

Development of composite collection and genotyping of foxtail millet [Setaria italica (L.) Beauv.] composite collection

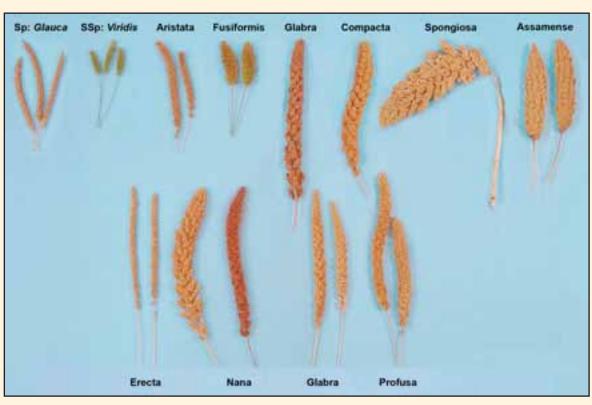
Project PI: HD Upadhyaya, ICRISAT

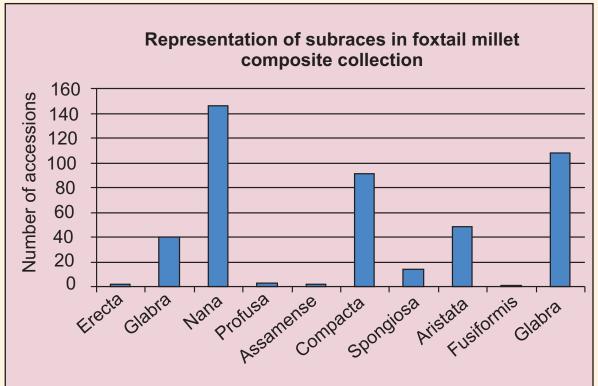
Project Team: ICRISAT – RK Varshney, CT Hash, DA Hoisington, CLL Gowda, V Gopal Reddy, S Chandra, N Lalitha and A Bharathi

Diversity in foxtail millet germplasm.

Introduction

- Foxtail millet belongs to family *Poaceae* and subfamily *Panicoideae*
- A self-pollinating crop with chromosome number 2n=18
- Domesticated in highlands of central China, possibly about 4000 BC
- Cultivated in 26 countries, and ranks second in total world production of millets
- Produces six million tons of food mainly in southern Europe and in temperate, subtropical, and tropical Asia (Marathee 1993)
- An important crop in China, India, CIS countries, and Syria
- Possesses high nutrient quality.


Nutritional value of foxtail millet grain (100 g⁻¹)


- Protein content: 10% to 12%
- Lysine content: 2.29% to 2.7%
- Fat content: 4% to 5%
- Energy: 351 kcal
- Thiamin: 0. 59 (mg)

Classification of foxtail millet germplasm

Two Setaria species are known:

- 1. S. glauca and S. italica (Sub sp: viridis and italica)
- 2. S. italica consists of three races: Moharia, Maxima and Indica; and ten subraces: Aristata, Fusiformis, Glabra, Compacta, Spongiosa, Assamense, Erecta, Nana, Glabra and Profusa.

Status of foxtail millet germplasm at ICRISAT

- The entire foxtail millet germplasm (1535 accessions) characterized for important morpho-agronomic characters following descriptors for S.italica and S.pumila (IBPGR 1985)
- Collection consists of 1470 landraces, 11 improved cultivars and 54 wild accessions
- A core collection (155 accessions), representing entire diversity, was developed based on geographic origin and quantitative traits.

	Table 1. Major holdings of foxtail millet germplasm in the world.	
	Genebank/Country	Number of accessions
ı	ICRISAT, India	1535
	AICSMIP, UAS, Bangalore, India	1300
	National Genebank, China	26222
	NIR, Russia	4745
	ORSTOM-Montpellier, France	3500
	Others	17487
	Total	54789

Composite collection

- A composite collection of foxtail millet germplasm (500 accessions) (Table 2) constituted based on geographic origin and diversity for morpho-agronomic traits
- Composite collection consists of accessions representing all three races and ten subraces.

Regeneration of foxtail millet germplasm.

Table 2. Accessions in foxtail millet composite collection.		
Trait	Number of accessions	
1000 grain weight > 3.7 g	9	
Grain weight per plant > 19 g	5	
Basal tillers > 29	25	
Core collection	155	
Dwarf (<= 50 cm)	21	
Early flowering accessions (< 40 days)	77	
Improved cultivars	10	
Short inflorescence length (<=50 mm)	40	
Long Inflorescence length (>299 mm)	18	
Short inflorescence width accessions (=5 mm)	23	
Widest inflorescence accessions (>39 mm)	25	
Mono culm types (single tiller per plant)	59	
Agronomically elite accessions	33	
Total	500	

Genotyping

Leaf sample of 20-day old seedling of single representative plant from each of 500 accessions taken and DNA extracted by high-throughput procedure.

Primer optimization

- No SSR markers are available in foxtail millet
- SSR markers from closely related species identified
- Thirty-one unlabelled pearl millet SSR markers selected to genotype 8 diverse foxtail millet accessions (representing five countries)
- Primer optimization with Taguchi method (Taguchi et al. 1986) as described in Cobb and Clarkson (1994)
- Twelve markers showed polymorphism
- Additional SSR markers will be selected from other closely related species such as maize and sorghum.

Future plan

- Genotyping 500 accessions of composite collection using 20 SSR markers
- Identifying a reference collection consisting of most diverse accessions for use in crop improvement program.

References

Cobb BD and Clarkson JM. 1994. A simple procedure for optimizing polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acid Research 22: 3801-3805.

IBPGR. 1985. Descriptors for *Setaria italica* and *S. pumila*.

Rome, Italy: IBPGR Secretariat.

Marathee JP. 1993. Structure and characteristics of the world millet economy. Pages 159–178 in Advances in small millets (Riley KW, Gupta SC, Seetharam A and Mushonga JN, eds.). 66 Janapath, New Delhi, India: Oxford and IBH Publ. Co. Pvt.

Taguchi G. 1986. Introduction to quality engineering. Asian productivity organization. Dearborn, MI, USA: American Supplies Institute INC.