Competitive Project SP2-1: Identifying Genes Responsible for Failure of Grain Formation in Rice and Wheat under Drought

Participants

John Bennett, Rachid Serraj, Ken McNally, Richard Bruskiewich, Ramil Maoleon (IRRI, Manila, Philippines) Rudi Dolferus (CSIRO, Canberra, Australia) R. Chandra Babu (TNAU, Coimbatore, India) Zhengqiang Ma (NAU, Nanjing, China) Shoshi Kikuchi, Kouji Satoh (NIAS, Tsukuba, Japan)

Collaborators

Roberto Tuberosa (University of Bologna, Italy) Wim van den Ende (KUL, Leuven, Belgium) Xingguo Ye (CAAS, Beijing, China)

Goal

To identify opportunities to enhance reproductive-stage drought tolerance in rice and wheat through physiological, genetic, and molecular analyses of two yield determinants that are highly sensitive to field-level stress panicle exsertion and floret fertility.

Stress prevents peduncle elongation from driving panicle exsertion

Drought causes reversible inhibition of peduncle elongation

Relative water contents

IRRI

Two gene families down-regulated by drought in peduncle

• Targets of E2F transcription factors

(including replication proteins and cyclins needed for transition from G1 phase to S phase)

• Enzymes involved in cell wall biosynthesis

(including cellulose synthases, sucrose synthases, glucosyl transferases)

Three models of drought regulation of cell cycle

Impact of drought on cell division at peduncle base

2d before heading (2.5 cm)

Heading (10cm)

Hypothesis concerning control of peduncle elongation

Expression of cell-wall and vacuolar invertases under reproductive drought stress in IR64

- Cell-wall invertases may promote sucrose uptake by tissues
- 2. Vacuolar invertases may enhance osmotic potential of tissues

IRRI

OsCIN2 expressed preferentially in division zone

= 200x.

for starch

Cell-wall invertases assist sink tissues to take up sucrose from the phloem.

GA₃ spray restores peduncle elongation under drought stress but only partially restores fertility

Treatment	Panicle length (cm)	Peduncle length (cm)	Panicle exsertion	Spikelet fertility (%)
Control	25	32	Full	91
Drought	22	25	5-6 cm not exserted	31
Drought + GA spray	25	33	Full	49

Impact of drought and re-watering on expression of cellulose synthase genes specific for secondary cell wall synthesis

OsABF1 = rice orthologue of ABI5 of Arabidopsis

In top four rachis branches, IR64 is more drought-sensitive than Moroberekan, coinciding with anthesis

Expression of ABA 8'-hydroxylase genes may account for responses of ABA levels to re-watering

C = Well-watered; D = Drought; R = Re-watered

Anther metabolome: Principal component analysis

Genotypes:IR64 and MoroberekanTreatments:(i) well-watered control and
(ii) 5 days drought-stressed starting 3 days before headingSamples:Total lyophilized anthersMetabolites:1279 detectedMol. Wt. range:100-1500

Analysis by Phenomenome Discoveries

Rice spikelet fertility under drought stress for the most resistant and sensitive lines of the IR20 X PL population

Three F2 populations (IR20 x PL, IR20 x PMK3, CO43 x PL) were screened for spikelet fertility under reproductive-stage drought stress, and 10 lines at each extreme were again fieldtested as F3s (e.g., Table). These lines will now be subjected to molecular analysis.

No.	Resistant Genotypes	Spikelet Fertility (%)	Susceptible Genotypes	Spikelet Fertility (%)
1	G2	100	A16	20
2	G17	97	A1	29
3	K2	97	G18	31
4	H13	96	F5	31
5	F19	93	M18	32
6	l12	93	C6	33
7	E15	93	E7	33
8	K6	93	I1	37
9	l18	92	F10	37
10	C2	90	M19	37

R. Chandra Babu, TNAU

Abiotic stresses induce gametophyte sterility: Importance of cell-wall invertases

Impact on wheat grain number of drought stress starting when interauricle distance is 0-8 cm.

