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theorems apply. We argue against distortions created through fees and the presumption
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1. INTRODUCTION

We are interested in economic platforms which inherently depend on attracting multiple
different types of users. For instance, the quality or usefulness of a credit card will depend
on the merchants who accept the card and which consumers use the card. Each side cares
about the other. A mobile phone network is attractive only if it allows a user to message
her contacts on the same technological platform. A dark pool for the trading of financial
instruments needs to attract both buyers and sellers in somewhat proportionate numbers
if it is to allow trade and coexist with other public exchanges. Likewise, a clearinghouse is
a mechanism to net trades and mitigates obligations that continue beyond an end-of-day
settlement period. Even traditional financial intermediaries can be thought of in this way,
in the sense that they stand between savers and borrowers and transform the risk and

time structure of funds.

We ask, in these types of markets, with multiple competing platforms how does one
define a Walrasian equilibrium. Typically does it exist or are there inherent problems?
If an equilibrium exists, is it efficient in the allocation of costs or is there a case for
the regulation of prices? Finally, what is the relationship between competitive equilibria
and the distribution of welfare, specifically, does one side or the other have an inherent

advantage?

To take one example of a platform competition that has attracted significant academic
and regulatory attention, the interchange fee. The interchange fee is a charge for the
acquiring bank (the bank that processes a credit card payment on behalf of the merchant)
levied by the issuing bank (the bank that issues a consumer’s credit card) to balance the
credit card’s costs between the merchant and the consumer’s bank. Consumers’ utility
and merchants’ profits from using/accepting a credit card depends on the number of users
of both types, as well as their respective costs via the interchange fee. In this environment,
since a user’s utility or profit depends on the composition of the card’s users, does this
cause a network externality? Can the interchange fee correct this network externality?
Does the market-determined interchange fee require regulation? Finally, how does the size
of the interchange fee distribute costs between consumers and merchants?

These questions have been asked but only partially addressed. “The large volume of theo-
retical literature on interchange fees has arisen for the simplest of reasons: understanding
their termination and effect is intellectually challenging’/Evans et al.|[2005]. Baxter| [L983]
first modeled multiple platforms (banks) that provided services for merchants to interact
with consumers. Baxter argued the platform is unable to internalize the merchant’s mar-
ginal utility gain from an extra consumer, which leads to an unpriced ‘externality’, and

subsequently a market inefficiency. This concept of an unpriced externality is repeated in
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further work by Rochet and Tirole| [2003a], Evans et al.| [2005], Armstrong| [2006], Hagiu
[2006], Rochet and Tirole [2006], Rysman! [2009], Weyl [2010], [Weyl and White| [2015].

In contrast to the previous literature, our paper demonstrates that this ‘unpriced exter-
nality’ is not a consequence of platform technologies per se, but is actually a theoretical
consequence of a combination of market power and an insufficiently rich contracting space.

We extend the original literature in two key ways: (i) we use tools from General Equilib-
rium theory to model platform competition and (ii) we allow platforms to offer bundles
that detail the composition of a platform’s users. Through, the the use of this modified
contract, we show that the prices for the platform membership overcomes the inherent
externality, in a similar manner as suggested by Meade [1952] and |Arrow| [1969]. Further,
the competitive equilibrium is Pareto optimal, and the usual First and Second Welfare

theorems hold in our economy.

We use tools from standard General Equilibrium Theory in this modified environment,
where there is an obvious externality: a user’s willingness to pay for a product is dependent
on the composition of the product’s user base.

Our paper has three main results: first, building on [Prescott and Townsend| [2006] who
analyzed firms as clubs in general equilibrium, we provide a framework which shows that
platforms can internalize the above-described externality if the platforms do not exhibit
ever increasing economies to scale. Additionally, we characterize the equilibrium among
competing platforms: which types of platforms exist, the prices paid by user types, and

the fees charged by intermediaries.

Second, we prove that both the first and second welfare theorems hold in this environment;
a competitive equilibrium is Pareto optimal and any optimal allocations of resources can

be achieved by lump sum taxes and transfers on underlying wealth.

Third, using the framework we characterize how the equilibrium prices for each type of user
to join the platform (for example, buyers and sellers or consumers and merchants) and the
composition of a platform’s users change as we alter parameters of the underlying economic
environment. For example, we consider decreasing the costs of creating platforms or
altering the initial distribution of wealth among the agents. Indeed, we make a distinction
between a fundamental type of user versus within-a-type users that differ only in wealth —
for instance, we can examine how the equilibrium changes as we alter different consumers’
wealth. The latter allows us to see how higher wealth for a certain type leads to more
advantageous matches for that type and subsequently spilling over to others’ and to their

own utility.

Our framework offers a compelling model for certain forms of financial intermediation.

For instance, there are over 40 different platforms for trading listed securities available
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to traders in 2008 (O’Hara and Ye [2011]). To ensure each platform is a price-taker, we
assume that platforms do not have ever increasing returns to scale. This assumption has
empirical support with both |Altinkili¢ and Hansen|[2000] and |(O’Hara and Ye| [2011], which
document non-increasing returns to scale in equity underwriting and equity exchanges

respectively.

Our framework builds heavily on club theory and in particular, the firms as club literature.
Koopmans and Beckmann| [1957] discuss the problem of assigning indivisible plants to a
finite number of locations and its link to more general linear assignment,/ programming
problems. A system of rents sustains an optimal assignment in the sense that the profit
from each plant-location pair can be split into an imputed rent to the plant and an imputed
rent to the location. At these prices landowners and factory owners would not wish to
change the mix of tenants or location. As Koopmans and Beckman point out, the key to
this beyond linear programming is |Gale et al|[1951]’s theorem which delivers Lagrange
multipliers on constraints. Every location has a match and the firms and location are not
over- or under- subscribed. A linear program ignores the intrinsic indivisibilities — the

integer nature of the actual problem — yet nevertheless achieves the solution.

In the well-known labor assignment model of Sattinger| [1993], workers are assigned to jobs
and the contribution of a worker with a mix of skills depends not only on the particular type
of job being performed but the assignment of others — that is, the work(er) environment.
Hornstein and Prescott| [1993] consider a |Lucas| [1978] managerial span-of control problem
in which agents can choose to be workers or firms — an indivisibility — and also a second
problem in which the number of hours a firm operates its plants and the numbers of workers
assigned to each plant is endogenous. These environments appear to introduce a non-
convexity in the production set. But with a large number of agents one can approximate
the environment with a production set that has constant returns, that is when the non-
convexity is small relative to the size of the economy. Essentially, the production set

becomes a convex cone, as in McKenzie| [1959, 1981]’s formulation of general equilibrium.

The economics underlying McKenzie’s formulation — in contrast to |Arrow and Debreu
[1954] — makes endogenous the ownership of shares in firms, i.e. profits must be earned
through entrepreneurial rents rather than through shares which are given a priori. The
basic tool in Hornstein and Prescott is the use of lotteries as developed in [Prescott and
Townsend| [1984] for private information environments in which incentive constraints in-
troduce a non-convexity. The common element is that lotteries are a way at the aggregate
level to assign fractions of agent types to contracts, clubs, occupations, and so on, even
though individual assignments are discrete. Likewise, Hansen|[1985] and |[Rogerson, |[1988§]
in macro determine the fraction of the population working overtime, a discrete choice.

Pawasutipaisit| [2010] assigns one male and one female type to common marriage. The
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firms as clubs methodology is well suited for our setting because it allows us to solve for
which platforms emerge in equilibrium, the size of each platform, and who is part of each
platform.

In this paper, we show that the first and second welfare theorems hold in our economy with
platforms. A competitive equilibrium exists, and in this equilibrium, platforms are able to
internalize the effects of interdependencies through the composition of users. Each basic
user type faces a user price for each of a (infinite) number of potential platforms, which
vary in the number of own-type participants and other-type participants. In equilibrium
at given prices, the solution to these decentralized problems delivers the mix and number
of participants in active platforms that each user anticipated when they choose platforms.
That is, in equilibrium the club or platform is populated with user types exactly as an-
ticipated. The solution is efficient because the market price for joining a platform, which
a user takes as given, changes across platforms in a way which internalizes the marginal
effect of altering the composition of the platform. Put differently, each agent of each type
(having tiny, negligible influence), is buying a bundle which include the composition and
number of total participants, that is, the commodity space is expanded to include the
intrinsic externality feature of the platform. Essentially we solve the externality problem
in the way suggested by Meade [1952] and |Arrow| [1969].

Having established the economy is efficient, we demonstrate how the size of platforms,
prices, and individuals’ utilities change as we alter parameters of the environment, such
as the cost of building a platform, the disutility of having too many users (congestion),
and the underlying wealth (endowments of the capital good) of user types. Higher costs
and congestion naturally tend to reduce the relative number of equilibrium platforms. But
there are distributional aspects as higher costs make the capital used to construct platforms
more valuable, and this favors wealthy agents who are abundantly endowed with that
capital. The poor are thus hurt in this comparison. A change in the wealth distribution
toward a favored type not only increases the competitively determined utility of that type,
it also changes the utility of others. In particular, it potentially increases the utility of
those that the favored types wish to be matched with and also decreases the utility of other
types with lower wealth who are in direct competition to populate platforms. We exploit
in these latter comparative statics the fact that changing Pareto weights is equivalent to
changing wealth, that is, we use a programming problem to maximize Pareto weighed
sums of utilities and then change the weights, tracing out all Pareto optimal equilibria.
A given optimum requires lump sum taxes and transfers or equivalently a change in the

initial underlying distribution of wealth.
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Finally, we demonstrate the generality of our framework for modeling platforms. First,
we extend the model to allow for heterogeneous agent preferences, and second, we extend
the model to allow agents to join multiple platforms (multi-homing).

The closest literature to our work is on two-sided markets. The two-sided markets litera-
ture consider platforms which sell to at least two different user groups, and whose utility
is dependent on who else uses the platform. In general, the two—sided markets litera-
ture uses an industrial organization, partial equilibrium framework. The main finding in
Rochet and Tirole| [2003b, [2006], |Armstrong [2006], [Weyl [2010], [Weyl and White [2015]
is that two-sided markets lead to market failure. In particular, in the two-sided market
literature a key concern is how the distribution of users’ fees will cover the platform’s
fixed and marginal costs. There are many controversies: whether the allocation of fees
alters the outcome (one definition of a two sided market is that the distribution of fees
matters to the outcome Rochet and Tirole [2003b)); whether there are implicit subsidies;
whether users are, or should be aware of what the price is covering (should payment
charges be a separate part of the bill), and how to regulate the interchange fee that the
issuing bank charges redeeming banks (and again how fees are passed to merchants — i.e.

small merchants versus block entities such as Walmart).

Rysman| [2009]’s comprehensive overview of the empirical and theoretical work on two-
sided market states “the main result (in the two-sided market literature) is that pricing to
one side of the market depends not only on the demand and costs that those consumers
bring but also on how their participation affects participation on the other side”. This
highlights two of the main advantages of our general equilibrium framework with a Wal-
rasian allocation mechanism: First, we show that net prices are appropriate — the indirect
effect on the ‘other side’ is priced in — and outcomes are efficient. Second, we show how
the equilibrium changes — the prices for joining a platform, the size of platforms, and the
resulting agent utilities — as we alter the underlying wealth distribution or the cost of
building a platform.

Weyl and White, [2015] consider the general equilibrium implications of two-sided markets
with imperfect competition. White and Weyl provide a new solution concept — Insulated
Equilibrium — on how platforms may induce agents to coordinate over which platforms to
join. Our paper focuses on modeling perfect competition with the full observability of an
agent’s type. In contrast to our paper, White and Weyl argue there remains a potential
for market failure due to an unpriced consumption externality. The key difference in our
papers’ predictions, arise from our differing modeling choices. Our paper’s economy is
perfectly competitive, whereas White and Weyl assume an oligopolistic platform economy
where each platform has market power and cannot extract the full consumer surplus. This

potentially leads the platforms to charge socially inefficient prices. In our economy, the
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platforms are perfectly competitive and earn no rents — removing this source of the social

inefficiency]]

The literature on middlemen is also related to our work. Middlemen facilitate trade
between two different agents. Rubinstein and Wolinsky |1987]’s seminal paper outlines
a model where middlemen increase the efficiency of the market through the reduction of
search costs for buyers and sellers. Mortensen and Wright| [2002] extend Rubinstein and
Wolinsky| [1987] and internalize a search externality using directed search into segregated
submarkets that promise different expected waiting times. Further, Guerrieri et al.[[2010]
model an economy with both adverse selection and search frictions in matching agents to
principals. Our paper concentrates on how intermediaries are platforms which facilitate
trade between different parties. In contrast to the search and middlemen literature, we
allow a competitive, constant returns to scale intermediary sector with free entry, a large

(continuum) number of agents of each type, and no search frictions.

Indeed, we need to emphasize the limitations of what we are doing, specifically what we
are not doing. We do not consider agents having any pricing power. We do not consider
the problem of establishing new products/platforms in the sense of innovation and entry
into an existing equilibrium outcome and the problem of changing client expectations.
Relatedly, we do not discuss the historical development of platforms nor consider cur-
rent regulatory restrictions, including well intended but potentially misguided regulations
which may limit our ideal market design. Nor do we model monopolistic competition
though we do allow our platforms to be configured with different compositions of cus-
tomers, so there is clear product differentiation (just no market power). Finally, we do

not allow ever increasing economies of scale in platform size.

1.1. Applications. Our paper is relevant to many different environments which involve
the intermediation between different agents who have a choice of which platform to use
and simultaneously have preferences about the size and composition of the intermediary’s
users. We explain some of our examples in more detail below.

Stock Exchanges, Dark Pools, Swap Execution Facilities and Underwriters

‘Dark Pools’ are collections of buyers and sellers which join a platform as a mechanism
to anonymously trade bonds and stocks. There are many seemingly similar platforms
(The Economist| [2011] refers to at least 80 dark pools as of August 2011) which are
steadily increasing the proportion of total equity trading (the percentage of consolidated
U.S. equity trading on dark pools is estimated to have risen from 6.5% in 2008 to 12%
in 2011, Tabb Group| [2012]). Thus the market for exchanges is competitive and large,
mk is sufficiently flexible to include a monopolist platform sector. In the model, if we sub-

stitute the perfectly competitive platform sector with a monopolist platform provider, the monopolist will
maximize profits by severely restricting supply and producing a negligible mass of platforms.
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that is, it is not concentrated; relatedly, O’Hara and Ye| [2011] argue that after controlling
for sample selection issues, new equity exchanges (not necessarily dark pools) have lower
bid-ask spreads and faster execution timesf]

'Swap Execution Facilities’ (SEFs) are platforms for swap trading that provide price in-
formation and execute swaps among platform members. Similar to the dark pool market
there many different SEFs — as of July 2015[] there were 25 different SEFs registered with
the CFTC.

Altinkili¢ and Hansen| [2000] empirically document increasing marginal costs and disec-
onomies of scale for underwriting larger bond and equity issuances after controlling for
firm characteristics. |Altinkilic and Hansen| [2000] argue that underwriting larger capi-
tal issuances have larger placement costs because (i) adverse selection problems are more
severe for larger placements and (ii) procuring more buyers for larger placements is harder.

Zhu [2014] distinguishes three types of dark pools: in the first, platforms match customer
order without own account trading, in the second platforms are operated by broker dealers
who operate as continuous non displayed limit order books; and in the third, dark plat-
forms act as fast electronic market makers that instantaneously accept or reject incoming
orders. In Zhu’s model, the likelihood of being able to execute a trade depends on the
availability of counterparties, in particular, the side with more orders — will fail to be
executed. Our main point is obvious; for a platform to be successful it must attract both

buyers and sellers for the potential transaction.
Clearinghouses

Clearinghouses (and depository trusts) net trades across platform participants, often at
the end of each business day. A clearinghouse can increase the efficiency of trading be-
tween users by guaranteeing trades amongst its users[| This may lead to three main
advantages: first, it can reduce a user’s exposure through netting their total obligations
across multilateral counterparties; second, it can reduce systematic risk by reducing the
probability of defaults propagating across counterparties; and third it can increase the
speed of transactions. For a clearinghouse to effectively settle and process trades, it must

attract multiple buyers and sellers to its platform.
Credit Cards, Debit Cards, and other Payment Systems

Consumers and merchants use an array of different platforms to transfer cash or value:

credit cards, debit cards, cash, checks, interbank transfers, mobile applications or online

20’Hara and Ye| [2011] estimate those stocks which are listed on multiple exchanges have trading costs

which are 0.33-0.34 cents lower than those which are listed on only the major exchanges.

3Source U.S. Commodities Futures Trading Commission (CFTC) http://sirt.cftc.gov/SIRT /SIRT.aspx? Topic=SwapExecutionFaci
4In particular, the clearinghouses introduce two new contracts, whereby each party bilaterally trades with

the clearinghouse rather than each other in a process called ‘novation’.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 9

transfers[] Further, each mechanism has a plethora of competitors, for instance, in credit
cards, there are MasterCard, Visa, American Express and Discover and in the rapidly
growing space of online payments, there are Square, Paypal, and Levelup[f| Each of these
payment platforms must attract merchants and consumers to use their platform.

Internet Service Providers and Net Neutrality

Internet service providers (ISPs) (such as Comcast, Verizon, AT&T) deliver internet con-
tent to consumers, from internet content producers (such as Netflix, Google and Amazon).
Consumers desire ready and speedy access to internet content, and content producers want

reliable access to consumers.

Current ‘Net Neutrality’ legislation provisions in the U.S. and Europe require ISPs to treat
all internet traffic equally. This is equivalent to requiring ISPs to charge the same price
(per byte) to every internet content producer. ISPs have consistently argued that the
net neutrality reduces investment, and subsequently increases congestion on the network
(Arstechical [2014]).

Our paper argues under perfect competition (which may not be true for ISPs), charging
differing prices — that is non-net neutrality — may be Pareto optimal. Internet content
producers have different preferences for the speed of sending data — Netflix may want to
deliver internet content rapidly, whereas an academic transferring data to a co-author may
prefer to transfer data at off-peak times. By utilizing differential prices to transfer data,
the allocation of scarce capacity may be improved, while simultaneously incentivizing

greater investment in capacity.

2. MODEL

There are two types of individuals, merchants (A) and consumers (B)ﬂ There is a con-
tinuum of measure one of each. There is variation within these types — namely, there are
sub-types of merchants and consumers who differ in their endowment levels. We index
each agent by (7', s) where T is the type (merchant or consumer) and s is the sub-type.
There are I subtypes of merchants, A (and indexed by i) and J subtypes of consumers,

B (and indexed by 7). By introducing variation in an agent’s wealth, we can analyze how

5The average US consumer uses a portfolio of payment mechanisms; |[Foster et al|[2013| found the average
consumer used 5.2 different payment instruments (out of a possible 9).

SHard numbers about the growth of mobile payments is difficult to procure, although there are a couple of
statistics which hint at the possible growth of mobile payments; 25% of Starbucks transactions are paid for
via a Starbucks’ prepaid account (Tavillal [2012]) and [Nielsen| [2012] report that 9% of survey respondents
paid for goods and services through their phone.

TFor clarity, we restrict our model to two types, but our model is sufficiently general to accommodate
multiple types.
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changes in the economic environment both affect the composition of a platform and an

agent’s utilityﬁ

There is a fraction ar s of each type T" and subtype s, and there is a measure of each one
of each type T, >, ars = 1 VI' € {A, B}. Clearly the fraction of each subtype a7 s are
arbitrary real numbers on the unit interval — not integers. Each agent has an endowment

of capital, denoted by k75 > 0.

We model utility at a reduced form level, and assume agents procure utility from being
matched with other agents. Although this is not realistic per se, we presume the process
of being matched with other agents facilitates trade over the platform. We do not model
that underlying environment — otherwise our setup is fairly general. For instance, agents
may prefer larger platforms as that increases the number of potential trades. Further, we
could generalize and introduce a term for any private benefit the platform provides over

and above its matching service. In short, utilities are to be thought of as indirect.

We only allow non-negative integers of merchants and consumers to join a platform. The
utility of a merchant (of any subtype ) matched with N4 merchants and Np consumers

is:

U s(Na. Np) = Un(Na, Np) 0 if Noor Ng=0

Ai(Va, V) =Ua(Na, NB) = {(%)VA_i_NEA} else
Note that the baseline utility of not being on any platform is Zeroﬂ This is the ‘opt-out’
option and is always available.

Symmetrically, for a consumer (of any subtype j) it is:

. VNN 0 if Ny or Ng =0
BJ( A, B) - B( A B) - [(%)73 +N154Bi| else

Where y4, VB, €a, eg€ (0,1).

Individuals will compete between agents of their own type, whereas, they prefer more of
the other type. For example, in the general merchant and consumer case, we are pre-
suming that merchants dislike more merchants, since this will lead to greater competition
and possibly reduce the good’s price. Therefore, this is a reduced form specification for

competition between agents of the same type which is highlighted by |Armstrong [2006]@

8Section 1) extends the baseline model to allow subtypes to have different preferences.

9This is a natural assumption for the opt-out utility since the lower bound for N4 is one (since as soon as

a merchant joins a platform, there must be at least one merchant on the platform) and if N4 is positive
Np

the limit of Ua(Na, Np) as Np goes to zero is zero (imy, >1,n5—0 (TA)WA + NA =0).

1014 could be argued that the presence of more merchants could be beneficial for a merchant, since it could
lead to ‘economies of agglomeration’, however, if the reasoning of the beneficial effects by agglomerating
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This utility function exhibits two important features which [Ellison and Fudenberg| [2003]
highlight:

(D) Market Impact Effects: Each type prefers more of the other type and less

1 YA 1 \4 N <0
() () -

(N +1)™ — Ng'|
NA

of it’s own.

Ua(Na+1,Np) —Ua(Na,Np) =

UA(NAﬂNB+1)_UA(NA=NB): +[(NB+1>€A—NB€A] >0

Individuals prefer to be on larger platforms as it offers greater possibilities to trade for a

given ratio of participants.

(2) Scale effects: An individual prefers larger platforms for a given ratio

- assume 7 > 1, therefore:
UA(TNA,TNB) - UA(NA,NB) = (7‘ - 1)N§A >0

Symmetrically, both effects also apply for the type B utility function.

In the model, agents buy personal contracts which stipulate the number of merchants and

consumers on the platform.

We denote the contract by dr(N4, Ng) where Ny and Np are the number of merchants
and consumers respectively in the given platform and 7' denotes the type of individual
the contract is for, whether it is merchants (A) or consumers (B). Types are observed
and Type T cannot buy a contract indexed by T”. Further one can think of an agent of a
given type T and subtype s as allowed to join only one platform. Thus we can create a
function 7 s[dr(Na, Ng)| > 0 such that > 27 s[dr(Na, Ng)] = 1 which is an indicator
(or more generally a probability distribution) for the assignment of an agent (7,s) to
contract dp(Na, NB)H

The set of contracts for type A is denoted as D4 and similarly the set of contracts for type
B is denoted Dp.

The consumption set of type A, agents can be written as:

X = 2ai[da(Na,NB)] >0Vda € Da, Y wa;lda(Na,Np)] =1, xa,[dg(Na,Ng)] =0Vdp € Dp
dAa€ED p

is that it attracts more consumers, then this is still achieved by the utility function posited . The utility
function models that merchants prefer less merchants for a given number of consumers.

U1y subsection we extend the model to allow multi-homing (agents can join multiple platforms) by
omitting the requirement that an agent is matched to only one platform (Y 7 s[dr(Na, Ng)] = 1).
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The above condition states that type A,i agents can buy any non-negative amount of

contract d4 € D4, but none of the type B contracts.

Symmetrically the consumption set of type B, j agents can be written as:

XBJ' = {wB,j[dB(NAaNB” >0 VdB c DB, Z xB,i[dB(NA,NB” = 1, wB,j[dA(NA;NB)] =0 VdA (S DA}
dp€Dp

Since individuals may only join a single platform, this introduces an indivisibility into an
agent’s consumption space. To overcome this problem we allow individuals to purchase
mixtures, or probabilities of being assigned to a platform of a certain size including the
opt-out optionE For example, consider an agent who buys two different contracts: the
first contract assigns the agent to a platform consisting of four merchants and three con-
sumers with probability one-third, and the second contract assigns the agent to a platform
consisting of three merchants and one consumer with probability two-thirds. The deter-
ministic case, where an agent buys a contract which matches them with a platform of size
(N4, Np) with certainty, can be seen as a special case. We do not insist that there is mix-
ing in a competitive equilibrium but it can happen as a special case. For instance, when
agents are poor there can be mixing between a given platform and an opt-out contract.

As a technical assumption, we assume there is a maximal platform of size (N4, Ng), and
any platform up to this size can be created. Assuming there is a maximal platform size
bounds the possible set of platforms and hence makes the commodity space finite. This is
for simplicity, since we can choose Ny and Np arbitrarily large such that this condition

does not bind.

The commodity space is thus:

I — R2(NaxNp+1)+1

There are contracts for every possible platform size, in turn indexed by the two types and
further there is capital. Thus as we define the maximal platform size to be (N4, Ng) and
there is always the opt-out contract, there are N4y x N + 1 contracts for each type. Since
there are two types, we multiply this number by two for the number of contracts available.

Finally there is a market for capital.

All contracts dr(N4, Np) are priced in units of the capital good and the type T price for
contract dp(N4, Np) is denoted as p[dr (N4, Np)] for types A and B (where T' € { A, B}).

127 similar modeling approach is used in [Prescott and Townsend| [1984], [Prescott and Townsend| [2005],
Pawasutipaisit| [2010].
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2.1. Agent’s Problem. In summary agent T, s take prices p[dp(Na, Ng)| Vdr € Dr as

given and solves the maximization problem:

(1) max Y @rsldr(Na, Ng)|Urldr(Na, Np)]
7 s€EXT s
’ " Na,Np
(2) s.t. Z x7,s[dr(Na, Ng)lpldr(Na, NB)] < k76
Na,Np
(3) > wrsldr(Na,Ng) =1
N4Ng

where each type of individual has a endowment of x7 s of capital and the price of capital

is normalized to one, that is, capital is the numeraire.

Equation is the agent’s expected utility from the assignment problem. Equation
is the agent’s budget constraint. Equation is the agent’s matching constraint, which

requires the agent to join a platform with certaintyﬁ

2.2. Platforms. We assume there are intermediaries or marketmakers who create plat-
forms and sell contracts for each type to join the platform. As is evident, there is constant
returns to scale for the intermediaries, so for simplicity we can envision just one market-
maker is needed in equilibrium. We denote y4[da(Na, Np)|, as the number of contracts
produced for type A of size (N4, Np) and ygldg(Na, Np)] as the number of contracts
produced for type B of size (N4, Ng). These are counting measures and there is nothing
random. Also, these numbers are on a continuum and so do not have to take on integer
values. Further, we denote the number of platforms of size (N, Ng) as y(Na, Np). Thus
N x y(Ng, Np) is the number of type A’s in total on the type of platform y(N4, Np).
Similarly, Ng x y(Na, Np) for type B.

The total number of agents of each type on a platform must be consistent with the total
number of contracts offered for that type. Thus as indicated above, the intermediary must

satisfy the following matching constraint:

da(Na, N dp(Na, N
() AN ydel T NE) v, Ny v € DA g € D
A B

This constraint states that the measure of contracts created of size (N4, Np) for type A
must have the equivalent number of contracts created for type B normalized by the number
of agents in each platform. The actual mathematics takes into account the continuum
measure of each type of mass 1. For example, if we multiply each type by 100 we will

13gince an agent can join a platform which is only populated by that agent (autarky/singleton platform),
this matching constraint essentially requires agents to join at most one platform in equilibrium.
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have larger numbers for each type but the same proportions. For example, consider 0.1
platforms are created which match three merchants and two consumers. This would
require 0.1 x 3 = 0.3 merchant contracts and 0.1 x 2 = 0.2 consumer contracts for a
platform of size (3,2). We could also multiply this by 100 to have the numbers 10, 30 and
20 respectively.

A platform of size (N4, Np) requires the following amount of capital:

0 if Ny =0or Ng=0

C(N4, Np) =
( A B) {CANA—I—CBNB—I—CNANB—I-K else

The capital requirement of a singleton/opt-out platform is normalized to zero as it costs
nothing to produce and is always available. The amount of capital required for a platform
has a positive marginal cost for an extra agent on each side of the platform (captured by
ca and c¢p) and for the multiple of agents on both sides (captured by the interaction term
¢). Additionally, we model there can be some fixed cost, K, in creating a platform. For
a more flexible specification we allow ¢4 and cp to be different. We assume that c4, cp,
c € (0,00) and K € [0,00). We require c4, cg and c to be strictly larger than zero, this
ensures we can bound the size of the equilibrium platforms.

We denote the amount of capital input purchased by the intermediary as y, — this has to
be sufficient to build the proposed platforms. So we can write the intermediary’s capital

constraint as:

(5) > y(Na,Np)[C(Na, Np)| < yx
Na,Np

Hence, the intermediary’s production set is:

Y = {<y7yA7yB7yH) € RﬂNiAXNiBH)H\ and are satisﬁed}

It is a convex cone as in McKenzie| [1959)].

We explore the role of market power on platform supply and agent welfare by modeling
two different environments: first, we model a price-taking intermediary and second, we
model a price-setting intermediary who has market power and can set both quantity and

price of each platform contract.

2.3. Competition: price-taking intermediary. The intermediary takes the Walrasian
prices pldr(Na, Ng)| Vdr € Dp, T € {A, B} and maximizes profits constructing platforms
and selling type specific matchings (again we normalize the price of capital to be one):
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(6)

= max Y {p[da(Na,Np)] x yalda(Na, Np)| + plds(Na, Ng)| x yslds(Na, Ng)|} —yx
YAYBYREY NiNg

Equation @ states the intermediary maximizes how many platforms of a given size
(N4, Np) to produce given the prices for each position in the platform. The intermediary’s
profits are equal to the number of contracts it constructs multiplied by their respective

price minus the cost of the capital input.

The intermediary’s first order condition for creating a platform y(N4, Np) is:

(7) C(NA,NB) > p[dA(NA,NB)] * Ny —i—p[dB(NA,NB)] * Np

where equation holds with equality if there are positive number of platforms of that size
(N4, Np). If equation (|7) is a strict inequality then no such platform exists in equilibrium.
Notice this natural condition requires that the payments/memberships received by the

platform must cover all the platform’s costs.

2.3.1. Competition: Market Clearing. For market clearing we require the following condi-
tions to hold

(8) ZaT,sxT,s[dT(NAaNB)] = yr(dr(Na,N) VN4, Np, T € {A, B}

(9) ZaT,SK/T,S = Uk

T,s

Equation ensures that the (decentralized) amount of demand for each contract for
each type equals the (decentralized) supply of that contract. Equation @ states the
total endowment of capital (the supply) must equal the amount of capital used by the

intermediary.

2.3.2. Competitive Equilibrium. Let us define x as the vector of contracts bought x7 s[dr(Na, Np)]
for all subtypes (T, s), then a competitive equilibrium in this economy is (p, z, {y, ya, Y5, Yx}) €
L x X xY such that for given prices p[dr(Na, Np)l:

(1) The allocation {zrs[dr(Na, Np)|} solves the agent’s maximization problem [i.e.
27,s[dr(Na, Np)] solves equation (I)) subject to equations (2 and [3)].
(2) The allocation {y,y4,yB,yx} solves the platform’s maximization problem [i.e.

{y,y4,YB,yx} solves equation (@ subject to {y,ya,yB,ys} € Y].
(3) The market clearing conditions hold [equations and (9) hold].
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In equilibrium, the pricing mechanism will determine the size and number of each platform

and subsequently the relative proportions of merchants and consumers on each platform.

2.4. Monopoly: price-setting intermediary. In contrast to section , we model
the intermediary as a price-setting monopolist, who sets prices pldr(Na, Ng)| Vdr €
Dr,T € {A, B} and quantities yr(dr(Na, Np) Vdr € Dp, T € {A, B} to maximize profits
subject to quantity demanded being greater than or equal to quantity supplied:

~—

(10
T

= max > {plda(Na, NB)] x yalda(Na, Np)] + pld(Na, Ng)] x ygldp(Na, Ng)|} —yx
pvyA’yB:yﬂeLXYNAJVB

(11) st Y arsars(dr(Na,Np)] > yr(dr(Na,Ng) VN4, Np, T € {A, B}

Equation states the intermediary problem maximizes how many platforms of a given
size to produce and the price to each side of the market (p[da(Na, Ng)] and p[dg(Na, NB)])
for each position in the platform subject to quantity supplied being less than or equal to
total demand for each contract.

2.4.1. Monopolistic Equilibrium. Then a monopolistic equilibrium in this economy is (p, z, {y, y4, yB, Yx }) €
L x X x Y such that:

(1) The allocation {z7s[dr(Na, Np)|} solves the agent’s maximization problem [i.e.
z7,s[dr(Na, Np)] solves equation (I)) subject to equations (2] and [3)].

(2) The allocation {y,y4, yB, yx } and prices p solves the platform’s maximization prob-
lem [i.e. (p{y,y4,yB,ysx}) solves equation subject to (p{y,ya,yB,yx}) € LXY
and equation (11])].

3. SocIAL PLANNER’S PROBLEM

First, we set up the social planner’s problem and determine the set of all Pareto optimal
contracts. We show (i) a competitive equilibrium is Pareto optimal, (ii) any Pareto optimal
allocation can be achieved with lump-sum transfers and taxes among agents and (iii)
there exists a competitive equilibrium. So these results have two important implications
(i) the decentralized problem is Pareto optimal and (ii) when solving for the competitive
equilibrium, we can use the simpler social planner’s problem to compute the allocation.
Subsequently, we can use the Lagrangian multipliers to impute the competitive equilibrium

prices and wealth associated with that allocation.
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The social planner’s welfare maximizing problem with Pareto weights A4 ; and Ap; for

types (A,i) and (B, j) respectively is:

max Z)\Aﬂ'{ > OéA,iﬂ?A,i[dA(NA,NB)]UA(NA,NB)}

22>0,y>0
da(Na,NB)

+Z)‘BJ‘{ > O‘ijxB,j[dB(NAaNB)]UB(NA,NB)}
J

dp(N4,Np)

(12) st. Y. @rsldr(Na,Np)| =1VT,s

b(Na,Np)
(13) > arsarsldr(Na, Np)| = y(Na, Ng) x Ny Vdrp € D, VT € {A, B}
(14) > y(Na,Np)[C(Na,Np)| <> ar sk
NA,NB T,s

Equation ensures that each individual is assigned to a platform, equation ensures
that the total purchase of contracts equals the number of contracts produced, and equation

(14) ensures the total number of contracts produced is resource feasible.

3.1. Dual. The Pareto Problem can also be written in terms of its dual equivalent:

mpin Z ar.s(Pr,s + PeRT,s)
T,s

(15) s.t. prs + prldr(Na, Ng)] > ArsUr(Na, Ng) Vi,VT,¥(Na, Np)
C(Na,NB) — {palda(Na,Np)| x Na+ pB[dB(Na,Np)| x Np} > 0 V(Na, Np)

In this formulation pr, is the imputed valuation for type T',s. So prs will be higher,
the scarcer the type. And p, is the imputed valuation for capital. The dual problem
minimizes the aggregate cost of the economy (in terms of prices of each type and total
capital) such that each type of agent receives a given level of Pareto weighted utility. The
primal problem maximizes the Pareto weighted expected utility of each type subject to

the matching and resource constraints.

The Pareto problem is well defined in both the primal and dual form therefore, by the
‘strong duality propertyﬂ there must exist an optimal solution (p*,z*,y*) such that:

14Gce [Bradley et al. [1977] pages 142-143 for more details.
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> A > apsh Jdr(Na, Ng)lUp(Na,Ng) p = > ars(phs + pikins)
T,s dT(NAyNB) T,S

In the proofs of going between the Pareto allocation and competitive equilibrium we will

assume that individuals are non-satiated — this is not a crucial assumption since we can

always expand the commodity space such that this holds.

The following theorems show that for all Pareto weights, there is a competitive equilibrium

which replicates the social planner’s problem.

Theorem 1. If all agents are non satiated, a competitive equilibrium (p*,z*,y*) is a

Pareto optimal allocation (x*,y*). [First Welfare Theorem]

Proof follows from Prescott and Townsend| [2005].

Theorem 2. Any Pareto optimal allocation (x*,y*) can be achieved through a competitive
equilibrium with transfers between agents subject to there being a cheaper point for all

agents and agents are non-satiated.

The proof relies on using the Pareto weights A7, and the dual variables from the planner
problem, to claim the Pareto optimal allocation (x*,y*) can be supported as a competitive
equilibrium with transfers between agents. The proof follows from |Prescott and Townsend
[2005].

Theorem 3. There exists a competitive equilibrium.

To provide a more general proof of existence of a competitive equilibrium, where the
distribution of wealth across individuals is taken as given, but there is no restriction on
the mass of agents requires the use of a fixed point theorem. [Negishi [1960] alters the
Pareto weights in the economy such that the budget constraints binds for all agents at the
fixed point. The proof follows from Prescott and Townsend| [2005].

4. RESULTS

4.1. How does market power affect the allocation of resources and rent? In
section we showed that the competitive equilibrium is a Pareto optimal allocation. In
this subsection, we will analyze the monopolistic equilibrium. The main difference between
the competitive and the monopolistic is the number and type of platforms created. In
particular, the price-setting intermediary in the monopolistic equilibrium will restrict the

supply of platforms to maximize his rent.
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Theorem 4. The price-setting intermediary in the monopolistic equilibrium will capture
all the rent in the economy and will produce less slots than the price-taking intermediary

in the competitive equilibrium.

The proof relies on demonstrating that in the monopolistic equilibrium, where the inter-
mediary has price-setting power, the intermediary will only produce a negligible amount of
platforms to maximize profits. Whereas, in the competitive equilibrium, the equilibrium
supply of platforms will ensure that the entire resources in the economy will be used to
build platforms. The proof is provided in section in the Appendix.

Overall, market structure changes both the allocation of rents and the allocation of re-
sources within the economy. In particular, competition ensures that the intermediary
makes no profits, and that surplus is accrued by the agents. Further, competition ensures

that the all resources in the economy are used to produce platforms.

4.2. Prices for joining a platform in a competitive equilibrium. To understand
in greater detail how prices are determined in the competitive equilibrium we can analyze
the agent’s maximization problem in more detail. The agents’ maximization problem can
be written as the following Lagrangian maximization problem. We can use this to show

which contracts the agent of type T" buys.

L = Y wrudr(Na, No)Urldr(Na, Np)] = plfs (3 20 sldr(Na, No)lpldr(Na, Np)] = k) —

W | S wrsldr(Na, Np) -1
NaNg

The first order condition for Type T" and contract zrs[dr(Na, Np)]| is:

(16) Ur(Na, NB) — i, — pps * pldr(Na, Np)] < 0

Where ,u?s is the Lagrangian multiplier associated with the individual being assigned
to some platform and ,u?f . is the Lagrangian multiplier associated with the agent’s bud-
get constraint. Furthermore, for any platform the agent buys with positive probability
(x7,s[dr(Na, Ng)] > 0), then the equation will hold with equality. If the left hand side
of equation is strictly less than zero, this implies that agent will not purchase that

contract.

Let us consider what equation implies. Consider an agent of Type 1" who purchases
positive probabilities of two different contracts dr(Na, Ng) and dr(N, Nj). Let us define
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the variable AU = Up(Na, Ng) —Up(N', N) and Ap = pldr(Na, Ng)| —pldr(Ny, Nj)],
then we can state:
AU = ,ujvzfs * Ap

Therefore, if an individual buys two contracts with positive probability, the difference in
utility she will derive will be a constant multiplied by the change in price. Intuitively,
if an individual is indifferent between two contracts, then the change in utility must be

proportional to the change in price.

In general, an agent is unwilling to pay proportionally more for a contract which confers
proportionally more utility (that is, % + ATP/) — this is only true when the individual’s
matching constraint is not binding (i.e. uis = 0). Intuitively, when an individual’s
matching constraint binds, this individual would prefer to join more platforms but is
constrained by the ability to only join one platform. In turn, this will ensure the percentage
increase in the individual’s willingness to pay to join the platform which confers the greater
utility will be more than the percentage change in utility; both platforms require the same
assignment of type component, but one platform confers greater utility.

5. COMPETITIVE EQUILIBRIUM EXAMPLES

In a general equilibrium framework we can analyze both how the composition of platforms
and how the resulting utilities change as we alter some of the parameters. First, as a useful
benchmark we examine an equilibrium where we have symmetric parameters for both
sides of the market, that is the same costs, preferences and wealth. Second, we provide
an example which varies the wealth within and across types. We show that even with
symmetric preferences a subtype with lower wealth may be better off than an alternative
subtypes.

Third, we are interested how the equilibrium — and subsequently agents’ utilities — change
as we redistribute wealth within our economy. Fourth, we examine how the equilibrium
utilities change as we alter the Pareto weights. We show that even if an agent’s relative
Pareto weight falls, their equilibrium utility can actually rise — it depends on the General

Equilibrium effects.

Fifth, given that the cost of producing platforms changes over time (for instance due to
technological improvement) we demonstrate how the equilibrium utilities change as we
alter the fixed cost of producing platforms. We show that increasing fixed costs leads to

heterogeneous effects and potentially increases inequality.

5.1. Example 1: Symmetric wealth, preferences and cost parameters in a com-
petitive equilibrium. Our initial example has two subtypes for each type and is sym-

metric — there is equal fractions of each type (41 = a2 = ap1 = aps), each subtype has
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TABLE 1. Equilibrium platforms and user utility for Example 1.

Equilibrium Platforms
Platform Size Number of Cost of
Platforms created | Production
(Na, Np) y(Na, Np) C(Na,Np)
(2,2) 0.5 8
Equilibrium user utility and platform choice.
Type | Wealth | Platform joined | Price of joining Pr(joining) Utility on Platform
T, s KT,s (Na,Npg) p(dr[Na,Ng|) | rs(dr[Na, Ng]) Ur(Na,Ng)
Al 2 (2,2) 2 1 2.41
A2 2 (2,2) 2 1 2.41
B, 1 2 (2,2) 2 1 2.41
B,2 2 (2,2) 2 1 2.41

the same Pareto weight (Ag1 = Aa2 = Ap1 = Ap2), the cost function is the same for both
types (ca = c¢p) and the utility functions’ parameters are the same (y4 = yp and €4 = €p)
E] In this initial example, although there are nominally two subtypes, they are in fact
identical therefore there is no variation by subtype.

In this equilibrium only one type of platform is created. All users pay a price of two units
of capital to join a platform which matches them with two users of the other type, and

one more user of their own type, so the total for each type is two.

5.2. Example 2: Different wealth but same preferences and cost parameters in
a competitive equilibrium. Our second example varies wealth both within and across
types. To improve intuition, let us consider a payment platform which connects merchants
to consumers. There are two subtypes of merchants — Small (A4, 1) and Big (4, 2); and
two subtypes of consumers — Rural (B, 1) and Urban (B, 2). Each consumer would prefer
to be on platform with more merchants (more places to pay) and less consumers (less
congestion). Similarly, merchants want as many consumers to use the same platform but
would like less rival merchants.

There is equal fractions of each type (a41 = @a2 = apy = apsz), the cost function is
the same for both types (c4 = ¢p) and the utility functions’ parameters are the same
(ya = vp and €4 = €p), however the agents vary in WealthEGI

15The parameter values are:
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TABLE 2. Equilibrium platforms and user utility for Example 2.
Platform Size Number of Cost of
Platforms created | Production
(Na, Np) y(Na, Np) C(Na, Np)
(3,2) 0.25 11
(1,2) 0.25 5
Type Wealth | Platform Price of Pr(joining) Utility on Expected
joined joining Platform Utility
T,s KT,s (Na,Ng) | p(dr[Na,Ng]) | zr,s(dr[Na,Ng]) | Ur(Na,Np)
Merch, Small (4,1) | 1.37 (3,2) 1.37 1 2.23 2.23
A . (3,2) 1.37 0.5 2.23
Merch, Big (A, 2) 1.64 1.2 101 05 58 2.53
B Cons, Rural (B, 1) 1.54 (1,2) 1.54 1 1.7 1.7
Cons, Urban (B,2) | 3.45 (3,2) 3.45 1 2.96 2.96

In this equilibrium, there are two different types of platforms created. One platform is
larger than the other and is populated with more merchants; the richer urban consumers
join this platform. Urban consumers have higher resultant utility since this platform is
both bigger and has a more favorable ratio of merchants to consumers. Whereas, the
poorer rural consumers join the smaller platform, this platform is both smaller and is
populated with a less favorable ratio of merchants to consumers causing lower utility for

rural consumers (and lower prices for consumers to join that platform).

The urban and rural consumers, and the small merchants all buy degenerate lotteries of
contracts, where they are assigned to a particular platform with probability one. However,
the big merchants buy probabilities in two different platforms, therefore 50% of them are
allocated to platforms of size (3,2) and 50% are allocated to platforms of size (1,2). The
respective prices for these two different contracts are 1.37 and 1.91.

The cost of the platform is primarily borne by the type which receives the most utility
from the platform (the consumers); therefore, in the platforms of size (3,2) consumers pay
63% of the platform’s cost, even though, they are only 40% of the platform’s population.

Further, rural consumers are wealthier than small merchants, yet they are worse off. Urban
consumers are much richer than the other participants hence they are willing to sponsor
larger platforms. This allows merchants to contribute less towards joining a platform.
Another way to look at this is that the merchants are in scarcer supply (since consumers
are so much wealthier — average consumer wealth is 2.5 and average merchant wealth is

only 1.5), therefore the price schedule they face is lower than the consumers’ schedulem

1TRecall that the cost parameters ca = cp therefore, the asymmetric prices and allocations are solely
driven by agents’ different capital endowments.
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5.3. How does the competitive equilibrium change as we redistribute endow-
ments? If we redistribute wealth in our economy, this will change the relative demand
for merchants and consumers and subsequently change the relative prices to join a given
platform. To examine the general equilibrium effects of redistributing wealth, we construct
two placebo interventions which reallocate wealth within our economy whilst holding the

total resources constant.

Figure shows the effects of redistributing wealth within our economy while holding
total resources constant (with the same cost and preferences as in the previous examples).
The left panel shows the effects on utility from redistributing wealth across types[& in
particular between (B,1) and (A,2) —ie. k1 + ka2 ~ 2.4. The right panel shows the
effects on utility from redistributing wealth within typeﬁ in particular between (B,1)
and (B, 2).

Recall our payment platform example which connects merchants to consumers. There are
two subtypes of merchants — Small (4, 1) and Big (A, 2); and two subtypes of consumers
— Rural (B,1) and Urban (B,2). As we redistribute wealth from big merchants (k4 2) to
rural consumers (kp,1), the utility of urban consumers (B,2) falls (holding both urban

consumer’s wealth (kp2) and and small merchant’s wealth (k4,1) constant).

As we increase rural consumer’s wealth (kp 1), the demand to join platforms with mer-
chants rises. Subsequently the price for consumers to join platforms for a given number
of merchants will also rise. Therefore, since urban consumer’s wealth (kp2) is a constant
and they now face higher prices, their utility must fall. Symmetrically, a similar result

holds when we increase the wealth of small merchants on big merchants’ utility.

As one would expect the utility of merchants and consumers are increasing in their re-
spective Wealthm

Further, we can consider how the equilibrium changes as we adjust the endowments within
a type (consumers), and hold the endowments of the other types (merchants) fixed. There
is no effect on merchants’ utilities since any reduction in purchasing power by one of
the consumer subtypes is compensated by an equal change in the other slightly richer
consumer subtype. This example is shown in the right panel of figure E

8We solve the model using the Pareto problem and then impute the wealth and prices which replicate
the same allocation. We simulate 2880 equilibria for different Pareto weights, and then collect only the
equilibria in which 0.51 < k4,1 < 0.59 and 1.01 < kB2 < 1.19. We then ‘join up’ all the points to plot a
smooth curve.

9We solve the model using the Pareto problem and then impute the wealth and prices which replicate
the same allocation. We simulate 2880 equilibria for different Pareto weights, and then collected only
the equilibria in which 0.51 < k4,1 < 0.59 and 1.01 < ka2 < 1.1. We are approximately holding the
endowment of (A,1) and (A, 2) constant.

20 Figure @ in the appendix shows the effect of the wealth changes on all agents’ utilities.

2l There is a tiny change in the utility of (A, 2) this is due to the discrete nature of the possible platform
combinations and the changes in the platforms type (B) can purchase.
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FiGUrE 1. Redistributing wealth within and across type

Redistributing wealth across type: Redistributing wealth within type:
The effect on utility from transferring The effect on utility from transferring
wealth from (A,2) to (B, 1) wealth from (B,2) to (B, 1)
How does utility change as we adjust wealth for B1 How does utility change as we adjust wealth for B1
8 T T T T T 2 T T T T T T T
Al Al
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B1's wealth E.1's wisalth

Note we do not change (A,1) or (B,2)’s  Note we do not change (A,1) or (A4,2)’s
wealth in these examples. The changes wealth in these examples. The changes
in (A, 1) and (B, 2)’s utility is due to the in (A,1) and (A, 2)’s utility is due to the
general equilibrium effects of redistribut-  general equilibrium effects of redistribut-

ing wealth from (A,2) to (B, 1). ing wealth from (B,2) to (B, 1).

5.4. How does the competitive equilibrium change as we alter the Pareto
weights? We can also consider how the equilibrium changes as we adjust the Pareto

Weightﬂ on only one subtype (B, 2).

Figure demonstrates (for given parameters) how the resulting utilities change as the
Pareto weight for type (B, 2) increases. First it is clear and intuitive the utility of (B, 2)
monotonically weakly increases with their respective Pareto weight. This is a general
result, as the Pareto weight on (B,2) rises, it must be true that the utility for (B,2)

weakly increases.

As figure shows, type (B, 1) is clearly disadvantaged. This is a general result and
follows from the utility of subtype (B, 2) rising.

Theorem 5. If we increase the Pareto weight on subtype (B,2) by A and reduce the
Pareto weight on subtype (B,1) by A, the utility of type (B, 1) monotonically increases in
A and the utility of subtype (B, 1) monotonically falls in A, where 0 < A < Ap .

22The parameter values are:
CYAl:OéAQ:aBl:OZBQ:%;CA:CB:C:LK:O;’YA:’YB:6A:6B:%
Aal = 1'0§_z,)\,42 = 0‘92_17)\31 = 152, A2 = x; We introduce a tiny wedge between (A, 1) and (4,2) to

highlight the effects on a favored subtype.
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FiGURE 2. How does the utility for each subtype change as we alter the
Pareto weight for Urban Consumers (B,2)
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This follows from the result that a subtype’s utility is monotonically increasing in their
own Pareto weight and that the different subtypes compete amongst themselves to be

matched with other type.

Recall our merchant and consumer example from before. If we increase the Pareto weight
on urban consumers (Ap ), the allocation will match them in both larger platforms and
with more merchants. This has two effects: first, there is less resources left for the rural

consumers, and second, there are less merchants left unmatched.

The story is more complicated for the merchants. An increase in the urban consumers
Pareto weight can lead to lower or higher utility for merchants. One of the merchants
subtypes will always be made worse off (A4,1) by the rise in (Ap2) since some platforms

are comprised of relatively more merchants — favoring consumers on those platforms.

As seen in figure it is possible for one of the merchant subtypes (A, 2) to be made better
off — even as their relative Pareto weight falls. This follows from the most favored con-
sumer subtype (urban) are matched to proportionally more merchants as Ap 2 increases,
this means the proportion of merchants to consumers remaining declines. Hence, those
merchants who are not matched with urban consumers may be matched at favorable ratios

of consumers to merchants — increasing their utility.
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FIGURE 3. How does utility change as we alter the platform’s cost function
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5.5. How does the competitive equilibrium change as we alter the costs of
building platforms? A further important consideration is how the equilibrium changes
as we adjust costs, for instance, technological innovations may decrease the costs of cre-
ating a platform. Figure shows how the equilibrium changes for two different fixed
costs for building a platform; the left panel shows the equilibrium utilities if the fixed cost
is zero and the right panel shows the equilibrium utilities if the fixed cost is one unit of
capital. As one would expect for a given distribution of wealth, utility is lower. However,
the distribution itself changes. For larger fixed costs of producing a platform, the distri-
bution becomes more dispersed, and inequality between different subtypes becomes more

pronounced.

To gain intuition for this result, recall our interpretation that agents are endowed with
two assets: labor and capital. As we increase the costs of producing platforms of a given
size, this will lead to the relative value of capital to labor becoming larger. Therefore,
those agents who are endowed with more capital are less hurt by the rise in costs, leading

to greater inequality.

For example, consider the equilibrium with kg1 = 1.09, with the introduction of the fixed
cost, the utility of subtype (A4, 1) falls by over 25% whereas for the richest subtype (A, 2)
the fall in utility is about 3%. A similar qualitative result holds for subtypes (B, 1) and
(B,2).

A further way to demonstrate how changes in a fixed cost have distributional impacts is
to vary the fixed cost of building a platform whilst holding each agent’s wealth constant.

Figure shows the equilibrium utility for each subtype when we vary the fixed cost of
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building a platform for given parameters@ As one can see the richest subtype (4,2) is
barely affected by the rise in platform costs. Yet, the poorest subtype utility, (A4,1)’s
utility, falls by about 50% as we increase the fixed cost of building a platform from 0.2
units of capital to 2 units of capital. Further supporting the evidence that changes in fixed
costs of building platforms have heterogeneous effects and in particular the most adverse

effects occur on the poorest agents.

FiGURE 4. How does the utility for each subtype change as we alter the
fixed cost of building a platform
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Do these distributional impacts suggest a rationale to regulate prices? No — our envi-
ronment is Pareto optimal, so the optimal government intervention would be to introduce
lump-sum taxation on the rich and transfers to the poor. This would increase the poorest’s
utility, achieving a more equitable division of utility while maintaining a Pareto optimal

allocation. Other interventions would be distorting.

23The economy’s parameters are €41 = @42 = Qp1 = QB2 = %; ca=cg=c=1;yAa=7 =€s =€ = %;
ka1 =0.5,ka2 =1.5,kp1 = 0.8, kg2 = 1.1.

For computational simplicity, we allow the equilibrium wealth levels to be close to the desired wealth levels
(ka1 =0.5,k42 = 1.5, k1 = 0.8, kp2 = 1.1). We only plot the equilibrium utilities for those equilibria such
that the maximum difference between the desired wealth endowment and the plotted capital endowment
is less than 0.1 units of capital for each subtype.
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6. EXTENSIONS TO THE MODEL

6.1. How does user heterogeneity in preferences (within type) affect the com-
petitive equilibrium? We have concentrated on all types having the same preferences,
but potentially varying in their wealth endowments. In this subsection, we consider how

varying preferences within type affect the competitive equilibrium.

In our reformulated economy we introduce three new parameters ( f’s, g s ?7: *), which
potentially vary across type (T') and subtype (s). The merchant (A,1)’s utility function is

now:

- NN 0 if NA or NB =0
A,Z( A, Np) = { fl,i (%)7‘4 + ﬁQA’iN;A’ + ﬁ?’l} else

In particular note that: 614 " alters the merchant (A,4)’s utility with respect to the ratio
of consumers and merchants on the platform. B; " alters the merchant (A,17)’s utility
with respect to the size of the platform (holding the ratio of consumers and merchants
constant). Finally, B? " is the merchant (A,4)’s intrinsic value from joining a platform.
Therefore, the introduction of the parameters ( 1T s 2T s ﬁg *) facilitate the comparison

of how users who vary in their preferences alter the resulting equilibrium@

Symmetrically, consumer (B, j)’s utility function is:

0 if Nyor Ng=0

U j(Na, Np) = 857 ()™ + B85 N + 87

Na else

Recalling our prior example describing a payment platform, it is natural to consider that
rural and urban consumers will vary in preferences as well as wealth. For instance, a rural
consumer may be both poor and prefer to be on any platform (high Bf 7). Whereas, the

urban consumer may prefer to have a choice of merchants (higher ﬂf A ).

Contrary to the Armstrong [2006], (Weyl and White [2015], which show that heterogeneity
in user preferences leads to market failure, our economy’s competitive equilibrium remains
Pareto efficient. The main difference in our papers’ results from our differing modeling
choices. In |Armstrong [2006] and [Weyl and White| [2015]’s models, each oligopolistic
platform potentially serves users with varying preferences and can only partially extract
consumer surplus, leading to potentially socially inefficient prices. Whereas our model has
free entry for platforms (as opposed to exogenously fixing the number of platforms), which
(i) allows the possibility of complete platform differentiation and (ii) prevents pricing

2ANote if BlT’S =1, BQT’S =1 and B?)T’S = 0 for all types and subtypes, we have the same utility function as
previous sections.
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distortions due to market power. Subsequently, users may separate according to their
preferences; for instance, if there are subtypes who strongly prefer larger platforms, they

can join other agents who strongly prefer larger platforms.

The introduction of consumer heterogeneity in preferences leads to interesting comparative
statics. To understand in greater detail how the differences in preferences affect the

competitive equilibrium, we apply the new utility function to the experiment from section
B3

In figure we plot how the equilibrium utilities (for the new utility function) for each
subtype vary as we alter the fixed cost of building a platform for some given parametersﬁ
To introduce differences in user preferences, we assume that (i) urban consumers (B, 2)
strongly prefer to be on a platform with a large number of merchants ( {3 2 = 3) relative
to rural consumers (32" = 1) and (ii) the urban consumers are relatively indifferent about
the size of the platform ( ZB 2 = 0.01), whereas the rural consumers prefer larger platforms
( QB 1 = 1) -~ so the rural consumer’s utility function is identical from previous sections.
Similarly, the merchants’ utility functions are unchanged from previous sections of the
paper.

In figure as we increase the cost of building platforms, urban consumers (B,2) — who

prefer smaller platforms with a higher fraction of merchants — are affected the most.
Whereas the rural consumers — who prefer larger platforms — are barely affected at all.

The increase in the fixed cost of building a platform causes the relative price of smaller
platforms to become larger, which leads the competitive equilibrium to comprise of larger
platforms. Therefore, even though the cost of building platforms is larger (and subse-
quently the production possibility frontier of the economy is shrinking), the equilibrium
utility of rural consumers and the merchants are relatively unchanged. The big loser in
this experiment are the urban consumers. In the new equilibrium, platforms which are
larger and are populated by a more equal fraction of consumers and merchants are rel-
atively cheaper to produce — hurting urban consumers, who prefer platforms which are

largely populated by merchants.

6.2. Multihoming. Agents may wish to join multiple platforms. For instance, some

consumers may prefer to use multiple forms of payment, some companies may prefer to

25The economy’s parameters are @41 = @42 = ap1 = QB2 = %; ca=cg=1;y4a =7 =¢€4 =€ = %;
ka1 = 0.7, ka2 = 1.3,kp1 = 1, kB2 = 1.

Further we make urban consumers (B, 2) strongly prefer platforms which comprise of a favorable ratio of
consumers to merchants (5{3’2 = 3), be mostly indifferent about the size of the platform (55’2 = 0.01)
and have little to no benefit from being on a platform (,Bé5 2= 0.01). For all other types, we maintain the
previous utility function (5{4’1 = ,6’{4’2 = ,B{B’l =1), (,6’2A’1 = ,6’2A’2 = ﬁf'l =1) and (B:f’l = ,6’;’2 = ﬁf’l =
0).

For computational simplicity, we allow the equilibrium wealth levels to be close to the desired wealth levels
(K'/Al = 0.7, KRA2 = 1.3,/‘\331 = 1,/4;32 = 1).
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FiGURE 5. How does the utility for each subtype change as we alter the
fixed cost of building a platform
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list their stock on multiple exchanges, some traders may prefer to trade over many dark

pools.

Our framework is sufficiently flexible to allow endogenous multihoming (agents can choose
to join multiple platforms). In previous sections, we restricted individuals to only join one

platform via our matching constraint — Y-, z7 s[d7 (N4, Np)] = 1.

We can relax the matching constraint and yet retain the linear programming nature of
the problem. Therefore, we can model various different forms of multihoming by altering
the matching constraint. For instance, we could require agents join two platforms (the
matching constraint would be Y, z7 s[dr(Na, Np)] = 2), a maximum of two platforms
(the matching constraint would be Y-, z7 s[dr(Na, Ng)|] < 2), or as many platforms as

the agent as the agent can afford (no matching constraint).

Relaxing the matching constraint will tend to create smaller, more numerous platforms in
equilibrium. For instance, consider some very rich subtype, with singlehoming (an agent
is only allowed to join a maximum of one platform), the rich subtype would only be able
to sponsor larger or more unequal platforms. With the possibility of joining more than
one platform, the rich subtype could sponsor multiple, smaller platforms which would lead

to a higher utility (since utility is concave in the number of users of each type) and would
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generally be cheaper to produce (to be precise, the cost function for producing platforms
exhibits decreasing returns to scale if there are no fixed costs of platform production, that
is, if K =0).

A potential shortcoming of our model is that utility is additive in the number of platforms
an agent joins. Therefore, if an agent joins two identical platforms, the agent’s utility

would be double the utility from joining only one platform.

7. CONCLUSION

There are many economic platforms which must cater to multiple, differentiated users, who
in turn, care about who else the platform serves. For instance credit cards, clearinghouses
and dark pools, to name but a few (Rochet and Tirole| [2003b], [Ellison and Fudenberg
[2003], Rochet and Tirole [2006], (Caillaud and Jullien| [2003], Armstrong| [2006], Rysman|
[2009], Weyl [2010] and Weyl and White [2015]). Over-the-counter markets can also be

conceptualized in this way — who is trading with whom, what is the network architecture,

and what is the overall degree of direct and indirect connectedness (Allen and Gale| [2000],
Leitner| [2005], |Allen et al.| [2012], |Acemoglu et al.| [2015], |Cohen-Cole et al.| [2014], Elliott|
). Modeling each of these arrangements is inherently difficult and there is
much more to be done. Here we try to capture each of the applications in a stylized way

by building a common conceptual framework for analysis.
Our paper has three four contributions.

Our first contribution is methodological. As in the prior work on firms as clubs by
land Townsend| [2006], which builds on [Koopmans and Beckmann| [1957], Sattinger| [1993],
Hornstein and Prescott| [1993], Prescott and Townsend, [1984] Hansen! [1985] and [Rogerson|

[1988], we model an economy with competing platforms in a general equilibrium frame-

work, with platforms as clubs. Our framework is relatively general; we can analyze an
economy with many (i.e. more than two) types of users, who may have heterogeneous pref-
erences; an economy with heterogeneous costs for servicing different users; or an economy

with inherent differences within a type’s wealth.

Second, our economy incorporates that an individual’s utility may be contingent on the ac-
tions of others — in short an externality. But we show how to internalize interdependencies,
so they do not lead to an inefficient equilibrium overall. In particular the potential exter-
nality is ‘priced’ — in a manner suggested by [1969]. The competitive equilibrium
is efficient.

Third, we demonstrate how changes in one agent’s wealth (or Pareto weight) has inter-

esting general equilibrium effects both within- and across-types. The matching in the
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economy is endogenous and the math of assignment has to work out in the general equi-
librium. For instance, consider a payment platform for consumers and merchants, where
there are two subtypes of consumers — rural and urban consumers. An increase in the rural
consumer’s wealth will lead to decreases in the urban consumer’s welfare and ambiguous
effects on the merchant’s welfare. This follows from our assumption that agents do not
like to be on a platform with more of their own type, and therefore as we increase the rural
consumer’s wealth, they will prefer platforms with more merchants (and less consumers).
This is also bad for some merchants with low wealth, as they are now on platforms with
fewer consumers and relatively more merchants. Further, the rise in the rural consumer’s
wealth will lead the rural consumers to pay a greater fraction of the costs of being on a
platform — in turn, this has distributional general equilibrium effects on the other types’
welfare.

Fourth, we show how technological progress may reduce inequality. A reduction in the
fixed cost of building a platform reduces the relative value of capital (that is wealth)
and subsequently allows both bigger and more platforms to be created which in turn
creates more demand from the various subtypes. The biggest utility gain is for the lowest
wealth subtypes, who can now join some platforms rather than reside in autarky/non

participation.

We should make clear at the same time the limitations of our framework. First, our model
is purely static, and we exclude any coordination failures (Caillaud and Jullien| [2003],
Ellison and Fudenberg [2003], Ellison et al. [2004], Ambrus and Argenziano| [2009], Lee
[2013], Weyl and White [2015]) and any possibility of innovation in platform design as an
intrinsic part of the model.

Second, no platforms or agents have any pricing power in our model, which as|Weyl [2010]
and Weyl and White [2015] show may interact with the agent’s preferences over other
agent’s actions to exacerbate or minimize market failures. That literature is concerned
with the allocation of fees. In our Walrasian set up there is no rationale for the regulation of
prices on a platform — if a social planner wishes to implement a more equitable allocation,

a social planner should redistribute wealth and not regulate prices.

Third, the only source of platform differentiation arises from the size and composition of a
platform’s users. Relatedly, we also require that the characteristics of agents to be clearly
identified and rules enforced (i.e. no adverse selection or false advertising). Some might
find it implausible that the neighborhood composition can be so tightly controlled.

Fourth, we do not allow ever increasing economies of scale in platform size. The existence
of economies of scale remains an empirical matter, depending on the particular platform
and market one has in mind. But for some there is no presumption of ever increasing

returns. [Duffie and Zhu| [2011] argues this with central counterparty clearing house (CCP)
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platforms but |O’Hara and Ye [2011] for equity market platforms and Altinkili¢ and Hansen
[2000] for capital issuance find contrary evidence.

Our work differs from the existing two-sided market literature and the macro financial
literature in two key ways. First, our method is different. We concentrate on model-
ing platforms in a Walrasian equilibrium with extended commodity space with complete
contracts and exclusivity. In contrast, the two-sided market literature concentrates on
modeling platforms in a partial equilibrium environment. The macro financial literature
typically imposes incomplete contracts or a particular institutional arrangement or game.
Second, the two sided market literature focuses on how market power and imperfect com-
petition affect platform economics, while our framework considers perfect competition
between platforms. The macro financial literature argues explicitly or implicitly for regu-
lation, to ensure stability, where we argue for the appropriate design of markets ex ante
and letting rights to trade be priced in equilibrium (see also Kilenthong and Townsend
[2014]).

We do not view our paper as the final word. In some sense we are trying to arbitrage
across distinct literatures, bringing some general equilibrium insights to applied problems
in industrial organization and market design/ regulation. Ultimately, modeling and un-
derstanding platform economies with more nuanced but important details is crucial. We
hope this paper ignites a discussion on how to model and analyze multiple, competing
platforms.
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8. APPENDIX

8.1. Proof of Theorem (4)). The price-setting intermediary in the monopolistic equilib-
rium will capture all the rent in the economy and will produce less slots than the price-

taking intermediary in the competitive equilibrium.

Proof. To begin we show that in the monopolistic equilibrium, the intermediary will pro-
duce a negligible amount of platforms. Then we show that the competitive equilibrium

will produce platforms that use the entire endowment in the economy.

For simplicity, let us assume there are only two types of agents A and B with no subtypes.
Assume a monopolistic intermediary produces X (where X is less than one) platforms of
sizelﬂ (1,1) and sells each contract to type 1" at a price of KT/x, where k7 is the agent
T’s wealth. The agents can either participate (that is, buy contracts) or not buy. If the
agent does not buy any contracts, their resultant utility is zero.

Let us assume each agent buys X contracts of the platform of size (1,1). Then type T’s
utility will be XUrp(1, 1), that is, the utility of being on a platform of size (1, 1) multiplied
by the probability of being on that platform, X.

Could the agent buy any other contract? No, since the monopolist only produces one type
of platform. Could the agent buy less of the contract? Yes, but utility is increasing in
the purchase of this contract, X, therefore not optimal. Could the agent buy more of the
contract? No, because the agent is constrained by their wealth endowment, <.

The intermediary’s profit is equal to: k4+kp—X (ca+cp+c). Therefore, the intermediary’s
profit is decreasing in X. Therefore, the intermediary will produce the smallest positive
number of platforms, X, as possible to maximize profits. Therefore, in the monopolistic

equilibrium only a negligible number of platforms will be produced.

In the competitive equilibrium, from theorem — the First Welfare Theorem — we know
that the competitive equilibrium is a Pareto Optimal allocation, second, given the in-
termediary’s constant returns to scale technology, we know the intermediary makes zero
profits. Combining these two results, we know in the competitive equilibrium there will
be a positive number of platforms and that the total cost of producing these platforms

will be k4 + kg — the total amount of resources in the economy. O

26We restrict attention to the platform of size (1,1) for expositional ease, although the intermediary could
construct platforms of any given size. Additionally, even though in equilibrium the platform will produce
only a negligible amount of this platform, the platform of size (1,1) would be the cheapest platform to
produce.
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8.2. Computation. Attempting to compute the Pareto problem can be difficult due to
the large commodity space and the number of constraints, therefore, we transform the
above Pareto problem by removing the club constraints therefore, allowing us to use
simplex algorithms which are quicker and more capable to handle the large commodity

and constraint space.

For ease of explanation let us assume there is only two subtypes of merchants and con-
sumers, i.e ¢ € {1,2} and j € {1,2}.

First we eliminate the club constraints recall equation , this constraint can be rewritten

in matrices for each contract dr(Na, Np) as

xAzl[dA(NAaNB)]
da(Na, N
aa1 aa2 0 0 —Ny4 za2[da(Na, Np)] .
(17) 0 0 api aps -Ng zp1ldg(Na, Np)]| = .
1 J—
- tp2ldp(Na, Np)]

Since, 7 s[dr(Na, Np)] and y(Na, Np) must be non-negative, with equation let us
define a polyhedral cone, with a single extreme point at the origin. Therefore, using the
Resolution Theorem of Polyhedrons, the systems of equations can be represented as the set
of all non-negative linear combinations of its extreme rays. Scaling each y(Na, Ng) = 1,

the extreme rays of this cone are:

Let y(i’j)(NA,NB), the quantity of each ray, where 7 is the subtype A agent, j is the
subtype B agent. Therefore, we can define the set of {7 s[d7(Na, Ng)],y(Na, Np)} that

satisfies as:
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N N
{z7s[dr(Na, Ng)|,y(Na, Ng)} = [y (N4, Np)] (A,O, —£ o, 1) +
A1 aB1

) )

N N
ot [y(272)(NA7 NB)] (Ov 7147 0, 7B7 1)
a2 QB2

Where y(i’j)(NA, Np) > 0,i=1,2 and j = 1,2. Intuitively, each ray is a different com-
position of types of agents to fulfill the contract, for example y(l’l)(N A, Np) corresponds
to the measure of platforms which are fulfilled by agents (A4,1) and (B,1). There are
four extreme rays hence a linear combination of these four rays is able to replicate any
combination of types of agents. In general, if there are I types of A and J types of B then

there will be I x J extreme rays for each contract.

Furthermore, we have the following relations:

r4i(Na, Np) = yaA
Z
)
rpj(Na, Np) = -Np
i OB

y(Na,Np) = >y (N4, Np)

i

Hence, we are now ready to redefine the Pareto problem in terms of our new definitions

which satisfy the matching constraints.

~ max ZAA,Z S > yBID(NA,Np) x Nax Us(Na, Np)| +
Y9 (Na,Np) 20 5 i (NaNB)

+ ZAB,J [Z >° y@(Na,Ng) x Ng x Up(Na, Np)
i (Na,NB)

Such that each agent is assigned to a platform with probability one (the counterpart to

equation ([12)).

7.7 N N
y A B) Ny =1YVi,

2. 2

J (Na,Np)

G (N4 N
i (Na,Ng) B
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Such that the resource constraint is satisfied (the counterpart to equation):

S >y (NA, Np) x C(Na, Np) | < arsrrs
(NaNg) | e

Therefore, the advantage of writing the Pareto problem in the above formulation reduces
the constraint set, in this example, there are only five constraints, however, the number

of variables is very large.

We can use a linear programming solver to compute the reformulated Pareto program.
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FIGURE 6. Redistributing wealth within and across type — the effects on
all agents’ utilities

Redistributing wealth across type: Redistributing wealth within type:
the effect on utility from transferring the effect on utility from transferring
wealth from (4,2) to (B,1) wealth from (B,2) to (B,1)

I‘-l_qw does utility chang_e as we adju_st wealth for_B1 How does utilty change as we adjust wealth for B1

A
a1
EH|

0g 1 11 12 13 14 15 15

14 16 18 2 i 1
B.1's waalh

i2 E
B.l's wenth

These figures are identical to figure , except we also include the agents whose wealth changes.
In the left panel, the x-axis redistributes wealth from subtype (A4,2) to subtype (B,1). As one
would expect this increases (B, 1)’s utility and simultaneously reduces (A4, 1)’s utility.

In the right panel, the x-axis redistributes wealth from subtype (B,2) to subtype (B, 1). As one
would expect this increases (B, 1)’s utility and simultaneously reduces (B, 2)’s utility.

08 i

8.3. Additional Graphs.
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