

Success Stories of Learning Watersheds in BNB of Amhara Region: Lessons and Implications for Sustainable RWM

Gizaw Desta (ARARI)

NBDC Regional Stakeholder Dialogue, Bahir Dar, 23-24 July 2013

RESEARCH PROGRAM ON Water, Land and Ecosystems

Led

by:

Contents

- Context of RWM in Watershed management
- Issues of WM and IWRM
- Success stories of learning watersheds in BNB
- Lessons and Implications for RWM

Integrated Watershed Management Approach – for agricultural development, NRM, and RWM

• What matters for watershed management?

Context of Watershed Development in ANRS

• Findings based on case study on 40 watersheds

Monitoring & Evaluation

- Planning Stage
 - Participatory M&E system was not <u>set at the planning</u> <u>stage</u>
- Implementation stage
 - Clearly defined reporting and evaluation roles among DAs, DG, 1:5 workforce and woreda experts
 - Supervision and feedback from decision makers –

Post implementation

- No performance indicators set to explicitly evaluate the effectiveness and sustainability of the targeted measures
- Lack of responsible unit for coordinated M&E across sectors

Sustainability

- Most of the interventions are inclined towards <u>protective</u> <u>function than productive functions</u>
- no clarity on cost sharing and utilization arrangements of common resources and nor on mechanisms for conflict resolution, regulation of behavior
- Lack of authorized body with power to implement and regulate the community bylaws on watershed development

Issues in watershed management

- **1. Socioeconomic Issues in Watershed Management**
 - Upstream-downstream relationships food security, commercialization, environmental service, water governance
 - Capacity: Constraints to investment at an individual land holding level (labor, income, KAS)
 - Participation: for common decision making, collective action and equitable cost & benefit sharing, participatory R&D

2. Biophysical Issues in Watershed Management

- **WATER**: Water scarcity and/or flooding IWRM
- LAND DEGRADATION: Soil erosion and sedimentation
- BIODIVERSITY: Deforestation, wetland and loss of aquatic life
- LAND USE: Inappropriate land use plans/ farming system and management practices

3. Issues of scale in a watershed approach

- NRM activities follow the watershed approach while the livelihood activities are at kebele unit
- Interaction of Social and Spatial scale of watershed management
 - Farm and/or Household
 - Catchment and/or Community
 - Sub watersheds
 - River basin or landscapes
- Which issues of watershed management at plot, catchment, watershed or basin scales dependent on household or community decisions?

4. Impact of watershed management

- Individual and community behavior and practices
- Sediment and hydrology budget
- Biodiversity change
- Productivity/Livelihood
 - Crop and livestock productivity
 - employment

Questions

 Are the interventions capable to address the social, economic, and biophysical ISSUES?

- Are the approaches and mechanisms facilitate
 - Participation and empowerment? And
 - Transfer and ownership of processes, responsibilities and outcomes sustainably by users and implementing institutions?

Watershed management for sustainability?

Balancing protection of resources (supply) and use of resources (demand).

- Demand or supply driven?
- Development or environment?

- The RWM interventions and its management in watershed approach can be sustainable if they target the following
 - Empowerment and ownership of processes and outcomes
 - Rehabilitation of natural resources
 - Increase on-site productivity livelihood
 - Create employment
 - Equitable resource use
 - Protection of environment upstream and downstream connectivity
 - Transferability and scaling out

RWM Projects working in learning watersheds/landscape approach What lessons learned?

080	NOON	²⁰⁰ 1		2000 (por c	010
SCRP		MERET	SIDA	AMAREW	SWHISA	CBINRMP
		JICA			SUN	WLRC
					SRMP	AGP
					SLMP	NBDC
					TANA BELES	ICARDA

Success stories

SCRP

- 1. Long-term hydrology and sediment monitoring
- 2. Fanyaju terrace

GTZ

- 1. Gully development -Napier
- 2. Triticale
- 3. Sub-soiling

SWHISA

- 1. Household wells and WHS
- 2. Community participate in the design, supervision of small scale irrigation development
- 3. Gully + pasture development
- 4. Area enclosures
- 5. Self-help user groups
- 6. Farmer to farmer extension

TANA BELES

- 1. M&E strategy
- 2. Hydrological monitoring

WLRC

- 1. R4D research-extension link
- 2. Homestead development

Success stories

SIDA

- Seed multiplication and disseminationdurum wheat growers group
- 2. Grasses and fodder tree along field boundaries
- 3. Dairy cows in zero-grazing system
- 4. Roof water harvesting
- 5. Fruit production
- 6. Gully control
- 7. Integration of u/s and d/s irrigation users
- 8. Fish ponds
- 9. Free grazing control
- 10.Wood lots
- 11. Tree seedling production
- 12. Fuel stoves

AMAREW

- 1. Improved varieties Vernonia, sorghum
- Integrated production by innovative farmers
 eg. Ato Dessalegn, Ato Yasin
- 3. Hillside area enclosures
- 4. Low-cost gravity drip irrigation
- Rope and washer pump for water harvesting systems
- 6. Income generation
 - improved stoves-self-help women Yeku
 - Gabion wire box production Lench Dima
- 7. Water point development
- 8. Gully rehabilitation and production
- 9. Joint planning of research-extension

10.FREG

- 11.Inductive training
- 12.Community based watershed management

- Question: To what extent these best practices and success stories are adopted and scaled out until this time and continued to make the watersheds as a learning and demonstration sites?
- Evidences indicate that
 - Low level of continued adoption
 - Lack landscape approach at the planning stage
 - Only local impact noted for a short term
 - Lack of sense of long-term ownership by users and takeover of the responsibilities by public institutions

- Watershed interventions
 - Inclined to the on-site **protection** of natural resources or on-site rehabilitation
 - adapted to existing small holder production system, lack to consider eco-friendly alternative livelihood strategies and land use change production options
 - Less emphasis to the use of resources or productivity and offsite protection through landscape approach
 - Lack of knowledge of targeting of techniques feasibility of RWM practices

Lessons

- Inadequate for capturing structures and processes at landscape level, where common property resources (forest, wetlands, protected areas, water bodies, grazing lands) become visible
- Upstream watershed management practices was not strategically connected with water resources management objectives in the downstream – IWRM

• Institutional arrangement

- No capacity gap at policy and strategy level ESIF/SLM, but gap at implementation level towards sectoral integration
- Limited dialogue and discussion among the various stakeholders about the context specific micro-watershed approach and landscape NRM strategies, despite there is national guideline
- adhoc type watershed committee, water users group, etc
- link only to MOA but not to EPLAU & MOWE agriculture but not on environment , land use and water use

Lessons

- Research need for knowledge development and management
 - Current research focus is on farm-level innovations and facilitate change through individualized decision processes at household or community scale
 - Limited R4D on
 - Targeting of practices soil, hydrology, topographic, social, economic conditions
 - Landscape connectivity
 - Basin level research and knowledge to guide basin and regional development
 - Strategic level research
 - Information and Knowledge management at all levels

Implication for sustainable RWM

- The lessons on successes and best practices on learning watersheds implies the need to bring change on
 - individual farmers and community behavior towards SLM and managing common property resources
 - Empowerment of community and sense of ownership of successes by community and public regulatory functions and private users
 - Integration of watershed successes into Government
 watershed plan for scaling out

- Research demand for well established watershed approach and technologies to address— LAND USE, WATER, ENVIRONMENT, BIODIVERSITY, SCALE Issues and Monitoring Data of sustainability indicators
- Linkage of IWRM and watershed management –basin regulatory functions
- Institutional framework for coordinated SLM at grass root level – projects and public sectors
- Strategy for participatory M&E of R&D at all levels change in sustainability indicators (practice, behavior, biomass/ productivity, hydrology, biodiversity, employment, equity)

Thank you