How low does HAP (PM_{2.5}) need to be to achieve health benefits? Recommendations of new WHO guidelines

DFID/WHO conference, 1st May 2014 Dr Nigel Bruce, Consultant

Public Health, Environmental & Social Determinants of Health (WHO/PHE)

World Health

Overview of presentation

- Why does this question matter?
- Existing WHO air quality guidelines:
 - A foundation for the new guidelines
- Key questions for the new Guidelines
- Evidence reviewed:
 - Focus on 3 reviews most relevant to our question
- Main recommendations
- Implementation and evaluation plans

- 2.8 billion use solid fuels
- High HAP (>> AQGs)
- 4.3 (2.9, 4.9) million
 premature deaths (2012)
- World's poorest people; majority rural, facing multiple challenges.
- Experience sustained use of 'effective' interventions challenging
- Hence ... question of whether moderate ↓ in HAP would → 'useful' health benefit

WHO Air Quality Guidelines:

PM _{2.5} and carbon monoxide (CO)

Pollutant	Guideline or target	Exposure period	Level (µg/m³)
PM _{2.5}	Guideline	Annual	10
(2005)	IT-3	average	15
	IT-2		25
	IT-1		35
Pollutant	Guideline or target	Exposure period	Level (mg/m³)
Carbon	Guideline	8-hour	10
monoxide (2010)	Guideline	24-hour	7

WHO Air Quality Guidelines:

PM _{2.5} and carbon monoxide (CO)

Pollutant	Guideline or target	Exposure period	Level (µg/m³)
PM _{2.5}	Guideline	Annual	10
(2005)	IT-3	average	15
	IT-2		25
	IT-1		35
Pollutant	Guideline or target	Exposure period	Level (mg/m³)
Carbon monoxide	Guideline	8-hour	10

Scope and key questions

Scope:

Global, with focus on LMIC; all uses - cooking, heating and lighting

4 key questions for guidelines:

- Practical means of assessing performance: what emission rates are required to meet:
 - The annual average AQG and IT-1 for PM_{2.5}, and
 - The 24-hr average AQG for CO?
- In light of challenges in securing sustained use of low emission devices/fuels, what approach should be taken during this transition?
- Should coal be used as a household fuel?
- Should kerosene be used as a household fuel?

Additional issues:

Safety; Health and climate synergies

Evidence reviews

1. Fuel use, emissions and pollution levels:

- Global patterns of household fuel use
- Emissions of health-damaging pollutants
- Model linking emission rates with air quality
- Population levels of household air pollution

2. Health impacts:

- Health risks from HAP, including exposure-risk
- Specific risks from household use of coal
- Risks of burns, scalds and poisoning

3. <u>Implementation - interventions and policy</u>:

- Impacts of interventions in daily use on PM_{2.5} and CO
- Factors enabling and limiting adoption
- Interventions costs and financing options

1: Model linking emissions to air quality

Inputs:

- Emission rates:
 - PM2.5
 - CO
- Kitchen volume
- Air exchange rate
- Duration of use (hours per day)

Outputs:

- Predicted average concentrations of:
 - PM2.5
 - CO

- Uses ranges of inputs and Monte Carlo simulation
- Assumes uniform mixing of pollutants and air in kitchen

1: Model linking emissions to air quality

Inputs:

- Emission rates:
 - PM2.5
 - CO
- Kitchen volume
- Air exchange rate
- Duration of use (hours per day)

Outputs:

- Predicted average concentrations of:
 - PM2.5
 - CO

- Uses ranges of inputs and Monte Carlo simulation
- Assumes uniform mixing of pollutants and air in kitchen

2: Health risks from exposure to HAP from solid fuels

Strong evidence	Tentative evidence
 Child pneumonia Low birth weight Chronic obstructive pulmonary disease (COPD) Lung cancer (coal) Lung cancer (biomass) Cataract [Cardiovascular disease] 	 Stillbirth Pre-term birth Stunting Cognitive development Asthma Other cancers (naso-pharynx, uterine cervix) Tuberculosis

Also: health risks from kerosene and gas

IER function*: PM_{2.5} and child ALRI risk

IER function for $PM_{2.5}$ and child ALRI risk (linear scale)

IER functions included

Disease outcome	HAP data available for IER	Exposure measurement
Child acute lower respiratory infection (ALRI)	Yes	Direct
Ischaemic heart disease	No	-
Stroke	No	-
Chronic obstructive pulmonary disease (COPD)	Yes	Estimated
Lung cancer	Yes	Estimated

IER function: lung cancer

3: Impacts of interventions - daily use $(PM_{2.5})$

Device and Number of		Kitchen PM _{2.5} (μg/m³)			
fuel type	studies (estimates)	Pre- intervention mean	Post- intervention mean	Summary % reduction (95% CI) in mean	
Solid fuel unvented	4 (7)	780	410	-48% (-34, -54)	
Solid fuel vented	18 (23)	1030	370	-63% (+14, -89)	
Advanced solid	1 (3)	650	380	-41% (-29, -50)	
Ethanol	4 (4)	720	120	-83% (-63, -94)	
Gas	1 (2)	890	280	-64% (-48, -80)	
Electricity	1 (1)	160	80	-50% (N/A)	

WHO annual AQG = $10 \mu g/m^3$

3: Impacts of interventions - daily use $(PM_{2.5})$

Device and	Number of	Kitchen PM _{2.5} (µg/m³)		
fuel type	studies (estimates)	Pre- intervention mean	Post- intervention mean	Summary % reduction (95% CI) in mean
Solid fuel unvented	4 (7)	780	410	-48% (-34, -54)
Solid fuel vented	18 (23)	1030	370	-63% (+14, -89)
Advanced solid	1 (3)	650	380	-41% (-29, -50)
Ethanol	4 (4)	720	120	-83% (-63, -94)
Gas	1 (2)	890	280	-64% (-48, -80)
Electricity	1 (1)	160	80	-50% (N/A)

For CO – similar story with important difference that most groups at/below 24-hr AQG

Focus on emissions reductions – why?

- Indoor ←→ outdoor
- Evidence base stronger than for other approaches
- Implementation practicality – via design, production, standards, etc.
- Some options (clean fuels), are relatively independent of user behaviour.

Rec. 1(a): Emission rate targets ($PM_{2.5}$)

Recommendation

For 90% of homes to meet the WHO AQGs for PM_{2.5,} emission rates should not exceed the emission rate targets (ERTs) set out below.

Emissions rate targets (ERT)	Emission rate (mg/min)	Percentage of kitchens meeting AQG (10 μg/m³)	Percentage of kitchens meeting AQG IT-1 (35 μg/m³)
Unvented			
Intermediate	1.75	9%	60%
Final	0.23	90%	100%
Vented			
Intermediate	7.15	4%	60%
Final	0.80	90%	100%

Rec. 1(b): Emission rate targets (CO)

Recommendation

For 90% of homes to meet the WHO AQG for CO, emission rates should not exceed the emission rate targets (ERTs) set out below.

Emissions rate targets (ERT)	Emission rate (mg/min)	Percentage of kitchens meeting AQG (7 mg/m³)
Unvented		
Intermediate	0.35	60%
Final	0.16	90%
Vented		
Intermediate	1.45	60%
Final	0.59	90%

Recommendation 2: Policy during transition

Recommendation:

- For many, it will take time to meet AQGs (especially PM_{2.5}), so intermediate steps (solid fuel stoves) may be required
- Policy should promote clean fuel where and when possible
- Solid fuels: test emissions (ref Recommendation #1), use best possible options
- Monitor use and air pollution (not just laboratory)

Rationale:

- Health evidence: need low levels for major health benefits (ALRI)
- In practice, solid fuel stoves not achieving low levels (some vented wood stoves 35-70 μg/m³)
- Even clean fuel users well above IT-1 (other sources)
- Based on evidence, requires (near) exclusive use of clean fuels to achieve AQG (PM_{2.5}).

Household energy transition

Traditional biomass

Low emission biomass

Clean fuel

Household energy transition

Traditional biomass

Low emission biomass

Clean fuel

Rec. 3: Household use of coal

Recommendation:

Unprocessed coal should not be used as a household fuel

Rationale:

- It is very difficult to burn coal cleanly in home
- IARC Monograph: emissions from household use of coal are a Group 1 carcinogen
- Coal often contains toxins (fluorine, arsenic, mercury, etc.) which are not destroyed on combustion.
- There should be further assessment of so-called 'clean' and 'smokeless' coal

Rec. 4: Use of kerosene

Recommendation:

Household combustion of kerosene is discouraged while further research into its health impacts is conducted

Rationale:

- High levels of emissions of PM and other health-damaging emissions.
- Epidemiologic studies suggest links to cancer, respiratory disease, adverse birth outcomes, etc., but are not of adequate consistency/quality.
- Kerosene use carries substantial risks of burns and poisoning.

Outline of implementation strategy

IAQ Guidelines:

- Outline of strategy in published volume
- Website: guidance and tools (will evolve)

All countries:

- WHO region/country offices → Ministries
- Dissemination through regional workshops
- Evaluation

Work with selected countries and partners:

- 4 to 5 countries over 3 years (initially)
- Defining health sector role; link to policy
- Arrangements for multi-sectoral working
- Support development and implementation of action plans
- Evaluation → revise guidance

Timing	Activity
Mid- 2014	Publish IAQG with web pages
2014-15	Regional workshops
2014-17	Work with 4-5 countries
2016	Evaluation of IAQG implementation
2016-17	Revisions to guidance and tools

Supporting implementation in countries

Thanks!

Additional issues addressed

- 1. The home does not exist in isolation:
 - Emissions from household combustion contribute outdoor air pollution, some of which re-enters homes
 - Outdoor air pollution from any source (including neighbours' houses) enters homes
- 2. Household fuel combustion devices/fuels linked to increased risks for burns, scalds, fires, and poisoning
- 3. Policy for achieving sustained adoption vital if guidelines are to be implemented especially for poorer, rural homes.
- 4. Growing evidence on synergies between health and climate impacts

Existing WHO Air Quality Guidelines (AQG)

- Global update (ambient) 2005:
 - $-PM_{2.5}, PM_{10}$
 - Chapter on IAP
- Indoor AQG:
 - Dampness and Mould:2009
 - Selected pollutants: 2010
 - Household fuel combustion: this project

General considerations

- Household emissions: escape and re-enter homes and lower IAQ; so total emissions should be minimised.
- Local ambient air quality outdoor emissions (from homes and other sources) affect indoor air quality: implications for community-wide action and control of other sources.
- Homes have multiple energy needs (cooking, heating, lighting, etc.): use and emissions from all sources should be considered.
- Safety: Safety of interventions for
 \(\) HAP emissions should not be assumed: approaches to minimize exposure to emissions should be taken in a way that incorporates safety concerns.

Best-practice recommendation

Recommendation:

In view of the close synergy between health and climate impacts of household fuel combustion, climate mitigation policy addressing household energy should include health assessment

Rationale:

- Inefficient combustion of biomass (higher emissions) in settings with non-sustainable harvesting contributes to net CO₂ emissions.
- Incomplete combustion leads to emissions of (shorter-lived) pollutants that are both health damaging and exert positive radiative forcing.

