

A PCR-BASED TECHNIQUE FOR THE IDENTIFICATION **OF** Aphanomyces invadans

Varinee Panyawachira¹, James H. Lilley², Douglas Hart³ and Somkiat Kanchanakhan¹

¹ Aquatic Animal Health Research Institute (AAHRI), Department of Fisheries, Kasetsart University Campus, Jatujak, Bangkok 10900, Thailand ² Institute of Aquaculture, University of Stirling, FK9 4LA, Scotland

³ Department of Veterinary Pathology, University of Glasgow, G61 1QH, Scotland

Fig.1 Typical Aphanomyces cluster of encysted primary zoospores.

Fig. 2 Lesion developing on striped snakehead (Channa striata) after intramuscular injection with A. invadans zoospores

Introduction

Infection by the Oomycete fungus, Aphanomyces invadans (=A. piscicida), and production of distinctive granulomas, are the diagnostic features of EUS (epizootic ulcerative syndrome) (=MG: mycotic granulomatosis) in Asian fish. Identification of A. invadans isolates is based on demonstration of Aphanomyces sporulation morphology (Fig.1), slow growth rates in culture (Fig.3) and distinctive pathogenicity in EUS-susceptible fish (Fig.2). This poster describes the use of a polymerase chain reaction (PCR)-based test to identify A. invadans cultures.

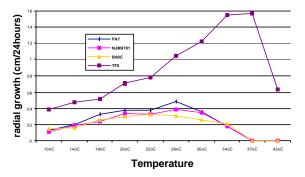


Fig. 3 Temperature growth profiles showing thermolabile characteristic of A. invadans isolates (PA7, NJM9701 & B99C) compared to Aphanomyces saprophyte (TF5).

Methodology

Primers

Primers were designed based on the DNA se- Fig.7 Origin of Aphanomyces invadans isolates (all recovered from internal quence of the internally transcribed spacer (ITS) tissues of EUS/MG affected fish) region between the 18S and 5.8S rRNA genes of

PCR reaction

Each 50 µl reaction tube contained the reagents listed in Fig.5. These were overlayed with 2 drops of mineral oil.

Reagent	Working concentration	Volume	Final concentration	
H ₂ O		29µ1		
buffer	10x	5µl	1x	
MgCl,	25mM	5µ1	2.5mM	
dNTP	2.5mM	4µ1	200µM	
Primer 1	10pmol	2.5µ1	25pmol	
Primer 2	10pmol	2.5µ1	25pmol	
Taq	5Û/µ1	0.25µl	1.25U	
DNA	30ng/µl	2µ1	60ng	
Total		50.25 µl	5	

Fig.5 Reagents used for PCR reactions

PCR reactions were performed in a Hybaid Omnigene thermocycler using the temperature cycle 1lustrated in Fig.6. Amplification products were separated on 1.5% agarose gels stained with ethidium bromide and visualised under UV illumination.

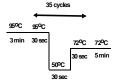


Fig.6 Temperature cycle for PCR reaction

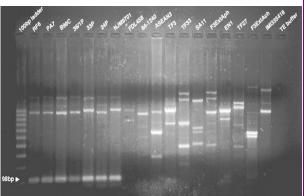
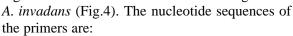
Fungus isolates

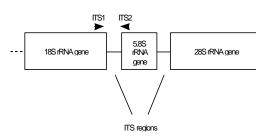
Six A. invadans isolates (previously shown to have A. invadans morphology, growth and pathogenicity characteristics) (Fig.7), and a strain panel of eleven other Aphanomyces, Achlya, Saprolegnia and Phytophthora species (Fig.8) were compared using the PCR test. DNA was extracted from fungal mycelium using the Nucleon BACC2 kit (Amersham Life Sciences, England).

Isolate	Host	Date	Location	Worker
RF6	Channa striata	Jan 92	Suphanburi, Thailand	L.G. Willoughby
PA7	Channa striata	Jan 95	Nonthaburi, Thailand	J.H. Lilley
B99C	Cirrhina reba	Mar 99	Mymensingh, Bangladesh	J.H. Lilley & M.H. Khan
33P	Channa striata	Dec 91	Cent Luzon, Philippines	J.O. Paclibare
24P	Mugil cephalus	May 90	Nth Queensland, Australia	A. Thomas
NJM9701	Plecoglossus altivelis	Aug 97	Shiga Prefecture, Japan	K. Hatai

Results and Discussion

The Aph3-Aph4 primers reacted with DNA extracted from mycelium of a range of A. invadans isolates from different countries and host fish species. A 98bp product was produced from each reaction. A few non-specific bands were also produced. The saprophytic Aphanomyces species and other Oomycete fungi tested also produced a range of band patterns, but none succeeded in producing the 98bp band. The PCR test is therefore a useful means of differentiating A. invadans cultures from other fungal species.


Fig.9 PCR products showing 98bp band amplified from all A.invadans iso-

Use of the probe to detect A. invadans in the environment

Efforts have been made to recover A. invadans from natural water bodies using culture-based techniques, but these have proved problematical due to colonisation of baits and culture medium by faster-growing saprophytic fungi. As a result, important aspects of the natural ecology of A. invadans (e.g. persistence of the fungus in ponds and fungal viability on carrier fish and non-fish substrates) have not been adequately studied. Therefore, a technique was developed using the PCR primers for the proxy detection of A. invadans DNA in water samples and other substrates. Fungal zoospores were recovered on filter paper and DNA extracted using an ethanol-based procedure. The technique was tested on A. invadans zoospore suspensions (i) in sterile water, (ii) in tank water containing EUS-susceptible fish, and (iii) in pond water collected from active EUS outbreaks. The primers succeeded in detecting

Aph3 forward 5'-ata agg ctt gtg ctg agc Aph4 reverse 5'-cat ttc tga tgg cta tag g

Aphanomyces astaci	FDL458	Austropotamobius pallipes	crayfish plague	?	Herefordshire, UK	D.J. Alderman
Aphanomyces sp	84-1240	Brevoortia tyrannus	UM*	May 84	Nth Carolina, USA	M.J. Dykstra
Aphanomyces laevis	ASEAN3	fish pond water	-	Jan 94	Kasetsart, Bangkok	L.G. Willoughby
<i>Aphanomyces</i> sp	TF5	Channa striata	EUS**	Jan 91	Thailand	S. Chinabut
<i>Aphanomyces</i> sp	TF33	Fluta alba	EUS**	Dec 91	Udon Thani , Thailand	L.G. Willoughby
<i>Aphanomyces</i> sp	SA11	Channa striata	EUS**	Jan 95	Nonthaburi, Thailand	J.H. Lilley
<i>Aphanomyces</i> sp	F3ExtAph	Channa striata	external fungal infection	Mar 99	AAHRI wet lab, Bangkok	J.H. Lilley
<i>Aphanomyces</i> sp	EN1	Eichhornia crassipes	leaf blight disease	?	Bangkok, Thailand	S. Kiewong
Saprolegnia diclina	TF27	Channa striata	EUS**	Dec 91	Udon Thani , Thailand	L.G. Willoughby
Achlya sp.	F3ExtAch	Channa striata	external fungal infection	Mar 99	AAHRI wet lab, Bangkok	J.H. Lilley
Phytophthora cinnamomi	IMI335418	Macadamia	plant pathogen	1989	Australia	P.M. Wood

Fig.8 Origin of other fungal isolates

*probably external fungal opportunist on ulcerative mycosis-affected fish **external fungal opportunist on EUS-affected fish

zoospores of A. invadans in experiment (i) but not in (ii) or (iii). This was probably due to the high levels of debris, and low levels of A. invadans DNA in the water.

Other applications of the PCR probe

*The PCR-based test is being used to show the relationship to A. invadans of new invasive fungus isolates, obtained from ulcerative disease outbreaks on the east coast of USA.

*Attempts to use the DNA probe in an A. invadans-specific histological stain using in situ hybridisation have not yet been successful.

*A procedure has been developed to test for A. invadans DNA in paraffin-embedded tissues using the PCR primers. This has enabled examination of historical tissue samples (Blazer, pers. com.).

Fig.4 Structure of the rRNA gene cluster. The cluster is split into coding (18S, 5.8S and 28S genes) and non-coding (ITS) regions. The position of the PCR primers and their direction of synthesis are indicated by arrows