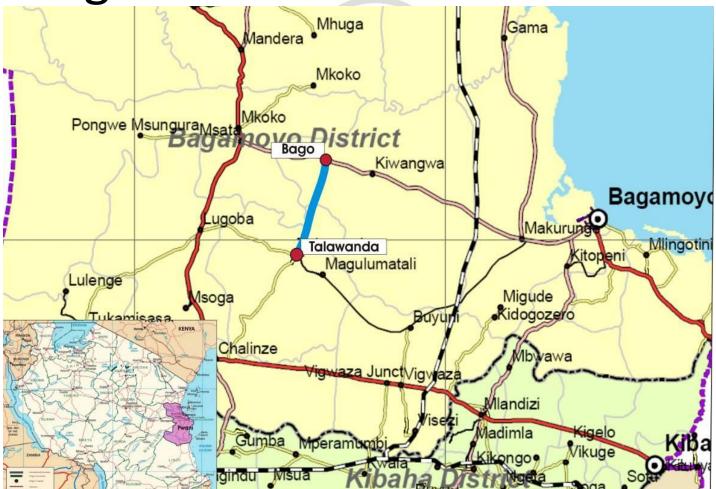


Implementation of Demonstration Sections along the Bago to Talawanda Road



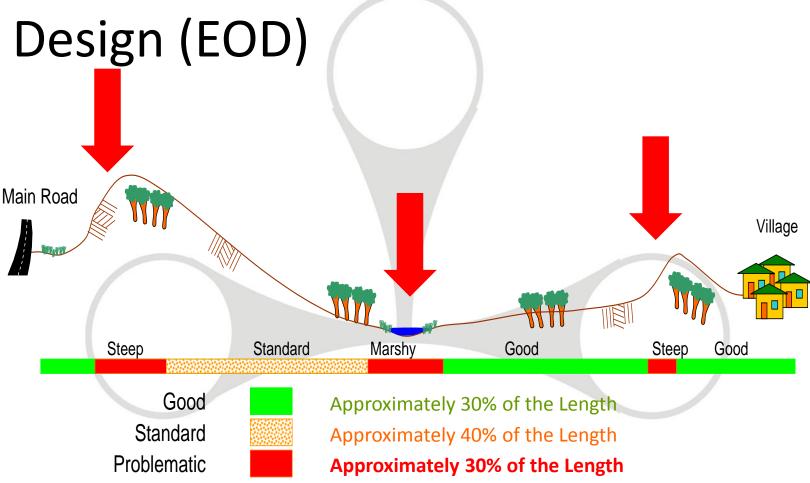
- Objectives of Research
 - Create year round access to rural areas
 - > Local resource-based improvement
 - Identify cost effective community based methods of construction
 - ➤ Introduce previously trialled surfaces under SEACAP and other methods
 - Extend the knowledge of rural road construction in Tanzania

➤ Bago to Talawanda

- Bago to Talawanda
 - ➤ 20.2 km long
 - > Low volume rural road
 - Provides access to villages, farms and schools
 - Flat and straight terrain
 - Subgrade of sandy soils and expansive clays
 - ➤ Hot/Humid/Dryish climate

AFCAP - Tanzania roughton

➤ Bago to Talawanda


Design Approach

- Environmentally optimised design (EOD) approach
- Identify and locate the most problematic sections along the road
- Apply durable, cost effective pavement structures at these locations
- Apply less expensive pavements in areas of satisfactory year round access

> Environmentally Optimised

www.roughton.com

AFCAP - Tanzania roug

Environmentally Optimised Design (Bago to Talawanda) urface Length (km) Length (%)

Surface	Length (km)	Length (%)
Engineered Natural Surface (Good)	6.3	32
Gravel Wearing Course (Standard)	8.1	40
Paved Surface (Problematic)	5.5	28

- ➤ Identifying Problem Sections
 - ➤ Steep Gradients Above 8%
 - ➤ Sharp Bends
 - ➤ Muddy Tracks
 - > Erosion Channels
 - ➤ Slippery Surface
 - ➤ Poor Subgrade
 - > Loose Sand
 - > Soft Wet Areas

- ➤ Identifying Problem Sections
 - Visual assessment during the wet and dry seasons
 - ➤ Use of Local knowledge
 - ➤ Alignment trial pits to test the in-situ soils
 - Drainage assessment

> Pavement design

- Pavement structure was based on the Tanzanian Pavement and Materials Design Manual
- Adapted for low volume roads
- Use of marginal local materials
- Minimum layer thicknesses and material quality were specified
- Minimum carriageway width (3m) was specified with no shoulders
- Designed as single lane with frequent passing bays

AFCAP - Tanzania rough

>Standard Gravel Pavement

AFCAP - Tanzania rough

➤ Hand Packed Stone

- ➤ Hand Packed Stone
 - ➤ Locally sourced naturally cubic marly limestone blocks 150-200 mm thick
 - Placed on a 50 mm sand bedding
 - Smaller chips are then packed into any gaps and voids filled with sand or gravel
 - Can accommodate some movement thus chosen on subgrade of Black Cotton Soil

AFCAP - Tanzania rough

➤ Single Otta Seal with Sand Seal

www.roughton.com

AFCAP - Tanzania rough

➤ Single Otta Seal with Sand Seal

- ➤ Single Otta Seal with Sand Seal
 - ➤ 150 mm Marly limestone natural gravel base with MC-30 prime
 - MC-3000 bitumen used
 - Locally sourced quartzitic gravel aggregate layer
 - Second layer using locally sourced alluvial sand
 - One month period between seals
 - Used at beginning of the road due to higher traffic volume and to reduce dust pollution

AFCAP - Tanzania roughto

➤ Double Sand Seal

www.roughton.com

- ➤ Double Sand Seal
 - ➤ 150 mm Marly limestone gravel base primed with MC-30 bitumen
 - > MC-3000 bitumen used
 - Locally sourced alluvial sand
 - One month between seals during which the road was open to traffic

AFCAP - Tanzania roughton

➤ Slurry Seal

➤ Slurry Seal

- Slurry Seal is a relatively thin surfacing (8mm)
- Consists of crusher dust, bitumen emulsion, water, cement/lime
- Can be mixed in a normal concrete mixer
- Spreading using rubber squeegees
- Compacted with lightly loaded truck
- Suitable for low volume traffic to reduce dust pollution

AFCAP - Tanzania rough

- ➤ 80/100 primary grade bitumen followed by a 14mm sized aggregate.
- Secondary bituminous application and dressing with 7mm sized aggregate.
- Geogrid subgrade/sub-base interface to help stiffen black cotton soil sub-base
- Surface erosion control geosynthetic- reduce wearing of bitumen surface

AFCAP - Tanzania rough

➤ Concrete Geocells

www.roughton.com

- > Concrete Geocells
 - Manufactured plastic formwork is used to construct in-situ concrete paving
 - ➤ The plastic formwork is sacrificial and remains embedded in the concrete
 - Geocell structure enables some movement in pavement

AFCAP - Tanzania rough

≻Concrete Strips

- Concrete Strips
 - ➤ 20MPa Concrete strips cast in-situ 100 mm thick.
 - Transverse concrete strip installed at 5 m intervals between wheel tracks reduce excessive water and erosion
 - Efficient use of concrete on steep terrain

AFCAP - Tanzania rougi

➤ Engineered Natural Surface

- ➤ Engineered Natural Surface
 - Used where the existing subgrade material comprises natural gravel with good quality characteristics
 - ➤ In-situ soil was graded, reshaped and compacted
 - Used on good sections that are passable during wet seasons

AFCAP - Tanzania roug

Costs of the pavements

Section	Surfacing Type	Costs (US\$)		
		Total Cost/km (US\$)	Cost/m² (US\$)	
1	Single Otta seal with a sand seal (26 mm)	85,685	17.14	
2	Hand Packed Stone (150 mm)	65,138	13.86	
3	Concrete Strips (100 mm - Reinforced)	66,525	14.15	
4	Geocells (75 mm)	64,869	12.97	
5	Double Surface Dressing (20 mm)	99,460	19.89	
7	Concrete Strips (100 mm - Unreinforced)	52,361	11.14	
8	Double Sand Seal (20 mm)	79,198	15.84	
9	Gravel Wearing Course	9,888	1.98	
14	Slurry Seal (8 mm)	67,683	13.54	

- **≻**Construction Issues
 - > Lessons Learnt
 - Sufficient training necessary for unfamiliar methods, materials and surfaces
 - Not all materials can be sourced locally
 - Quality control important during construction

- Base Line Data-Monitoring Programme
 - Photographic recording
 - Visual inspection surface condition logging
 - Surface profile measurement
 - > Rut measurement
 - Surface roughness MERLIN apparatus
 - > Traffic counts
 - > GPS monitoring
 - > DCP testing

- Monitoring Beacons
 - Located either side of the road on demonstration sections
 - > Sections <200 m at 10 m intervals
 - > Sections >200 m at 20 m intervals
 - Ensure consistency in collecting monitoring data

AFCAP - Tanzania roughton

Monitoring Beacons

www.roughton.com

AFCAP - Tanzania roug

Surface Condition Logging

SEACAP 17
Lao (PDR) Surface: Bitumenous from 1

Monitor: LTEC from km 0.500 to km 0.700 Section: Control Section Length: 200 m km 0.530 Year 5 3 km 0.520 km 0.510 PH km 0.500 www.roughton.com

AFCAP - Tanzania roug

Surface Condition Logging

SEACAP 17
Lao (PDR)

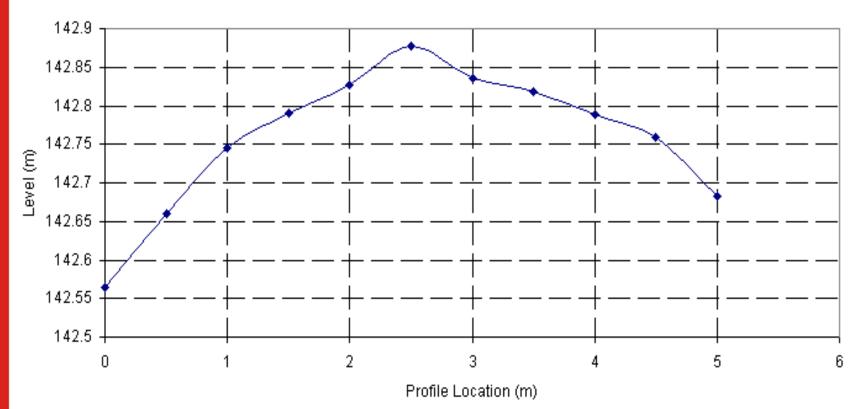
Surface: Bitumenous
From Surface: Bitumenous
Fro

Monitor: LTEC Section: Control Section Length: 200 m km 0.530 Year 8 km 0.520 km 0.510 km 0.500

www.roughton.com

AFCAP - Tanzania roughto

> Surface profile measurement



www.roughton.com

Surface profile measurement

Surface Profile - Section 2 - Hand Packed Stone (5+480 km)

AFCAP - Tanzania roughton

> Rut measurement

AFCAP - Tanzania rough

Surface Roughness – MERLIN

- > Traffic Counts
 - ➤ Traffic counts have been carried out at two locations along the road before and after construction of the demonstration sections
 - Monitor change in traffic behaviour

- GPS Monitoring
 - > GPS drive through condition survey
 - Performed before and after construction on demonstration sections
 - Uses vehicle speed to identify areas of poor road condition

- Long Term Monitoring Framework
 - Demonstration sections will be monitored by the Consultant for the next 2 years at 6 month intervals
 - ➤ District engineers will continue monitoring of the road for a further 8 years

≻Conclusions

- ➤ Importance of spending significant time in the field to identify and assess problematic areas during the wet season
- Whole life considerations must be taken into account when selecting pavement types, for example; gravel/ sand seals/ concrete
- Maximise incorporation of local materials in the design and selection of the different pavement structures

≻Conclusions

- More expensive all-weather surface types are more appropriate for spot improvements rather than paving long stretches of year round trafficable gravel road
- ➤ Sufficient training should be provided to the contractor for unfamiliar surfacing types to ensure a high quality of work.
- ➤ Future monitoring will be used to assess the long term performance of these demonstration sections

