Status Quo Bias in Investment and Insurance Behaviour: Evidence From A Ugandan Field Experiment

Paul Clist, Ben D'Exelle & Arjan Verschoor

School of International Development, UEA

12th February 2013

Research jointly supported by the ESRC and DFID

Status Quo Bias

• There is strong evidence of underinvestment in developing countries

- There is strong evidence of underinvestment in developing countries
- Duflo, Kremer, & Robinson (2008, AER P&P) show that the expect return on investment in fertilizer is very high (69.5% on an annualised basis), but the take up is low (37% report having ever used fertilizer)

- There is strong evidence of underinvestment in developing countries
- Duflo, Kremer, & Robinson (2008, AER P&P) show that the expect return on investment in fertilizer is very high (69.5% on an annualised basis), but the take up is low (37% report having ever used fertilizer)
- Follow up paper (2011, AER) argues its about procrastination

- There is strong evidence of underinvestment in developing countries
- Duflo, Kremer, & Robinson (2008, AER P&P) show that the expect return on investment in fertilizer is very high (69.5% on an annualised basis), but the take up is low (37% report having ever used fertilizer)
- Follow up paper (2011, AER) argues its about procrastination
- There is also strong evidence of underinsurance in developing countries

(日) (周) (日) (日)

- There is strong evidence of underinvestment in developing countries
- Duflo, Kremer, & Robinson (2008, AER P&P) show that the expect return on investment in fertilizer is very high (69.5% on an annualised basis), but the take up is low (37% report having ever used fertilizer)
- Follow up paper (2011, AER) argues its about procrastination
- There is also strong evidence of underinsurance in developing countries
- Gine, Townsend, & Vickery (2008) find risk averse people are *less* likely to buy insurance

- There is strong evidence of underinvestment in developing countries
- Duflo, Kremer, & Robinson (2008, AER P&P) show that the expect return on investment in fertilizer is very high (69.5% on an annualised basis), but the take up is low (37% report having ever used fertilizer)
- Follow up paper (2011, AER) argues its about procrastination
- There is also strong evidence of underinsurance in developing countries
- Gine, Townsend, & Vickery (2008) find risk averse people are *less* likely to buy insurance
- The most common (almost universal) explanation is a lack of trust of market products e.g., Karlan, Osei, Osei-Akoto, & Udry (2012)

イロト 不得 トイヨト イヨト 二日

• Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default

- Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default
- Default Bias (Samuelson & Zeckhauser, 1988) the inherent preference for the default option

- Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default
- Default Bias (Samuelson & Zeckhauser, 1988) the inherent preference for the default option
- Applied in many domains with evidence from the lab, field and natural experiments

- Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default
- Default Bias (Samuelson & Zeckhauser, 1988) the inherent preference for the default option
- Applied in many domains with evidence from the lab, field and natural experiments
- A bias towards inaction, due to increased regret Ritov & Baron (1992, 1995)

- Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default
- Default Bias (Samuelson & Zeckhauser, 1988) the inherent preference for the default option
- Applied in many domains with evidence from the lab, field and natural experiments
- A bias towards inaction, due to increased regret Ritov & Baron (1992, 1995)
- Duflo & Saez (2003) find default bias > social pressure in pension decisions

イロト 不得下 イヨト イヨト 二日

• Risky choice game of circa $2\frac{1}{2}$ hours

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda

▲ @ ▶ ▲ @ ▶ ▲

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage

- 4 同 6 4 日 6 4 日 6

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

Safe: 500, *p* = 1

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

Safe: 500, p = 1

Risky: 1000, *p* = 0.8

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

Safe: 500,
$$p = 1$$

1st Treatment: Investment

1 coin

Risky: 1000, p = 0.8

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

2nd Treatment: Insurance

Risky: 1000, p = 0.8

1 coin

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

1 coin

3rd Treatment: Neutral 8 coins

Risky: 1000, p = 0.8

- 4 同 6 4 日 6 4 日 6

1 coin

The EUT way to think about these gambles would be
 V(L) = v(a) + 0.8v(2b) where x = 10 = a + b, and a and b are respectively the number of coins placed in the safe risky baskets

- The EUT way to think about these gambles would be
 V(L) = v(a) + 0.8v(2b) where x = 10 = a + b, and a and b are
 respectively the number of coins placed in the safe risky baskets
- The EUT prediction would be equal means across the three treatments the decision problem is the same

- The EUT way to think about these gambles would be
 V(L) = v(a) + 0.8v(2b) where x = 10 = a + b, and a and b are
 respectively the number of coins placed in the safe risky baskets
- The EUT prediction would be equal means across the three treatments the decision problem is the same
- A PT story says that we should be thinking about gains and losses

- The EUT way to think about these gambles would be
 V(L) = v(a) + 0.8v(2b) where x = 10 = a + b, and a and b are respectively the number of coins placed in the safe risky baskets
- The EUT prediction would be equal means across the three treatments the decision problem is the same
- A PT story says that we should be thinking about gains and losses
- Risking one extra coin implies $\pi(0.8)v(2b) \lambda v(a)$

イロト イヨト イヨト

- The EUT way to think about these gambles would be
 V(L) = v(a) + 0.8v(2b) where x = 10 = a + b, and a and b are respectively the number of coins placed in the safe risky baskets
- The EUT prediction would be equal means across the three treatments the decision problem is the same
- A PT story says that we should be thinking about gains and losses
- Risking one extra coin implies $\pi(0.8)v(2b) \lambda v(a)$
- Risking one fewer coin implies $v(a) \lambda \pi(0.8)v(2b)$

- The EUT way to think about these gambles would be
 V(L) = v(a) + 0.8v(2b) where x = 10 = a + b, and a and b are respectively the number of coins placed in the safe risky baskets
- The EUT prediction would be equal means across the three treatments the decision problem is the same
- A PT story says that we should be thinking about gains and losses
- Risking one extra coin implies $\pi(0.8)v(2b) \lambda v(a)$
- Risking one fewer coin implies $v(a) \lambda \pi(0.8)v(2b)$
- The loss aversion parameter (λ) and value function imply default bias

・ロン ・四 ・ ・ ヨン ・ ヨン

Analysis: Is there a default bias effect?

Treatment	Mean	SD	Ν
Safe	4.99	2.67	105
Neutral	5.96	2.55	74
Risky	6.37	3.13	113
Total	5.77	2.88	292

Table : Summary of coins risked, by treatment

イロト イポト イヨト イヨト

Analysis: Is there a default bias effect?

Treatment	Mean	SD	Ν
Safe	4.99	2.67	105
Neutral	5.96	2.55	74
Risky	6.37	3.13	113
Total	5.77	2.88	292

Table : Summary of coins risked, by treatment

Table : T statistic for difference in means

Null Hypothesis	T Statistic	P Value
Safe = Risky	3.50	0.00***
Safe = Neutral	2.44	0.01***
Neutral= Risky	0.95	0.17

Clist, D'Exelle & Verschoor (DEV)

Is there a default bias effect?

7 / 18

Is it just inertia, As in Madrian and Shea, 01, QJE?

1st Decision	Safe	Neutral	Risky	Total
0	10	2	12	24
1	2	4	1	7
2	7	2	2	11
3	6	3	1	10
4	8	5	6	19
5	36	17	26	79
6	14	10	8	32
7	4	9	8	21
8	5	6	12	23
9	4	12	12	28
10	9	4	25	38
Total	105	74	113	292

Clist, D'Exelle & Verschoor (DEV)

12th Feb 2013 8 / 18

イロト イ団ト イヨト イヨト

3

• (Subjects are told one of their two choices will be played out)

- (Subjects are told one of their two choices will be played out)
- In the first round subjects 1-10 went to table A and subjects 11-21 to table B

A (10) A (10)

- (Subjects are told one of their two choices will be played out)
- In the first round subjects 1-10 went to table A and subjects 11-21 to table B
- Now, the subjects go to the other table which is set up in the same way with the same experimenter

- (Subjects are told one of their two choices will be played out)
- In the first round subjects 1-10 went to table A and subjects 11-21 to table B
- Now, the subjects go to the other table which is set up in the same way with the same experimenter
- The difference is that before making a decision subjects are told the most popular option on this table in the previous round

- (Subjects are told one of their two choices will be played out)
- In the first round subjects 1-10 went to table A and subjects 11-21 to table B
- Now, the subjects go to the other table which is set up in the same way with the same experimenter
- The difference is that before making a decision subjects are told the most popular option on this table in the previous round
- It is announced before they approach the table that they will be told the most popular option, but they are not told what it is

- (Subjects are told one of their two choices will be played out)
- In the first round subjects 1-10 went to table A and subjects 11-21 to table B
- Now, the subjects go to the other table which is set up in the same way with the same experimenter
- The difference is that before making a decision subjects are told the most popular option on this table in the previous round
- It is announced before they approach the table that they will be told the most popular option, but they are not told what it is
- We vary the pairing of treatments to make sure we get enough variation

 Some evidence from lab experiments of risky and/or safe shifts (Cooper & Rege, 11, GEB)

3

- Some evidence from lab experiments of risky and/or safe shifts (Cooper & Rege, 11, GEB)
- Some evidence regarding large social effects in the spread of new technology in developing countries (Bandiera & Rasul, 06, EJ; Conley & Udry, 10, AER)

Social Effects What should we expect?

- Some evidence from lab experiments of risky and/or safe shifts (Cooper & Rege, 11, GEB)
- Some evidence regarding large social effects in the spread of new technology in developing countries (Bandiera & Rasul, 06, EJ; Conley & Udry, 10, AER)
- In a prospect theory story, this becomes a new reference point

Change in number of coins risked, by the difference between the social signal and 1st round decision

11 / 18

The difference between 1st and 2nd round decisions against the difference between the social signal and the 1st round decision

Variable	Coefficient	Standard Error
1st Decision - Social Signal	-0.375***	(0.039)
Intercept	0.058	(0.163)

Variable	Coefficient	Standard Error
1st Decision - Social Signal	-0.375***	(0.039)
Intercept	0.058	(0.163)

• Thus on average there is conversion of 0.375 units per unit of difference

Variable	Coefficient	Standard Error
1st Decision - Social Signal	-0.375***	(0.039)
Intercept	0.058	(0.163)

- Thus on average there is conversion of 0.375 units per unit of difference
- This is stronger than the default bias effect

▲ □ ► ▲ □ ►

Variable	Coefficient	Standard Error
1st Decision - Social Signal	-0.375***	(0.039)
Intercept	0.058	(0.163)

- Thus on average there is conversion of 0.375 units per unit of difference
- This is stronger than the default bias effect
- 8 units of difference between safe and risky with a difference in means of 1.38

Variable	Coefficient	Standard Error
1st Decision - Social Signal	-0.375***	(0.039)
Intercept	0.058	(0.163)

- Thus on average there is conversion of 0.375 units per unit of difference
- This is stronger than the default bias effect
- 8 units of difference between safe and risky with a difference in means of 1.38
- Over 8 units of difference from the social mode, we'd expect convergence of 3 units

• How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udry (2011; 2012)?

3

Discussion

- How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udry (2011; 2012)?
- They give people insurance for a period, see a positive effect on uptake and conclude it is because familiarity with insurance increases trust in insurance

(人間) トイヨト イヨト

Discussion

- How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udry (2011; 2012)?
- They give people insurance for a period, see a positive effect on uptake and conclude it is because familiarity with insurance increases trust in insurance
- And Duflo, Kremer, & Robinson (2011)?

- 4 回 ト - 4 回 ト

Discussion

- How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udry (2011; 2012)?
- They give people insurance for a period, see a positive effect on uptake and conclude it is because familiarity with insurance increases trust in insurance
- And Duflo, Kremer, & Robinson (2011)?
- They offer time limited discounts, and argue its about procrastination

- 4 同 6 4 日 6 4 日 6

- How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udry (2011; 2012)?
- They give people insurance for a period, see a positive effect on uptake and conclude it is because familiarity with insurance increases trust in insurance
- And Duflo, Kremer, & Robinson (2011)?
- They offer time limited discounts, and argue its about procrastination
- Our results offer a different interpretation: both interventions change the reference point (like the social mode)

• Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments

< ロ > < 同 > < 三 > < 三

- Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments
- But social effects appear even stronger

- Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments
- But social effects appear even stronger
- This offers an insight into both puzzles...

- Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments
- But social effects appear even stronger
- This offers an insight into both puzzles...
- ... and an alternative explanation for recent successes in increasing investment and insurance behaviour

- Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments
- But social effects appear even stronger
- This offers an insight into both puzzles...
- ... and an alternative explanation for recent successes in increasing investment and insurance behaviour
- Thanks for listening!

• We have recently received the survey data - early results show that

3

- We have recently received the survey data early results show that
 - $\bullet\,$ Men risk more by 0.5 coins on average; 2 sample t test is significant at $10\%\,$

A (10) A (10) A (10)

- We have recently received the survey data early results show that
 - $\bullet\,$ Men risk more by 0.5 coins on average; 2 sample t test is significant at $10\%\,$
 - Married people (84% of the sample) risk more by about 0.7 (sig at 10%)

A (10) A (10) A (10)

- We have recently received the survey data early results show that
 - $\bullet\,$ Men risk more by 0.5 coins on average; 2 sample t test is significant at $10\%\,$
 - Married people (84% of the sample) risk more by about 0.7 (sig at 10%)
 - The treatment effects are strong and reinforce the message of earlier analysis

- 4 同 6 4 日 6 4 日 6

- We have recently received the survey data early results show that
 - $\bullet\,$ Men risk more by 0.5 coins on average; 2 sample t test is significant at $10\%\,$
 - Married people (84% of the sample) risk more by about 0.7 (sig at 10%)
 - The treatment effects are strong and reinforce the message of earlier analysis
- I've been using an ordered logit to deal with the attractiveness of the 0, 5 and 10

- We have recently received the survey data early results show that
 - $\bullet\,$ Men risk more by 0.5 coins on average; 2 sample t test is significant at $10\%\,$
 - Married people (84% of the sample) risk more by about 0.7 (sig at 10%)
 - The treatment effects are strong and reinforce the message of earlier analysis
- I've been using an ordered logit to deal with the attractiveness of the 0, 5 and 10
- In the analysis of change in # of coins risked, everything (apart from the social signal-1st decision distance) is insignificant

Table : Ordered Logit on coins risked (1st decision)

Table : Cut points

Coefficient	Std. Err.			·
0.751***	(0.22)		Estimate	Std. Err.
1.027***	(0.35)	1	-2.921	(0.70)
-0.291**	(0.12)	2	-2.672	(0.53)
-0.646**	(0.28)	3	-2.335	(0.39)
0.451*	(0.27)	4	-2.057	(0.34)
0.466	(0.77)	5	-1.630	(0.34)
0.259	(0.30)	6	-0.347	(0.38)
0.332	(0.34)	7	0.153	(0.39)
0.075	(0.09)	8	0.510	(0.34)
0.987***	(0.31)	9	0.945	(0.34)
-0.270	(0.52)	10	1.645	(0.37)
0.205	(0.41)			
	Coefficient 0.751*** 1.027*** -0.291** -0.646** 0.451* 0.466 0.259 0.332 0.075 0.987*** -0.270 0.205	Coefficient Std. Err. 0.751*** (0.22) 1.027*** (0.35) -0.291** (0.12) -0.646** (0.28) 0.451* (0.27) 0.466 (0.77) 0.259 (0.30) 0.332 (0.34) 0.075 (0.09) 0.987*** (0.31) -0.270 (0.52) 0.205 (0.41)	CoefficientStd. Err. 0.751^{***} (0.22) 1.027^{***} (0.35) 1 -0.291^{**} (0.12) 2 -0.646^{**} (0.28) 3 0.451^{*} (0.27) 4 0.466 (0.77) 5 0.259 (0.30) 6 0.332 (0.34) 7 0.075 (0.09) 8 0.987^{***} (0.31) 9 -0.270 (0.52) 10 0.205 (0.41)	Coefficient Std. Err. 0.751*** (0.22) Estimate 1.027*** (0.35) 1 -2.921 -0.291** (0.12) 2 -2.672 -0.646** (0.28) 3 -2.335 0.451* (0.27) 4 -2.057 0.466 (0.77) 5 -1.630 0.259 (0.30) 6 -0.347 0.332 (0.34) 7 0.153 0.075 (0.09) 8 0.510 0.987*** (0.31) 9 0.945 -0.270 (0.52) 10 1.645

Note: The 'default' is: Catholic, male, primary school, safe treatment. Robust standard errors, clustered by the four enumerators.

Table : Standard OLS with Robust SE Clustered by enumerator

Neutral Treatment	1.051*
	2.949
Risky Treatment	1.368*
	2.444
Female	-0.366
	-2.282
Unmarried	-0.878*
	-2.907
Anglican	0.482
	0.886
Muslim	0.113
	0.512
7th Day Ad.	1.358**
	4.954
Born Again	-0.601
	-0.709
Other Protestant	0.806
	1.124

Betas	with	T statistics
-------	------	--------------

Clist, D'Exelle & Verschoor (DEV)

Status Quo Bias

12th Feb 2013 18 / 18

- 2

<ロ> (日) (日) (日) (日) (日)