Principles and practices to integrate livestock into rainwater management: an example from the Blue Nile Basin

Amare Haileslassie, Alan Duncan, Don Peden, Teklu Erkossa, Bharat Sharma, Charlotte MacAlister

CPWF IFWF3, Tshwane, South Africa, Nov14-17

Outline of the presentation

 Livestock-rain water management integration :perspectives

Opportunities and challenges

Key messages

Why integrating livestock?

Blue Nile: >90% is rainfed agriculture

Livestock is an important sources of livelihoods: but also major users of land & H_2O

This role is intensifying and putting pressure on already scarce water resources

Potential of rainfed agriculture

Why integrating livestock?

High unproductive water losses: with all associated impacts

Grazing lands are important sources of unproductive water losses

Why integrating livestock?

CWP gaps are generally enormous!

This has a negative implications for H₂O use efficiencies in the rainfed mixed croplivestock systems

How to fill these gaps?

Opportunities and challenges

WP vis a vis MUS

Schematic flow diagram showing the link of MUS, ecosystem services and water productivity

Opportunities and challenges

Principles for integration of livestock into RWMs

Improving the WP feeds: on crops, grazing and forest land

Enhancing efficient uses of feed resources produced under water productive environment

Opportunities and challenges

Practices to integrate livestock into RWMs

Practices	Potential impacts
Cut off drains in valley bottoms grazing lands, crop land on vertisols	Enhances species diversity, feed quality & productive use of water
Grazing management, enclosures, improved management of CPR	Reduces compaction; Increases infiltration; (Fogera biomass yield up 400% (IPMS))
Cut and carry system	Saves H2O >300m³/cow/year
Post harvest management	(e.g. feed quality and quantity)

quality water supply

Opportunities and challenges

Practices to integrate livestock into RWMs

Practices Potential impacts Selection of quality feed, Higher quality feed saves water (~120m3/cow/year)which can be used urea treatment, chopping of course crop residues; for ecosystem services (CO2 improved feed storage & sequestration) & enhances nutrient weed control. turnover Improves regional & systems water **Institutional support and** creation of incentive productivity mechanisms for local initiatives of virtual water Links upstream-downstream trading community Increased benefits & resources use **Animal management:** Breeding, AI, Vet services, efficiency

Key messages

Integrating livestock into rainwater management is a means to increase system WP

Integration needs to be built on principles of improving H₂O productivity of feed & enhancing efficient uses of the H₂O productive feed

Research focus: linking LWP and MUS and targeting paractices

Water loss from irrigation canal

Thank you