Monitoring the Performance of Unpaved Roads Using GPS Surveys – Practical Exercise

Presentation by David Geilinger

Research conducted by David Geilinger, Larry Herman

and Charles Bopoto

Financed by Government of Mozambique and AFCAP

Presented in Arusha – November 2011

GPS Monitoring of Unpaved Road Performance **Overview**

- Why we need new ways to measure unpaved road performance.
- Why use a GPS?
- What are the objectives?
- The Steps in the Process.

- Rural road networks provide basic accessibility
- Most indicators focus on road condition and do not measure accessibility
- Road Funds, financing agencies, and other stakeholders need simple, consistent measures of how well Unpaved roads satisfy the needs of users.
- Monitoring units need reliable year on year measure to identify actual progress

GPS Monitoring of Unpaved Road Performance **Why Use a GPS?**

- GPS records the journey along the road
- Inexpensive
- Driving needs to be controlled in order to reduce inconsistencies between drivers
- Data can be analysed to extract information about the journey and hence the performance of the road

GPS Monitoring of Unpaved Road Performance Coefficients of Unpaved Roads Accessibility

Speed Efficiency Coefficient (SEC)

Extent How much of the network is substandard?

Time Efficiency Coefficient (TEC)

Intensity How bad is the problem?

Road Accessibility Coefficient (RAC)

Reach How much of the network is made inaccessible?

GPS Monitoring of Unpaved Road Performance Thresholds and Rupture Points

- Threshold speed: the minimum acceptable speed for a low-volume Unpaved road
 - Most users of Unpaved roads don't need to go fast
 - Threshold speeds should usually be lower than design or legal speeds
 - Use of thresholds eliminates the influence of potential faster sections of road.
- Rupture Point: an impediment in the roadway that prevents normal traffic from passing
 - Many rupture points result from the absence of watercrossing structures
 - Rupture points may in fact be longer sections that are impassable.

GPS Monitoring of Unpaved Road Performance Speed Efficiency Coefficient

 SEC – the extent of road or network that performs at least as well as the target or threshold speed

GPS Monitoring of Unpaved Road Performance **Time Efficiency Coefficient**

TEC – a measure of how close to the target travel time the road performs, the **intensity** of the problem areas

GPS Monitoring of Unpaved Road Performance Road Accessibility Coefficient

RAC - measures the share of the network that is accessible by normal vehicles, effectively the **REACH** of the network.

GPS Monitoring of Unpaved Road Performance **The GPS and the Data**

- Affordable and available navigation tool
- Low training requirements
- Compatible with Excel and GIS

GPS Monitoring of Unpaved Road Performance **The Survey Form**

GPS Road Transitability Survey

Sheet _____ of _____

Road:	Date:	Start Time:	
GPS Coordinates at Start:	GPS Coordinates at End:		
GPS Mode: (Auto/Distance)	Road Surface: (Gravel/Soil)		

Low Velocity Sections

FUNDO DE ESTRAD

GPS	Km	Km	Poor	Obstacle and comment
Waypoint	at	at	Condition	
at start of	start	End	or not?	
section				

GPS Monitoring of Unpaved Road Performance **Data Manipulation**

GPS sample output

Index	Date and Time	Altitude	Leg length	Leg time	Leg speed	Bearing		
I	02/04/2009 07:13	7 m	55 m	00:06:21	0.5 km/h	172° true	S25 58.969 E3	2 33.505
2	02/04/2009 07:19	4 m	60 m	00:00:07	31 km/h	l 79 ° true	S25 58.998 E3	2 33.510
3	02/04/2009 07:19	4 m	61 m	00:00:06	37 km/h	177° true	S25 59.031 E3	2 33.511
4	02/04/2009 07:19	4 m	51 m	00:00:05	37 km/h	177° true	S25 59.063 E3	2 33.513

- Identifying the section of road
- Converting to numerical data where text is included
- Calculating the SEC and TEC

П

Calculating the RAC (network value)

GPS Monitoring of Unpaved Road Performance The GPS and the Data

FUNDO DE ESTRADAS

GPS Monitoring of Unpaved Road Performance The GPS and the Data

FUNDO DE ESTRADA

GPS Monitoring of Unpaved Road Performance

THANK YOU!

