Epidemiology of malaria in HIV infected patients on ART in Uganda: a prospective cohort study

R.Kasirye 1, J.Levin 1, P.Munderi 1, L.Okell 2, S.Walker 3, A.Mugisha 1, H.Grosskurth 1,2

1MRC-UVRI Uganda Research Unit on AIDS, Entebbe, Uganda; 2London School of Hygiene and Tropical Medicine, London UK; 3MRC Clinical Trials Unit, London, UK

Background
There is wide geographical overlap in occurrence between malaria and HIV infection, interaction between these two diseases has major public health implications [WHO 2006].

Among HIV positive patients who are not yet on combination ART (cART), co-infection with malaria has been associated with an increase in HIV RNA [Kulkin et al, 2005].

Increased rates of malaria have also been associated with declining immune status [French et al, 2001].

We assessed the incidence of malaria and the potential risk factors in a cohort of HIV infected Ugandans on ART, who were enrolled in the DART trial.

Objectives
1. To estimate the incidence of malaria in relation to time on ART.
2. To assess the association between malaria and baseline CD4 count, WHO clinical stage, haemoglobin, body mass index, age, education, gender and use of cotrimoxazole.

Methods
At enrolment into the DART trial, WHO clinical stage, CD4 count, haemoglobin, socio-demographic data, height & weight measurements were recorded on subjects.

Prescription of cotrimoxazole to prevent opportunistic infections during the study was at the doctors discretion.

Patients were reviewed monthly by a study nurse and every 3 months or whenever acutely ill by a study doctor.

Incident malaria episodes and a recent history of a febrile illness were investigated for malaria as well as for other possible infectious illnesses.

Incident malaria defined as a febrile illness or recent history of one plus peripheral blood film parasitaemia.

Incidence rates for malaria were calculated overall and separately for each year of follow-up.

We assessed potential risk factors for malaria by fitting unadjusted and adjusted Cox proportional hazard regression models. For continuous explanatory variables, fractional polynomials were fitted (Royston et al 1999) to allow for non-linear relationships.

Results
1020 participants enrolled in the DART Trial at the Entebbe site were followed for a median of 4.6 years (0.1 – 9.5 years).

513 (50%) patients were lost to follow up and mean follow up was 2.3 years. 2013 malaria episodes were reported in 638 patients.

In 1275 febrile episodes (56%), there was also plasmodium parasitaemia on the peripheral blood film.

- Plasmodium falciparum 97.7%
- Plasmodium malariae 1.8%
- Other plasmodium spp. 0.8%

Episodes of malaria (with a range of 0 – 22 episodes) occurred in 534 (51%) of patients

- mean number of episodes experienced per person: 1.3
- median number of episodes experienced per person: 1

Baseline CD4 count, use of cotrimoxazole prophylaxis, level of education and age at enrolment were associated with risk of malaria (see table).

Cotrimoxazole was protective against malaria (adjusted HR 0.40, P<0.001)

There was a non linear association between baseline CD4 count and occurrence of malaria

- Risk of malaria was greatly increased when CD4 was <10 cells/mm3 (14% of study population).
- At higher baseline CD4 counts the risk of malaria was constant (p<0.001).

The relationship between age and risk of malaria was also non-linear

- Increasing risk up to an age of about 40 and then after decreasing slightly (p=0.642).
- Higher education was associated with a lower the risk of malaria (p=0.001).

There was a non significant trend (0.85-p>0.01) towards lower rates in women and those with higher baseline BMI and no effect (p=0.3) of baseline WHO stage or haemoglobin.

Discussion
Initiation of cART, with recovery of the immune system, results in a reduction of rates of malaria.

Concurrent use of cotrimoxazole prophylaxis is protective against malaria (HR 0.40, P<0.001), as previously reported [Mermin et al, 2006] also see DART cotrimoxazole poster (MOPEB020).

At very low CD4 counts (< 10 cells/mm3) there is an increased risk of malaria.

A higher level of education may be protective against malaria.

Initiation of cART, with recovery of the immune system, results in a reduction of rates of malaria.

Increased rates of malaria have also been associated with declining immune status [French et al, 2001].

Implications
In countries where both HIV infection and malaria contribute significantly to disease burden, the indirect effect of ART on combination with other control measures could help reduce this burden.

Before and during ART, additional malaria prevention interventions should be targeted at the more vulnerable patients with advanced immune suppression and low education.

References

Factors associated with malaria

<table>
<thead>
<tr>
<th>Factor (levels)</th>
<th>Unadjusted hazard ratio (95% CI)</th>
<th>Adjusted hazard ratio (95%)</th>
<th>P-value (sequential)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of Cotrimoxazole</td>
<td>No</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.39 (0.32,0.46)</td>
<td>0.40 (0.33,0.46)</td>
</tr>
<tr>
<td>Baseline CD4 count</td>
<td>1/CD4</td>
<td>1.33 (1.01,1.73)</td>
<td>1.54 (1.17,2.02)</td>
</tr>
<tr>
<td>(age)²</td>
<td>1.02 (1.00,1.04)</td>
<td>1.03 (1.01,1.05)</td>
<td>0.042</td>
</tr>
<tr>
<td>Age at enrolment</td>
<td>Age ³ logage</td>
<td>0.99 (0.98,1.00)</td>
<td>0.98 (0.97,0.99)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1</td>
<td>0.94 (0.94,1.05)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1</td>
<td>0.94 (0.94,1.05)</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Education</td>
<td>Secondary</td>
<td>0.70 (0.62,0.79)</td>
<td>0.70 (0.63,0.79)</td>
</tr>
<tr>
<td></td>
<td>Tertiary</td>
<td>0.57 (0.43,0.70)</td>
<td>0.55 (0.43,0.70)</td>
</tr>
<tr>
<td>Baseline BMI (kg/m²)</td>
<td>Per unit increase</td>
<td>0.99 (0.97,1.00)</td>
<td>0.99 (0.97,1.00)</td>
</tr>
<tr>
<td>Baseline haemoglobin (g/dl)</td>
<td>Per unit increase</td>
<td>0.91 (0.86,0.97)</td>
<td>0.91 (0.86,0.97)</td>
</tr>
<tr>
<td></td>
<td>Stage 2</td>
<td>1</td>
<td>0.97 (0.91,1.03)</td>
</tr>
<tr>
<td></td>
<td>Stage 3</td>
<td>0.97 (0.91,1.03)</td>
<td>0.97 (0.91,1.03)</td>
</tr>
<tr>
<td></td>
<td>Stage 4</td>
<td>1.06 (1.01,1.07)</td>
<td>1.06 (1.01,1.07)</td>
</tr>
</tbody>
</table>

*Not adjusted for time on ART
**No significant trend (p>0.05) for baseline CD4 count

Presented at IAS 2009 in Cape Town - South Africa