Status Quo Bias in Investment and Insurance Behaviour: Evidence From A Ugandan Field Experiment

Paul Clist, Ben D’Exelle & Arjan Verschoor

School of International Development, UEA

12th February 2013
Two Puzzles

- There is strong evidence of underinvestment in developing countries.
Two Puzzles

- There is strong evidence of underinvestment in developing countries.
- Duflo, Kremer, & Robinson (2008, AER P&P) show that the expected return on investment in fertilizer is very high (69.5% on an annualised basis), but the take-up is low (37% report having ever used fertilizer).
- There is also strong evidence of underinsurance in developing countries:
 - Gine, Townsend, & Vickery (2008) find risk-averse people are less likely to buy insurance.
- The most common (almost universal) explanation is a lack of trust of market products, e.g., Karlan, Osei, Osei-Akoto, & Udry (2012).
Two Puzzles

- There is strong evidence of underinvestment in developing countries
- Duflo, Kremer, & Robinson (2008, AER P&P) show that the expected return on investment in fertilizer is very high (69.5% on an annualised basis), but the take up is low (37% report having ever used fertilizer)
- Follow up paper (2011, AER) argues its about procrastination

- There is also strong evidence of underinsurance in developing countries
- Gine, Townsend, & Vickery (2008) find risk averse people are less likely to buy insurance
- The most common (almost universal) explanation is a lack of trust of market products e.g., Karlan, Osei, Osei-Akoto, & Udry (2012)
Two Puzzles

- There is strong evidence of underinvestment in developing countries

 Duflo, Kremer, & Robinson (2008, AER P&P) show that the expected return on investment in fertilizer is very high (69.5% on an annualised basis), but the take up is low (37% report having ever used fertilizer)

- Follow up paper (2011, AER) argues it's about procrastination

- There is also strong evidence of underinsurance in developing countries
Two Puzzles

- There is strong evidence of underinvestment in developing countries.
- Duflo, Kremer, & Robinson (2008, AER P&P) show that the expected return on investment in fertilizer is very high (69.5% on an annualised basis), but the take up is low (37% report having ever used fertilizer).
- Follow up paper (2011, AER) argues it's about procrastination.
- There is also strong evidence of underinsurance in developing countries.
- Gine, Townsend, & Vickery (2008) find risk-averse people are less likely to buy insurance.
Two Puzzles

- There is strong evidence of underinvestment in developing countries
- Duflo, Kremer, & Robinson (2008, AER P&P) show that the expected return on investment in fertilizer is very high (69.5% on an annualised basis), but the take up is low (37% report having ever used fertilizer).
- Follow up paper (2011, AER) argues it's about procrastination.
- There is also strong evidence of underinsurance in developing countries.
- Gine, Townsend, & Vickery (2008) find risk-averse people are less likely to buy insurance.
- The most common (almost universal) explanation is a lack of trust of market products e.g., Karlan, Osei, Osei-Akoto, & Udry (2012).
Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default
The Key Insight: Two sides of the same coin?

- Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default.
- Default Bias (Samuelson & Zeckhauser, 1988) - the inherent preference for the default option.
The Key Insight: Two sides of the same coin?

- Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default.
- Default Bias (Samuelson & Zeckhauser, 1988) - the inherent preference for the default option.
- Applied in many domains with evidence from the lab, field and natural experiments.
The Key Insight: Two sides of the same coin?

- Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default
- Default Bias (Samuelson & Zeckhauser, 1988) - the inherent preference for the default option
- Applied in many domains with evidence from the lab, field and natural experiments
- A bias towards inaction, due to increased regret Ritov & Baron (1992, 1995)
The Key Insight: Two sides of the same coin?

- Investment and insurance decisions are conceptually identical (choices between a risky and safe alternative), apart from their default
- Default Bias (Samuelson & Zeckhauser, 1988) - the inherent preference for the default option
- Applied in many domains with evidence from the lab, field and natural experiments
- A bias towards inaction, due to increased regret Ritov & Baron (1992, 1995)
- Duflo & Saez (2003) find default bias \succ social pressure in pension decisions
Risky choice game of circa $2\frac{1}{2}$ hours
Experiment - 1st choice (of 2)

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
Experiment - 1st choice (of 2)

- Risky choice game of circa 2½ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
Experiment - 1st choice (of 2)

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
Risky choice game of circa 2½ hours
A random sample of 292 subjects in rural eastern Uganda
Each subject is endowed with ten 500 shilling coins, approx local daily wage
A between subject design, with instructions that are consistent across the three treatments
Subjects have two options for each coin
Experiment - 1st choice (of 2)

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

SAFE: $500, p = 1$
RISKY: $1000, p = 0.8$
Experiment - 1st choice (of 2)

- Risky choice game of circa 2½ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

<table>
<thead>
<tr>
<th>Safe</th>
<th>Risky</th>
</tr>
</thead>
<tbody>
<tr>
<td>500, p = 1</td>
<td>1000, p = 0.8</td>
</tr>
</tbody>
</table>
Experiment - 1st choice (of 2)

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

| Safe: 500, $p = 1$ | Risky: 1000, $p = 0.8$ |
Risky choice game of circa $2\frac{1}{2}$ hours
A random sample of 292 subjects in rural eastern Uganda
Each subject is endowed with ten 500 shilling coins, approx local daily wage
A between subject design, with instructions that are consistent across the three treatments
Subjects have two options for each coin

<table>
<thead>
<tr>
<th>Safe: 500, $p = 1$</th>
<th>Risky: 1000, $p = 0.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 coins</td>
<td>1 coin</td>
</tr>
</tbody>
</table>

1st Treatment: Investment
Risky choice game of circa 2\(\frac{1}{2}\) hours
A random sample of 292 subjects in rural eastern Uganda
Each subject is endowed with ten 500 shilling coins, approx local daily wage
A between subject design, with instructions that are consistent across the three treatments
Subjects have two options for each coin

Safe: 500, \(p = 1\)

Risky: 1000, \(p = 0.8\)

2nd Treatment: Insurance

1 coin 9 coins
Experiment - 1st choice (of 2)

- Risky choice game of circa $2\frac{1}{2}$ hours
- A random sample of 292 subjects in rural eastern Uganda
- Each subject is endowed with ten 500 shilling coins, approx local daily wage
- A between subject design, with instructions that are consistent across the three treatments
- Subjects have two options for each coin

 Safe: 500, $p = 1$

 Risky: 1000, $p = 0.8$

 3rd Treatment: Neutral

 1 coin

 8 coins

 1 coin
The EUT way to think about these gambles would be
\[V(L) = v(a) + 0.8v(2b) \]
where \(x = 10 = a + b \), and \(a \) and \(b \) are respectively the number of coins placed in the safe risky baskets.
A Theoretical Perspective

- The EUT way to think about these gambles would be
 \[V(L) = v(a) + 0.8v(2b) \]
 where \(x = 10 = a + b \), and \(a \) and \(b \) are respectively the number of coins placed in the safe risky baskets.

- The EUT prediction would be equal means across the three treatments - the decision problem is the same.
A Theoretical Perspective

- The EUT way to think about these gambles would be
 \[V(L) = v(a) + 0.8v(2b) \]
 where \(x = 10 = a + b \), and \(a \) and \(b \) are respectively the number of coins placed in the safe risky baskets.

- The EUT prediction would be equal means across the three treatments - the decision problem is the same.

- A PT story says that we should be thinking about gains and losses.
The EUT way to think about these gambles would be
\[V(L) = v(a) + 0.8v(2b) \] where \(x = 10 = a + b \), and \(a \) and \(b \) are respectively the number of coins placed in the safe risky baskets.

The EUT prediction would be equal means across the three treatments - the decision problem is the same.

A PT story says that we should be thinking about gains and losses.

Risking one extra coin implies \(\pi(0.8)v(2b) - \lambda v(a) \)

Risking one fewer coin implies \(v(a) - \lambda \pi(0.8)v(2b) \)

The loss aversion parameter (\(\lambda \)) and value function imply default bias.
The EUT way to think about these gambles would be
\[V(L) = v(a) + 0.8v(2b) \] where \(x = 10 = a + b \), and \(a \) and \(b \) are respectively the number of coins placed in the safe risky baskets.

The EUT prediction would be equal means across the three treatments - the decision problem is the same.

A PT story says that we should be thinking about gains and losses.

Risking one extra coin implies \(\pi(0.8)v(2b) - \lambda v(a) \)

Risking one fewer coin implies \(v(a) - \lambda \pi(0.8)v(2b) \)
A Theoretical Perspective

- The EUT way to think about these gambles would be
 \[V(L) = v(a) + 0.8v(2b) \] where \(x = 10 = a + b \), and \(a \) and \(b \) are respectively the number of coins placed in the safe risky baskets.

- The EUT prediction would be equal means across the three treatments - the decision problem is the same.

- A PT story says that we should be thinking about gains and losses.

- Risking one extra coin implies \(\pi(0.8)v(2b) - \lambda v(a) \).

- Risking one fewer coin implies \(v(a) - \lambda \pi(0.8)v(2b) \).

- The loss aversion parameter (\(\lambda \)) and value function imply default bias.
Analysis: Is there a default bias effect?

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe</td>
<td>4.99</td>
<td>2.67</td>
<td>105</td>
</tr>
<tr>
<td>Neutral</td>
<td>5.96</td>
<td>2.55</td>
<td>74</td>
</tr>
<tr>
<td>Risky</td>
<td>6.37</td>
<td>3.13</td>
<td>113</td>
</tr>
<tr>
<td>Total</td>
<td>5.77</td>
<td>2.88</td>
<td>292</td>
</tr>
</tbody>
</table>

Table: Summary of coins risked, by treatment

Null Hypothesis T Statistic P Value
Safe = Risky 3.50 0.00***
Safe = Neutral 2.44 0.01***
Neutral = Risky 0.95 0.17
Analysis: Is there a default bias effect?

Table: Summary of coins risked, by treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe</td>
<td>4.99</td>
<td>2.67</td>
<td>105</td>
</tr>
<tr>
<td>Neutral</td>
<td>5.96</td>
<td>2.55</td>
<td>74</td>
</tr>
<tr>
<td>Risky</td>
<td>6.37</td>
<td>3.13</td>
<td>113</td>
</tr>
<tr>
<td>Total</td>
<td>5.77</td>
<td>2.88</td>
<td>292</td>
</tr>
</tbody>
</table>

Table: T statistic for difference in means

<table>
<thead>
<tr>
<th>Null Hypothesis</th>
<th>T Statistic</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe = Risky</td>
<td>3.50</td>
<td>0.00***</td>
</tr>
<tr>
<td>Safe = Neutral</td>
<td>2.44</td>
<td>0.01***</td>
</tr>
<tr>
<td>Neutral = Risky</td>
<td>0.95</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Is there a default bias effect?
Is it just inertia,
As in Madrian and Shea, 01, QJE?

<table>
<thead>
<tr>
<th>1st Decision</th>
<th>Safe</th>
<th>Neutral</th>
<th>Risky</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>2</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>17</td>
<td>26</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>6</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>4</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td>74</td>
<td>113</td>
<td>292</td>
</tr>
</tbody>
</table>
(Subjects are told one of their two choices will be played out)
(Subjects are told one of their two choices will be played out)

In the first round subjects 1-10 went to table A and subjects 11-21 to table B
(Subjects are told one of their two choices will be played out)

In the first round subjects 1-10 went to table A and subjects 11-21 to table B

Now, the subjects go to the other table which is set up in the same way with the same experimenter
(Subjects are told one of their two choices will be played out)

In the first round subjects 1-10 went to table A and subjects 11-21 to table B

Now, the subjects go to the other table which is set up in the same way with the same experimenter

The difference is that before making a decision subjects are told the most popular option on this table in the previous round
(Subjects are told one of their two choices will be played out)
In the first round subjects 1-10 went to table A and subjects 11-21 to table B
Now, the subjects go to the other table which is set up in the same way with the same experimenter
The difference is that before making a decision subjects are told the most popular option on this table in the previous round
It is announced before they approach the table that they will be told the most popular option, but they are not told what it is
(Subjects are told one of their two choices will be played out)

In the first round subjects 1-10 went to table A and subjects 11-21 to table B

Now, the subjects go to the other table which is set up in the same way with the same experimenter

The difference is that before making a decision subjects are told the most popular option on this table in the previous round

It is announced before they approach the table that they will be told the most popular option, but they are not told what it is

We vary the pairing of treatments to make sure we get enough variation
Social Effects
What should we expect?

- Some evidence from lab experiments of risky and/or safe shifts (Cooper & Rege, 11, GEB)

Some evidence regarding large social effects in the spread of new technology in developing countries (Bandiera & Rasul, 06, EJ; Conley & Udry, 10, AER).

In a prospect theory story, this becomes a new reference point (Clist, D’Exelle & Verschoor, 2012, DEV).
Social Effects
What should we expect?

- Some evidence from lab experiments of risky and/or safe shifts (Cooper & Rege, 11, GEB)
- Some evidence regarding large social effects in the spread of new technology in developing countries (Bandiera & Rasul, 06, EJ; Conley & Udry, 10, AER)
Social Effects
What should we expect?

- Some evidence from lab experiments of risky and/or safe shifts (Cooper & Rege, 11, GEB)
- Some evidence regarding large social effects in the spread of new technology in developing countries (Bandiera & Rasul, 06, EJ; Conley & Udry, 10, AER)
- In a prospect theory story, this becomes a new reference point
Change in number of coins risked, by the difference between the social signal and 1st round decision

Note: Y scales are percentages.
The difference between 1st and 2nd round decisions against the difference between the social signal and the 1st round decision.
How strong is the convergence to the social mode?

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Decision - Social Signal</td>
<td>-0.375***</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.058</td>
<td>(0.163)</td>
</tr>
</tbody>
</table>

Thus on average there is a conversion of 0.375 units per unit of difference. This is stronger than the default bias effect of 8 units of difference between safe and risky, with a difference in means of 1.38. Over 8 units of difference from the social mode, we'd expect convergence of 3 units.
How strong is the convergence to the social mode?

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Decision - Social Signal</td>
<td>-0.375***</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.058</td>
<td>(0.163)</td>
</tr>
</tbody>
</table>

Thus on average there is conversion of 0.375 units per unit of difference.
How strong is the convergence to the social mode?

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Decision - Social Signal</td>
<td>-0.375***</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.058</td>
<td>(0.163)</td>
</tr>
</tbody>
</table>

- Thus on average there is conversion of 0.375 units per unit of difference
- This is stronger than the default bias effect
How strong is the convergence to the social mode?

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Decision - Social Signal</td>
<td>-0.375***</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.058</td>
<td>(0.163)</td>
</tr>
</tbody>
</table>

- Thus on average there is conversion of 0.375 units per unit of difference
- This is stronger than the default bias effect
- 8 units of difference between safe and risky with a difference in means of 1.38
How strong is the convergence to the social mode?

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Decision - Social Signal</td>
<td>-0.375***</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.058</td>
<td>(0.163)</td>
</tr>
</tbody>
</table>

- Thus on average there is conversion of 0.375 units per unit of difference
- This is stronger than the default bias effect
- 8 units of difference between safe and risky with a difference in means of 1.38
- Over 8 units of difference from the social mode, we’d expect convergence of 3 units
How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udry (2011; 2012)?
Discussion

- How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udry (2011; 2012)?
- They give people insurance for a period, see a positive effect on uptake and conclude it is because familiarity with insurance increases trust in insurance

And Duflo, Kremer, & Robinson (2011)? They offer time limited discounts, and argue it's about procrastination. Our results offer a different interpretation: both interventions change the reference point (like the social mode).
How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udny (2011; 2012)?

They give people insurance for a period, see a positive effect on uptake and conclude it is because familiarity with insurance increases trust in insurance.

And Duflo, Kremer, & Robinson (2011)?
How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udry (2011; 2012)?

They give people insurance for a period, see a positive effect on uptake and conclude it is because familiarity with insurance increases trust in insurance.

And Duflo, Kremer, & Robinson (2011)?

They offer time limited discounts, and argue its about procrastination.
How does this help us (re)interpret the results of Karlan, Osei-Akoto, Osei, & Udry (2011; 2012)?

They give people insurance for a period, see a positive effect on uptake and conclude it is because familiarity with insurance increases trust in insurance.

And Duflo, Kremer, & Robinson (2011)?

They offer time limited discounts, and argue its about procrastination.

Our results offer a different interpretation: both interventions change the reference point (like the social mode).
Conclusion

Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments.
Conclusion

- Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments.
- But social effects appear even stronger.
Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments.

But social effects appear even stronger.

This offers an insight into both puzzles...
Conclusion

- Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments.
- But social effects appear even stronger.
- This offers an insight into both puzzles...
- ... and an alternative explanation for recent successes in increasing investment and insurance behaviour.
Conclusion

- Our results so far are fairly persuasive that there is substantial default bias in investment and insurance decisions, despite quite a subtle difference between treatments.
- But social effects appear even stronger.
- This offers an insight into both puzzles...
- ... and an alternative explanation for recent successes in increasing investment and insurance behaviour.
- Thanks for listening!
Next Steps: Data Analysis

We have recently received the survey data - early results show that

- Men risk more by 0.5 coins on average; 2 sample t test is significant at 10%
- Married people (84% of the sample) risk more by about 0.7 (sig at 10%)
- The treatment effects are strong and reinforce the message of earlier analysis

I've been using an ordered logit to deal with the attractiveness of the

0, 5 and 10

In the analysis of change in # of coins risked, everything (apart from

the social signal-1st decision distance) is insignificant
We have recently received the survey data - early results show that
 * Men risk more by 0.5 coins on average; 2 sample t test is significant at 10%
 * Married people (84% of the sample) risk more by about 0.7 (sig at 10%)

The treatment effects are strong and reinforce the message of earlier analysis

I've been using an ordered logit to deal with the attractiveness of the

0, 5 and 10

In the analysis of change in # of coins risked, everything (apart from

the social signal-1st decision distance) is insignificant
Next Steps: Data Analysis

- We have recently received the survey data - early results show that
 - Men risk more by 0.5 coins on average; 2 sample t test is significant at 10%
 - Married people (84% of the sample) risk more by about 0.7 (sig at 10%)
Next Steps: Data Analysis

We have recently received the survey data - early results show that:

- Men risk more by 0.5 coins on average; 2 sample t test is significant at 10%
- Married people (84% of the sample) risk more by about 0.7 (sig at 10%)
- The treatment effects are strong and reinforce the message of earlier analysis
Next Steps: Data Analysis

- We have recently received the survey data - early results show that
 - Men risk more by 0.5 coins on average; 2 sample t test is significant at 10%
 - Married people (84% of the sample) risk more by about 0.7 (sig at 10%)
 - The treatment effects are strong and reinforce the message of earlier analysis
- I’ve been using an ordered logit to deal with the attractiveness of the 0, 5 and 10
Next Steps: Data Analysis

- We have recently received the survey data - early results show that
 - Men risk more by 0.5 coins on average; 2 sample t test is significant at 10%
 - Married people (84% of the sample) risk more by about 0.7 (sig at 10%)
 - The treatment effects are strong and reinforce the message of earlier analysis

- I’ve been using an ordered logit to deal with the attractiveness of the 0, 5 and 10

- In the analysis of change in # of coins risked, everything (apart from the social signal-1st decision distance) is insignificant
Table: Ordered Logit on coins risked (1st decision)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral Treatment</td>
<td>0.751***</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Risky Treatment</td>
<td>1.027***</td>
<td>(0.35)</td>
</tr>
<tr>
<td>Female</td>
<td>-0.291**</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Unmarried</td>
<td>-0.646**</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>0.451*</td>
<td>(0.27)</td>
</tr>
<tr>
<td>Tertiary Education</td>
<td>0.466</td>
<td>(0.77)</td>
</tr>
<tr>
<td>No Education</td>
<td>0.259</td>
<td>(0.30)</td>
</tr>
<tr>
<td>Anglican</td>
<td>0.332</td>
<td>(0.34)</td>
</tr>
<tr>
<td>Muslim</td>
<td>0.075</td>
<td>(0.09)</td>
</tr>
<tr>
<td>Seventh Day Ad.</td>
<td>0.987***</td>
<td>(0.31)</td>
</tr>
<tr>
<td>Born Again</td>
<td>-0.270</td>
<td>(0.52)</td>
</tr>
<tr>
<td>Other Protestant</td>
<td>0.205</td>
<td>(0.41)</td>
</tr>
</tbody>
</table>

Table: Cut points

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.921</td>
</tr>
<tr>
<td>2</td>
<td>-2.672</td>
</tr>
<tr>
<td>3</td>
<td>-2.335</td>
</tr>
<tr>
<td>4</td>
<td>-2.057</td>
</tr>
<tr>
<td>5</td>
<td>-1.630</td>
</tr>
<tr>
<td>6</td>
<td>-0.347</td>
</tr>
<tr>
<td>7</td>
<td>0.153</td>
</tr>
<tr>
<td>8</td>
<td>0.510</td>
</tr>
<tr>
<td>9</td>
<td>0.945</td>
</tr>
<tr>
<td>10</td>
<td>1.645</td>
</tr>
</tbody>
</table>

Note: The 'default' is: Catholic, male, primary school, safe treatment. Robust standard errors, clustered by the four enumerators.
Table: Standard OLS with Robust SE Clustered by enumerator

<table>
<thead>
<tr>
<th>Category</th>
<th>Beta</th>
<th>T-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral Treatment</td>
<td>1.051*</td>
<td>2.949</td>
</tr>
<tr>
<td>Risky Treatment</td>
<td>1.368*</td>
<td>2.444</td>
</tr>
<tr>
<td>Female</td>
<td>-0.366</td>
<td>-2.282</td>
</tr>
<tr>
<td>Unmarried</td>
<td>-0.878*</td>
<td>-2.907</td>
</tr>
<tr>
<td>Anglican</td>
<td>0.482</td>
<td>0.886</td>
</tr>
<tr>
<td>Muslim</td>
<td>0.113</td>
<td>0.512</td>
</tr>
<tr>
<td>7th Day Ad.</td>
<td>1.358**</td>
<td>4.954</td>
</tr>
<tr>
<td>Born Again</td>
<td>-0.601</td>
<td>-0.709</td>
</tr>
<tr>
<td>Other Protestant</td>
<td>0.806</td>
<td>1.124</td>
</tr>
</tbody>
</table>