Phylogenetic analyses of rice oxalate oxidases, candidate genes for quantitative resistance to rice blast

Expression evidence from wheat, barley, sunflower, and peanut as well as genetic mapping studies suggest an important role for oxalate oxidases (OXO) in conferring resistance to fungal pathogens. OXOs are members of the cupin superfamily of proteins containing the two conserved motifs (G)(G)SHH-(X)3,4E(X)6G and G(X)IPK(X)E2H(X)3N. Plant cupins are involved in development and response pathways. There are two subfamilies of cupins: the monocupin subclass which consists of a single cupin domain, and the bicupin, which has two copies of the cupin domain. OXOs are monocupins and are unique in cereals. They degrade oxalate to CO₂ and H₂O. Active oxygen species, such as H₂O₂, have been suggested to be involved in plant defense responses against several fungal pathogens. Using the candidate gene approach, oxalate oxidase and oxalate oxidase-like proteins have been linked to resistance to rice blast (Magnaporthe oryzae). In rice, OXO is mapped to chromosome 3 and is associated with resistance to rice blast in a Vandana/Moroberekan mapping population. With the availability of the complete genome sequence of rice, we undertook the task of characterizing rice monocupins including the four OXO genes present on chromosome 3 of the O. sativa ‘Nipponbare’ genome. The goal of this study was to confirm genetic mapping data from several populations for the presence of OXO genes in the rice genome, to characterize the members of the oxalate oxidase family, and to validate the role of these genes in response to pathogen infection.

Phylogeny of oxalate oxidases in cereal genomes

Fig 1. Phylogenetic relationships of cereal oxalate oxidases. The cereal OXO are unique in cereals. There are two OXO subfamilies based on amino acid sequences. Subfamily 1 consists of rice, wheat, switchgrass, sorghum, and maize sequences. All rice oxalate oxidases belong to subfamily 1 and sequences osa023469, osa169958, osa176731, and osa16808 correspond to LOC_Os03g49780, LOC_Os03g49770, LOC_Os03g49760, and LOC_Os03g49750, respectively. Subfamily 2 consists of wheat and barley oxalate oxidases. Amino acid sequences were derived from Phytoke (http://www.phytoke.org).

Phylogeny and genome organization of cupins in the rice genome

Fig 2. Genome organization and phylogenetic analysis of OXO in rice. OXOs are members of the monocupin subclass of proteins in the rice genome. A) Analysis of the rice genome revealed 44 monocupins divided into six subfamilies with different functions. The bicupin subclass is composed of seed storage proteins. B) Multiple alignment of the four tandemly duplicated OsX OXO genes reveal >90% similarity at the amino acid level. C) EST and full-length clones reported for rice OsXO genes.

Hydrophobicity profiles and motif positions of monocupins in the rice genome

Fig 3. Hydrophobicity profiles and motif positions of monocupin sequences in the rice genome. We analyzed each protein sequence for different parameters such as hydrophobicity, motif, molecular weight, and signal peptides to determine similarity with known cupins. Common to all monocupins is motif 9 with the exception of the oxalate oxidases. The high similarity of the four OXOs is also reflected in similar hydrophobicity profiles.

Expression analysis of oxalate oxidase genes in selected Vandana/ Moroberekan advanced backcross lines

Fig 3. Expression analysis by RT-PCR of OsOXO genes after inoculation of Magnaporthe oryzae isolate P06-6 in selected advanced backcross lines of Vandana/Moroberekan. Lines were selected on the basis of their reaction to field blast in India and the Philippines. Detection of the Moroberekan OsXO allele in the progenies, and similarity of morphological and agronomic traits with Vandana, with the exception of IR78221-19-3-196-8 which has the OsOXO allele from Vandana. Leaf samples were harvested at 0, 6, 12, 24, and 48 h post inoculation (HPI).

Analyses of the 1kb upstream region of OXO genes in rice

Table 1. Comparison of cis-elements in the 1kb upstream region of OsOXO from Moroberekan and Vandana

Summary and conclusion

- The cupin superfamily of proteins with 74 members is well-represented in the rice genome.
- There are two major cupin groups in the rice genome - the bicupins composed of seed storage proteins and monocupins which are composed of germins and germ-like proteins (GLP).
- OXOs are unique in cereals. There are four tandemly duplicated OXOs in chromosome 3 of rice. These genes are highly similar at both the nucleotide and amino acid levels.
- EST clones were identified only for OsOXO1, OsOXO3 and OsOXO4.
- Expression analysis using resistant and susceptible advanced backcross lines of Vandana x Moroberekan showed that only OsOXO4 is expressed during rice-Magnaporthe oryzae interaction.
- Sequence analysis of the 1000-bp upstream region of each gene reveals variation in class and copy number and position of cis-elements involved in defense response.

References:

M.G.C. Carrillo1, M. Reveche1, P. Goodwin1, J. Leach1, H. Leung1, and C. Vera Cruz1
International Rice Research Institute, DAPO Box 1777, Metro Manila, Philippines
University of Guelph, Guelph, N1G 2W1 Canada; Colorado State University, Fort Collins CO 80523-1177 USA

Note: 1. Rice Genome Program. Hydrophobicity was calculated using Kyte-Doolitle algorithm (stock program) using protein sequences.