Diatomaceous earth dusts for grain protection by small-scale farmers in Tanzania and Zimbabwe

Seminar presentation, Department of Entomology, Kansas State University, USA. 20 January 2004

Project website: www.nri.org/de/
Presentation Outline

• Introduction

• Lab experiments with raw African DEs

• Field Experiments

• Results

• Gaps & Challenges
Introduction

• Farmers throughout sub-Saharan Africa suffer serious grain losses due to insect attack

• Losses threaten household food security or undermine market returns

• Grain protection options— admixing with ash, plant materials or synthetic chemical insecticides

• Main pesticides - organophosphate-pyrethroid cocktails (Pirimiphos-methyl 1.6% +Permethrin 0.3%; Fenitrothion 1% + Deltamethrin 0.13%; Pirimiphos-methyl 2.5% + Deltamethrin 0.1%)

• Widespread adulteration and misuse problems esp. East Africa

• Farmers demanded alternatives
Introduction (cont.)

• Diatomaceous earths (DEs) attractive alternative but limited information available on efficacy under tropical small-scale storage conditions

• What are DEs?

• CPHP of DFID-UK funded research in Zimbabwe from 1998 - 2000

• Imported enhanced DEs found effective in small-scale on-farm storage systems for periods of 8-10 mths @ 0.1%w/w

• *R. dominica* on sorghum required 0.2%w/w

• Further work initiated in Tanzania
 - for wider geographical testing, and
 - to test vs devastating LGB, *Prostephanus truncatus*

• Local deposits of DEs identified but efficacy unknown
Assessment of African DEs

- 5 Raw African DE samples assessed on *S. zeamais* compared to Protect-It

- Controlled conditions: 27±2°C; 60 ± 5%RH

NRI-DE applied at 0, 2500 & 5000ppm

UZ- applied at 0, 1000, 2500 & 5000ppm

Raw DE from Zambezi Valley, Zimbabwe
Field Experiments: 2002-2005

Zimbabwe - Harare, Buhera & Binga
- Maize, sorghum, cowpeas

• Tanzania - Dodoma, Shinyanga, Manyara
 - Maize, sorghum, beans
Project sites - Zimbabwe

- Binga
- Harare
- Buhera
Project sites - Tanzania

- Shinyanga region
- Dodoma region
- Manyara region

Map of Tanzania highlighting regions.
Treatments - Zimbabwe

Harare 2003/04 (Maize)
- Actellic Super Dust
- Protect-It 0.1%w/w
- Zimbabwean DE1 @0.1; 0.2; 0.25%w/w
- Untreated control

Buhera 2004/05 (Maize)
- Shumba Super Dust
- Protect-It 0.1%w/w
- Zimbabwean DE1 @0.1; 0.2; 0.25%w/w
- Finger millet chaff 50% w/w

Buhera 2004/05 (Maize)
- Shumba Super Dust
- Protect-It 0.1%w/w
- Zimbabwean DE1 @0.1; 0.2; 0.25%w/w
- Untreated control

Harare 2004/05 (Maize)
- Protect-It 0.1%w/w
- Zimbabwean DE1 @0.15; 0.2; 0.25%w/w
- Zimbabwean DE2 @ 0.2%w/w
- Untreated control

Binga 2004/05 (Sorghum)
- Shumba Super Dust
- Protect-It 0.15%w/w
- Protect-It 0.1%w/w + Permethrin 2mg/kg
- Zimbabwean DE1 @ 0.2 & 2.5%w/w
- Zimbabwean DE2 @ 0.2% w/w
- Untreated control

Note: 4 replicates of each treatment were used
<table>
<thead>
<tr>
<th>Year</th>
<th>Crop</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002/03</td>
<td>Maize & Sorghum</td>
<td>- Protect-It (100g/100kg) 0.1%w/w
- Protect-It 250g/100kg 0.25% w/w
- Protect-It 0.1%w/w + Permethrin 2mg/kg
- Actellic Super Dust (100g/90kg)
- Dryacide (250g/100kg) 0.25% w/w
- Traditional protectants
- Untreated control</td>
</tr>
<tr>
<td>2003/04</td>
<td>Maize & Sorghum</td>
<td>- Protect-It (100g/100kg) 0.1%w/w
- Protect-It (250g/100kg) 0.25% w/w
- Protect-It 0.1% w/w + Permethrin 2mg/kg
- Actellic Super Dust (100g/90kg)
- Dryacide (250g/100kg) 0.25% w/w
- Traditional protectants
- Untreated control
- Stocal Super Dust (100g/90kg)
- Tanzanian DE (250g/100kg) 0.25%w/w</td>
</tr>
<tr>
<td>2004/05</td>
<td>Maize</td>
<td>- Protect-It (100g/100kg) 0.1%w/w
- Protect-It(250g/100kg) 0.25% w/w
- Protect-It 0.1% w/w + Permethrin 2mg/kg
- Actellic Super Dust (100g/90kg)
- Dryacide(250g/100kg) 0.25% w/w
- Traditional protectants
- Untreated control
- Stocal Super Dust (100g/90kg)
- Tanzanian DE (250g/100kg) 0.25%w/w
- Shumba Super Dust (50g/90kg)</td>
</tr>
</tbody>
</table>

Note: 4 replicates of each treatment were used
Storage facilities & Sampling

Zimbabwe

Tanzania
RESULTS (only for 2002/03 & 2003/04)

Raw African DEs - Zimbabwe

Laboratory comparison of the efficacy of raw African diatomaceous earths admixed with maize grain against *Sitophilus zeamais*; n=4 (UZ, Zimbabwe)
Laboratory comparison of the efficacy of raw African diatomaceous earths admixed with maize grain on adult mortality and F1 emergence of 50 14-28 day old *Sitophilus zeamais* at 27°C and 60% r.h, n=3, (NRI, UK, July 2003)
Maize grain protection trials using raw DE from Chemutsi, Zimbabwe compared to commercial DE or synthetic insecticide, Hatcliffe farm, Harare, 2003/04

![Graph showing mean grain damage (%)](image)
Comparison of mean number of LIVE adult insects/kg per species on maize grain treated with different protectants during 2003/04 storage season, Harare, Zimbabwe (n=4)

- Sitophilus zeamais
- Sitotroga cerealella
- Tribolium castaneum
- Plodia interpunctella
- Cryptolestes ferrugineus
- Parasitic wasps

Storage period (weeks) and treatment

- Chemutsi 0.1%w/w
- Chemutsi 0.2%w/w
- Chemutsi 0.25%w/w
- Protect-it 0.1% w/w
- Actellic Super Dust 0.05%w/w
- Untreated control
Comparison of mean number of DEAD adult insects/kg per species on maize grain treated with different protectants during 2003/04 storage season, Harare, Zimbabwe (n=4)

Storage period (weeks) and treatment

- **Sitophilus zeamais**
- **Sitotroga cerealella**
- **Tribolium castaneum**
- **Plodia interpunctella**
- **Cryptolestes ferrugineus**
- Parasitic wasps

Treatments
- Chemutsi 0.1% w/w
- Chemutsi 0.2% w/w
- Chemutsi 0.25% w/w
- Protect-it 0.1% w/w
- Actellic Super Dust 0.05% w/w
- Untreated control
Mean moisture content (%) of grain samples, 2003/2004 storage season, Harare (n=4)

Mean grain moisture content (%)

- Chemutsi 0.1% w/w
- Chemutsi 0.2% w/w
- Chemutsi 0.25% w/w
- Protect-it 0.1% w/w
- ASD 0.05% w/w
- Untreated control

Storage period (weeks)/Sampling date

- 0 (10-Oct-03)
- 8 (29-Nov-03)
- 16 (24-Jan-04)
- 24 (22-Mar-03)
- 32 (15-May-04)
Met data - Harare

Temperature (°C)

Relative humidity (%) and total rainfall (mm)

Month and year

Total rainfall
Mean rh
Max temp
Mean temp
Min temp
Maize grain protection trials, Mlali village, Kongwa district (2003/04)

Idadi ya punje zilizharibiwa na wadudu kati ya punje 100 kati ya punje 100 (\% no. of damaged grains)

Aina ya jaribio (Treatments)

- Protect-It 0.1\%w/w
- Protect-It 0.25\%w/w
- Protect-It 0.1\%w/w + permethrin 2mg/kg
- Actellic Super dust
- Dryacide 0.25\%w/w
- Bila kupepeta na majivu (Traditional protectant)
- Bila chochote (Untreated control)
- Stocal Super dust
- Tanzanian DE 0.25\%w/w

Dates:
- 23/07/2003
- 27/09/2003
- 25/11/2003
- 12/01/2004
- 12/03/2004
- 01/05/2004
Mean number of LIVE insects in maize grain stored at Mlali village using different protectants during 2003/2004

- **Oryzaephilus LIVE**
- **Prostephanus LIVE**
- **Tribolium LIVE**
- **Sitophilus LIVE**

Protect-It
- 0.1% w/w
- 0.25% w/w
- 0.1% w/w & Permethrin

Actellic Super dust

Dryacide 0.25% w/w

Traditional protectant

Untreated control

Stocal Super dust

Tanzanian DE 0.25%w/w

Storage period (weeks) and treatments

Mean insects/kg

0 8 16 24 32 40
Mean number of DEAD insects in maize grain stored at Mlali village using different protectants during 2003/2004
Farmer Managed Trials

In the 2nd and 3rd years farmers set up their own trials with the DE Protect-It at their homes, the project team have visited them regularly to learn about how their trials were doing.

1 sack of maize grain treated with Protect-It (at 250g/100kg), after 10 months storage

1 sack of maize grain treated with farmers practice after 10 months storage

Esther’s trial, Mlali village, Tanzania
Farmer managed trial: performance of Protect-It DE compared to other farmer grain protection methods, Buhera District, Zimbabwe (2003/04)

- **Protect-It 0.1% w/w (n=30)**
- **Synthetic insecticides (n=20)**
- **Local methods (n=9)**

Mean % insect damaged grain (± sem)

- **Storage period (weeks)/Sampling date**
 - 0 (11/09/03)
 - 12 (03/12/03)
 - 24 (05/03/04)
 - 36 (26/05/04)
Challenges/Gaps

• Farmer expectations raised
• Registration of imported DEs
• Consider farmer diversity
• Local exploitation of DEs
• Inadequate challenge of DEs by Prostephanus truncatus
• \textit{P. truncatus} Seeding?
• DE combinations with other protectants for bostrichid control?
This presentation is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries.

The views expressed are not necessarily those of DFID.

R8179. Crop Post Harvest Programme

Visit the DE project website: www.nri.org/de/
THANK YOU