

BATH Identification of Key Genes Involved in Cassava Post-harvest Physiological Deterioration

Kim Reilly¹, Diego Cortés², Rocío Gómez-Vásquez¹, Diana Bernal², Joe Tohme², John R. Beeching¹ ¹ Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, U.K., ² CIAT, A.A.6713, Cali, Colombia email: K.Reilly@bath.ac.uk

Abstract

The rapid post-harvest physiological deterioration (PPD) of the starchy storage roots of cassava (Manihot esculenta Crantz) is a serious constraint to the development of this major crop. PPD is an active response involving changes in gene expression and the synthesis of novel proteins. Reactive oxygen species (ROS) and the enzymes and compounds that modulate them play central roles in PPD. Microarrays of ~ 11,000 cDNA clones to mRNA isolated from cassava roots over a deterioration time course were hybridised with cDNA populations in order to identify genes whose expression patterns were significantly altered during PPD. Analysis of these data has led to the identification and characterisation of key genes involved in a range of relevant functions, including: ROS modulation, programmed cell death, control of gene expression and signal transduction.

Post-harvest physiological deterioration

PPD limits shelf life of cassava roots to 24 - 72h

Staining of vascular tissue & fluorescence of the roots is due to the accumulation &

oxidation of phenolic compounds. Scopoletin is particularly abundant ¹ Reactive oxygen species (ROS) including H₂O₂ and O₂ are produced in response toPPD ²

Enzymes and compounds that modulate ROS play central role in PPD 2

Other changes include increases in respiration, ethylene biosynthesis, phenolic

biosynthesis, enzyme activity (e.g. PAL, CAT, peroxidase, PPO, invertase), and changes in membrane lipids and sterols 3

· Resembles wound responses in other plants, but lacks adequate wound repair.

Experimental strategy

Flow chart of experimentation

· "Early" and "late" cDNA libraries constructed from pooled mRNA 0, 6 and 12h or 24, 24 and 96h after harvest

Hybridisation strategy for microarray experiments

- 11,136 cDNA clones (7680 from the early library and 3456 from the late library) hybridised for each time point
- 7 slides hybridised for each time point

· cDNA probes prepared over a PPD time-course

Probes	ilities -						
8 vo 120	Early Silde 1	Early Side 2	Early Side 3	Early Side 4	Early Side 5	Late Silde 1	Late Slide 2
8 va 246	Early Side 1	Early Side 2	Early Side 3	Early Side 4	Early Side 5	Late Slide 1	Late Slide 2
8 w 49h	Early Side 1	Early Side 2	Early Side 3	Early Side 4	Early Side 5	Late Slide 1	Late Slide 2
8 vo 72h	Early Side 1	Early Side 2	Early Side 3	Early Side 4	Early Side 5	Late Slide 1	Late Side 2
8 vo 18h	Early Side 1	Early Side 2	Early Side 3	Early Side 4	Early Side 5	Late Slide 1	Late Side 2

Microarray hybridisations

Aim: to identify, isolate & characterise genes, components of which could be used as tools to modulate PPD

- Identification of genes whose expression changes during PPD using cDNA microarrays
- · PCR products of cDNA clones spotted by robot onto slide
- 4 technical & 3 biological replicates of target DNA + controls • Early time point cDNA probe (e.g. time 0) labelled with Cy3
- · Late time point cDNA probe (e.g. 24 hours) labelled with Cy5
- Selection based on normalised, background corrected ratios Clones selected on the basis of at least 2 fold up-regulation
- or 2.8 fold down-regulation for at least 2 time-point hybridisations (e.g. 0 vs 12h and 0 vs 24h)

Differentially expressed genes

- · Single pass sequencing to generate EST sequence data for selected clones
- To date 47 non redundant clones showing differential expression identified
- · A subset of cDNA clones selected for full sequencing and Northern blotting

PPD up-regulated clones

PUTATIVE IDENTITY	BLAST HIT	E VALUE	POSSIBLE FUNCTION
Monoamine oxidase	NP_189953	28-14	Cell wall remodelling
Ascorbate perceidase	AA014118	7e-80	ROS scawinging
M esculents allergenic related protein	AY101376	0.0	Unknown
PIP 1 type aquaporin	AAF65846.1	3e-65	Transport
Putative TIP type aquaporin	CAE53881.	5e-26	Transport
PIP2 type aquaprin	AAO39007.	e-105	Transport
PIP2 type aquaprin	AAC17529	1e-65	Transport
Elongation factor EF1a	049169	36-74	Protein translation machinery
Ethylene response factor	CAE54591	1e-049	Signaling
Auxin induced protein	P40691	0-115	Unknown
Oligouridy/ate binding protein UBP1	CAB75429	Se-61	Transcription
Vacuolar proton inorganic pyrophosphatase (H+ PPase)	AB097115	0.0	Transport
Cysteine protease	T12041	3e-96	Possible role in PCD
Ubiquitin	AAF04147	\$e-37	Possible role in PCD
Class IV chilinase	NP_191010	Se-78	Possible role in PCD
Phospholipase	100421	\$e-25	Signalling
A12g33490	554746	26-22	Unknown
Perceidase	CAA09551	26-94	Cell wall remodelling (also others)
ACC caldase	AAP13098	1e-81	Signalling
Germin Like protein	AAM76226	\$e-7	Cell wall remodelling
N.hydroxylating Cytochrome P450 CYP79D2	AAF27290	3e-59	Glucosinolate biosynthesis
Cytochrome P450 CY/P79D1	AAF 27289	e-121	Glucosinolate biosynthesis
Cytochrome P450 CYP71E	AAP57704.1	6-135	Unknown
Cylochrome P450	CAC24711.1	1e-60	Unknown
405 ribosomal protein 529	AAP65550	26-25	Protein translation machinery
Rice ribosomal protein \$3	AAR10854	1e-107	Protein translation machinery
UDP glucosyltransferase	NP_173653	26-53	Cell wall remodelling (also others)
catalate	AAD50974.1	0.0	ROS scavenging
Seryi tRNA synthetase	061983	3e-77	Protein translation machinery
immunophilin	AAC49391.1	9e-55	Signalling
Gamma adaptin	NP_176215.1	28-55	Transport
MtN19 protein	\$AD01246.1	20-55	Urknown
Heat shock protein	AAR12194	Ce-29	Signafing

PPD down-regulated clones

PUTATIVE IDENTITY	BLAST HIT	E VALUE	POSSIBLE FUNCTION	
Putative senescence associated protein	\$A533410	46-25	PCD	
franslationally controlled tumour protein	Q925W9	3e-77	PCD	
PWWP domain protein	NP_191866	28-09	Transcription factor	
Auxin repressed protein	AAK25768	7e-33	Unknown	
Auxin repressed protein	AAK25768	\$e-20	Unknown	
Jnknown protein	AAG46152	Co-44	Unknown	
RNA transplycosidase	AAL25174	5e-65	Protein translation machinery	
ADP ribosylation factor	\$A565255	30-05	GTP binding protein	
505 ribosomal protein L7A	P35685	4e-01	Protein translation machinery	
Expressed protein	NP_585499	26-22	Unknown	
Expreased protein	NP_564931	5e-29	Unknown	
hypothetical protein	NP_200518	2m-10	Unknown	
Expressed protein	NP 568985	1e-5	Unknown	

Expression of PX3

ts after harvesti

10 18 10

Tools – PX3 a candidate promoter

- Secretory peroxidase
- · Expressed early during PPD Not expressed in:
- Mature roots

- Wounded leaves
- · Strong candidate to drive constructs in transgenic cassava

Isolation of selected genomic clones

- Genomic library constructed in λ DASH II
- · Hybridisation screening with cognate cDNA clones
- λ DNA preparation, restriction digestion and Southern blotting
- · Sub-cloning of selected restriction fragments

Acknowlegements

This publication is an output from a researach project funded by the UK Department for International Development (DfID) for the benefit of developing countries. The views expressed are not necessarily those of DfID. R8154, Crop Post-Harvest Programme. KR would like to thank Dr S. Tiwari for discussion of microarray analysis. RGV would like to acknowledge the support of CIF & Colciencias, Colombia.

References

- 1. Buschmann et al.. (2000) Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Annals of Botany. 86: 1153-1160.
- 2. Reilly, et al.. (2003) Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Molecular Biology 53: 669-685
- 3. Beeching, et al.. In Romeo J, Downum K, Verpoorte R (eds.) Phytochemical Signals and Plant-Microbe Interactions, Plenum Press, New York. pp. 231-249
- 4. Vallelian-Bindschedler et al.. (1998) Heat induced resistance in barley to powdery mildew (Blumeria graminis f.sp. hordei) is associated with a burst of active oxygen species. Physiological and Molecular Plant Pathology 52: 185-199

Leaves