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Abstract

Technology-aided instruction has the potential to sharply increase productivity in
delivering education, but its promise has yet to be realized. This paper presents
experimental evidence on the impact of a technology-aided after-school instruction
program on secondary school learning outcomes in urban India. We report five
main findings. First, students in this setting are several grade-levels behind their
enrolled grade, and this gap grows with every grade. Second, the offer of the
program led to large increases in student test scores of 0.36σ in math and 0.22σ in
Hindi over a 4.5-month period, which represent a two-fold increase in math and a
2.5 times increase in Hindi test score value-added relative to non-participants. IV
estimates suggest that attending the program for 90 days increases math and Hindi
test scores by of 0.59σ and 0.36σ respectively. Third, absolute treatment effects are
large and similar at all levels of baseline scores, but the relative gain is much greater
for academically weaker students because their “business as usual” rate of learning
is close to zero. Fourth, we show that the program precisely targets instruction
to students’ preparation level, thus catering to wide variation within a single
grade. Fifth, the program is highly cost-effective, both in terms of productivity per
dollar and unit of time. Our results suggest that well-designed technology-aided
instruction programs can sharply improve productivity in education by relaxing
multiple constraints to effective teaching and learning.
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1 Introduction
Developing countries have made impressive progress in improving school enrollment and
completion in the last two decades. Yet, their productivity in converting education investments
into human capital remains very low. For instance, in India, over 60% of children aged 6-14
cannot read at the second grade level, despite primary school enrollment rates over 95%
(ASER 2014). Further, there have been very limited improvements in learning outcomes in
India in the past decade despite substantial increases in education spending in this period
(Muralidharan 2013). More generally, even in developed countries, productivity growth in
the production of human capital lags the rest of the economy, perhaps because the basic
technology of classroom-based instruction has changed very little in over 100 years compared
to rapid technological progress in other fields (Bosworth 2005).

Thus, it is not surprising that increasing the use of technology in instruction is seen as a leading
candidate for improving productivity in education (Gates 2016; Mead 2016). A non-exhaustive
list of posited channels of impact include using technology to (a) deliver high-quality content
that may circumvent limitations in teachers’ own knowledge; (b) deliver engaging (often
game-based) interactive content that promotes learning by improving student attention;
(c) deliver individually customized learning for students that adjusts materials for both
different levels and growth rates of academic progress among students; (d) analyze patterns in
student answers to questions to precisely identify areas where students are “stuck” and target
instruction appropriately; and (e) sharply reduce the time between students attempting a
problem and receiving feedback, which may aid comprehension and understanding.

Yet, despite this theoretical promise, the evidence to date is rather mixed. A recent review
of evidence from high-quality studies on the impact of using technology in education globally
finds “mixed evidence with a pattern of null results” (Bulman and Fairlie 2016). Thus,
while there are many good reasons to be excited about the potential for technology-enabled
instruction to improve learning outcomes significantly, the evidence suggests that realizing
this potential will depend crucially on the details of the specific technology-aided education
intervention, and the extent to which it alleviates binding constraints to learning in the
status quo. So, a lot more careful research is needed (on both process and impacts) before
committing resources to scaling up technology-aided instruction programs - especially in
developing country settings with tighter resource constraints.

In this paper, we present experimental evidence on the impact of a technology-led instructional
program (called Mindspark) that aimed to leverage technology to improve education by paying
attention to each of the mechanisms listed above. Developed by a leading Indian education
firm, the Mindspark program reflects over 10 years of product development; it has been used
by over 400,000 students, features a database of over 45,000 test questions, and administers
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over a million questions to students every day. A key feature of the Mindspark program is the
ability to use this data to finely benchmark the baseline learning level of every student and
deliver customized content that is targeted at this level, and dynamically adjusts as a function
of the rate of progress made by each individual student. Mindspark is platform-agnostic and
can be delivered through multiple channels including individual online use, in schools and
classrooms, and in after-school programs.

We evaluate the after-school version (delivered through Mindspark centers) in this paper. The
program provides a scheduled 90 minutes of instruction, 6 days per week, which is divided
into 45 minutes of individual self-driven learning on the Mindspark CAL software and 45
minutes of instructional support from a teaching assistant in groups of 12-15 students.1 The
Mindspark centers aimed to serve students from low and middle-income neighborhoods in
Delhi, and charged a modest fee.2 Our evaluation was carried out in a sample of 619 students
recruited for the study from government-run secondary schools in Delhi; around half of these
students were randomly-selected to receive a voucher offering free attendance at Mindspark
centers. Students were tested in math and Hindi (language) at the beginning and end of the
intervention—a gap of about 4.5 months—with assessments linked using item-response theory
(IRT) to be comparable on a common scale across the two rounds of testing and across the
different grades.

We report five main sets of results. First, we show that students in our sample are several
grade-levels behind their grade-appropriate standard, and this gap grows by grade. The
average student in grade 6 is an estimated 2.5 years behind curricular levels in Math; by grade
9, this deficit increases to 4.5 years. For the bottom-third of students in the control group, we
find that the value-added on our independently-administered tests is close to zero in absolute
magnitude and we cannot reject that these students made no academic progress through the
school year.

Second, we find that students winning a Mindspark voucher scored 0.36σ higher in math and
0.22σ higher in Hindi relative to students who applied for but did not win the lottery. Relative
to the control group, lottery winners experienced twice the test-score value-added in math
and 2.5 times that in Hindi during the study period of 4.5 months. These are intent-to-treat
estimates reflecting an average attendance rate of 58% (including the voucher winners who did

1The teaching assistant focused on helping students with completing homework and with exam preparation,
while the instruction was mostly provided by the Mindspark CAL software. We, therefore, consider our
estimates to be a lower bound on the impact of 90-minutes of “blended” technology-aided learning because the
teacher time was not optimized for instruction (see sections 2 and 5 for details).

2The online and school-based models require fees that are not affordable for low-income families. The
Mindspark centers were set up with philanthropic funding to make the platform more widely accessible, and
were located in low-income neighborhoods. However, the funders preferred that a (subsidized) fee be charged,
reflecting a widely-held view among donors that cost-sharing is necessary to avoid wasting subsidies on those
who will not value or use the product (Cohen and Dupas 2010). The subsidized fee of Rs. 200 per month
(USD 3 per month) was benchmarked to that charged by providers of private tuition in the vicinity.
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not attend for more than a day). Using the lottery as an instrumental variable, we estimate
that attending Mindspark for 90 days (which corresponds to 80% attendance for half a school
year), would raise math and Hindi test scores by 0.59σ and 0.36σ respectively.

Third, we find that treatment effects do not vary significantly by level of initial achievement,
gender or wealth. Thus, consistent with the promise of customized technology-led instruction,
the intervention was equally effective in teaching all students. However, while the absolute
impact of Mindspark was similar at all parts of the initial test score distribution, the relative
impact was much greater for weaker students because the “business as usual” rate of progress
in the control group was close to zero for students in the lower third of the initial test score
distribution.

Fourth, using detailed electronic records of every question presented to students in the
treatment group by the Mindspark program, we (a) document that there is a very large
amount of variation in students’ initial preparation for grade-appropriate work, with students
enrolled in the same grade typically spanning five to six grades in terms of their readiness,
and (b) see that the software targets instruction very precisely to student ability, and updates
this targeting in response to changes in student learning. Thus, the ability of Mindspark to
handle the heterogeneity in student preparedness spanning several grades appears to be an
important (though not exclusive) mechanism of impact.

Fifth, Mindspark was highly cost effective. The test-score value added in the treatment
group (even based on the ITT estimates) was over 100% greater than the corresponding
value-added in the control group and was achieved at substantially less expenditure per student
than incurred in the public schooling system. The effectiveness of the Mindspark system is
particularly striking when considered in terms of productivity per unit of time. For instance,
Muralidharan (2012) finds that providing teachers with individual-level performance-linked
bonuses led to student test score gains of 0.54σ and 0.35σ in math and language at the end
of five years. This is one of the largest effect sizes seen to date in an experimental study
on education in developing countries. Yet, we estimate that Mindspark was able to achieve
similar gains in one tenth the time (half a year).3

Our first contribution is to the literature in education in developing countries by empirically
demonstrating that a key binding constraint in translating education spending into better
learning outcomes is the large variation in student preparation and the fact that the level

3These cost-effectiveness calculations are done for the full expenditure in money and time on both the
computer-based component and the teaching assistant led instructional component. The effect size is likely to
be less than full potential of the program since the teacher-led portion was not customized to student levels
and had limited integration between the group-instruction component and the computer-based instruction.
Further, our cost effectiveness estimates are also likely too conservative for assessing the full potential of the
program since the cost-per-child of the program declines sharply with scale. These issues are discussed in
greater detail in Section 5
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and pace of instruction envisaged by the curriculum and textbooks may be too high for most
students. Previous studies had found suggestive evidence of this variation (Banerjee and Duflo
2012; Pritchett and Beatty 2015), but ours is the first to document it empirically.

Second, we contribute to the literature on computer-aided learning (CAL), where the evidence
to date appears mixed (Bulman and Fairlie 2016). Nevertheless, some clear patterns are
starting to emerge. Hardware-focused interventions that provide computers at home or
at school seem to have very little impact on learning outcomes (Angrist and Lavy 2002;
Barrera-Osorio and Linden 2009; Beuermann et al. 2015; Cristia et al. 2012; Malamud and
Pop-Eleches 2011). Interventions that focus on improved pedagogy and allowing students
to review grade-appropriate content at their own pace do better, but the gains are modest
and range from 0.1σ to 0.2σ.4 However, interventions that use technology to also personalize
instruction seem to deliver substantial gains. For instance Banerjee et al. (2007) test the
impact of a CAL program that allowed some personalization on basic math skills, and find
test-score gains of 0.47σ in 2 years.5 Our results are consistent with this and demonstrate
the potential for well-designed technology-aided instruction to deliver large test-score gains in
both math and language in a short period of time. For a detailed summary of this literature
in developing and developed countries, please see Appendix B.

Third, our results speak more broadly to the potential for technology to accelerate the
development process by enabling developing countries to leapfrog constraints to human
development. For instance, Deaton (2013) documents that life expectancy in developing
countries is much higher than historical levels in Western societies at comparable stages of
development, and suggests that these are likely due to improvements in medical technology
(such as vaccinations and antibiotics) that are available now. Glewwe and Muralidharan
(2016) document that this is also true for enrollment in formal schooling, but not yet true
for learning outcomes. Our results point to the possibility that technology-aided instructional
solutions could eventually contribute to a similarly positive result for learning outcomes.6

One approach that has been successful in addressing the variation in student preparation has
been that of “Teaching at the Right Level”, which uses volunteers to group primary school
students by their level of preparation and teach them basic skills (Banerjee et al. 2016, 2007).
However, it is not clear if this approach can be extended to secondary grades where the content

4See, for example, Barrow et al. (2009); Carrillo et al. (2010); Lai et al. (2015, 2013, 2012); Linden (2008);
Mo et al. (2014); Rouse and Krueger (2004).

5The customization was limited because two students shared a computer, but the program provided math
games whose level of difficulty adjusted to the pace of the pair of students working together. To our knowledge,
the only CAL program that most closely resembles the features of the Mindspark software is the one evaluated
by Rockoff (2015).

6Examples for other sectors include the use of mobile telephones to circumvent the lack of formal banking
systems (Jack and Suri 2014), the use of electronic voting machines for better enfranchisement of illiterate
citizens in democracies (Fujiwara 2015) and the use of biometric authentication to circumvent literacy
constraints to financial inclusion (Muralidharan et al. 2016).
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is more advanced and complex, and the level of variation in student preparation is much higher
(exacerbated by “social promotion” policies in many countries). These conditions make the
effective delivery of any curriculum challenging and our results suggest that technology-aided
instruction may be especially effective in such settings with large intra-class variation.

The rest of this paper is organized as follows. Section 2 describes the intervention,
sampling strategy, and randomization. Section 3 presents the data collected for this study.
Section 4 discusses the empirical strategy and reports the results. Section 5 presents the
cost-effectiveness analysis and discusses policy implications. Section 6 concludes.

2 Intervention and Study Design
2.1 Intervention
Mindspark is a computer-assisted learning (CAL) software designed to provide personalized
instruction to children in primary and secondary school. It was developed by Educational
Initiatives, a leading Indian private assessment firm established in 2001 with considerable
experience designing, administering, and analyzing student assessments at the national and
state levels. Mindspark has been deployed through: (a) stand-alone, after-school centers in
low-income areas; (b) a dedicated part of the school day in government and private schools;
and (c) a self-paced online platform. The software is platform-agnostic and can be delivered
through computers, tablets, and smartphones, both online and offline.

We evaluated a version of Mindspark delivered through three stand-alone centers in Delhi.
Children attend these centers after school (if they go to school in the morning) or before
school (if they go to school in the afternoon). This version of the program provides students
with 45 minutes of the CAL software and 45 minutes of instructor-led small group instruction
(SGI). 7 Children sign up for the program by selecting a “batch” (i.e., 90-minute slot), which
includes about 12 to 15 students. Typically, parents pay INR 200 (USD 3) per month to send
their children to the program.

2.1.1 Computer-assisted learning

In the 45 minutes allotted to the CAL software, each child is assigned to a computer with a
software that provides him/her with activities on math, Hindi and English. Two of the days
of the week are supposed to be devoted to math activities, two days to Hindi, one day to
English, and one day in which the child can choose the subject.

One of the distinctive features of this software is that it adaptive (i.e., the difficulty of the
activities presented to each child are based on that child’s performance). The software is able

7The intensity of the program was designed to be comparable to private extra tuition, which is common in
India. According to the 2012 India Human Development Survey, 43% of 11-17 year olds attended paid extra
tuition outside of school.
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to customize the level of difficulty at a very granular level, drawing on more than 45,000 items
developed by EI. This adaptation occurs both at the beginning of the program, and then with
every subsequent activity the children complete. On their first session, children complete a
diagnostic test that assesses their initial learning level and determines the difficulty level of
the first set of activities that they will see (i.e., children who perform poorly in the test will
see easier items, and those who perform well will see harder items). Once the children begin
their first activity, the software dynamically adjusts the difficulty of each subsequent activity
based on their performance up until each day.

Another important feature of the software is that it provides differentiated feedback based
on analysis of patterns of students’ errors. EI has a dedicated team of item developers who
specialize in math, Hindi, or English. EI staff regularly analyze which questions children
answer incorrectly, and when an incorrect answer is chosen frequently, they interview a sample
of students to understand the source of their misconception. Then, based on this information,
EI adjusts the message that the software displays when children select incorrect answers. Some
questions display the same message for all incorrect answers in a given question, while others
display different messages for each incorrect option.

The software is also interactive to promote students’ conceptual understanding of the material
(instead of rote memorization or mechanical application of procedures). It is not a series of
test questions, but rather a set of games, videos, and activities from which children learn
through explanations and feedback. This facilitates children’s engagement with the material
and allows them to progress at their own pace.

Appendix C provides further details about the CAL software, including more information on
the diagnostic test, grade-wise content, and error diagnostics.

2.1.2 Small group instruction

In the 45 minutes allotted to SGI, an instructor teaches all students in a batch. This was not
an original component of the program, but it was added in response to parental demand to
offer children help with their homework and exam preparation. According to EI, instructors
often develop a personal relationship with the children, which helps to ensure that they attend
the centers regularly.

Instructors are locally-hired. They are selected based on two main criteria: (a) their potential
to interact with children; and (b) their performance on a very basic test of math and language.
However, they are not required to have completed a minimum level of education at the
secondary or college level. They receive an initial training, regular refresher courses, and
have access to an extensive library of guiding documents and videos. They are paid the
minimum legal wage for a full time person (about USD 100-200 per month), and the center
manager is paid slightly more (USD 250-500 per month). In addition to teaching during the
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SGI, instructors also supervise children during the time allotted to the CAL component and
have access to analytics on children’s performance on the CAL software.

The content taught during the SGI component covers core concepts of relative broad relevance
for all children. Instructors do not cater to individual learning levels because children
typically select their batch based on their school schedule, so each batch includes children
from different grades and levels. When possible, EI staff in the Mindspark centers attempt
to reassign children across batches to reduce heterogeneity in performance levels, but the
logistical feasibility of such reassignment is low since batch preferences are usually dictated
by other commitments of the students (such as school hours, any other tuition or domestic
responsibilities).

2.2 Sample
The intervention was administered in three Mindspark centers in Delhi focused on serving
low-income neighbourhoods. The sample for the study was recruited from state secondary
schools managed by the Government of the National Capital Territory of Delhi (GoNCTD)
that were close to the Mindspark centers. School visits and student recruitment was carried out
in September 2015. Prior authorization to approach schools was obtained from the Directorate
of Education and the recruitment of study participants was conducted in five schools closest to
the Mindspark centers in which school principals agreed to the recruitment of participants.8 Of
these five schools, three were girls-only schools and the other two were boys-only secondary
schools. In each school, with authorization from the school principals, staff from EI and
from J-PAL South Asia visited classrooms from grades 4-9 to introduce students to the
Mindspark centers intervention and the study and to invite them and their parents to a
scheduled demonstration at the nearby Mindspark center. Students were provided flyers to
retain this information and to communicate with their parents. Of the potential population
of 6,460 students enrolled in grades 4-9 in these schools, 766 showed up for the demonstration
sessions.

At the demonstration sessions, students and their parents were introduced to the Mindspark
intervention by staff from EI and basic background information was collected. Parents were
told that, if their child wanted to participate in the study, he/she would need to complete a
baseline assessment on a scheduled day of testing and that about half of the students would be
chosen by lottery to receive a scholarship which would waive the usual tuition fees of INR 200
per month until February 2016 i.e. for the duration of most of the school year. Students who

8The Delhi Government provided a list of 15 schools that could potentially be targeted for study
recruitment. Of these, seven were discarded as they were too far from the Mindspark centers or because
the contact information provided was incorrect. The research team contacted the other eight schools, of which
five agreed for their students to participate in the study.
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were not chosen by lottery would be provided the scholarship after February 2016, conditional
on also participating in an endline assessment in February 2016.

Of the 766 students who attended the demonstration sessions, 695 showed up for the baseline
assessments but only 619 completed all sections and were thus included in the study. About
97.5% of the study participants were enrolled in grades 6-9.9 Given that the study sample of
619 students is a self-selected sample of the total eligible population of students in these grades
in the targeted schools, we may be concerned at how representative they are of the broader
population of students in these grades. In Figure A.1, we present the test score distribution of
study participants and non-study participants in the final exams in the preceding school year
(2014-15) which were matched from administrative school records. While study participants
have slightly better final scores than their peers—indicating modest positive selection on
prior achievement—there is substantial common support in the range of achievement across
participants and non-participants suggesting that our results are likely to extend also to other
students in this setting.

2.3 Randomization
The 619 participants were individually randomized into treatment and control with 305
students in the control group and 314 in the treatment group. Randomization was stratified
by center-batch preferences.10 Characteristics of the treatment and control group students is
presented in Table 1 along with p-values from two-tailed t-tests of equality of means. The
treatment and control groups do not differ significantly in any observable dimension. Of the
314 students offered a scholarship for the Mindspark program, over 80% attended the program
for at least 7 days.11

[Insert Table 1 here.]

Of the 619 students who participated in the baseline test, 533 also attended the endline
test (270 control students and 263 treatment students), i.e. yielding a follow-up rate of
about 86%, which is somewhat higher in the control group but not statistically significantly
different between treatment and control students at the 5% level of significance. Student
characteristics at baseline, including test scores, are not statistically significantly different
even in the sub-sample of students who later participated in the endline tests.

915 students in the sample were reported as enrolled in grades 4 and 5 in total with 589 students enrolled
in grades 6-9. The enrolled grade was not reported for 15 students.

10Students were asked to provide their preferred slots for attending Mindspark centers given school timings
and other responsibilities. Since demand for some slots is expectedly higher than others, we generated the
highest feasible slot for each student with an aim to ensure that as many students were allocated to their first
or second preference slots as possible. Randomization was then carried out within center-by-batch strata.

11There is, however, wide variation in the number of days attended which will be looked at when discussing
the main program effects in Section 4.
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3 Data
3.1 Student achievement
The primary outcome measure for this study is student achievement. Student achievement was
measured using paper-and-pen tests in math and Hindi prior to the randomization (September
2015, baseline) and near the end of the school year (February 2016, endline).12 Tests were
administered centrally in Mindspark centers at a common time for treatment and control
students with independent monitoring by J-PAL staff to ensure integrity of the assessments.

The tests were designed independently by the research team and intended to capture a wide
range of ability in anticipation of wide variance in the achievement of students. Assessment
questions ranged in difficulty from “very easy” questions designed to capture primary school
level competences much below grade-level to “grade-appropriate” competences such as found
in advanced international assessments.

Test questions were taken from independent assessments previously administered by
high-quality research projects in India (such as Young Lives and the Andhra Pradesh
Randomized Studies in Education) and internationally-validated assessments (such as the
Trends in Mathematics and Science Study, the Program for International Student Assessment
and the Progress in International Reading Literacy Study). Separate test booklets were
developed for different grade levels, and across baseline and endline tests, but with substantial
overlap in test items which allows for the generation of comparable test scores. Test scores
were generated using Item Response Theory models to place all students on a common scale
across the different grades and across baseline and endline assessments. Details of the test
design and scoring are provided in Appendix D. The assessments performed well in capturing
a wide range of ability with very few students being subject to ceiling or floor effects.

3.2 Mindspark CAL system data
The Mindspark CAL system collects detailed logs of all interactions that an individual child
has with the software platform. This includes, for example, the daily attendance of each
student, the estimated student ability level as determined by the Mindspark system, the record
of each question that was presented to the child and whether he/she answered correctly, as well
as details of interaction such as time taken to answer or keystrokes to measure engagement
with content.

These data are available for the treatment group for the duration of the intervention. We
shall be using them in three ways: to describe the distribution of grade deficits in each grade
at baseline; to demonstrate the personalization of instruction at the core of the Mindspark

12It was important to test students in a pen-and-paper format, rather than computerized testing, to avoid
conflating true achievement gains with the effects of familiarization with computer technology in the treatment
group.
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system; and to characterize the evolution of student ability in the treatment group over the
period of the treatment.

3.3 School records
At the school level, we collected administrative records on academic test scores of all study
students and their peers in the classroom as well as details of student attendance. This was
collected for both the 2014-15 school year (in order to understand pre-existing differences
between the study population and the non-study students in these schools) and the 2015-16
school year (to evaluate whether the treatment affected school test scores).

3.4 Student characteristics
At the time of the baseline assessment, students answered a self-administered written
student survey which collected basic details about their socio-economic status, household
characteristics and academic support including their attendance of private tuitions. At endline,
we additionally captured information about a few variables such as their attendance of paid
private tuition which may potentially have changed in response to participation in the study
or being allocated treatment.

Additionally, we also phoned parents of the study participants to collect information on private
tuition attendance in July 2016 based on retrospective recall for the last academic year as well
as some basic information about their opinion of the program.

4 Results
4.1 Business-as-usual academic progress
Our first results characterize the context in which our intervention takes place and describe
the progress of academic achievement under business-as-usual settings. Figure 1 shows, for the
treatment group, the full joint distribution of grade currently enrolled in and the actual level
of student attainment as assessed by the Mindspark CAL system at the start of treatment.13

[Insert Figure 1 here.]

We highlight three main patterns. First, most children are already much below grade level
competence at the very beginning of post-primary education. In grade 6, the average student is

13The Mindspark CAL system benchmarks the academic preparation levels of students to grade levels based
on a common assessment taken by newly-enrolled students at the beginning of the intervention. All students
take the same test which begins at grade 1 level, benchmarked using direct links to official curricula, and
presents sets of items of increasing difficulty. These items go at least up to the current grade the student is
enrolled in and may, depending on student performance, go up to two grades beyond their current level of
enrollment. This initial benchmarking is then used mainly to customize instruction level in the CAL system
and to provide a diagnostic to Mindspark center staff. The benchmarking is done based on a pre-determined
formula which weights proportion correct at items at different grade levels.
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about 2.5 grades behind in math and about half a grade behind in Hindi.14 Second, although
average student achievement is higher in later grades, indicating some learning over time,
the slope of achievement gains measured by the line of best fit is much flatter than the line
of equality between curricular standards and actual achievement levels. This indicates that
typical student progress is considerably behind curriculum-expected norms. As a result, the
gap between actual student proficiency and the curriculum is greater in later grades with
students being nearly 4.5 grades behind in math by grade 9 and 2.5 grades behind in Hindi.
By grade 8 or 9, not even the top students in our sample seem to be at grade-appropriate
competence in either subject. And third, the figure also presents a stark illustration of the
very wide dispersion in achievement among students enrolled in the same grade: students in
our sample span 5-6 grade levels in each grade. This wide level of variation is difficult for any
individual teacher to manage in the classroom but may potentially be resolved by personalized
instruction targeted at the individual child’s learning level.

We next present, as a descriptive measure of student progress, the value-added of test scores
for the bottom, middle, and top third of the within-grade achievement distributions in our
sample in both math and Hindi. Specifically, we estimate a regression of the form (without a
constant term):

Yis2 = α.tercis1 + γ.Yis1 + εi2 (1)

where Yist is student i’s test score on our independent asessment in subject s at period t,
tercis1 is a vector of indicator variables for the within-grade terciles of baseline achievement
in the given subject s and ε is the error term. 15

Coefficients from the vector α, which may be interpreted as the value-added in each tercile,
are presented in Figure 2. Students at different parts of the distribution make very different
progress — initially better-achieving students also have much higher value-added over the
period between baseline and endline. Strikingly, we cannot reject the null of no increase in
test scores for the bottom-third in both subjects and the coefficients in both math and Hindi
in this group are close to zero in absolute magnitude.

14The math portion of the software was developed much earlier and therefore has much more precise linking
to curricular expectations than Hindi, which was developed more recently and for which the benchmarking is
perhaps less robust. The allocation of test questions to grade levels is also much more robust in math than
language (where competencies are less well-delineated across grades). Thus, although most patterns across
grades are similar across the two subjects, the computer system’s assessment on grade level competence of
children is likely to be more reliable for math. For both subjects, we verified that baseline test scores on our
independent tests increase significantly with each successive assessed grade level of achievement (as per the
CAL program). This indicates that the benchmarking does present similar variation as our independent tests.

15Test scores are normalized to have a mean of zero and a standard deviation of one in the baseline in the
pooled sample. Standard errors, in this regression and throughout this paper, are heteroskedasticity-corrected
robust (Huber-White) standard errors.
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[Insert Figure 2 here.]

These two figures confirm that being left behind the curriculum is the typical experience for
students, rather than an aberration. This problem grows progressively more severe in later
grades, as curriculum difficulty significantly outpaces the growth in student achievement, and
a substantial minority of lower-performing students make no academic progress at all.

To the best of our knowledge, we are the first to present direct evidence on these patterns
taken together in developing countries. However, they do agree with much indirect evidence on
low achievement in Indian schools and the relatively slow progress in growth of achievement
in repeated cross-sections (see e.g. Pritchett (2013)). Thus, although our sample is not
representative and we use these results mostly to set the context for the intervention, we see
little reason to think that the “business-as-usual” performance in this sample is particularly
atypical.

4.2 Main program effects
4.2.1 Intent-to-treat estimates

Figure 3 presents the mean test scores in the baseline and endline assessments in both subjects
for the lottery-winners and the lottery-losers. While test scores improve between baseline and
endline for both groups, endline test scores are significantly and substantially higher for the
treatment group indicating much greater academic progress.

[Insert Figure 3 here.]

Our core specification for examining intent-to-treat (ITT) treatment effects is as follows:

Yis2 = α + β1.T reatmenti + γ.Yis1 + φi + εit (2)

where Yist is student i’s test score in subject s at period t; Treatment is an indicator variable
for being a lottery-winner; φi are stratum fixed effects to reflect the randomization design;
and εit is the error term.

ITT effects estimated from Specification (2) are large - at 0.37σ in math and 0.23σ in Hindi
- and statistically significant at the 1% level (Cols. 1-2, Table 2).

[Insert Table 2 here.]

In Cols. 3 and 4, we omit strata fixed effects from the regression, noting that the constant term
in this case provides an estimate of the value-added in the control group over the course of the
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treatment.16 Expressing the value-added in the treatment group (α + β1) as a proportion of
the control group VA (α), these results indicate that lottery-winners made twice the progress
in math, and 2.5 times the progress in Hindi, compared to lottery-losers over the study period.

4.2.2 IV estimates of dose-response

The ITT results in Table 2 are estimated with an average attendance of about 50 days among
lottery-winners (out of a maximum possible attendance of 86 days).17 These are thus likely
to be an underestimate of the program effects under full compliance.

We estimate the dose-response relationship between attendance in Mindspark and value-added
using the following regression:

Yis2 = α + µ1.Attendancei + γ.Yis1 + ηit (3)

where Yist is defined as previously, Attendance is the number of days a student was reported
to have logged in to the Mindspark system (which is zero for all lottery-losers) and η is a
stochastic error term.18

We first estimate this using OLS i.e. as a lagged value-added (VA) model. Results from
this specification show a strong and significant relationship between the the number of days
attended and the value-added over the study period in both subjects (Table 3, Cols. 1-2). Our
results also indicate that variation in attendance is able to account for the full extent of the
ITT treatment effects; the constant term in the OLS value-added regressions, is near-identical
to our estimates of value-added in the control group in Table 2.

[Insert Table 3 here.]

However, recognizing that attendance may be endogenous to expected gains from the program,
we further instrument attendance by the random offer of a scholarship.19 The coefficient

16Interpreting the constant in this manner is made possible because the baseline and endline tests are linked
to a common metric using Item Response Theory. Such an interpretation would not be tenable if scores were
normalized within grade/period as is common practice. Our treatment effects, however, are of very similar
magnitudes when scores are normalized using a within-grade normalization instead.

17About 13% of the lottery-winners attended the program for one day or less over the period of the program.
The mean attendance among the rest is about 57 days, i.e 66% of the total working days for the centers over
this period. The maximum attendance recorded is 84 days (97.7%). We correlated subsequent attendance
in the treatment group to various baseline characteristics, the results of which are presented in Table A.1.
Students from poorer backgrounds and with lower baseline achievement in Hindi appear to have greater
attendance but the implied magnitudes are small. The full distribution of attendance among lottery-winners
is presented in Figure A.2.

18Lottery-losers were not allowed to enrol in Mindspark over the duration of the study but were guaranteed
the scholarship upon conclusion of the study.

19Note that the random offer of a scholarship in our case moves some lottery-winners from zero to positive
attendance i.e. the identification of the IV is coming from the extensive margin of attendance.
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on days attended is practically unchanged and we cannot reject the null that attendance
is conditionally exogenous when controlling for baseline achievement (Cols. 3-4).20 The
coefficient is also stable when estimated as an OLS VA model using only data on the treatment
group (Cols. 5-6). 21

The IV estimate above identifies the average causal response of the treatment which “captures
a weighted average of causal responses to a unit change in treatment, for those whose
treatment status is affected by the instrument” (Angrist and Imbens 1995). Without further
assumptions, we cannot extrapolate what the effect of varying treatment intensity would have
been. In particular, extrapolation requires assumptions about (a) the nature of heterogeneity
in treatment effects and (b) the functional form of the relationship between days attended
and the treatment effect.

The stability of the coefficients on attendance across all specifications is suggestive that, in this
particular instance, the average causal response corresponds closely to the marginal effect of
an additional day as estimated in the value-added model. We will further be documenting the
absence of evidence of treatment effect heterogeneity along observable dimensions in Section
4.4. In this context, however, a constant treatment effects assumption appears justifiable.

We explore the functional form of the relationship between attendance and learning gains
for treatment group students graphically in Figure 4. Value-added increases monotonically
with attendance in both subjects. The relationship seems entirely linear in math and, even in
Hindi, although there are some signs of diminishing returns to attendance at the higher range
of our sample, we cannot reject a linear dose-response relationship.22

[Insert Figure 4 here.]

Assuming constant treatment effects and a linear dose-response function, both of which appear
reasonable in this application, we can provide suggestive magnitudes of the treatment effect
under alternative intensities of treatment.23 Under these assumptions, our results suggest that

20This is evident from the high p-values of the Difference-in-Sargan test statistic of the null that attendance
is, in fact, exogenous. The test is conducted under the maintained assumption that the IV is valid, which in
our case is justified through randomized assignment of the voucher.

21OLS VA models may be thought of as a dynamic treatment effects estimator which rely on lagged
achievement for ignorability (Guarino, Reckase and Wooldrige, 2015). The close correspondence here between
the VA and IV results adds to much recent evidence that VA estimates typically agree closely with experimental
and quasi-experimental estimates (see, for example, Andrabi et al. 2011; Angrist et al. 2015; Chetty et al. 2014;
Deming 2014; Deming et al. 2014; Kane et al. 2013; Singh 2015, 2016).

22We test this explicitly in Table A.3 where we regress the endline test score on attendance, the square
of attendance and the baseline test score. The quadratic term is statistically indistinguishable across all
specifications (although this may partially reflect low statistical power).

23Note that these assumptions do not underlie our identification of the program effects. They are made
here only to facilitate extrapolation of estimates to varying dosage of treatment.
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90 days’ attendance, which roughly corresponds to half a school year with 80% attendance,
would lead to gains of 0.59σ in math and 0.37σ in Hindi.24

These estimates are likely to be lower-bound estimates of the productivity of Mindspark
instructional time in the particular subjects since attendance here does not account for the
time spent in the Mindspark centres on instruction other than Math and Hindi (in particular,
instruction in English, staff trainings, parent-teacher meetings and educational excursions with
students). In Appendix Table A.4, we present analogous IV and value-added specifications
which only take into account the time spent by students on either computer-aided or
small-group instruction in the particular subject (Math or Hindi) to their learning gains in
that subject; using these estimates, 90 days of instructional time in the two subjects, split
equally, would lead to treatment gains of 0.765 SD in math and 0.495 SD in Hindi.

4.3 What competences do students learn?
Our tests were assembled to include items of widely differing levels of difficulty and posed
different tasks for students. It is additionally useful to understand the specific competences
that the intervention has improved. We classified each question in our endline tests by the
domain it measured. Using this classification, we present the treatment effects expressed as
proportion correct in each type and domain of question. These results are presented in Table 4.

[Insert Table 4 here.]

The intervention led to significant increases across all domains of test questions. The
magnitude of these effects is substantive: expressed as a proportion of the correct responses
in the control group, these ITT effects range from a 12% increase on the “easiest” type of
questions (arithmetic computation) to up to 38% increase on harder competences such as
geometry and measurement. Similarly, in Hindi, these effects represent increases from about
7% on the easiest items (sentence completion) to up to 19% on the hardest competence (to
answer questions based on interpreting and integrating ideas and information from a passage).

4.4 Heterogeneity
Table 5 presents an investigation of whether treatment effects vary for boys and girls, for
richer students vs. poorer students and for better-prepared vs. weaker students. We find no
significant evidence of such heterogeneity.

[Insert Table 5 here.]
24A school year has an average of about 220 working days. We extrapolate results to half a school year,

rather than a full school year, because the implied number of days is close to the maximum number of days
attended observed in our sample and thus we are not extrapolating too far out of the range of our data.
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In Figure 5, we present a non-parametric representation of the ITT effect plotting
kernel-weighted local polynomial smoothed lines, which relate absolute endline test scores to
percentiles in the baseline achievement distribution, separately for the treatment and control
groups. In both math and Hindi, the trajectory of achievement is shifted upwards for the
treatment group and significantly different from the control group trajectory. This indicates
that the treatment benefited students at all parts of the achievement distribution and relatively
equally.

[Insert Figure 5 here.]

Effects may still be heterogeneous by the relative position in the within-grade achievement
distribution.25 We investigate this by regressing endline achievement on the baseline test
score; indicator variables for the treatment and for the tercile at baseline and interaction
terms between the treatment variable and two terciles. The regression is estimated without
a constant. We see no significant evidence of heterogeneity (see Table 6) - although the
coefficient on the treatment dummy itself is strongly statistically significant, the interaction
terms of treatment with the tercile at baseline are in all cases statistically indistinguishable
from zero.

[Insert Table 6 here.]

These results indicate that the Mindspark intervention could teach all students equally well,
including those in the lowest terciles who were not making any academic progress under
business-as-usual. Moreover, expressing gains from the treatment as a multiple of what
students would have learnt in the absence of treatment, it is evident that the treatment
effect is a larger relative effect for weaker-performing students.26

4.5 Personalization
The computer-based instruction in Mindspark combines effects from multiple channels:
uniformly high quality content, personalization of instruction to students’ individual academic
preparation and pace of learning, shorter feedback loops with prompt remediation of errors

25Two students enrolled in different grades may have the same absolute achievement but occupy different
ranks in their respective within-grade distributions. Such heterogeneity could exist for multiple reasons: the
curriculum could be targeted at the top end of the within-class achievement distribution; teachers could
focus effort on better-performing students; or perhaps doing better/worse might lead to changes in students’
self-efficacy and thereby effort. For the effect of ordinal position in the within-grade distribution (see, for
example, Weinhardt and Murphy 2016).

26This follows naturally from the observation that for weaker students the same absolute effect is being
divided by a smaller denominator.
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and misconceptions, and a possibly more engaging format that increases student engagement.
We cannot separately identify the effects of these channels individually.

However, the detailed question-level data collected in the Mindspark system for individual
students in the treatment group does allow us to examine more closely a key component of
the intervention’s posited theory-of-change — the delivery of personalized instruction which
is able to target student preparedness precisely and update instruction appropriately.

We first examine the claim that the Mindspark system does precisely target instructional
material at an individual student’s level. Direct evidence for this is presented in Figure 6. We
present, separately by each grade of school enrolment, the actual grade level of a student’s
academic preparedness as estimated by Mindspark CAL system and the grade-level difficulty
of the questions that he/she was presented in math in a single day.27 Across the horizontal axis
on each subgraph, we see the wide dispersion in academic preparedness within each grade,
reiterating our interpretation of Figure 1. On the vertical axis, however, we see that the
Mindspark system is able to precisely target instruction to preparedness and that the typical
child is presented items either at their grade level or adjacent. This degree of individualization
is considerably more precise than would be feasible for a single teacher to deliver to all students
in a standard classroom setting.

[Insert Figure 6 here.]

Second, we examine the claim that the Mindspark CAL system updates its estimate of student
achievement levels in real time and constantly updates instruction accordingly. Thus it
accommodates variation, not just in the incoming levels of student preparedness (as indicated
in the previous figure), but also in their pace of learning and individual trends in student
achievement. Evidence of this is presented in Figure 7 where we present non-parametric
plots of the difficulty level of the math items presented to students over the course of the
intervention.28 In the first figure, separate lines are plotted by the grade children are enrolled
in and, in the second figure, by their initial level of ability. As can be seen, this estimated
level of difficulty increases for all groups of students continuously indicating that students
were making progress regularly over time during the study period and that the Mindspark
software was able to customize instruction to their increasing achievement.

27In both math and Hindi, this is student achievement from a single day which is near the beginning of the
intervention but on a day that all students would have completed their initial assessment and, crucially for
ensuring an adequate sample size, a day when Mindspark computer-aided instruction in the relevant subject
was scheduled in all three centers.

28We study this issue in the data on the math questions only. This is for two reasons. First, the dynamic
adaptation in math is more finely developed, over a much longer period of time, than in Hindi. Second, while
dynamic adaptation in math is focused at moving students to a harder question in the same competence,
conditional on answering initial question(s) correctly, in Hindi the software is focused on making sure that at
each grade level a student has a mastery of all basic competences before being presented questions at the next
grade level.
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[Insert Figure 7 here.]

We can however study this pattern at even greater granularity. As a final piece of evidence,
which serves also to highlight the richness of the big data on student achievement available
to us, we separately plot the learning trajectory of each individual child from the treatment
group who attended Mindspark. We present this in separate panels for each grade and by
the quartile of attendance in Mindspark in Figure 8. There are three key patterns in these
very disaggregated graphs: (a) while there is wide variation in initial ability, we see a general
increase in the grade level of the questions across individual trajectories; (b) the increase in
assessed ability levels by attendance increases over the entire range of attendance in this sample
and (c) most importantly, not only can the program deal with wide variation in the level of
initial preparedness, it can also accommodate extensive variation in the pace of learning. The
pattern that the slopes of the lines are slightly different across the groups and over time reflects
that Mindspark was constantly revising the pace of the instruction to individual needs.

[Insert Figure 8 here.]

In summary, the Mindspark system does seem to fulfil the promise of granular customization at
a level that may only be possible with either individual tutoring or perfect academic tracking
but is not feasible under most current models of classroom instruction. Insights from previous
work suggest that this is likely to be a key channel of impact. Together with the uniform
delivery of high quality content, this highlights the potential for education technology to
significantly change the delivery of instruction and improve educational productivity.

4.6 Effect on school tests
Given substantial deficits in student preparation (Figure 1), even large absolute increases
in skills may not be sufficient for raising grade-level achievement. This is made more likely
with precise personalization of content to student levels, as students are possibly faced with
little ‘grade-appropriate’ instruction. Thus, a relevant question is whether the intervention
increased student performance on school tests. 29

We first use the CAL software data to look directly at the grade level of the material presented
by Mindspark to students in the treatment group in both math and Hindi (see Figure 9). The

29This is important both because school tests may be high-stakes and with long-term implications (such
as matriculation exams at the end of high school) and because, in a context where many students are
first-generation learners, school tests may be the metric most salient to parents to judge the academic
performance of their children.This matters because parental investments are likely to respond to their
judgments about how the child is performing. See, for example, Dizon-Ross (2014) who documents that
parents in Malawi invest resources (enrollment and secondary school scholarships) based on their assessment
of children’s academic achievement, choosing to concentrate these resources on children they believe are
performing well in school.
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figure confirms our intuition: in math, very few items were administered at the level of the
grade the child is enrolled in or the grade immediately below; in contrast, a substantial portion
of the Hindi instruction in each grade was at grade level.

[Insert Figure 9 here.]

Next, we explore the treatment effects expressed at the proportion of test questions answered
correctly at grade level and at below-grade level.30 This is presented in Table 7 for both math
and Hindi. As can be seen, the patterns differ across subjects. In math, we find no evidence
of a treatment effect on grade level questions – the estimated coefficient on the treatment
dummy variable is statistically insignificant and very close to zero in magnitude – although
we find evidence of a significant and substantial treatment effect on items below grade level.
In Hindi, on the other hand, we find that the treatment effect is significant in all regressions
and of meaningful magnitudes.

[Insert Table 7 here.]

Table 8 presents the treatment effect of being offered a voucher on scores on the school exams
held in March 2016.31 Mirroring the results on grade-level items on our own test, we find a
significant increase in test scores of about 0.19σ in Hindi but no significant effect on math.
We also do not find any significant effect on the other subjects (Science, Social Science or
English), although coefficients are invariably positive.

[Insert Table 8 here.]

4.7 Other extra tuition
A final issue to explore is whether the program crowded out extra tuition among the treatment
group. This is relevant because private after-school tuition is common in this setting and in
our sample. It is plausible that the offer of a voucher for Mindspark may have crowded out
paid extra tuition among the treatment group. It also possible that, upon losing the lottery,
control groups increase their uptake of private tuition. Both these effects would lead our
treatment effects to be lower than implied production function parameters.

30Our tests were not designed to be linked to the curriculum and were, rather, designed to capture a wide
range of ability. Ex-post, with the help of a curricular expert, we classified each item on our tests as belonging
uniquely to a particular grade-level.

31March is the end of the academic year in India when students sit end-of-year exams. In Delhi, these
exams are taken on a standardized common question paper for each subject in each grade. In the regressions
above, scores are standardized to have a mean of zero and a standard deviation of 1 in each grade/subject in
the control group.
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We use data from phone surveys of the parents of the study children to investigate this issue.
Specifically, we collected information on whether the student attended extra tuition (other
than Mindspark) in any subject separately for each month from July 2015 to March 2016.
Dividing this period into “pre-intervention” (July to September 2015) and “post-intervention”
(October 2015 to March 2016), we estimate the following regression where each observation
is a month/child observation:

Tism = α + φ1.post+ φ2.post ∗ Treatmenti + λis + εit (4)

where Tism is an indicator variable for whether child i attended extra tuition in subject s in
month m, Treatment is an indicator variable witha value of one for all lottery-winners and
post is an indicator variable for being in a time period after September 2016. λis is a set of
individual fixed effects.

Results from this specification are presented in Table 9. As is evident, we find no evidence of
substitution away from extra tuition in this sample.

[Insert Table 9 here.]

4.8 Interpreting a composite treatment effect
The intervention, as administered, is bundled by design and we cannot isolate the individual
effects of group instruction and computer-based instruction. However, a major goal of the
Mindspark intervention is to deal with substantial variation in academic preparation between
children, even within the same grade, and the computer software is key to achieving this.
We have shown the customization in the program both to the levels and pace of learning of
individual students. It is unlikely that this could be achieved even by motivated teachers,
when faced by a classroom with students of very mixed ability. Thus, although we cannot
provide causal decompositions of the treatment effect, we think it likely that a substantial
portion results directly from the CAL component.

This is particularly the case when we consider the structure of the group teaching. As noted
in the program description, students in the group were mixed in age, ability and the grade
they are enrolled in. The instruction focused mostly on homework support or the revision
of primary school level foundational skills but was not optimized for individual students or,
except in an informal sense, to fully utilize the insights from the CAL data. According to
EI, the primary role of the instructor was to ensure adherence to the program, to encourage
regular attendance by students and to focus on homework and examination preparation, which
parents demand.
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We thus interpret our results as reflecting the evaluation of a “blended learning” model with a
particularly well-developed CAL component but with the instructor-led component not fully
optimized for teaching. Thus, our results are best interpreted as lower-bound estimates of
the full potential of this composite class of interventions. In assessing the cost effectiveness
and productivity in terms of time below, which are the relevant parameters for policy, we will
always account for the full expenditure in time and money on the program.

5 Cost-effectiveness
Since the Mindspark centers program was offered after school, a natural comparison is with
after-school private tuition, which is commonplace in India and in many other developing
countries. In a contemporaneous study to ours, Berry and Mukherji (2016) conduct an
experimental evaluation of private tuition with a sample of students in grades 6-8 in Delhi.
The program also provided six days of instruction per week, charged INR 200 per month
(which was the subsidized fee charged by Mindspark centers), and students were taught for
two hours per day (25% more scheduled instruction time than the Mindspark intervention).
The intervention was run by a well-respected and motivated non-governmental organization,
Pratham, which has previously shown positive effects of other interventions (see, for example,
Banerjee et al. 2016, 2007).

Despite the similarities, this intervention differs from ours in two significant respects, both of
which are central to the posited theory-of-change behind Mindspark - instruction is delivered
at grade-level curriculum and not customized to the ability of the child and, secondly, the
instruction is delivered in person by a tutor in groups of up to 20 students (similar to the
small-group instruction component of the Mindspark centers). Both these features are typical
of existing private tuition market in India. At the end of a year of instruction, Berry and
Mukherji (2016) find no evidence of a significant treatment effect in either math or English,
the two subjects in which they, like us, administer independent assessments. Thus the best
evidence available so far suggests that teacher-led group-based tutoring, in the same context,
with students at the same grade levels, with a highly motivated NGO implementer and with
a treatment dosage more intensive than Mindspark was unable to deliver positive treatment
effects when instruction was tied to the grade level of the child.

A second comparison is with the productivity of government-run schools (from where the
study subjects were recruited). The per-pupil monthly spending in these schools in Delhi was
around INR 1500 (USD 22) in 2014-15; students spend 240 minutes per week on math and
Hindi; and we estimate that the upper-bound of the value-added in these schools was 0.36σ
in math and 0.15σ in Hindi over the 4.5 month study period.32

32These are the estimated value-added in the control group in Table 2 and also include the effects of home
inputs and private tuition, and is therefore an upper-bound of learning gains in the public schooling system.
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The full costs of the Mindspark program as delivered were about INR 1000 per student
(approximately USD 15) per month. These include the costs of infrastructure, hardware and
staffing as well as development costs for the Mindspark program and are much higher than
the likely steady-state costs because the centers operated at a small scale and substantially
below capacity during the study period. Using the ITT estimates, we see that Mindspark
added 0.37σ in math and 0.23σ in Hindi over the same period in around 180 minutes per week
on each subject. Thus, even when implemented with high fixed costs and without economies
of scale, and based on 58% attendance, the Mindspark intervention delivered greater learning
at lower financial and time cost than default public spending.

More generally, the promise of platforms like Mindspark for improving education in developing
countries at scale comes from the fact that the majority of the costs above reflect fixed costs of
product development, and so the marginal cost of extending the intervention is much lower.
Per-pupil costs decline very sharply with scale: If implemented in government schools, the
costs of the program (including hardware costs but excluding rent and utilities) reduce to
about USD 25 per child per year at even a very modest a scale of 100 schools; at a scale of
1000 schools, these reduce to about USD 9.5 annually per-child. Considering the costs of the
software and associated technical support alone, the per-pupil cost at scale is expected to be
below USD 2 annually, which is much lower than the USD 150 annual cost (over 10 months)
during our pilot. Further, our IV estimates suggest that the gains from attending Mindspark
regularly would also be higher than the ITT estimates used in the calculations above.

Of course, our results may not be replicated if Mindspark is implemented within schools at
scale, and so our experiment should be treated as an efficacy trial that should be followed up
by further evaluations at a larger scale and over a longer duration. But these results are very
timely because while there is much interest in policy circles in India and other developing in
using technology in education, most of the funds are being deployed to purchase hardware
with very little focus on how this technology should be deployed for effective pedagogy.33 In
a context where hundreds of millions of dollars may be spent on the purchase of computer
hardware and the creation of IT labs anyway (which evidence suggests is unlikely to improve
student learning by itself), the marginal cost of deploying the Mindspark software would be
particularly low. Such a deployment would offer a natural opportunity to test impacts at a
larger scale.

33For instance, various state governments in India have distributed free laptops to students in recent years.
Many governments have also invested in the creation of computer labs in school (such as the Adarsh schools
in Rajasthan). And the emphasis on technology in education has also featured in large national level policy
approaches such as the Digital India initiative of the current Union government.
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6 Conclusions
In this paper, we have presented an experimental evaluation of a technology-led supplementary
instruction program targeted at improving learning outcomes in post-primary grades. We show
substantial positive effects of the program on both math and language test scores and show that
the program is very cost-effective both in terms of time and money. The program is effective
at teaching students at all levels of prior achievement, including students in the bottom-third
of the within-grade distribution who are left behind by business-as-usual instruction. This
is consistent with the promise of computer-aided instruction to be able to teach allstudents
effectively. Using detailed information on the material presented to students in the treatment
group, we demonstrate the program was successful at targeting instruction precisely to the
academic preparation of students and in handling wide variation in the academic levels of
students enrolled in the same grade. In Hindi, where initial deficits from curricular standards
were assessed to be less severe and the computer program presented material at curricular
levels, we also document strongly significant impacts on grade-level tests administered in
school.

These substantial effects reflect, in our opinion, the ability of the Mindspark program to
target multiple constraints that lead to the low productivity of instructional time in Indian
schools. Personalized instruction makes it possible to accommodate large deficits in initial
student preparation and wide variation within a single grade. The high quality of content,
combined with effective delivery and interface, circumvents issues of the constricted availability
of effective and motivated instructors. Efficient algorithms for error correction, administered
in real-time, allow for feedback that is more relevant and much more frequent. These features
all reflect continuous and iterative program development over a long period of more than a
decade.

These effects may plausibly be increased even further with better design. It is possible that
in-school settings may have greater adherence to the program in terms of attendance.34 It
may be possible to optimize teacher-led instruction more closely on the extensive information
on the performance of students, individually and in a group, than is currently the practice
in Mindspark centers. This “big data” on student achievement also offers much potential of
its own. Foremost, it can provide much more granular insight into the process of student
learning than has been possible thus far – this may be used to further optimize the delivery
of instruction in the program and, plausibly, also for the delivery of classroom instruction.

34Average attendance rate varies widely across Indian states and across schools, including across private and
government schools. The problem of low absolute productivity is, however, near-universal including in most
private schools (Muralidharan and Sundararaman 2015; Singh 2015). Thus, at least in some states/sectors,
attendance rates might well be much better in schools than in the Mindspark centers intervention.
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Finally, the detailed and continuous measures of effort input by the students can be used
directly to incentivize students, with potentially large gains in student achievement.35

However, there are also several reasons to be cautious in extrapolating the success of the
program more broadly. The intervention, as evaluated in this paper, was delivered at a
modest scale of a few centers in Delhi and delivered with high fidelity on part of the providers.
Such fidelity may not be possible when implementing at scale. Additional issues relate to the
mode of delivery. We have only evaluated Mindspark in after-school centers and it is plausible
that the effectiveness of the system may vary significantly based on whether it is implemented
in-school or out-of-school; whether it is supplementary to current classroom instruction or
substitutes away current instructional time; and whether it is delivered without supervision,
under the supervision of current teachers or under the supervision by someone else (e.g. the
Mindspark center staff).36 Identifying the most effective modes of delivery for the program
is likely to be a useful avenue of future enquiry.37 Our present study is best regarded as an
efficacy trial documenting proof-of-concept rather than an endorsement for wholesale adoption.
Thus it is important that any attempts to expand the use of such education technology be
rigorously evaluated.38

Our results have broader relevance for current issues in education in developing countries.
First, while there has been a contentious debate across countries around the potential trade-offs
between academic standards and socially-equitable automatic promotion, there is much less
evidence on how to teach effectively in such settings with severe learning deficits and wide
within-grade variation.39 Our results offer insight in this area. We also speak to the broader
(mis-)orientation of the Indian education system, which is often thought to cater to the top-end
of the distribution and focus far more on screening than teaching all students effectively.40

Over-ambitious curricula, the neglect of weak performance in most of the distribution, and the
35Direct evidence that this may be possible is provided by Hirshleifer (2015) who uses data from a (different)

computer-aided instruction intervention to incentivize student effort and documents large effects of 0.57σ. See
also Behrman et al. (2015) who document that incentives to students were most effective when aligned with the
incentives of teachers; technology-aided programs may make student incentives more productive by decreasing
the salience of teacher incentives by providing uniformly high-quality content.

36For instance, see Linden (2008) and the discussion in Taylor (2015).
37A useful example of such work has been the literature that followed the documenting of the efficacy of

unqualified local volunteers, who were targeting instruction to students’ ability levels, in raising achievement
in primary schools in two Indian cities by Banerjee et al. (2007). Subsequent studies have looked at the
effectiveness of this pedagogical approach of “Teaching at the Right Level” in summer camps, in government
schools and delivered alternately by school teachers and by other volunteers (Banerjee et al. 2016). The
approach is now being extended at scale in multiple state education systems.

38For broader recent discussions of why this is important, please see, for example, Deaton and Cartwright
(2016) and Muralidharan et al. (2016).

39For examples of empirical work evaluating the effects of social promotion, see for example, Jacob and
Lefgren (2004) in the US, Manacorda (2012) in Uruguay and Koppensteiner (2014) in Brazil.

40For a stark illustration of this phenomenon, see Das and Zajonc (2010) who document that although
the top 5% of the Indian distribution perform comparably with their international peers, the rest of the
distribution performs much worse. They estimate that the Indian distribution of student achievement is the
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focus on a small well-performing minority are, plausibly, all symptoms of misaligned priorities.
While not a comprehensive solution, our results indicate that technology-aided instruction can
effectively reach students left behind by the current orientation of the education system.

Finally, our results raise the question of why, if the program is so successful, is it not adopted
more enthusiastically by households? There is clearly a large market for supplementary extra
tuition in India at all levels of education. But the Mindspark centers themselves did not
generate substantial take-up without the scholarships and, indeed, the centers all closed
down soon after the conclusion of our experiment in the face of low demand and consistent
under-subscription. Is it, perhaps, that parents are not well-informed of the efficacy of the
intervention?41 Or are they not willing to pay for instruction that improves learning outcomes
but may not improve, at this late stage, their performance in high-stakes matriculation
exams and (possibly) their chances for securing coveted formal sector employment?42 While
encouraging the reallocation of public expenditure away from less productive uses like
above-inflation pay increases (see, for example de Ree et al. 2015) might be welfare-improving,
there may also be large unrealized gains in prompting more optimal allocation of household
resources, even in poorer settings.

second most unequal distribution for which data is available (behind only South Africa, which has a particular
history of inequality).

41There is some suggestive evidence that this may be the case. Students and parents did respond to our
(low-intensity) recruitment drives in schools. If they turned up to the demonstration sessions, they were likely
to also enrol in the study. And if they won the lottery, they were substantially likely to enrol in the intervention
subsequently. In this situation, experimental evaluations increasing the information available to parents may
well be worth fielding, as in other domains of inaccurate information available to parents (see, for example,
Dizon-Ross 2014; Jensen 2010).

42That parents and students are willing to invest in response to changes in their perceived economic returns
has been documented by several recent studies (see, for example, Jensen 2010, 2012; Munshi and Rosenzweig
2006). In this context, experiments which vary the price of the intervention while providing information on
learning gains may isolate the willingness to pay for skill acquisition which would provide valuable insights.
For examples of such an experiment, see Dupas and Miguel (2016) on health and Berry and Mukherji (2016)
in education.
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Figure 1: Assessed ability levels vs. current grade enrolled in school

Note: This figure shows, for treatment group, the actual ability level (determined by the Mindspark CAL
program) plotted against the grade they are enrolled in. In both subjects, it shows three main patterns: (a)
there is a general deficit between average attainment and grade-expected norms; (b) this deficit is larger in
later grades and (c) within each grade, there is a wide dispersion of student achievement.
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Figure 2: Business-as-usual progress in learning

Note: This figure shows the value-added in the control group for students in different terciles of the
within-grade achievement distribution. Value-added is measured on our independently-administered tests at
baseline and endline tests in September 2015 and February 2016 respectively.
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Figure 3: Mean difference in test scores between lottery winners and losers

Note: This figure shows mean of test scores, normalized with reference to baseline, across treatment and
control groups in the two rounds of testing with 95% confidence intervals. Test scores were linked
within-subject through IRT models, pooling across grades and across baseline and endline, and are
normalized to have a mean of zero and a standard deviation of one in the baseline. Whereas baseline test
scores were balanced between lottery-winners and lottery-losers, endline scores are significantly higher for the
treatment group.
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Figure 4: Dose response relationship

Note: This figure explores the relationship between value-added and attendance in the Mindspark program
among the lottery-winners. It presents the mean value-added in bins of attendance along with a quadratic fit
and a lowess smoothed non-parametric plot.
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Figure 5: Non-parametric investigation of treatment effects by baseline percentiles

Note: The figures present local polynomial plots of degree zero (local mean smoothing) which relate endline
test scores to percentiles in the baseline achievement, separately for the treatment and control groups,
alongside 95% confidence intervals. At all percentiles of baseline achievement, treatment group students see
larger gains over the study period than the control group, with no strong evidence of differential absolute
magnitudes of gains across the distribution.
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Figure 6: Precise customization of instruction by the Mindspark CAL program

Note: This figure shows, for treatment group, the grade level of questions administered by the computer
adaptive system to students on a single day near the beginning of the intervention. In each grade of
enrolment, actual level of student attainment estimated by the CAL software differs widely; this wide range
is covered through the customization of instructional content by the CAL software.
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Figure 7: Dynamic updating and individualization of content in Mindspark

Note: This figure shows kernel-weighted local polynomial smoothed lines relating the level of difficulty of the
math questions administered to students in the treatment group with the date of administration. The left
panel presents separate lines by the actual grade of enrolment. The right panel presents separate lines by the
level of achievement assessed at baseline by the CAL software. Please note 95% confidence intervals are
plotted as well but, given the large data at our disposal, estimates are very precise and the confidence
intervals are narrow enough to not be visually discernible.
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Figure 8: Learning trajectories of individual students in the treatment group

Note: Each line in the panels above is a local polynomial smoothed plot the grade level of questions
administered by the computer adaptive system against Mindspark attendance for an individual child. The
panels are organized by the grade of enrolment and the within-grade quartile of attendance in Mindspark.
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Figure 9: Distribution of questions administered by Mindspark CAL system

Note: The two panels above show the distribution, by grade-level, of the questions that were administered
by the Mindspark CAL system over the duration of treatment in both math and Hindi. Note that in math,
students received very few questions at the level of the grade they are enrolled in; this reflects the system’s
diagnosis of their actual learning levels. In Hindi, by contrast, students received a significant portion of
instruction at grade-level competence which is consistent with the initial deficits in achievement in Hindi
being substantially smaller than in math (see Fig. 1).
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Table 1: Sample descriptives and balance on observables

Mean (treatment) Mean (control) Difference SE N (treatment) N (control)

Panel A: All students in the baseline sample
Demographic characteristics
Female 0.76 0.76 0.00 0.03 314 305
Age (years) 12.68 12.48 0.20 0.13 306 296
SES index 0.00 0.05 -0.05 0.14 314 305

Grade in school
Grade 4 0.01 0.01 -0.00 0.01 305 299
Grade 5 0.01 0.02 -0.01 0.01 305 299
Grade 6 0.27 0.30 -0.04 0.04 305 299
Grade 7 0.26 0.26 0.00 0.04 305 299
Grade 8 0.30 0.28 0.02 0.04 305 299
Grade 9 0.15 0.13 0.02 0.03 305 299

Baseline test scores
Math -0.01 0.01 -0.02 0.08 313 304
Hindi 0.05 -0.05 0.10 0.08 312 305

Present at endline 0.838 0.885 0.048* 0.028 314 305

Panel B: Only students present in Endline

Demographic characteristics
Female 0.77 0.76 0.01 0.04 263 270
Age (years) 12.60 12.46 0.13 0.14 257 263
SES index -0.10 0.04 -0.14 0.14 263 270

Grade in school
Grade 4 0.01 0.01 -0.00 0.01 255 266
Grade 5 0.01 0.02 -0.01 0.01 255 266
Grade 6 0.29 0.31 -0.02 0.04 255 266
Grade 7 0.25 0.25 0.00 0.04 255 266
Grade 8 0.30 0.29 0.02 0.04 255 266
Grade 9 0.14 0.12 0.02 0.03 255 266

Baseline test scores
Math -0.03 -0.02 -0.02 0.09 262 269
Hindi 0.06 -0.07 0.13 0.08 263 270

Note: ***p<0.01, **p<0.05, *p<0.1. Treatment and control here refer to groups who were randomly
assigned to receive an offer of Mindspark scholarship till March 2016. Variables used in this table are from
the baseline data collection in September 2015. The data collection consisted of two parts: (a) a
self-administered student survey, from which demographic characteristics, details of schooling and extra
tuition are taken and (b) assessment of skills in math and Hindi, administered using pen-and-paper tests.
Tests were designed to cover wide ranges of ability and to be linked across grades, as well as between
baseline and endline assessments, using common items. Scores are scaled here using Item Response theory
models and standardized to have a mean of zero and standard deviation of one in the baseline. The SES
index refers to a wealth index generated using the first factor from a Principal Components Analysis
consisting of indicators for ownership of various consumer durables and services in the household.
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Table 2: Intent-to-treat (ITT) Effects in a regression framework

(1) (2) (3) (4)

Dep var: Standardized IRT scores (endline)
Math Hindi Math Hindi

Treatment 0.36*** 0.22*** 0.36*** 0.22***
(0.063) (0.076) (0.062) (0.064)

Baseline score 0.54*** 0.67*** 0.55*** 0.69***
(0.047) (0.034) (0.039) (0.039)

Constant 0.36*** 0.15*** 0.36*** 0.15***
(0.031) (0.038) (0.043) (0.045)

Strata fixed effects Y Y N N

Observations 529 533 529 533
R-squared 0.392 0.451 0.392 0.465

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 Treatment is a dummy
variable indicating a randomly-assigned offer of Mindspark scholarship till March 2016. The SES index refers
to a wealth index generated using the first factor from a Principal Components Analysis consisting of
indicators for ownership of various consumer durables and services in the household. Tests in both math and
Hindi were designed to cover wide ranges of ability and to be linked across grades, as well as between
baseline and endline assessments, using common items. Scores are scaled here using Item Response theory
models and standardized to have a mean of zero and standard deviation of one in the baseline.
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Table 3: Dose-response of Mindspark attendance

(1) (2) (3) (4) (5) (6)

Dep var: Standardized IRT scores (endline)
OLS VA (full sample) IV models (full sample) OLS VA (Treatment group)

VARIABLES Math Hindi Math Hindi Math Hindi

Attendance (days) 0.0068*** 0.0037*** 0.0065*** 0.0040*** 0.0075*** 0.0033*
(0.00087) (0.00090) (0.0011) (0.0011) (0.0018) (0.0020)

Baseline score 0.54*** 0.69*** 0.53*** 0.67*** 0.57*** 0.68***
(0.039) (0.039) (0.036) (0.037) (0.062) (0.056)

Constant 0.35*** 0.16*** 0.31*** 0.18
(0.040) (0.042) (0.12) (0.13)

Observations 529 533 529 533 261 263
R-squared 0.413 0.468 0.422 0.460 0.413 0.429

Angrist-Pischke F-statistic for weak instrument 1238 1256
Diff-in-Sargan statistic for exogeneity (p-value) 0.26 0.65
Extrapolated estimates of 90 days’ treatment (SD) 0.612 0.333 0.585 0.36 0.675 0.297

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 Treatment group students
who were randomly-selected for the Mindspark scholarship offer but who did not take up the offer have been
marked as having 0% attendance, as have all students in the control group. Columns (1) and (2) present
OLS value-added models for the full sample, Columns (3) and (4) present IV regressions which instrument
attendance with the randomized allocation of a scholarship and include fixed effects for randomization
strata, and Columns (5) and (6) present OLS value-added models using only data on the lottery-winners.
Scores are scaled here using Item Response theory models and linked across grades and across baseline and
endline assessments using common anchor items. Tests in both math and Hindi are standardized to have a
mean of zero and standard deviation of one in the baseline.
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Table 4: Treatment effect by specific competence assessed

(a) Mathematics

(1) (2) (3) (4) (5) (6) (7)

Dep var: Proportion of questions answered correctly
Arithmetic Word problems - Data Fractions and Geometry and Numbers Pattern
computation computation interpretation decimals Measurement recognition

Treatment 0.078*** 0.071*** 0.044** 0.072*** 0.14*** 0.15*** 0.11***
(0.016) (0.016) (0.020) (0.020) (0.026) (0.023) (0.029)

Baseline math score 0.13*** 0.11*** 0.080*** 0.090*** 0.050*** 0.067*** 0.094***
(0.0070) (0.0095) (0.013) (0.011) (0.014) (0.012) (0.013)

Constant 0.66*** 0.50*** 0.38*** 0.33*** 0.39*** 0.45*** 0.36***
(0.0080) (0.0077) (0.0098) (0.010) (0.013) (0.011) (0.015)

Observations 531 531 531 531 531 531 531
R-squared 0.365 0.227 0.095 0.153 0.092 0.134 0.109

(b) Hindi

(1) (2) (3) (4)

Dep var: Proportion of questions answered correctly
VARIABLES Sentence completion Retrieve explicitly Make straightforward Interpret and integrate

stated information inferences ideas and information

Treatment 0.047* 0.046*** 0.064*** 0.055***
(0.024) (0.016) (0.022) (0.016)

Baseline Hindi score 0.13*** 0.14*** 0.14*** 0.064***
(0.016) (0.0079) (0.011) (0.013)

Constant 0.73*** 0.59*** 0.52*** 0.31***
(0.012) (0.0078) (0.011) (0.0079)

Observations 533 533 533 533
R-squared 0.186 0.382 0.305 0.132

Note: Robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1. The tables above show the
impact of the treatment on specific competences. The dependent variable in each regression is the proportion
of questions related to the competence that a student answered correctly. Baseline scores are IRT scores in
the relevant subject from the baseline assessment. Treatment is a dummy variable indicating a
randomly-assigned offer of Mindspark scholarship till March 2016. All regressions include randomization
strata fixed effects.
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Table 5: Heterogeneity in treatment effect by sex, socio-economic status and initial
achievement

(1) (2) (3) (4) (5) (6)

Dep var: Standardized IRT scores (endline)
VARIABLES Math Hindi Math Hindi Math Hindi

Treatment 0.43*** 0.22** 0.36*** 0.24*** 0.36*** 0.22***
(0.14) (0.10) (0.063) (0.067) (0.064) (0.076)

Female -0.032 0.17
(0.15) (0.16)

SES index 0.0095 0.088***
(0.029) (0.020)

Baseline score 0.54*** 0.67*** 0.54*** 0.64*** 0.51*** 0.67***
(0.047) (0.034) (0.045) (0.032) (0.057) (0.044)

Treatment * Female -0.082 -0.0037
(0.14) (0.13)

Treatment * SES index -0.0011 0.016
(0.044) (0.042)

Treatment * Baseline score 0.058 -0.0025
(0.075) (0.078)

Constant 0.38*** 0.021 0.36*** 0.15*** 0.36*** 0.15***
(0.11) (0.11) (0.031) (0.033) (0.031) (0.037)

Observations 529 533 529 533 529 533
R-squared 0.393 0.453 0.393 0.472 0.393 0.451

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 Treatment is a dummy
variable indicating a randomly-assigned offer of Mindspark scholarship till March 2016. The SES index refers
to a wealth index generated using the first factor from a Principal Components Analysis consisting of
indicators for ownership of various consumer durables and services in the household. Tests in both math and
Hindi were designed to cover wide ranges of ability and to be linked across grades, as well as between
baseline and endline assessments, using common items. Scores are scaled here using Item Response theory
models and standardized to have a mean of zero and standard deviation of one in the baseline. All
regressions include strata fixed effects.
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Table 6: Heterogeneity in treatment effect by within-grade terciles

(1) (2)

Dep var: Standardized IRT scores (endline)
VARIABLES Math Hindi

Bottom Tercile 0.14 -0.11
(0.091) (0.10)

Middle Tercile 0.35*** 0.11
(0.073) (0.078)

Top Tercile 0.57*** 0.46***
(0.086) (0.079)

Treatment 0.36*** 0.34***
(0.11) (0.13)

Treatment*Middle Tercile 0.081 -0.21
(0.15) (0.17)

Treatment*Top Tercile -0.040 -0.16
(0.16) (0.15)

Baseline test score 0.41*** 0.53***
(0.058) (0.061)

Observations 529 533
R-squared 0.555 0.516

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 Treatment is a dummy
variable indicating a randomly-assigned offer of Mindspark scholarship till March 2016. Tests in both math
and Hindi were designed to cover wide ranges of ability and to be linked across grades, as well as between
baseline and endline assessments, using common items. Scores are scaled here using Item Response theory
models and standardized to have a mean of zero and standard deviation of one in the baseline.
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Table 7: Treatment effect on items linked to grade levels

(1) (2) (3) (4)

Dep var: Proportion of questions answered correctly
Math Hindi

VARIABLES At or above Below At or above Below
grade level grade level grade level grade level

Treatment 0.0023 0.082*** 0.069** 0.051***
(0.039) (0.012) (0.024) (0.013)

Baseline math score 0.044 0.095***
(0.025) (0.0056)

Baseline Hindi score 0.11*** 0.13***
(0.016) (0.0065)

Constant 0.31*** 0.49*** 0.44*** 0.58***
(0.018) (0.0058) (0.012) (0.0065)

Observations 286 505 287 507
R-squared 0.025 0.341 0.206 0.379

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
The tables above show the impact of the treatment on questions below or at/above grade levels for
individual students. The dependent variable in each regression is the proportion of questions that a student
answered correctly. The endline assessments had very few items at higher grade levels and hence we are
unable to present estimates of effect on grade-level competences for students in Grades 8 and 9. Baseline
scores are IRT scores in the relevant subject from the baseline assessment. Treatment is a dummy variable
indicating a randomly-assigned offer of Mindspark scholarship till March 2016. All regressions include
randomization strata fixed effects.
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Table 8: Treatment effect on school exams

(1) (2) (3) (4) (5) (6)

Dep var: Standardized test scores
VARIABLES Hindi Math Science Social Sciences English Aggregate

Treatment 0.19** 0.058 0.077 0.10 0.080 0.097
(0.089) (0.076) (0.092) (0.11) (0.10) (0.080)

Baseline Hindi score 0.48*** 0.28*** 0.41*** 0.29*** 0.33***
(0.094) (0.064) (0.098) (0.069) (0.061)

Baseline math score 0.29*** 0.10** 0.25*** 0.11** 0.16***
(0.039) (0.036) (0.052) (0.049) (0.037)

Constant 0.40 0.14 0.88** 0.69 1.11 0.68
(1.01) (0.50) (0.39) (0.69) (0.66) (0.56)

Observations 595 594 593 592 595 595
R-squared 0.188 0.069 0.117 0.173 0.137 0.202

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table shows the effect of
receiving the Mindspark voucher on the final school exams, held in March 2016 after the completion of the
intervention. The school grades are normalized within school*grade to have a mean of zero and a standard
deviation of one in the control group. Treatment is a dummy variable indicating a randomly-assigned offer of
Mindspark scholarship till March 2016. Baseline math and Hindi scores refer to students’ scores on the
independent assessment administered as part of the study in September 2016.
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Table 9: Treatment effect on take-up of other tuition

(1) (2) (3) (4) (5)
VARIABLES Math Hindi English Science Social Science

Post Sept-2015 0.019* 0.018* 0.026*** 0.018** 0.014**
(0.011) (0.0096) (0.0098) (0.0080) (0.0071)

Post * Treatment 0.013 -0.010 -0.0039 0.0017 -0.0056
(0.016) (0.012) (0.013) (0.012) (0.0086)

Constant 0.21*** 0.13*** 0.18*** 0.14*** 0.098***
(0.0053) (0.0040) (0.0044) (0.0041) (0.0029)

Observations 3,735 3,735 3,735 3,735 3,735
R-squared 0.009 0.004 0.010 0.007 0.005
Number of students 415 415 415 415 415

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table shows individual
fixed-effects estimates of receiving the Mindspark voucher on the take-up in other private tuition in various
subjects. The dependent variable is whether a child was attending extra tuition in a given month between
July 2015 and March 2016 in the particular subject. This was collected using telephonic interviews with the
parents of study students. Observations are at the month*child level. Treatment is a dummy variable
indicating a randomly-assigned offer of Mindspark scholarship till March 2016.
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Appendix A Additional figures and tables

Figure A.1: Comparing pre-program achievement of study participants and non-participants

Note: The panels compare the final scores for the 2014-15 school year, i.e. the pre-program academic year,
for study participants and non-participants. The study participants seem to be mildly positively selected
into the RCT in comparison to their peers but this selection is modest and there is near-complete common
support between the two groups in pre-program academic achievement.
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Figure A.2: Distribution of take-up among lottery-winners

Note: This figure shows the distribution of attendance in the Mindspark centers among the lottery-winners.
Over the study period, the Mindspark centers were open for 86 working days.
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Table A.1: Correlates of attendance

(1) (2) (3)
VARIABLES Attendance (days)

Female 3.81 2.51 2.89
(3.90) (3.93) (3.89)

SES index -3.26*** -3.49*** -3.43***
(1.04) (1.07) (1.06)

Attends math tuition -1.95
(4.41)

Attends Hindi tuition 7.27*
(4.38)

Baseline math score -1.07 -0.99
(2.05) (2.11)

Baseline Hindi score 3.66* 4.17**
(2.06) (2.10)

Constant 46.8*** 47.7*** 45.5***
(3.39) (3.42) (3.79)

Observations 313 310 310
R-squared 0.036 0.045 0.057

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table shows correlates
of days attended in the treatment group i.e. lottery-winners who had been offered a Mindspark voucher.
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Table A.2: Quadratic dose-response relationship

(1) (2) (3) (4)
Full sample Treatment group

Math Hindi Math Hindi

Attendance (days) 0.0056 0.0064 0.0079 0.0064
(0.0054) (0.0058) (0.0073) (0.0083)

Attendance squared 0.000016 -0.000037 -5.52e-06 -0.000037
(0.000073) (0.000078) (0.000084) (0.000094)

Baseline math score 0.54*** 0.57***
(0.039) (0.062)

Baseline Hindi score 0.69*** 0.68***
(0.039) (0.057)

Constant 0.35*** 0.15*** 0.30** 0.15
(0.041) (0.043) (0.14) (0.16)

Observations 529 533 261 263
R-squared 0.413 0.468 0.413 0.429

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table models the
dose-response relationship between Mindspark attendance and value-added quadratically. Results are
estimated using OLS in the full sample and the treatment group only.
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Table A.3: Comparing pre-program exam results of study participants and non-participants

Non-study RCT Difference SE N(non-study) N(RCT)
English 45.51 47.06 -1.55** 0.68 4067 409
Hindi 50.67 52.78 -2.12*** 0.78 4067 409
Math 43.80 45.28 -1.48** 0.65 4067 409
Science 45.80 46.66 -0.86 0.71 4067 409
Social Science 47.55 49.83 -2.28*** 0.64 4067 409

Note: This table presents the mean percentage scores of study participants and non-participants in the
2014-15 school year. Study participants are, on average, positively selected compared to their peers.

Table A.4: Dose-response of Mindspark attendance

(1) (2) (3) (4) (5) (6)

Dep var: Standardized IRT scores (endline)
OLS VA (full sample) IV models (full sample) OLS VA (Treatment group)

VARIABLES Math Hindi Math Hindi Math Hindi

Days of Math instruction 0.018*** 0.017*** 0.020***
(0.0023) (0.0028) (0.0047)

Days of Hindi instruction 0.011*** 0.011*** 0.0096*
(0.0026) (0.0032) (0.0055)

Baseline score 0.54*** 0.69*** 0.53*** 0.67*** 0.56*** 0.68***
(0.039) (0.039) (0.036) (0.037) (0.061) (0.056)

Constant 0.35*** 0.16*** 0.30*** 0.18
(0.040) (0.042) (0.12) (0.13)

Observations 529 533 529 533 261 263
R-squared 0.414 0.469 0.423 0.459 0.414 0.430

Angrist-Pischke F-statistic for weak instrument 1243 1100
Diff-in-Sargan statistic for exogeneity (p-value) 0.21 0.87
Extrapolated estimates of 45 days’ treatment (SD) 0.81 0.495 0.765 0.495 0.90 0.432

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 Treatment group students
who were randomly-selected for the Mindspark scholarship offer but who did not take up the offer have been
marked as having 0% attendance, as have all students in the control group. Days attended in Math/Hindi
are defined as the number of sessions of either CAL or smal group instruction attended in that subject,
divided by two. Columns (1) and (2) present OLS value-added models for the full sample, Columns (3) and
(4) present IV regressions which instrument attendance with the randomized allocation of a scholarship and
include fixed effects for randomization strata, and Columns (5) and (6) present OLS value-added models
using only data on the lottery-winners. Scores are scaled here using Item Response theory models and linked
across grades and across baseline and endline assessments using common anchor items. Tests in both math
and Hindi are standardized to have a mean of zero and standard deviation of one in the baseline.

56



Appendix B Prior research on hardware and software

Tables B.1 and B.2 offer an overview of experimental and quasi-experimental impact
evaluations of interventions providing hardware and software to improve children’s learning.
The tables only include studies focusing on students in primary and secondary school (not
pre-school or higher education) and only report effects in math and language (not on other
outcomes assessed in these studies, e.g., familiarity with computers or socio-emotional skills).

B.1 Selecting studies

This does not intend to be a comprehensive review of the literature. Specifically, we have
excluded several impact evaluations of programs (mostly, within education) due to major
design flaws (e.g., extremely small sample sizes, having no control group, or dropping attritors
from the analysis). These flaws are widely documented in meta-analyses of this literature (see,
for example, Murphy et al. 2001; Pearson et al. 2005; Waxman et al. 2003).

We implemented additional exclusions for each table. In Table B.1, we excluded DIDs in
which identification is questionable and studies evaluating the impact of subsidies for Internet
(for example, Goolsbee and Guryan 2006). In Table B.2, we excluded impact evaluations of
software products for subjects other than math and language or designed to address specific
learning disabilities (e.g., dyslexia, speech impairment).

B.2 Reporting effects

To report effect sizes, we followed the following procedure: (a) we reported the difference
between treatment and control groups adjusted for baseline performance whenever this was
available; (b) if this difference was not available, we reported the simple difference between
treatment and control groups (without any covariates other than randomization blocks if
applicable); and (c) if neither difference was available, we reported the difference between
treatment and control groups adjusted for baseline performance and/or any other covariates
that the authors included.

In all RCTs, we reported the intent-to-treat (ITT) effect; in all RDDs and IVs, we reported
the local average treatment effect (LATE). In all cases, we only reported the magnitude of
effect sizes that were statistically significant at the 5% level.43 Otherwise, we mentioned that
a program had “no effect” on the respective subject.44

43These decisions are non-trivial, as the specifications preferred by the authors of some studies are only
significant at the 1% level or only become significant at the 5% level after the inclusion of multiple covariates.

44Again, this decision is non-trivial because some of these studies were under-powered to detect small to
moderate effects.
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B.3 Categories in each table

In both tables, we documented the study, the impact evaluation method employed by the
authors, the sample, the program, the subject for which the software/hardware was designed to
target, and its intensity. Additionally, in Table B.1, we documented: (a) whether the hardware
provided included pre-installed software; (b) whether the hardware required any participation
from the instructor; and (c) whether the hardware was accompanied by training for teachers.
In Table B.2, we documented: (a) whether the software was linked to an official curriculum
(and if so, how); (b) whether the software was adaptive (i.e., whether it could dynamically
adjust the difficulty of questions and/or activities based on students’ performance); and (c)
whether the software provided differentiated feedback (i.e., whether students saw different
messages depending on the incorrect answer that they selected).
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Table B.1: Impact evaluations of hardware

Study Method Sample Program Subject Intensity Software
included?

Instructor’s
role?

Teacher
training?

Effect Cost

Angrist
and Lavy
(2002)

IV Grades 4 and
8, 122 Jewish
schools in
Israel

Tomorrow-98 Math
and
language
(He-
brew)

Target
student-
computer ratio
of 1:10 in each
school

Yes, included
educational
software from
a private
company

Not specified Yes, training
for teachers to
integrate
computers into
teaching

Grade 4: -0.4
to -0.3σ in
math and no
effect in
language

USD 3,000 per
machine,
including
hardware,
software, and
setup; at 40
computers per
school, USD
120,000 per
school

Barrera-
Osorio and
Linden
(2009)

RCT Grades 3-9, 97
public schools
in six school
districts,
Colombia

Computers for
Education

Math
and
language
(Span-
ish)

15 computers
per school

Not specified Use the
computers to
support
children on
basic skills
(esp. Spanish)

Yes, 20-month
training for
teachers,
provided by a
local university

No effect in
language or
math

Not specified

Malamud
and Pop-
Eleches
(2011)

RDD Grades 1-12, in
six regions,
Romania

Euro 200
Program

Math
and
language
(English
and Ro-
manian)

One voucher
(worth USD
300) towards
the purchase of
a computer for
use at home

Pre-installed
software, but
educational
software
provided
separately and
not always
installed

Not specified Yes, 530
multimedia
lessons on the
use of
computers for
educational
purposes for
students

-0.44σ in math
GPA, -0.56σ in
Romanian
GPA, and
-0.63σ in
English

Not specified
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Cristia
et al.
(2012)

RCT 319 schools in
eight rural
areas, Peru

One Laptop
per Child

Math
and
language
(Span-
ish)

One laptop per
student and
teacher for use
at school and
home

Yes, 39
applications
including:
standard
applications,
educational
games, music
editing,
programming
environments,
sound and
video
recording,
encyclopedia;
also 200 age-
appropriate
e-books

Not specified Yes, 40-hour
training aimed
at facilitating
the use of
laptops for
pedagogical
purposes

No effect in
math or
language

USD 200 per
laptop

Mo et al.
(2013)

RCT Grade 3, 13
migrant
schools in
Beijing, China

One Laptop
per Child

Math
and
language
(Chi-
nese)

One laptop per
student for use
at home

Yes, three sets
of softare: a
commercial,
game-based
math learning
program; a
similar
program for
Chinese; a
third program
developed by
the research
team

Not specified No, but one
training
session with
children and
their parents

No effect in
math or
language

Not specified

Beuermann
et al.
(2015)

RCT Grade 2, 28
public schools
in Lima, Peru

One Laptop
per Child

Math
and
language
(Span-
ish)

Four laptops
(one per
student) in
each
class/section
for use at
school

Yes, 32
applications
including:
standard
applications,
educational
games, music
editing,
programming
environments,
sound and
video
recording,
encyclopedia

Not specified No, but weekly
training
sessions during
seven weeks for
students

No effect in
math or
language

USD 188 per
laptop
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Leuven
et al.
(2007)

RDD Grade 8, 150
schools in the
Netherlands

Not specified Math
and
language
(Dutch)

Not specified Not specified Not specified Not specified -0.08 SDs in
language and
no effect in
math

This study
estimates the
effect of USD
90 per pupil
for hardware
and software

Machin
et al.
(2007)

IV Grade 6, 627
(1999-2001)
and 810
(2001-2002)
primary and
616
(1999-2000)
and 714
(2001-2002)
secondary
schools in
England

Not specified Math
and
language
(En-
glish)

Target
student-
computer ratio
of 1:8 in each
primary school
and 1:5 in each
secondary
school

Some schools
spent funds for
ICT for
software

Not specified Yes, in-service
training for
teachers and
school
librarians

2.2 pp.
increase in the
percentage of
children
reaching
minimally
acceptable
standards in
end-of-year
exams

This study
estimates the
effect of
doubling
funding for
ICT (hardware
and software)
for a Local
Education
Authority

Fairlie and
Robinson
(2013)

RCT Grades 6-10,
15 middle and
high public
schools in five
school districts
in California,
United States

Not specified Math
and
language
(En-
glish)

One computer
per child for
use at home

Yes, Microsoft
Windows and
Office

No No No effect in
language or
math

Not specified
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Table B.2: Impact evaluations of software

Study Method Sample Program Subject Intensity Linked to
curriculum?

Dynamically
adaptive?

Differentiated
feedback?

Effect Cost

Banerjee
et al.
(2007)

RCT Grade 4, 100
municipal
schools in
Gujarat, India

Year 1:
off-the-shelf
program
developed by
Pratham; Year
2: program
developed by
Media-Pro

Math 120 min./week
during or
before/after
school; 2
children per
computer

Gujarati
curriculum,
focus on basic
skills

Yes, question
difficulty
responds to
ability

Not specified Year 1: 0.35σ
on math and
no effect in
language; Year
2: 0.48σ on
math and no
effect in
language

INR 722 (USD
15.18) per
student per
year

Linden
(2008)

RCT Grades 2-3, 60
Gyan Shala
schools in
Gujarat, India

Gyan Shala
Computer
Assisted
Learning
(CAL)
program

Math Version 1: 60
min./day
during school;
Version 2: 60
min./day after
school; Both: 2
children per
computer
(split screen)

Gujarati
curriculum,
reinforces
material
taught that
day

Not specified Not specified Version 1: no
effect in math
or language;
Version 2: no
effect in math
or language

USD 5 per
student per
year

Carrillo
et al.
(2010)

RCT Grades 3-5, 16
public schools
in Guayaquil,
Ecuador

Personalized
Complemen-
tary and
Interconnected
Learning
(APCI)
program

Math
and
language
(Span-
ish)

180 min./week
during school

Personalized
curriculum
based on
screening test

No, but
questions
depend on
screening test

Not specified No effect in
math or
language

Not specified

Lai et al.
(2012)

RCT Grade 3, 57
public rural
schools,
Qinghai, China

Not specified Lan-
guage
(Man-
darin)

Two 40-min.
mandatory
sessions/week
during lunch
breaks or after
school; teams
of 2 children

National
curriculum,
reinforces
material
taught that
week

No, same
questions for
all students

No, if students
had a question,
they could
discuss it with
their
teammate, but
not the teacher

No effect in
language and
0.23σ in math

Not specified
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Lai et al.
(2013)

RCT Grades 3 and
5, 72 rural
boarding
schools,
Shaanxi, China

Not specified Math Two 40-min.
mandatory
sessions/week
after school;
teams of 2
children

National
curriculum,
reinforces
material
taught that
week

No, same
questions for
all students

No, if students
had a question,
they could
discuss it with
their
teammate, but
not the teacher

0.12σ in
language,
across both
grades

Not specified

Mo et al.
(2014)

RCT Grades 3 and
5, 72 rural
schools,
Shaanxi, China

Not specified Math Two 40-min.
mandatory
sessions/week
during
computer
lessons; teams
of 2 children

National
curriculum,
reinforces
material
taught that
week

No, same
questions for
all students

No, if students
had a question,
they could
discuss it with
their
teammate, but
not the teacher

0.18σ in math USD 9439 in
total for 1 year

Mo et al.
(2014)

RCT Grades 3 and
5, 72 rural
schools,
Shaanxi, China

Not specified Math Two 40-min.
mandatory
sessions/week
during
computer
lessons; teams
of 2 children

National
curriculum,
reinforces
material
taught that
week

No, same
questions for
all students

No, if students
had a question,
they could
discuss it with
their
teammate, but
not the teacher

Phase 1: no
effect in math;
Phase 2: 0.3σ
in math

USD 9439 in
total for 1 year

Lai et al.
(2015)

RCT Grade 3, 43
migrant
schools,
Beijing, China

Not specified Math Two 40-min.
mandatory
sessions/week
during lunch
breaks or after
school

National
curriculum,
reinforces
material
taught that
week

No, same
questions for
all students

No, if students
had a question,
they could
discuss it with
their
teammate, but
not the teacher

0.15σ in math
and no effect
in language

USD 7.9-8.8
per child for 6
months

Mo et al.
(2016)

RCT Grade 5, 120
schools,
Qinghai, China

Not specified Lan-
guage
(En-
glish)

Version 1: Two
40-min.
mandatory
sessions/week
during regular
computer
lessons;
Version 2:
English lessons
(also optional
during lunch or
other breaks);
Both: teams of
2 children

National
curriculum,
reinforces
material
taught that
week

Version 1: No
feedback
during regular
computer
lessons;
Version 2:
feedback from
teachers during
English lessons

Version 1: if
students had a
question, they
could discuss it
with their
teammate, but
not the
teacher;
Version 2:
feedback from
English teacher

Version 1:
0.16σ in
language;
Version 2: no
effect in
language

Version 1:
RMB 32.09
(USD 5.09) per
year; Version
2: RMB 24.42
(USD 3.87) per
year
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Wise and
Olson
(1995)

RCT Grades 2-5, 4
public schools
in Boulder,
Colorado,
United States

Reading with
Orthographic
and Segmented
Speech (ROSS)
programs

Lan-
guage
and
reading
(En-
glish)

Both versions:
420 total min.,
in 30- and
15-min.
sessions; teams
of 3 children

Not specified No, but harder
problems
introduced
only once
easier problems
solved
correctly; also
in Version 2,
teachers
explained
questions
answered
incorrectly

No, but
students can
request help
when they do
not understand
a word

Positive effect
on the
Lindamond
Test of
Auditory Con-
ceptualization
(LAC),
Phoneme
Deletion test
and Nonword
Reading (ESs
not reported);
no effect on
other language
and reading
domains

Not specified

Morgan
and Ritter
(2002)

RCT Grade 9, 4
public schools
in Moore
Independent
School
District,
Oklahoma,
United States

Cognitive
Tutor -
Algebra I

Math Not specified Not specified Not specified Not specified Positive effect
(ES not
reported) in
math

Not specified

Rouse and
Krueger
(2004)

RCT Grades 4-6, 4
public schools
in urban
district in
northeast
United States

Fast For Word
(FFW)
programs

Lan-
guage
and
reading
(En-
glish)

90-100
min./day
during lessons
("pull-out") or
before/after
school, 5 days
a week, for 6-8
weeks

Not specified No, but harder
problems
introduced
only once
easier problems
solved
correctly

Not specified No effect on
Reading Edge
test, Clinical
Evaluation of
Language
Fundamentals
3rd Edition
(CELF-3-RP),
Success For All
(SFA) test, or
State Reading
Test

USD 30,000 for
a 1-year license
for 30
computers,
plus USD 100
per site for
professional
training
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Dynarski
et al.
(2007)

RCT Grades 4-6, 4
public schools
in urban
district in
northeast
United States

Fast For Word
(FFW)
programs

Lan-
guage
and
reading
(En-
glish)

90-100
min./day
during lessons
("pull-out") or
before/after
school, 5 days
a week, for 6-8
weeks

Not specified No, but harder
problems
introduced
only once
easier problems
solved
correctly

Not specified No effect on
Reading Edge
test, Clinical
Evaluation of
Language
Fundamentals
3rd Edition
(CELF-3-RP),
Success For All
(SFA) test, or
State Reading
Test

USD 30,000 for
a 1-year license
for 30
computers,
plus USD 100
per site for
professional
training

Grade 4, 43
public schools
in 11 school
districts,
United States

Leapfrog, Read
180, Academy
of Reading,
Knowledgebox

Reading
(En-
glish)

Varies by
product, but
70% used them
during class
time; 25% used
them before
school, during
lunch breaks,
or time
allotted to
other subjects;
and 6% of
teachers used
them during
both

Not specified Not specified,
but all four
products
automatically
created
individual
"learning
paths" for each
student

Not specified,
but all four
products
provided
immediate
feedback to
students; one
provided
feedback of
mastery; two
provided
feedback on
diagnostics

No effect in
reading

USD 18 to
USD 184 per
student year
year
(depending on
the product)

Grade 6, 28
public schools
in 10 school
districts,
United States

Larson
Pre-Algebra,
Achieve Now,
iLearn Math

Math Varies by
product, but
76% used them
during class
time; 11% used
them before
school, during
lunch breaks,
or time
allotted to
other subjects;
and 13% of
teachers used
them during
both

Not specified Not specified,
but all three
products
automatically
created
individual
"learning
paths" for each
student

Not specified,
but all three
products
provided
immediate
feedback to
students; one
provided
feedback of
mastery; two
provided
feedback on
diagnostics

No effect in
math

USD 9 to USD
30 per student
year year
(depending on
the product)
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Algebra I, 23
public schools
in 10 school
districts,
United States

Cognitive
Tutor -
Algebra I,
PLATO
Algebra,
Larson Algebra

Math Varies by
product, but
94% used them
during class
time; and 6%
of teachers
used them
during both

Not specified Not specified,
but two
products
automatically
created
individual
"learning
paths" for each
student

Not specified,
but all three
products
provided
immediate
feedback to
students; two
provided
feedback of
mastery; two
provided
feedback on
diagnostics

No effect in
math

USD 7 to USD
30 per student
year year
(depending on
the product)

Barrow
et al.
(2009)

RCT Grades 8, 10 I Can Learn Math Not specified National
Council of
Teachers of
Mathematics
(NCTM)
standards and
district course
objectives

No, but
students who
do not pass
comprehensive
tests repeat
lessons until
they pass them

Not specified 0.17σ in math 30-seat lab
costs USD
100,000, with
an additional
USD 150,000
for pre-algebra,
algebra, and
classroom
management
software

Borman
et al.
(2009)

RCT Grades 2 and
7, 8 public
schools in
Baltimore,
Maryland,
United States

Fast For Word
(FFW)
Language

Lan-
guage
and
reading
(En-
glish)

100 min./day,
five days a
week, for four
to eight weeks,
during lessons
("pull-out")

Not specified No, all children
start at the
same basic
level and
advance only
after attaining
a
pre-determined
level of
proficiency

Not specified Grade 2: no
effect in
language or
reading; Grade
7: no effect in
language or
reading

Not specified

Cam-
puzano
et al.
(2009)

RCT Grade 1, 12
public schools
in 2 school
districts,
United States

Destination
Reading -
Course 1

Reading
(En-
glish)

20 min./day,
twice a week,
during school

Not specified Not specified Not specified No effect in
reading

USD 78 per
student per
year

Grade 1, 12
public schools
in 3 school
districts,
United States

Headsprout Reading
(En-
glish)

30 min./day,
three times a
week, during
school

Not specified Not specified Not specified 0.01 SDs in
reading
(p>0.05)

USD 146 per
student per
year
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Grade 1, 8
public schools
in 3 school
districts,
United States

PLATO Focus Reading
(En-
glish)

15-30 min./day
(frequency per
week not
specified)

Not specified No, but
teachers can
choose the
order and
difficulty level
for activities

Not specified No effect in
reading

USD 351 per
student per
year

Grade 1, 13
public schools
in 3 school
districts,
United States

Waterford
Early Reading
Program -
Levels 1-3

Reading
(En-
glish)

17-30
min./day,
three times a
week, during
school

Not specified Not specified Not specified No effect in
reading

USD 223 per
student per
year

Grade 4, 15
public schools
in 4 school
districts,
United States

Academy of
Reading

Reading
(En-
glish)

25 min./day,
three or more
days a week,
during school

Not specified Not specified Not specified No effect in
reading

USD 217 per
student per
year

Grade 4, 19
public schools
in 4 school
districts,
United States

LeapTrack Reading
(En-
glish)

15 min./day,
three to five
days a week,
during school

Not specified No, but
diagnostic
assessments
determine
"learning
path" for each
student

Not specified 0.09σ in
reading

USD 154 per
student per
year

Grade 6, 13
public schools
in 3 school
districts,
United States

PLATO
Achieve Now -
Mathematics
Series 3

Math 30 min./day,
four days a
week, for at
least 10 weeks,
during school

Not specified No, but
diagnostic
assessment
determines
which
activities
students
should attempt

Not specified No effect in
math

USD 36 per
student per
year

Grade 6, 13
public schools
in 5 school
districts,
United States

Larson
Pre-Algebra

Math Varies
according to
the number of
topics/weeks in
the course, but
recommended
at least one a
week

Not specified Not specified Not specified No effect in
math

USD 15 per
student per
year
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Algebra I, 11
public schools
in 4 school
districts,
United States

Cognitive
Tutor -
Algebra I

Math Two days a
week (plus
textbook three
days a week)

Not specified Not specified Not specified No effect in
math

USD 69 per
student per
year

Algebra I, 12
public schools
in 5 school
districts,
United States

Larson Algebra
I

Math Varies
according to
the number of
topics/weeks in
the course, but
recommended
at least one a
week

Not specified Not specified Not specified No effect in
math

USD 13 per
student per
year

Rockoff
(2015)

RCT Grades 6-8, 8
public middle
schools in New
York, NY,
United States

School of One
(So1)

Math Not specified No, activities
sourced from
publishers,
software
providers, and
other
educational
groups

Yes, "learning
algorithm"
draws on
students’
performance
on each lesson
and
recommends a
"playlist" for
each student;
at the end of
the day,
students take a
"playlist
update"

No, but
possibility to
get feedback
from live
reinforcement
of prior
lessons, live
tutoring, small
group
collaboration,
virtual live
instruction,
and virtual live
tutoring

No effect on
New York
State Math
Test or
Northwest
Evaluation
Association
(NWEA) test

Not specified
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Appendix C Mindspark software

This appendix offers a description of how the Mindspark computer-assisted learning (CAL)
software operates. This description applies only to the version of the software used at the
stand-alone centers that we evaluated.

C.1 Computer training

The first time that students log into the Mindspark software, they are shown a screen that
gives them the option of doing exercises on math or language. However, students can choose
to skip them and proceed directly to the content sessions. The exercises take 10-15 minutes.

C.2 Diagnostic test

Once students complete the computer training, upon their first session, they are presented
with a diagnostic test in the subject they selected. This test contains four to five questions per
grade level on that subject. There are separate diagnostic tests for math and Hindi and the
content of the test varies depending on the grade level of the student. All students are shown
questions from grade 1 up to their grade level. However, if students answer at least 75% of
the questions for their corresponding grade level correctly, they can be shown questions up
to two grade levels above their own.45 If they answer less or exactly 25% of the questions for
one grade level above their actual grade, the diagnostic test shows no more questions.46 An
algorithm decides how a student’s performance on the diagnostic test determines the grade
level of the first set of questions he/she sees. Once a student begins interacting with the
Mindspark software, the diagnostic test plays no further role.

C.3 Math and Hindi content

Mindspark contains a number of activities that are assigned to specific grade levels, based on
analyses of state-level curricula. All of the items are developed by EI’s education specialists.
The Mindspark centers focus on a specific subject per day: there are two days assigned to
math, two days assigned to Hindi, one day assigned to English, and a “free” day, in which
students can choose a subject.

45For example, a grade 4 student will always see questions from grade 1 up to grade 4. However, if he/she
answers grade 4 questions correctly, he/she will be shown grade 5 questions; and if he/she answers grade 5
questions correctly, he/she will be shown grade 6 questions.

46For example, a grade 4 student who answers less than 25% of the grade 5 questions correctly will not be
shown grade six questions.
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Math and Hindi items are organized differently. In math, “topics” (e.g., whole number
operations) are divided into “teacher topics” (e.g., addition), which are divided into “clusters”
(e.g., addition in a number line), which are divided into “student difficulty levels” (SDLs)
(e.g., moving from one place to another on the number line), which are in turn divided into
questions (e.g., the same exercise with slightly different numbers). The Mindspark software
currently has 21 topics, 105 teacher topics, 550 clusters, 11,000 SDLs, and 35,000 questions.
Each teacher topic has an average of five questions, each cluster also has an average of five
questions, and each SDL has an average of 20 questions. The math content is organized in
this way because math learning is mostly linear (e.g., you cannot learn multiplication without
understanding addition). This is also why students must pass an SDL to move on to the next
one, and SDLs always increase in difficulty.

In Hindi, there are two types of questions: “passages” (i.e., reading comprehension questions)
and “non-passages” (i.e., questions not linked to any reading). Passage questions are grouped
by grades (1 through 8), which are in turn divided into levels (low, medium, or high).
Non-passage questions are grouped into “skills” (e.g., grammar), which are divided into
“sub-skills” (e.g., nouns), which are in turn divided into questions (e.g., the same exercise
with slightly different words). The Mindspark software currently has around 330 passages
(i.e., 20 to 50 per grade) linked to nearly 6,000 questions, and for non-passage questions, 13
skills and 50 sub-skills, linked to roughly 8,200 questions. The Hindi content is organized in
this way because language learning is not linear (e.g., you may still understand a text even if
you do not understand grammar or all the vocabulary words in it). This is also why there are
no SDLs in Hindi, and students need not pass a low-difficulty passage question before they
move on to a medium-difficulty question.

C.4 Adaptability

In math, the questions within a teacher topic progressively increase in difficulty, based on
EI’s data analytics and education specialists. When a child does not pass a learning unit, the
learning gap is identified and appropriate remedial action is taken. It could be leading the
child through a remedial activity which would be a step-by-step explanation of a concept or
a review of the fundamentals of that concept, or simply more questions about the concept.

Figure C.1 provides an illustration of how adaptability works. For example, a child could be
assigned to the “decimal comparison test”, an exercise in which he/she needs to compare two
decimal numbers and indicate which one is greater. If he/she gets most questions in that
test correctly, he/she is assigned to the “hidden numbers game”, a slightly harder exercise
in which he/she also needs to compare two decimal numbers, but needs to do so with as
little information as possible (i.e., so that children understand that the digit to the left of the
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decimal is the most important and those to the right of the decimal are in decreasing order
of importance). However, if he/she gets most of the questions in the decimal comparison
test incorrectly, he/she is assigned to a number of remedial activities seeking to reinforce
fundamental concepts about decimals.

[Insert Figure C.1 here.]

Figure C.2 shows three examples of student errors in the hidden numbers game. These frequent
errors were identified by the Mindspark software, and subsequently EI staff interviewed some
students who made these errors to understand their underlying misconceptions. Five percent
of students exhibited what EI calls “whole number thinking”: they believed 3.27 was greater
than 3.3 because, given that the integer in both cases was the same (i.e., 3), they compared
the numbers to the left of the decimal separator (i.e., 3 and 27) and concluded that if 27 is
greater than 3, 3.27 must be greater than 3.3. Four percent of students displayed “reverse order
thinking”: they believed that 3.18 was greater than 3.27 because they thought that the place
value of the digits increases to the right of the decimal separator, mirroring the place value
of the digits to the left of the decimal separator (e.g., hundreds, tens, ones. tens, hundreds,
thousands). Therefore, they compared 81 to 27 and concluded that 3.18 must be greater
than 3.27. Finally, three percent of students revealed engaging in “reciprocal thinking”: they
believed that 3.27 was greater than 3.39 because they mistook the numbers to the right of the
decimal separator for their reciprocals, so they concluded that 3 1

27
was greater than 3 1

39
. As

Figure C.1 shows, the student is assigned to different activities depending on the mistake(s)
he/she has made.

[Insert Figure C.2 here.]

In Hindi, in the first part, students start with passages of low difficulty and move progressively
towards higher-difficulty passages. If a child performs poorly on a passage, he/she is a assigned
to a lower-difficulty passage. In the second part, students start with questions of low difficulty
in each skill and move progressively towards higher-difficulty questions. (Thus, a student
might be seeing low-difficulty questions on a given skill and medium-difficulty questions on
another).

All decisions of the software are “hard coded” based on analyses of patterns of student errors;
there is no machine-learning type algorithms.

C.5 Feedback

There is almost no direct instruction (i.e., no instructional videos). All learning happens
through feedback to students on incorrect questions. Also, before each question, there is
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usually an example. Additionally, some “interactives” show step-by-step what students should
do.

In math, feedback consists of feedback to wrong answers, through animations or text with
voice-over. In Hindi, students receive explanations of difficult words and are shown how to
use them in a sentence. The degree of personalization of feedback differs by question: (a) in
some questions, there is no feedback to incorrect answers; (b) in others, all students get the
same feedback to an incorrect answer; and (c) yet in others, students get different types of
feedback depending on the wrong answer they selected.

In addition to its adaptive nature, the Mindspark software allows the center staff to given
an “injection” of items on a given topic if they believe a student needs to review that topic.
However, once the student completes this injection, the software reverts to the item being
completed when the injection was given and relies on its adaptive nature.

The software first identifies the most common errors made by students in each topic. Then,
EI’s education specialists use evidence from: (a) these figures; (b) interview students to
enquire about the factors driving errors and misconceptions; (c) read internationally published
research.
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Figure C.1: Mindspark adaptability in math

Figure C.2: Student errors in math
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Appendix D Test design

D.1 Overview

Student achievement, the core outcome for this evaluation, was measured using independent
assessments in math and Hindi. These were administered under the supervision of the research
team at both baseline and endline. Here we present details about the test content and
development, scoring and administration.

D.2 Objectives of test design

Our primary objective was to develop a test which would be informative over a wide range of
ability. Recognizing that students may be much below grade-appropriate levels of achievement,
test booklets included items ranging from very basic primary school appropriate competences
to harder items which are closer to grade-appropriate standards.

Our secondary objective was to ensure that we were measuring a broad construct of
achievement which included both curricular skills and the ability to apply them in simple
problems.

Our third, and related, objective was to ensure that the test would be a fair benchmark to
judge the actual skill acquisition of students. Reflecting this need, tests were administered
using pen-and-paper rather than on computers so that they do not conflate increments in
actual achievement with greater familiarity with computers in the treatment group. Further,
the items were taken from a wide range of independent assessments detailed below, and
selected by the research team without consultation with Education Initiatives, to ensure that
the selection of items was not prone to “teaching to the test” in the intervention.

D.3 Test content

Our focus was to test a wide range of abilities. The math tests range from simple arithmetic
computation to more complex interpretation of data from charts and framed examples as in
the PISA assessments. The Hindi assessments included some “easy” items such as matching
pictures to words or Cloze items requiring students to complete a sentence by supplying
the missing word. Most of the focus of the assessment was on reading comprehension,
which was assessed by reading passages of varying difficulty and answering questions that
may ask students to either retrieve explicitly stated information or to draw more complex
inferences based on what they had read. In keeping with our focus on measuring functional
abilities, many of the passages were framed as real-life tasks (e.g. a newspaper article, a
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health immunization poster, or a school notice) to measure the ability of students to complete
standard tasks.

In both subjects, we assembled the tests using publicly available items from a wide range of
research assessments.

In math, the tests drew upon items from the Trends in Mathematics and Science Study
(TIMSS) 4th and 8th grade assessments, OECD’s Programme for International Student
Assessment (PISA), the Young Lives student assessments administered in four countries
including India, the Andhra Pradesh Randomized Studies in Education (APRESt), the
India-based Student Learning Survey (SLS) and Quality Education Study (QES); these
collectively represent some of the most validated tests in the international and the Indian
context.

In Hindi, the tests used items administered by Progress in International Reading Literacy
Study (PIRLS) and from Young Lives, SLS and PISA. These items, available in the public
domain only in English were translated and adapted into Hindi.

D.4 Test booklets

We developed multiple booklets in both baseline and endline for both subjects. In the baseline
assessment, separate booklets were developed for students in grades 4-5, grades 6-7 and grades
8-9. In the endline assessment, given the low number of grades 4-5 students in our study
sample, a single booklet was administered to students in grades 4-7 and a separate booklet
for students in grades 8-9. Importantly, there was substantial overlap that was maintained
between the booklets for different grades and between the baseline and endline assessments.
This overlap was maintained across items of all difficulty levels to allow for robust linking.
Table D.1 presents a break-up of questions by grade level of difficulty in each of the booklets
at baseline and endline.

[Insert Table D.1 here.]

The assembled booklets were piloted prior to baseline and items were selected based on their
ability to discriminate achievement among students in this context. Further, a detailed Item
analysis of all items administered in the baseline was carried out prior to the finalization of the
endline test to ensure that the subset of items selected for repetition in the endline performed
well in terms of discrimination and were distributed across the ability range in our sample.

Table D.2 presents the number of common items which were retained across test booklets
administered.

[Insert Table D.2 here.]
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D.5 Test scoring

All items administered were multiple-choice questions, responses to which were marked as
correct or incorrect dichotomously. The tests were scored using Item Response Theory (IRT)
models.

IRT models specify a relationship between a single underlying latent achievement variable
(“ability”) and the probability of answering a particular test question (“item”) correctly. While
standard in the international assessments literature for generating comparative test scores, the
use of IRT models is much less prevalent in the economics of education literature in developing
countries (for notable exceptions, see Das and Zajonc 2010, Andrabi et al 2011, Singh 2015).
For a detailed introduction to IRT models, please see Van der Linden and Hambleton (1997)
and Das and Zajonc (2010).

The use of IRT models offers important advantages in an application such as ours, especially
in comparison to the usual practice of presenting percentage correct scores or normalized raw
scores. First, it allows for items to contribute differentially to the underlying ability measure;
this is particularly important in tests such as ours where the hardest items are significantly
more complex than the easiest items on the test.

Second, it allows us to robustly link all test scores on a common metric, even with only
a partially-overlapping set of test questions, using a set of common items between any two
assessments as “anchor” items. This is particularly advantageous when setting tests in samples
with possibly large differences in mean achievement (but which have substantial common
support in achievement) since it allows for customizing tests to the difficulty level of the
particular sample but to still express each individual’s test score on a single continuous metric.
It is also advantageous since it then allows us to pool all test observations together in the
analysis which is useful for reasons of statistical power and presentationally.

Third, IRT models also offer a framework to assess the performance of each test item
individually which is advantageous for designing tests that include an appropriate mix of
items of varying difficulty but high discrimination.

In our application, reflecting the nature of the test questions, all of which were multiple-choice
questions, responses to which were scored dichotomously as correct or incorrect, we used
the 3-parameter logistic model to score tests. These models posit the relationship between
underlying achievement and the probability of correctly answering a given question as a
function of three item characteristics: the difficulty of the item, the discrimination of the
item, and the pseudo-guessing parameter which accounts for the fact that in a multiple-choice
test, even an individual with no knowledge may have a non-zero probability of answering a
question correctly.
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Pg(θi) = cg +
1− cg

1 + exp(−1.7.ag.(θi − bg))
(5)

where i indexes students and g indexes test questions. θi is the student’s latent achievement
(ability), P is the probability of answering question g correctly, bg is the difficulty parameter
and ag is the discrimination parameter (slope of the ICC at b). cg is the pseudo-guessing
parameter which takes into account that, with multiple choice questions, even the lowest
ability can answer some questions correctly.

Given this parametric relationship between (latent) ability and items characteristics, this
relationship can be formulated as a joint maximum likelihood problem which uses the matrix of
NxM student responses to estimate N+3M unknown parameters. Test scores were generated
using the OpenIRT software for Stata written by Tristan Zajonc. We use maximum likelihood
estimates of student achievement in the analysis which are unbiased individual measures of
ability (results are similar when using Bayesian expected a posteriori scores instead).

D.6 Empirical distribution of test scores

Since a core objective of our test design and implementation protocols was to ensure that
our achievement measures successfully captured the full range of student achievement in our
samples, it is useful to see that raw percentage correct scores do not suffer from ceiling or
floor effects. Figure A.1 presents the percentage correct responses in both math and Hindi for
baseline and endline. As may be seen, the tests offer a well-distributed measure of achievement
with few students unable to answer any question or to answer all questions correctly.

[Insert Figure D.1 here.]

Figure A.2 presents similar graphs for the distribution of IRT test scores. Please note that
raw percentage correct test scores are not comparable over rounds or across booklets because
of the different composition of test questions. IRT scores used in the analysis, distributions
for which are presented in Fig A2 are comparable across rounds.

[Insert Figure D.2 here.]

D.7 Item fit

IRT models posit a parametric relationship between the underlying ability and item
characteristics. An intuitive check for the performance of the IRT model is to assess the
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empirical fit of the data to the estimated item characteristics. Importantly, IRT models assume
that item characteristics are invariant across individuals (in the psychometrics literature,
referred to as no differential item functioning).

In Figure A.3 we plot the estimated Item Characteristic Curve (ICC) for each individual item
in math and Hindi endline assessments along with the empirical fit for treatment and control
groups separately. As can be seen, the fit of the items is generally quite good and there are no
indications of differential item functioning (DIF) between the treatment and control groups.

The absence of DIF is also reassuring since it also provides suggestive evidence against
“teaching to the test” in the program. Specifically, if the implementers are able to teach
to the test better for some items than others (as is reasonable, given that some of the items
come from tests which EI is familiar with and others from international assessments), we
should have seen some evidence of DIF in these items.

[Insert Figure D.3 here.]
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Figure D.1: Distribution of raw percentage correct scores

Figure D.2: Distribution of IRT scores, by round and treatment status
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Figure D.3: Item Characteristic Curves: Hindi
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Figure D.4: Item Characteristic Curves: Math
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Table D.1: Distribution of questions by grade-level difficulty across test booklets

Booklets

Baseline Endline

Math

G4-5 G6-7 G8-9 G4-7 G8-9

Number of questions G2 2 0 0 2 0

at each grade level G3 14 6 4 6 6

G4 13 7 4 9 8

G5 4 10 3 10 10

G6 1 10 10 5 6

G7 1 2 11 2 3

G8 0 0 3 0 2

Hindi

G4-5 G6-7 G8-9 G4-7 G8-9

Number of questions G2 5 2 1 1 0

at each grade level G3 3 4 2 1 1

G4 7 3 3 8 8

G5 8 7 2 5 6

G6 0 2 3 11 11

G7 0 5 9 0 4

G8 7 7 7 4 0

G9 0 0 3 0 0

Note: Each cell presents the number of questions by grade-level of content across test booklets. The tests
were designed to capture a wide range of student achievement and thus were not restricted to
grade-appropriate items only. The grade-level of test questions was established ex-post with the help of a
curriculum expert.
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Table D.2: Distribution of common questions across test booklets

Math

BL G6-7 BL G8-9 EL G4-7 EL G8-9

BL G4-5 16 10 14 14

BL G6-7 15 10 10

BL G8-9 7 7

EL G4-7 31

Hindi

BL G6-7 BL G8-9 EL G4-7 EL G8-9

BL G4-5 18 10 11 9

BL G6-7 17 13 13

BL G8-9 9 8

EL G4-7 24

Note: Each cell presents the number of questions in common across test booklets. Common items across
booklets are used to anchor IRT estimates of student achievement on to a common metric.
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