DISTRIBUTED MODELLING SIMPLIFIED

HYDROLOGICAL PROCESS MODELS for HUMID AREAS

Nile BDC Symposium on Modeling in the Blue Nile Basin Addis Ababa, 12 November 2012

Seifu Tilahun and Tammo Steenhuis

School of Civil & Water Resources Engineering, Bahir Dar University in cooperation with Cornell University

DISTRIBUTED HYDROLOGICAL MODELS: AN OVERVIEW

Usually require hundreds of distributed parameters that More input parameters not necessarily give better results but give more flexibility in applications

OVERVIEW OF PRESENTATION

1. Experimental

- a) Data shows that infiltration is greater than rainfall intensity for well vegetated watersheds
- b) Soils need to wet up before runoff occcurs
- c) Runoff and erosion occurs from saturated bottom lands and degraded hillsides with shallow soils
- 2. Modeling
 - a) Show simulations for runoff and erosion with saturated contributing areas
- 3. Applications

Experimental Watersheds

 Cornell, BDU and IWMI started research in 2008 employing many students. ARARI cooperation since 2002

Debra Mawi

- 1 Automatic Rain Gauge
- 4 weirs installed & measured storm runoff (40 -50 events)
- 1 weir at the outlet (Adet Research Center)
- 19 piezometers to measure ground Water level
- 14 infiltration test
- Sediment concentration from 5 weirs (40 -50 events)
 - Rill measurement from 10 agricultural fields
- 4 Gully profile measurement

Infiltration Rate vs. Rainfall Intensity

Ecohudrologu

P5 Weir-1 Weir-2 P11

Weir

THE PARTY OF LEVELS

Weir

Weir-5 (outlet)

P17b

= 10%

Location of runoff source and infiltrating areas

Surface runoff

infiltration

interflow

Hill slope Areas

Saturated

discharge producins area

<

Exposed rock

RUNOFF PLOTS (MAYBAR) SURFACE RUNOFF DECREASES WITH STEEPNESS

Runoff

Modeling

 Constant area for outflow from two after the threshol exceeded

- Rain infiltrates in remaining area ar becomes subsurfa
- Amount of runoff
 recharge can be simulated
 by a water balance

LOOKS COMPLICATED BUT MODEL HAS ONLY NINE INPUT PARAMETERS AND CAN BE RUN IN A SPREADSHEET

 Δt

Discharge Anjeni 113 ha

Discharge Enkulal watershed, 400 ha

Debra Mawi

Locations	Parameters	Area A ₁	S _{max} in A ₁	Area A ₂	S_{max} in A_2	Area A ₃	S _{max} in A ₃	BS _{max}	t _{1/2}	τ*	
Weir	Unit	%	mm	%	mm	%	mm	mm	days	days	
5	Magnitude	15	80	30	30	55	60	80	70	5	
4		20	80	30	30	25	60	80	70	5	
3		5	80	30	30	15	60	80	70	5	
1		10	80	20	30	40	60	80	70	5	

Gumura 1200 km²

Nash Sutcliff = 0.74 on daily values Time of calibration: Bahir Dar to Addis Ababa by plane

Discharge Blue Nile watershed, 180,000 km²

Nash Sutcliff 0.95 for 10-day runoff

SUMMARY HYDROLOGY MODEL

- Predicting runoff for vegetated and sloping watershed with rainfall in excess of 600 mm/year can be accomplished with a distributed model with two areas that represent the shallow soils and potentially saturated soil that produce runoff, In the remaining part of the watershed where water that infiltrates and that flows out slowly.
- Other biological processes and implementation of Soil and water conservation practices will require smaller scales that can be superimposed. SWAT with HRU's that can account for topography can be empoyed for these smaller scales

Sediment Concentration: Debre Mawi

Rill Soil Loss Rill density

Rill & Gully erosion Debre Mawi

- 120 ton ha ⁻¹ yr⁻¹ in 2010

EROSION PREDICTION MODELED AFTER HAIRSHINE AND ROSE

Concentration C_r in overland flow is proportional to velocity V,

 $C_r = a V$

Rectantangular channel with discharge q (per unit area) $C_{\gamma} = a \, q_{\gamma}^{0.4}$

EROSION PREDICTION MODELED AFTER HAIRSHINE AND ROSE

- Transport limiting (rill formation) a=a_T Surface runoff carries all the sediment it can ---- Source limiting (splash erosion) – a = a_S Concentration is limited by sediment delivered to rill
- Transport limited after plowing and source limited after soils are permanently wet around August 1

$C_{o} = \frac{\sum\{[a_{s} + H(a_{t} - a_{s})] q_{r}^{0.4}\}}{q_{total}}$

INPUT DATA FOR SEDIMENT MODELING

<30 days; >60 days 30 - 60 days H decreases 1→0 H = 1H=0

Component					Calibrated Values				
		Description	parameters	Unit	Anjeni	Enkulal	Blue Nile	Debre Mawi	
Hydrology		Saturated	Area A ₁	fraction	0	0.1	0.2	0.15	
		area	S _{max} in A ₁	mm	-	50	200	80	
		Degraded	Area A ₂	fraction	0.15	0.2	0.2	0.30	
		area	S _{max} in A ₂	mm	10	10	25	30	
		Hillsido	Area A ₃	fraction	0.5	0.3	0.6	0.55	
		THISIQE	S _{max} in A ₃	mm	100	50	250	60	
		Subsurface	t _{1/2}	days	70	120	80	70	
		Subsullace	τ*	days	10	100	200	5	
Sediment transport limit			a _t	see text	4.5	17	1.2	14	
Sediment Source limit			a _s	see text	3	5	0.5	3	
	Time step			days	1	7	10	1	
	Hy	drology	calibration	none	0.84	0.75	0.95	0.82	
Nash Sutcliffe			validation	none	0.80		0.92	-	
	Erc	osion	calibration	none	0.70	0.76	0.86	0.75	
			validation	none	0.75		0.72		

113 ha

Sediment concentration Enkulal watershed, 400 ha

Nash Sutcliff = 0.76

Sediment Concentration Debre Mawi 95 ha

Blue Nile Basin 180,000 km²

WHAT ABOUT WATERSHED MANAGEMENT?

Runoff from

- degraded areas,
- farmland that saturate,
- saturated bottom lands

Plant Elephant grass

GULLY

Fall Bottom land

Keeping saturation below the guilt bottom is important

Do we know how to stop the gully process?

Conclusion

Most effective best management take climate and lands ape position in to account

Saturation excess models for (semi) humid areas perform better than infiltration excess models

Many publications are at http://soilandwater.bee.cornell.edu/ or google: soil and water cornell ethiopia

Thank You!!