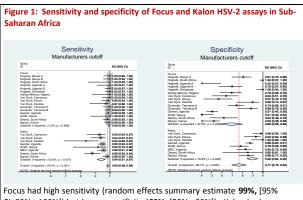


Performance of commercial Herpes Simplex Virus type-2 (HSV-2) tests on samples from sub-Saharan Africa: A systematic review and meta-analysis

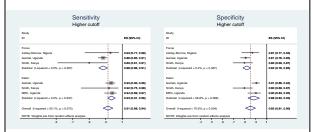
Samuel Biraro^{1, 2}, Helen A. Weiss², Philippe Mayaud³, Heiner Grosskurth¹

¹ Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) Uganda Research Unit on AIDS, ² MRC Tropical Epidemiology Group, Infectious Disease Epidemiology Unit, Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, ³ Clinical Research Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine


Background: Several commercial type-specific serologic tests are available for Herpes Simplex Virus type 2 (HSV-2). Poor specificity of some tests has been reported on samples from sub-Saharan Africa. To summarise the performance of the tests, we performed a systematic review of publications reporting performance of commercially available HSV-2 tests against a gold standard (Western Blot or monoclonal antibody EIA) on samples from sub-Saharan Africa.

Methods: We used random-effects meta-analyses to summarise sensitivity and specificity of the two most commonly evaluated tests: Kalon gG2 ELISA and Focus HerpeSelect HSV-2 ELISA. Possible heterogeneity due to HIV infection was explored using meta-regression.

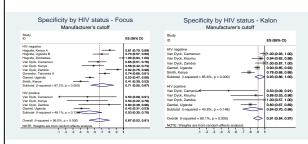
Results: We identified 11 eligible papers which included 19 studies of the performance of Focus, 11 of Kalon, 4 of the Monoclonal Antibody EIA (MAb EIA) and 4 of the Biokit test (see Table I).


Table I: Performance of HSV-2 serological tests in Africa

Reference	Year*	Population	N	Test	Cut-	Gold Standard	Seeskivity	Specificity
Studies using monufacturer's o	ut-off-Facu	rand Kelon						
Hogrefe, Kenya A(17)	2000	HV regative women, age 18 to 45, attending outpatient clinic, Mombaca	150	Focus	1.1	UW-WB	100	80.9
Hogrefe, Kenya 8(17)	2000	HV positive women, age 18 to 45, attending outpatient clinic, Mombasa	85	Focus	1.1	UW-WB	100	0(0/1)
Hogrefe, South Africa [17]	2000	Healthy individuals for HIV screening	150	Focus	1.1	UW-WB	100	100
Hogrefe, Uganda A(17)	2000	Blood donors, Kamgala, 1989	51	Focus	1.1	UW-WR	100	25(2/8)
Hogrefe, Uganda 9(17)	2000	HM negative-women aged 18 to 35 in urban family planning clinics	176	Focus	1.1	UW-WR	100	70
Hogrefe, Zimbabwe(17)	2000	HM negative women aged 18 to 35 in STD clinic, Harare	174	Focus	1.1	UW-WB	100	100
Ashley-Morrow, Nigeria (12)	2004	Women aged 15 or more, ibadan	97	Focus	1.1	UW-WB	100	70
Van Dyck, Cameroun(13)	2004	General adult population, age 15 to 69, Yaounde, WW seroprevalence 6%	123	Focus	1.1	M Ab	100	64
Van Dyck, Kenya(13)	2004	General adult population, age 15 to 49, Kisumu, HIV seroprevalence 26%	160	Focus	1.1	M Ab	99	57
Van Dyck, Zambia(13)	2004	General adult populations, age 15 to 69, Ndola, HIV seroprevalence 28%	67	Focus	1.1	M Ab	97	90
Gorander, Tanzania A(19)	2006	HM negative Blood donors (186 male, 10 female), Dar es Salaam	196	Focus	1.1	In-house wa	100	74.3
Gorander, Tanzania 8(19)	2006	Genital ulcer disease patients (69 males, 129 females), Car es Salaam and Mibeya, HIV serogrevalence 50%	198	Focus	1.1	in-house Will	99.4	88.4
Gamiel, Uganda(14)	2008	General population age 15 to 19 years, Rakai	820	Focus	1.1	UW-WR	99	50.7
Smith, Kenya(21)	2009	HV negativemen 18 to 24 years, Kisumu	120	Focus	1.1	UW-WB	100	41
Delany, South Africa [22]		Women attending family planning clinics, Johannesburg, HM seroprevalence \$2%	97	Focus	1.1	UW-WB	98.4	61.9
Ngaya, Kenya(20)	2008	Fishermen aged 18 and above, Kisumu	250	Focus	1.1	UW-WR	99.3	52.3
Van Dyck, Cameroun(13)	2004	General adult population, age 15 to 69, Yaounde	123	Kalon	1.1	M Ab	93	98
Van Dyck, Kenya(13)	2004	General adult population, age 15 to 69, Kluumu	160	Kalon	1.1	M Ab	94	93
Van Dyck, Zambia(13)	2004	General adult population, age 15 to 69, Ndola	67	Kalon	1.1	M Ab	84	100
Gamiel, Uganda(14)	2008	General population, age 15 to 19, Rakai	538	Kalon	1.1	UW-WB	95.1	97.6
Smith, Kenya(21)	2008	HM negativemen, age 18 to 24, Kisumu	120	Kalon	1.1	UW-WB	92	79
Delany, South Africa (22)	2009	Women attending family planning clinics, Johannesburg, HM seroprevalence 52%	210	Kalon	1.1	UW-WB	88.1	85.3
MRC, Uganda(23)		Men and women aged 13 or more in general population, Masska	265	Kalon	1.1	CDC-WR	95.7	83.2
Ngayo, Kenya(20)	2008	Fishermen aged 18 and above, Kisumu	250	Kalon	1.1	UW-WR	98.6	85.7
Studies using cut-off higher th	as recomme	aded then manufacturar - Focus and Raion						
Ashley-Morrow, Nigeria (12)	2004	Women aged 15 or more, Ibadan	97	Focus	3.5	UW-WB	93	97
Samiel, Uganda(14)	2008	General population age 15 to 19 years, Rakai	820	Focus	3.2	UW-WS	88.4	80.8
limith, Kenya(21)	2009	HM negativemen 19-24 years	120	Focus	3.5	UW-WB	80	80
Samiel, Uganda(S4)	2008	General population, age 15 to 19 years, Rakai	538	Kalon	1.5	UW-WR	91.7	92.4
Smith, Kenya(21)	2009	HM negativemen , age 18 to 26 years, Kkumu	120	Kalon	1.2	UW-WB	92	80
MRC, Uganda(23)		Men and women aged 13 or more in general population, Masaka	265	Kalon	1.5	CDC-WR	93.9	90.1
Studies evaluation other tests								
Gopal, Uganda(16)	2000	General adult population, Masaka	495	MAb		CDC-WR	93	91
ran Dyck, Cameroun(13)	2004	General adult population, age 15 to 69, Yaounde	123	MAb		UW-WB	97	98
Van Dyck, Kenya(13)	2004	General adult population, age 15 to 69, Koumu	140	MAb		UW-WB	98	98
Van Dyck, Zambia(13)	2004	General adult population, age 15 to 69, Ndola	67	MAb		UW-WB	100	94
Van Dyck, Cameroun(13)	2004	General adult population, age 15 to 69, Yaounde	123	Blokit		UW-WB	89	90
rian Dyck, Kenya(13)	2004	General adult population, age 15 to 69, Kisumu	560	Blokit		UW-WB	89	92
ran Dyck, Zambia(13)	2008	General adult population, age 15 to 69, Ndola	67	Blokit		UW-WB	77	97
Gamiel, Uganda(54)	2008	General population age 15 to 19 years, Rakai	524	Sinks		UW-WR	95.8	56.1

Focus had high sensitivity (random effects summary estimate **99%**, [9t Cl, 99% - 100%]) but lower specificity (**69%**, [58% - 80%]). Kalon had sensitivity of **94%** [91% - 97%] and specificity of **90%** [84% - 95%].

Figure 2: Sensitivity and Specificity of Focus and Kalon HSV-2 assays at higher cut-off than recommended by manufacturer



Three studies evaluated a higher cut-off of 3.5 for Focus, which improved specificity to 82% [78% – 85%].

In collaboration with DFID UK funded SRH & HIV RPC at LSHTM

Figure 3: Specificity of Focus and Kalon HSV-2 assays by HIV status in Sub-Saharan Africa

Specificity of Focus was lower among HIV-positive (53% [35% -70%]) vs. HIV-negative individuals (71% [55% - 87%]), although this was not statistically significant (p=0.2). There was substantial between-study heterogeneity amongst HIV-negatives. There was a similar trend for Kalon, although the difference by HIV status was less marked (specificity in HIV positives 84% [70% - 98%] vs. 93% [86% - 100%] in HIV negatives.

Conclusions: The **specificity** of commercially available HSV-2 serological tests **using African samples** appears **generally inferior** to that reported from industrialised countries.

There is a large variation in performance depending on geographical location, characteristics of the study populations and HIV serostatus. Therefore, studies using HSV-2 testing would benefit from an evaluation of test performance in the proposed study population, bearing in mind the aims of the testing e.g. estimation of prevalence, establishing aetiology of genital ulcer, estimating the effect of HSV-2 on risk of HIV acquisition or infectivity. Different assays could be used for different purposes.

Focus tended to have low specificity (summary estimate **69%**) compared with the gold standard when using the manufacturer's recommended cut-off (OD=1.1). Kalon tends to perform better when compared with Focus in the same study populations, although performance also varied across studies.

Improved specificity was obtained when the **cut-off was increased** above that recommended by the manufacturer (OD>1.5 for Kalon; OD>3.4 for Focus).