 · f(z̃(h)|h)
]
g(h)dh, (47)

∆Lz · Lz = −∆ẑ ·
∫

[z̃(h) · f(z̃(h)|h)] g(h)dh,

⇒ ∆z̄ = ∆Z −∆Lz = ∆ẑ ·
∫
{z̃(h) [1/Lz − z̃(h)/Z] · f(z̃(h)|h)} g(h)dh︸ ︷︷ ︸

≡Λ∈(0,1)

where the inequality follows from selection and Assumption ??.??, so using this and

(45), from (18) we obtain

∆ΠLi
ΠLi = (ẑ/z̄)πiz · [α+ ω(1− α)− Λ] ∆ẑ.

Now rearranging (??), plugging in (47), and using (??) at j = 0 we obtain{
α+ ω(1− α) + ẑf(ẑ|0)

/
F (ẑ|0) +

∫ [
z̃(h)2 · f(z̃(h)|h)

]
g(h)dh

}
∆ẑ

= ∆qz − 1 ≡ Γ(X),

since Hs(0) = qh(0)H(0), ∆ĥ′(0) = 0 as it does not vary with qh(0), and Γ(X) is defined

from (??):

Γ(X) = qh(0)(X − 1)/ [qh(0) + (1− qh(0))X] ,
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where X ≡ νs(0)

νm(0)
· ηm(1− ηs)

(1− ηm)ηs
·
(
Vsh
Vmh

)σ−ω
1−σ

.

So it follows that the log-slope of the RHS in (??) is

−

{
(1− ε)(1− α)[α+ ω(1− α)] ·

[
πsz
ΠKs

− πmz
ΠKm

]

+ (ẑ/z̄)[α+ ε(1− α)][α+ ω(1− α)− Λ] ·
[
πsz
ΠLs

− πmz
ΠLm

]}

× Γ(X)

α+ ω(1− α) + ẑf(ẑ|0)
/
F (ẑ|0) +

∫
[z̃(h)2 · f(z̃(h)|h)] g(h)dh

.

The log-slope of the LHS in (??) is 1/ [1− qh(0)], which increases from 1 to∞ as qh(0)

increases from 0 to 1, and is larger than Γ(X) for all X > 0. Hence it suffices to show

that the absolute value of all terms multiplying Γ(X) are less than 1, which is true in

particular due to Assumption ??.??.

Intuitively, what the planner cares about is the marginal products of Z and H in

total. So when the distribution of z has a fat tail, the response of ẑ to the choice of

qh(0) is minimal as it changes Z smoothly along its entire support.

B.2 Proof of Proposition 1

Part 1. By Lemma 4, we know that no crossing can occur on (0, j) or (j, J), since

ĥ and ĥ1 already coincide at the boundaries 0 and J . Similarly, we also know from

Theorem 1 that it can never be the case that there is no crossing (ĥ1(j) > ĥ(j) or

ĥ1(j) < ĥ(j) for all j ∈ J \ {0, J}). Hence, there must be a single crossing in J 1 since

Lemma 4 also rules out multiple crossings.

At this point, the only possibility for j∗ not to exist is if instead, there exists a

single crossing j∗∗ such that (i) ĥ1(j) < ĥ(j) for all j ∈ (0, j∗∗) and (ii) ĥ1(j) > ĥ(j)

for all j ∈ (j∗∗, J). If so, since [ĥ, ĥ1] are Lipschitz continuous and strictly monotone

in j, it must be the case that ĥ1′(0) < ĥ′(0), ĥ1′(j∗∗) > ĥ′(j∗∗) and ĥ1′(J) < ĥ′(J).

This implies

ĥ1′(j∗∗)
/
ĥ1′(0) ≥ ĥ′(j∗∗)

/
ĥ′(0), ĥ1′(J)

/
ĥ1′(j∗∗) ≤ ĥ′(J)

/
ĥ′(j∗∗). (48)

Let us focus on the first inequality. Using (??) and (??) we obtain

0 > [α+ σ(1− α)] ·

[∫ j∗∗

0

∂ log b(ĥ1(j), j)

∂j
dj −

∫ j∗∗

0

∂ log b(ĥ(j), j)

∂j
dj

]
(49)

≥(1− σ)m+ log
[
F (ẑ1(j∗∗)|ĥ(j∗∗))/F (ẑ(j∗∗)|ĥ(j∗∗))

]
− log

[
F (ẑ1(0)|ĥ(0))/F (ẑ(0)|ĥ(0))

]
.

(50)
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where the first inequality follows from (42), and applying (i). Since m > 0, if σ ∈ (0, 1),

Assumptions ??.?? and ??.?? imply that the strict inequality in (49) holds only if∫ h∗∗

0

∂ log b(h′, ĵ1(h′))

∂h′
dh′ <

∫ h∗∗

0

∂ log b(h′, ĵ(h′))

∂h′
dh′

where we have written h∗∗ ≡ ĥ(j∗∗). And since ĵ(h) is the inverse of ĥ(j), (i) implies

that ĵ1(h) > ĵ(h) for all h ∈ (0, h∗∗). But this violates (43), the log-supermodularity

of b. The case for the second inequality in (48) is symmetric.

Part 2. Let ∆x denote the log-derivative of x w.r.t. m. From (??),

∆Πih ·Πih = (σ − 1)

∫ j

j
πih(j)dj +

∫ {
πih(j) · (1− α)(σ − 1) ·∆Bj(j)

}
dj

≈ (σ − 1)

∫ j

j
πih(j)dj (51)

where the approximation follows from Assumption ??.?? and (44). Hence ∆Πih < 0 if

σ < 1. Rearranging (??) and using (??) at j = 0 we obtain

0 >
σ − ω
1− σ

·∆Πih −∆ĥ′(0) =
[
α+ ω(1− α) + ẑf(ẑ|0)

/
F (ẑ|0)

]
∆ẑ −∆Z (52)

where the inequality holds if ω < σ < 1, and since we know from part 1 that ∆ĥ′(0) ≥ 0.

Now suppose ∆ẑ ≥ 0. Then for (52) to hold it must be the case that ∆Z > 0, but from

(47), ∆Z ≤ 0 if ∆ẑ ≥ 0, a contradiction. Hence, ẑ1 < ẑ, and z̃1(h) < z̃(h) for all h by

(46).
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C Additional Tables and Figures

Ranked by mean wage (1) (2) BM Data
(except management) - mj mj

Low Skill Services 1.973 -2.726 -0.731

Middle Skill
Administrative Support 1.973 1.252 2.930
Machine Operators 1.973 10.018 9.122
Transportation 1.973 3.326 4.348
Sales 1.973 -1.895 0.012
Technicians 1.973 -2.484 -1.144
Mechanics & Construction 1.973 1.742 2.315
Miners & Precision Workers 1.973 6.367 6.328

High Skill
Professionals 1.973 -3.973 -2.248
Management Support 1.973 -1.973 -0.489

Management 1.973 -1.438 -0.017

Aggregate TFP growth 1.030 1.030 1.030 1.030
am (Manu TFP growth) 0.252 0.252 2.943 2.229
as (Serv TFP growth) -1.205 2.021 0.308 0.743

Table 6: Recalibrated TFP Growth Rates for Counterfactuals
Column (1) stands for the counterfactual in which we set mj = m and calibrate (am, as) to match sectoral
TFP’s, and (2) for when we let ({mj}9j=z,0, am, as) all vary simultaneously. “BM” stands for the benchmark
calibration. For all scenarios, aggregate GDP growth (and consequently TFP growth) is matched exactly,
shown in the first row of the bottom panel. For the “BM” and “Data” columns, the am and as rows show
the empirical growth rates of the manufacturing and services sectors’ TFP’s, respectively.
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∆Lj

TFP - 9.584 ∗∗∗

R2 0.939

RTI (DOT) 0.429
(0.268)

Routine manual 0.797∗∗ 0.618
(0.206) (0.527)

Manual interpersonal -0.767∗∗ -0.192
(0.192) (0.549)

College share 1980 -11.142∗ -7.994∗∗

(3.599) (2.269)

∆College share 1980-2010 -33.673∗ -20.295∗

(17.410) (13.547)

Constant 1.061 0.377 3.281∗∗ 1.065 4.035∗ 4.818∗ 5.204∗

(0.941) (0.738) (0.970) (2.339) (1.401) (1.674) (1.759)

R2 0.184 0.635 0.588 0.640 0.439 0.372 0.539

Standard errors in parentheses, †p < 0.10, ∗p < 0.05, ∗∗p < 0.01

Table 7: Task-Specific TFP Growth, Employment, and Empirical Measures
The first panel shows the results from regressing employment share changes on the calibrated task-specific
TFP growth rates, mj . The second panel shows the results from regression the growth rates on various
empirical measures.
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Fig. 22: Aggregate Output and TFP Growth
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Fig. 23: Manufacturing vs. Services by Occuaption
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Fig. 24: Within Task Wage Inequality
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